
Cloudera Flow Management Operator 2.8.0

Configuring NiFi CR
Date published: 2024-06-11
Date modified: 2024-06-11

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Flow Management Operator | Contents | iii

Contents

Configuring a NiFi instance.. 5

Resource recommendations for NiFi deployments..5

Group, version, kind, meta..5

Configuring NiFi Image... 6

Configuring cluster size... 6

Configuring persistence..6

Configuring assets...7

Configuring Kubernetes state management.. 8

Configuring node certificate generation...8

Configuring NiFi properties.. 8
Overriding NiFi settings using ConfigMaps and Secrets.. 9

Configuring scaling...9

Configuring connections to NiFi and NiFi Registry..10
Configuring session affinity... 10
Configuring arbitrary connections..10
Configuring NiFi Web UI connection... 11

Hostname-only ingress example...11
Hostname-only route example..12
Ingress with context path example...12

Configuring authentication for NiFi and NiFi Registry..................................... 13
Configuring single user authentication.. 13

Generating password hash using cfmctl...13
Configuring LDAP authentication..14

Example CR.. 15

Cloudera Flow Management Operator Configuring a NiFi instance

Configuring a NiFi instance

NiFi instances are configured through the CRs used to deploy them.

A custom resource (CR) is a YAML file that describes your desired NiFi deployments. This single file contains all
configuration information required for the NiFi instance, no additional configuration is required after deployment.

This documentation provides sample configuration code snippets to help you create a CR.

Resource recommendations for NiFi deployments

Learn about the recommended resource sizes for NiFi deployments. Every NiFi deployment is unique on the basis
of the purpose it serves, therefore the values here are just recommendations not requirements. Actual values may
substantially differ depending on your use case.

Resource Type Amount

CPU 2+ per Pod

Memory 4Gi+ per Pod

PVC/PV 5 per Pod

Secrets 4 + #Pods

ConfigMaps 9

Services 1 + #Connections

Pods 1 min, 3+ recommended

StatefulSet 1

Deployment 0

Ingress 1 + #IngressConnection

Group, version, kind, meta

This is the initial section of your YAML file that you need to specify in all cases.

You need to add the following section to the top of each NiFi CR you write. It defines the group “cfm.cloudera.com”,
the version “v1alpha1”, the kind “Nifi”, and the name of your cluster and the NiFi nodes. It can also specify the name
space in which resources will be deployed. It is expected that a single NiFi cluster is deployed in a given namespace.
You can also specify namespace during deployment, if that is what you want, omit namespace from the CR

apiVersion: cfm.cloudera.com/v1alpha
kind: Nifi
metadata:
 name:[***NIFI CLUSTER NAME***]
 namespace: [***NIFI CLUSTER NAMESPACE***]

Replace [***NIFI CLUSTER NAME***] and [***NIFI CLUSTER NAMESPACE***] with the desired cluster name
and cluster namespace respectively.

5

Cloudera Flow Management Operator Configuring NiFi Image

Configuring NiFi Image

Specify locaction of the image used for deployment.

This is how you specify the NiFi image repository and image version to be used for deployment. This describes the
images used for running NiFi. This also provides a way of manually upgrading the NiFi version in an existing cluster
or very quickly rolling out NiFi clusters with new versions.

spec:
 image:
 repository: container.repository.cloudera.com/cdp-private/cfm-nifi-k8s
 tag: []

Note:

container.repository.cloudera.com/cdp-private/cfm-nifi-k8s is the default repository for Cloudera Kubernetes
images. If your Kubernetes cluster has no internet access or you want to use a self-hosted repository, replace
it with the relevant path.

Configuring cluster size

Specify the number of pods in your deployment.

This section configures the number and capacity of your pods in the cluster.

spec:
 replicas: [***NUMBER OF REPLICAS***]
 resources:
 nifi:
 requests:
 cpu: "[***CPU IN CORES***]"
 memory: [***MEMORY IN BITES***]
 limits:
 cpu: "[***CPU IN CORES***]"
 memory: [***MEMORY IN BITES***]
 log:
 requests:
 cpu: [***CPU IN CORES***]
 memory: [***MEMORY IN BITES***]

Configuring persistence

Specify storage size and class globally, or for individual repositories.

