
Apache NiFi Overview
Date published:
Date modified:

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

 | Contents | iii

Contents

What is Apache NiFi?.. 4

The core concepts of NiFi..4

NiFi Architecture.. 5

Performance Expectations and Characteristics of NiFi..8

High Level Overview of Key NiFi Features...8

What is Apache NiFi?

What is Apache NiFi?

Put simply, NiFi was built to automate the flow of data between systems. While the term 'dataflow' is used in a
variety of contexts, we use it here to mean the automated and managed flow of information between systems. This
problem space has been around ever since enterprises had more than one system, where some of the systems created
data and some of the systems consumed data. The problems and solution patterns that emerged have been discussed
and articulated extensively. A comprehensive and readily consumed form is found in the Enterprise Integration
Patterns .

Some of the high-level challenges of dataflow include:

Systems fail

Networks fail, disks fail, software crashes, people make mistakes.

Data access exceeds capacity to consume

Sometimes a given data source can outpace some part of the processing or delivery chain - it only
takes one weak-link to have an issue.

Boundary conditions are mere suggestions

You will invariably get data that is too big, too small, too fast, too slow, corrupt, wrong, or in the
wrong format.

What is noise one day becomes signal the next

Priorities of an organization change - rapidly. Enabling new flows and changing existing ones must
be fast.

Systems evolve at different rates

The protocols and formats used by a given system can change anytime and often irrespective of the
systems around them. Dataflow exists to connect what is essentially a massively distributed system
of components that are loosely or not-at-all designed to work together.

Compliance and security

Laws, regulations, and policies change. Business to business agreements change. System to system
and system to user interactions must be secure, trusted, accountable.

Continuous improvement occurs in production

It is often not possible to come even close to replicating production environments in the lab.

Over the years dataflow has been one of those necessary evils in an architecture. Now though there are a number of
active and rapidly evolving movements making dataflow a lot more interesting and a lot more vital to the success
of a given enterprise. These include things like; Service Oriented Architecture [soa], the rise of the API [api][api2],
Internet of Things [iot], and Big Data [bigdata]. In addition, the level of rigor necessary for compliance, privacy,
and security is constantly on the rise. Even still with all of these new concepts coming about, the patterns and needs
of dataflow are still largely the same. The primary differences then are the scope of complexity, the rate of change
necessary to adapt, and that at scale the edge case becomes common occurrence. NiFi is built to help tackle these
modern dataflow challenges.

The core concepts of NiFi

NiFi's fundamental design concepts closely relate to the main ideas of Flow Based Programming [fbp]. Here are some
of the main NiFi concepts and how they map to FBP:

4

http://www.enterpriseintegrationpatterns.com
http://www.enterpriseintegrationpatterns.com
https://nifi.apache.org/docs/nifi-docs/html/overview.html#soa
https://nifi.apache.org/docs/nifi-docs/html/overview.html#api
https://nifi.apache.org/docs/nifi-docs/html/overview.html#api2
https://nifi.apache.org/docs/nifi-docs/html/overview.html#iot
https://nifi.apache.org/docs/nifi-docs/html/overview.html#bigdata
https://nifi.apache.org/docs/nifi-docs/html/overview.html#fbp

NiFi Architecture

NiFi Term FBP Term Description

FlowFile Information Packet A FlowFile represents each object moving
through the system and for each one, NiFi
keeps track of a map of key/value pair
attribute strings and its associated content of
zero or more bytes.

FlowFile Processor Black Box Processors actually perform the work. In
08aa6f614e9b18c805a1f1d1d0f2c0cd231b9a00.xml#eip
terms a processor is doing some combination
of data routing, transformation, or mediation
between systems. Processors have access to
attributes of a given FlowFile and its content
stream. Processors can operate on zero or
more FlowFiles in a given unit of work and
either commit that work or rollback.

Connection Bounded Buffer Connections provide the actual linkage
between processors. These act as queues
and allow various processes to interact at
differing rates. These queues can be prioritized
dynamically and can have upper bounds on
load, which enable back pressure.

Flow Controller Scheduler The Flow Controller maintains the knowledge
of how processes connect and manages the
threads and allocations thereof which all
processes use. The Flow Controller acts as the
broker facilitating the exchange of FlowFiles
between processors.