This section specifies the storage to be used for the NiFi repositories. You can define storage globally, or have
overrides for specific repositories. In case of OpenShift, the storage classes have to be specified at the OpenShift level
to match the IOPS expectations for your NiFi workloads.

The CFM Operator can configure persistent disk storage for the following directories:

• state
• data
• FlowFile Repository
• Content Repository

6

Cloudera Flow Management Operator Configuring assets

• Provenance Repository

In the persistence spec, you can define a default size and StorageClass which applies to each of the directories. The
spec can be further configured to define specific sizes and StorageClasses for each directory, if necessary.

spec:
 persistence:
 size: [***SIZE IN GIGABITES***]
 storageClass: [***STORAGE CLASS***]
 contentRepo:
 size: [***SIZE IN GIGABITES***]
 storageClass: [***STORAGE CLASS***]
 flowfileRepo:
 size: [***SIZE IN GIGABITES***]
 provenanceRepo:
 size: [***SIZE IN GIGABITES***]

Configuring assets

Learn about configuring access to NiFi assets.

You can make NiFi assets, such as custom processor JARs, or configuration files available to your NiFi cluster using
the assets field. This field allows you to specify a mount path within the NiFi Pods to which the provided pre-existing
Persistent Volume Claim (PVC) is mounted. CFM Operator does not provide a method of loading assets into this
volume. Using the example below, all files located in the volume associated with my-nifi-assets-volume-claim are
accessible at the path /opt/nifi/nifi-assets/ for use within your flow.

Before you can start using assets with NiFi deployed through CFM Operator, you have to provide the following:

• A volume provisioner which supports creating volumes that are ReadWriteMany (RWX), for example nfs-
provisioner.

• A pod running some kind of software or process (for example, an FTP server) attached to the RWX volume for
loading files onto the volume. Alternatively, you can use the kubectl cp command to directly copy files into
most containers, such as Ubuntu.

After meeting the above prerequisites, you need to create a Persistent Volume Claim (PVC) which creates the
required RWX volume. For example:

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: nifi-assets
spec:
 storageClassName: [***STORAGE CLASS***]
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Gi

where [***STORAGE CLASS***] refers to the Storage Class associated with the RWX volume provisioner.

With the PVC created and the PV provisioned, attach the pod you have created, expose the pod via Ingress or Service
if required, and load the asset files.

spec:
 assets:
 mountPath: “/opt/nifi/nifi-assets”
 persistentVolumeClaim: my-nifi-assets-volume-claim

7

Cloudera Flow Management Operator Configuring Kubernetes state management

Configuring Kubernetes state management

Specify Kubernetes native state management provider as the state management provider of your cluster.

Cloudera's distribution of NiFi comes with a Kubernetes native state management provider. This is the recommended
state management for use with CFM Operator. However, as it is not the default state management provider set by
CFM Operator, you need to add this section to the configuration. Without this configuration, a ZooKeeper cluster is
expected.

To configure the Kubernetes state management provider, use the below YAML.

spec:
 stateManagement:
 clusterProvider:
 id: kubernetes-provider
 class: org.apache.nifi.kubernetes.state.provider.KubernetesConfigMapS
tateProvider
 configOverride:
 nifiProperties:
 upsert:
 nifi.cluster.leader.election.implementation: “KubernetesLeaderElect
ionManager”

Configuring node certificate generation

Learn about certificate generation options.

CFM Operator provides automatic certificate generation for each NiFi node in a given cluster by way of cert-manager
certificates to secure intra-cluster communication between NiFis. To configure nodeCertGen, a cert-manager Issuer
or ClusterIssuer is required. A self-signed Issuer setup is sufficient for development environments. In production
environments use a third-party authority, or internal signing CAs.

spec:
 security:
 nodeCertGen:
 issuerRef:
 name: self-signed-ca-issuer
 kind: ClusterIssuer

Related Information
Issuers and ClusterIssuers

Configuring NiFi properties

Learn how to override default NiFi configuration settings provided by CFM Operator from the CR file.