Process Group subnet A Process Group is a specific set of processes
and their connections, which can receive data
via input ports and send data out via output
ports. In this manner, process groups allow
creation of entirely new components simply by
composition of other components.

This design model, also similar to 08aa6f614e9b18c805a1f1d1d0f2c0cd231b9a00.xml#seda, provides many
beneficial consequences that help NiFi to be a very effective platform for building powerful and scalable dataflows. A
few of these benefits include:

• Lends well to visual creation and management of directed graphs of processors
• Is inherently asynchronous which allows for very high throughput and natural buffering even as processing and

flow rates fluctuate
• Provides a highly concurrent model without a developer having to worry about the typical complexities of

concurrency
• Promotes the development of cohesive and loosely coupled components which can then be reused in other

contexts and promotes testable units
• The resource constrained connections make critical functions such as back-pressure and pressure release very

natural and intuitive
• Error handling becomes as natural as the happy-path rather than a coarse grained catch-all
• The points at which data enters and exits the system as well as how it flows through are well understood and

easily tracked

NiFi Architecture

5

08aa6f614e9b18c805a1f1d1d0f2c0cd231b9a00.xml#eip
08aa6f614e9b18c805a1f1d1d0f2c0cd231b9a00.xml#seda

NiFi Architecture

NiFi executes within a JVM on a host operating system. The primary components of NiFi on the JVM are as follows:

Web Server

The purpose of the web server is to host NiFi’s HTTP-based command and control API.

Flow Controller

The flow controller is the brains of the operation. It provides threads for extensions to run on, and
manages the schedule of when extensions receive resources to execute.

Extensions

There are various types of NiFi extensions which are described in other documents. The key point
here is that extensions operate and execute within the JVM.

6

NiFi Architecture

FlowFile Repository

The FlowFile Repository is where NiFi keeps track of the state of what it knows about a given
FlowFile that is presently active in the flow. The implementation of the repository is pluggable. The
default approach is a persistent Write-Ahead Log located on a specified disk partition.

Content Repository

The Content Repository is where the actual content bytes of a given FlowFile live. The
implementation of the repository is pluggable. The default approach is a fairly simple mechanism,
which stores blocks of data in the file system. More than one file system storage location can be
specified so as to get different physical partitions engaged to reduce contention on any single
volume.

Provenance Repository

The Provenance Repository is where all provenance event data is stored. The repository construct is
pluggable with the default implementation being to use one or more physical disk volumes. Within
each location event data is indexed and searchable.

NiFi is also able to operate within a cluster.

7

Performance Expectations and Characteristics of NiFi

Starting with the NiFi 1.0 release, a Zero-Leader Clustering paradigm is employed. Each node in a NiFi cluster
performs the same tasks on the data, but each operates on a different set of data. Apache ZooKeeper elects a single
node as the Cluster Coordinator, and failover is handled automatically by ZooKeeper. All cluster nodes report
heartbeat and status information to the Cluster Coordinator. The Cluster Coordinator is responsible for disconnecting
and connecting nodes. Additionally, every cluster has one Primary Node, also elected by ZooKeeper. As a DataFlow
manager, you can interact with the NiFi cluster through the user interface (UI) of any node. Any change you make is
replicated to all nodes in the cluster, allowing for multiple entry points.

Performance Expectations and Characteristics of NiFi

NiFi is designed to fully leverage the capabilities of the underlying host system on which it is operating. This
maximization of resources is particularly strong with regard to CPU and disk. For additional details, see the best
practices and configuration tips in the Administration Guide.

For IO

The throughput or latency one can expect to see varies greatly, depending on how the system
is configured. Given that there are pluggable approaches to most of the major NiFi subsystems,
performance depends on the implementation. But, for something concrete and broadly applicable,
consider the out-of-the-box default implementations. These are all persistent with guaranteed
delivery and do so using local disk. So being conservative, assume roughly 50 MB per second
read/write rate on modest disks or RAID volumes within a typical server. NiFi for a large class of
dataflows then should be able to efficiently reach 100 MB per second or more of throughput. That
is because linear growth is expected for each physical partition and content repository added to
NiFi. This will bottleneck at some point on the FlowFile repository and provenance repository. We
plan to provide a benchmarking and performance test template to include in the build, which allows
users to easily test their system and to identify where bottlenecks are, and at which point they might
become a factor. This template should also make it easy for system administrators to make changes
and to verify the impact.