NiFI settings are available as part of the specification, under the configOverride key. They can be provided in one of
the following ways:

• inline,
• as a ConfigMap
• as a Secret

spec:

8

https://cert-manager.io/docs/concepts/issuer/

Cloudera Flow Management Operator Configuring scaling

 configOverride:
 nifiProperties:
 upsert:
 nifi.cluster.load.balance.connections.per.node: "1"
 nifi.cluster.load.balance.max.thread.count: "4"
 nifi.cluster.node.connection.timeout: "60 secs"
 nifi.cluster.node.read.timeout: "60 secs"
 bootstrapConf:
 upsert:
 java.arg.2: -Xms2g
 java.arg.3: -Xmx2g
 java.arg.13: -XX:+UseConcMarkSweepGC

Overriding NiFi settings using ConfigMaps and Secrets
Learn about overriding default NiFi settings using ConfigMaps and Secrets.

The ConfigMap or Secret values are available to inject into the environment for the following files:

• authorizers.xml
• bootstrap.conf
• logback.xml
• login-identity-providers.xml
• nifi.properties
• state-management.xml

Each of these config overrides must be in an individual ConfigMap with the key being the filename to be replaced.
Using this ConfigMap or Secret reference method entirely overrides the defaults provided by the CFM Operator,
which may impact cluster operation.

NiFiSpec
spec:
 configOverride:
 authorizersObjectReference:
 kind: "ConfigMap"
 name: "custom-authorizers"

ConfigMapSpec
data:
 authorizers.xml: |
 <authorizers>
 <authorizer>
 <identifier>single-user-authorizer</identifier>
 <class>org.apache.nifi.authorization.single.user.SingleUserAuth
orizer</class>
 </authorizer>
 </authorizers>

Configuring scaling

Learn about scaling NiFi clusters either manually or automatically, using HPA.

It is possible to manually scale up and down the NiFi cluster size by editing the replicas value in the deployment file
and applying the changes. It is also possible to specify an HPA to automatically scale the NiFi cluster (replica count)
based on the Kubernetes resources (CPU/memory).

To manually scale the cluster, simply edit the replicas field to your desired replica count.

9

Cloudera Flow Management Operator Configuring connections to NiFi and NiFi Registry

For autoscaling, apply a Horizontal Pod Autoscaling (HPA) resource targeting the NiFi CR, as follows:

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
 name: nifi-hpa
spec:
 maxReplicas: 3
 minReplicas: 1
 metrics:
 - type: Resource
 resource:
 name: cpu
 target:
 type: Utilization
 averageUtilization: 75
 scaleTargetRef:
 apiVersion: cfm.cloudera.com/v1alpha1
 kind: Nifi
 name: [***NIFI CLUSTER NAME***]

Configuring connections to NiFi and NiFi Registry

Learn about configuring connections for your NiFi cluster.

CFM Operator provides a flexible method of configuring connections to NiFi called Connections. Using Connections,
a Service, Ingress, or Route can be configured to route to a specific port on NiFi. For defining Connections targeting
an arbitrary port on NiFi, use the spec.connections array. For configuring connection to the NiFi Web UI, use the
spec.uiConnection field. This documentation provides a full reference for Connections.

Configuring session affinity
Learn about configuring session affinity. It makes possible to keep connection to the web UI alive in clusters with
several nodes.

Regardless of your connection type, a NiFi cluster with more than one node requires session affinity of some type
for the Web UI to operate. This is because each NiFi node can supply its own web UI and if a LoadBalancer shifts
you to another instance, your authentication tokens become invalid. The best method of applying session affinity
varies greatly depending on the Kubernetes cluster provider. In the simplest case, defining session affinity on the web
Service resource itself is sufficient:

spec:
 uiConnection:
 serviceConfig:
 sessionAffinity: ClientIP

In certain clouds, for example AWS, the backing LoadBalancer resources do not support session affinity, and cause
provisioning to break.

Configuring arbitrary connections
Learn about configuring a connections array.

You can use the connections array to flexibly define routing to ports on NiFi. The below example configures an
Ingress resource with some annotations and labels provided. The Ingress will expose a URL https://nifi.io/listenTCP

10

Cloudera Flow Management Operator Configuring connections to NiFi and NiFi Registry

which routes to port 9432 on NiFi. Additionally, the backing Service is configured to have two extra ports, 8496 and
8495.

spec:
 connections:
 - type: Ingress
 name: someConnection
 annotations:
 someanno: myanno
 labels:
 somelabel: mylabel
 ingressConfig:
 hostname: nifi.io
 paths:
 - port: 9432
 path: /listenTCP
 name: listentcp
 serviceConfig:
 ports:
 - port: 8496
 protocol: TCP
 name: porta
 - port: 8495
 protocol: UDP
 name: portb

Configuring NiFi Web UI connection
Learn about configuring a connection to the NiFi web UI.

You can configure a connection to the NiFi Web UI using the spec.uiConnection field. It is a standard connection
field with special validation and handling. The name of this connection is always ignored and set to [***CR
NAME***]-web. For Ingress type connections, a maximum of one path may be specified. When you configure a
uiConnection, the spec.hostname field is required.

The uiConnection can support hostname routing with and without an additional context path. It is not recommended
to use a context path for routing as NiFi does not support it well, but it is possible. For more information, see NiFi
documentation on proxy configuration. An example using ingress-nginx is included in this section.

Related Information
NiFi proxy configuration

Hostname-only ingress example
Learn about configuring an Ingress resource using TLS files generated by CFM Operator.

This YAML snippet configures an Ingress resource for accessing the NiFi Web UI. It uses the TLS files generated by
a CFM Operator created Certificate as defined in spec.security.ingressCertGen. The supplied annotations are for the
ingress-nginx Ingress controller. The affinity settings enable a persistent session so that UI interactions go to the same
NiFi node in the cluster. The backend-protocol setting is needed for when NiFi is configured to be secure, as it will
reject any non-HTTPS connection attempts.

spec:
 uiConnection:
 type: Ingress
 ingressConfig:
 ingressClassName: myIngressClass
 ingressTLS:
 - hosts:
 - nifi.localhost
 secretName: mynifi-ingress-cert

11

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#proxy_configuration

Cloudera Flow Management Operator Configuring connections to NiFi and NiFi Registry

 annotations:
 nginx.ingress.kubernetes.io/affinity: cookie
 nginx.ingress.kubernetes.io/affinity-mode: persistent
 nginx.ingress.kubernetes.io/backend-protocol: HTTPS

Hostname-only route example
Learn about configuring a Route resource to acces the NiFi web UI.

This YAML snippet configures a Route resource for accessing the NiFi web UI.

spec:
 uiConnection:
 type: Route
 routeConfig:
 tls:
 termination: passthrough

Ingress with context path example
Learn about configuring an Ingress resource that rewrites the connection path in incoming requests and does a
reverse-rewrite on UI calls going to the backend.

This YAML code snippet configures an ingress UI Connection with a path. The annotations here are for the ingress-
nginx ingress controller and all are required for NiFi to correctly understand the incoming requests.

In the example the path includes some regex at the end: (/|$)(.*). This regex informs the rewrite directives in the
configuration-snippet and rewrite-target annotations. NiFi does not handle proxy paths well, it does not understand
that https://nifi.localhost/some/path/to/nifi coming through the defined Ingress is intended to call the /nifi API to load
the UI. The rewrite-target annotation addresses this by capturing the /nifi and anything that comes after and sends
that as the path to the NiFi pod. It translates /some/path/to/nifi/ to /nifi/. Similarly, the NiFi web UI does not correctly
form API calls going to the backend, attempting to call /nifi/ instead of /some/path/to/nifi/. This is addressed by the
configuration-snippet rewrite instruction. It does the reverse of the rewrite-target, reapplying the removed context
path /some/path/to. The remaining configuration-snippet lines are headers required by a NiFi behind a proxy. For
more information, see the NiFi System Administrator’s Guide.