For CPU

The Flow Controller acts as the engine dictating when a particular processor is given a thread to
execute. Processors are written to return the thread as soon as they are done executing a task. The
Flow Controller can be given a configuration value indicating available threads for the various
thread pools it maintains. The ideal number of threads to use depends on the host system resources
in terms of numbers of cores, whether that system is running other services as well, and the nature
of the processing in the flow. For typical IO-heavy flows, it is reasonable to make many dozens of
threads to be available.

For RAM

NiFi lives within the JVM and is thus limited to the memory space it is afforded by the JVM. JVM
garbage collection becomes a very important factor to both restricting the total practical heap size,
as well as optimizing how well the application runs over time. NiFi jobs can be I/O intensive when
reading the same content regularly. Configure a large enough disk to optimize performance.

High Level Overview of Key NiFi Features

This sections provides a 20,000 foot view of NiFi’s cornerstone fundamentals, so that you can understand the Apache
NiFi big picture, and some of its the most interesting features. The key features categories include flow management,
ease of use, security, extensible architecture, and flexible scaling model.

Flow Management

Guaranteed Delivery

8

High Level Overview of Key NiFi Features

A core philosophy of NiFi has been that even at very high scale, guaranteed delivery is a must.
This is achieved through effective use of a purpose-built persistent write-ahead log and content
repository. Together they are designed in such a way as to allow for very high transaction rates,
effective load-spreading, copy-on-write, and play to the strengths of traditional disk read/writes.

Data Buffering w/ Back Pressure and Pressure Release

NiFi supports buffering of all queued data as well as the ability to provide back pressure as those
queues reach specified limits or to age off data as it reaches a specified age (its value has perished).

Prioritized Queuing

NiFi allows the setting of one or more prioritization schemes for how data is retrieved from a queue.
The default is oldest first, but there are times when data should be pulled newest first, largest first,
or some other custom scheme.

Flow Specific QoS (latency v throughput, loss tolerance, etc.)

There are points of a dataflow where the data is absolutely critical and it is loss intolerant. There are
also times when it must be processed and delivered within seconds to be of any value. NiFi enables
the fine-grained flow specific configuration of these concerns.

Ease of Use

Visual Command and Control

Dataflows can become quite complex. Being able to visualize those flows and express them visually
can help greatly to reduce that complexity and to identify areas that need to be simplified. NiFi
enables not only the visual establishment of dataflows but it does so in real-time. Rather than being
'design and deploy' it is much more like molding clay. If you make a change to the dataflow that
change immediately takes effect. Changes are fine-grained and isolated to the affected components.
You don’t need to stop an entire flow or set of flows just to make some specific modification.

Flow Templates

Dataflows tend to be highly pattern oriented and while there are often many different ways to solve
a problem, it helps greatly to be able to share those best practices. Templates allow subject matter
experts to build and publish their flow designs and for others to benefit and collaborate on them.

Data Provenance

NiFi automatically records, indexes, and makes available provenance data as objects flow through
the system even across fan-in, fan-out, transformations, and more. This information becomes
extremely critical in supporting compliance, troubleshooting, optimization, and other scenarios.

Recovery / Recording a rolling buffer of fine-grained history

NiFi’s content repository is designed to act as a rolling buffer of history. Data is removed only as
it ages off the content repository or as space is needed. This combined with the data provenance
capability makes for an incredibly useful basis to enable click-to-content, download of content, and
replay, all at a specific point in an object’s lifecycle which can even span generations.

Security

System to System

A dataflow is only as good as it is secure. NiFi at every point in a dataflow offers secure exchange
through the use of protocols with encryption such as 2-way SSL. In addition NiFi enables the
flow to encrypt and decrypt content and use shared-keys or other mechanisms on either side of the
sender/recipient equation.

User to System

NiFi enables 2-Way SSL authentication and provides pluggable authorization so that it can properly
control a user’s access and at particular levels (read-only, dataflow manager, admin). If a user enters
a sensitive property like a password into the flow, it is immediately encrypted server side and never
again exposed on the client side even in its encrypted form.

9

High