spec:
 uiConnection:
 type: Ingress
 ingressConfig:
 ingressClassName: myIngressClass
 ingressTLS:
 - hosts:
 - nifi.localhost
 secretName: mynifi-ingress-cert
 paths:
 - port: 8443
 path: "/some/path/to(/|$)(.*)"
 annotations:
 nginx.ingress.kubernetes.io/affinity: cookie
 nginx.ingress.kubernetes.io/affinity-mode: persistent
 nginx.ingress.kubernetes.io/backend-protocol: HTTPS
 nginx.ingress.kubernetes.io/configuration-snippet: |-
 proxy_set_header X-ProxyScheme $scheme;
 proxy_set_header X-ProxyHost $host;
 proxy_set_header X-ProxyPort $server_port;
 proxy_set_header X-ProxyContextPath /some/path/to;
 rewrite (.*\/nifi)$ $1/ redirect;
 proxy_ssl_name mynifi.default.svc.cluster.local;
 nginx.ingress.kubernetes.io/rewrite-target: /$2

12

Cloudera Flow Management Operator Configuring authentication for NiFi and NiFi Registry

Configuring authentication for NiFi and NiFi Registry

Learn about configuring single user authentication for development purposes and TLS authentication more suited for
porduction environments.

Configuring single user authentication
Single user authentication is NiFi’s most basic authentication option, sufficient for development clusters. A single
user is granted all permissions on the NiFi cluster, no other users can be configured.

To configure single user authentication, you need to specify it in loginIdentityProviders and you need to make
overrides to the nifi.properties configuration file:

spec:
 security:
 customAuthorizer:
 identifier: single-user-authorizer
 className: org.apache.nifi.authorization.single.user.SingleUserAuthor
izer
 configOverride:
 loginIdentityProviders: |
 <loginIdentityProviders>
 <provider>
 <identifier>single-user-provider</identifier>
 <class>org.apache.nifi.authentication.single.user.SingleUserLog
inIdentityProvider</class>
 <property name="Username">[***SINGLE USER NAME***]</property>
 <property name="Password">[***HASHED PASSWORD**]</property>
 </provider>
 </loginIdentityProviders>
 nifiProperties:
 upsert:
 nifi.security.user.authorizer: single-user-authorizer
 nifi.security.user.login.identity.provider: single-user-provider

Replace:

• [***SINGLE USER NAME***] with your desired username
• [***HASHED PASSWORD***] with a hash of your password. You can use the cfmctl CLI tool to generate this

hash using the single-user-credential command.

Related Information
Single user authentication

Generating password hash using cfmctl
You can generate a NiFi password hash using the single-user-credentials cfmctl command.

Procedure

1. Run the singe-user-credentials command.

bin/cfmctl single-user-credentials

13

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#single_user_identity_provider

Cloudera Flow Management Operator Configuring authentication for NiFi and NiFi Registry

2. Enter a password when prompted.

Enter password:

The property and the hash value are printed to stdout:

<property name="Password">$2b$10$FdOuiIvdvrcF3dG9YMSa3u7VPLXOLQUdLbJAML
BdeM4S6tbDMg322</property>
$2b$10$FdOuiIvdvrcF3dG9Y1234u7VPLXOLQUdLbJAMLB6AXQS6tbDMg322

Add one or the other to your loginIdentityProviders.xml override to enable single user login using the desired
credentials.

Configuring LDAP authentication
Learn how to configure an LDAP server for user authentication in your NiFi or NiFi Registry cluster.

CFM Operator can configure NiFi to connect to an LDAP server for user authentication.

Prerequisites:

• Full LDAP URL, i.e. ldap://[***LDAP SERVER URL***]:[***LDAP PORT***]
• Desired authentication strategy
• Authentication credentials and key/trust stores if using LDAPS.
• User search filters

For LDAP servers protected with any authentication, a Secret must be created containing the correct authentication
credentials and TLS resources (if applicable). The Secret must contain the following data fields:

• managerPassword
• keystore (if TLS is configured)
• keystorePassword (if TLS is configured)
• truststore (if TLS is configured)
• truststorePassword (if TLS is configured)

Create the secret usiing the cubectl CLI utility:

kubectl create secret generic my-ldap-creds \
 --from-literal=managerPassword=myMan@gerPassw0rd \
 --from-file=keystore=/path/to/keystore \
 --from-literal=keystorePassword=myKeystorePassword \
 --from-file=truststore=/path/to/truststore \
 --from-literal=truststorePassword=myTruststorePassword

The following example shows a connection to an LDAP server protected with basic authentication with TLS.

spec:
 security:
 initialAdminIdentity: mynifiadmin
 ldap:
 authenticationStrategy: SIMPLE
 managerDN: "cn=admin,dc=example,dc=org"
 secretName: my-openldap-creds
 referralStrategy: FOLLOW
 connectTimeout: 3 secs
 readTimeout: 10 secs
 url: ldap://my-ldap-url:389
 userSearchBase: "dc=example,dc=org"
 userSearchFilter: "(uid={0})"

14

Cloudera Flow Management Operator Example CR

 identityStrategy: USE_USERNAME
 authenticationExpiration: 12 hours
 tls:
 keystoreType: jks
 truststoreType: jks
 clientAuth: NONE
 protocol: TLSv1.2

By default, CFM Operator does not deploy a UserGroupProvider using the LDAP target. This means NiFi does
not pull down any users, only queries the LDAP server for authentication. This impedes configuring user access,
requiring the NiFi administrator to create each user manually.

The following example shows configuring user synchronization with the LDAP server:

spec:
 security:
 ldap:
 sync:
 interval: 30 min
 userObjectClass: inetOrgPerson
 userSearchScope: SUBTREE
 userIdentityAttribute: cn
 userGroupNameAttribute: ou
 userGroupNameReferencedGroupAttribute: ou
 groupSearchBase: "dc=example,dc=org"
 groupObjectClass: organizationalUnit
 groupSearchScope: OBJECT
 groupNameAttribute: ou

Example CR

The following example NiFi CR deploys a 3 node cluster with single user authentication (admin/admin), Kubernetes-
based state management and leader election, and a Route to access the NiFi UI.

apiVersion: cfm.cloudera.com/v1alpha1
kind: Nifi
metadata:
 name: mynifi
spec:
 replicas: 3
 image:
 repository: container.repository.cloudera.com/cloudera/cfm-nifi-k8s
 tag: [***NIFI TAG***]
 pullSecret: docker-pull-secret
 tiniImage:
 repository: container.repository.cloudera.com/cloudera/cfm-tini
 tag: [***CFM TINI TAG***]
 pullSecret: docker-pull-secret
 hostName: mynifi.[***OPENSHIFT ROUTER DOMAIN***]
 uiConnection:
 type: Route
 serviceConfig:
 sessionAffinity: ClientIP
 configOverride:
 nifiProperties:
 upsert:
 nifi.cluster.leader.election.implementation: "KubernetesLeaderElecti
onManager"
 authorizers: |
 <authorizers>

15

Cloudera Flow Management Operator Example CR

 <authorizer>
 <identifier>single-user-authorizer</identifier>
 <class>org.apache.nifi.authorization.single.user.SingleUserAuthor
izer</class>
 </authorizer>
 </authorizers>
 loginIdentityProviders: |
 <loginIdentityProviders>
 <provider>
 <identifier>single-user-provider</identifier>
 <class>org.apache.nifi.authentication.single.user.SingleUserLoginI
dentityProvider</class>
 <property name="Username">admin</property>
 <property name="Password">$2b$10$GRa8g9Z5rBENXPFNHFBosev9XmY6CSk0
SdcBi5sQMRX92KD73asGG</property>
 </provider>
 </loginIdentityProviders>
 stateManagement:
 clusterProvider:
 id: kubernetes-provider
 class: org.apache.nifi.kubernetes.state.provider.KubernetesConfigMapSt
ateProvider

16

	Contents
	Configuring a NiFi instance
	Resource recommendations for NiFi deployments
	Group, version, kind, meta
	Configuring NiFi Image
	Configuring cluster size
	Configuring persistence
	Configuring assets
	Configuring Kubernetes state management
	Configuring node certificate generation
	Configuring NiFi properties
	Overriding NiFi settings using ConfigMaps and Secrets

	Configuring scaling
	Configuring connections to NiFi and NiFi Registry
	Configuring session affinity
	Configuring arbitrary connections
	Configuring NiFi Web UI connection
	Hostname-only ingress example
	Hostname-only route example
	Ingress with context path example

	Configuring authentication for NiFi and NiFi Registry
	Configuring single user authentication
	Generating password hash using cfmctl

	Configuring LDAP authentication

	Example CR

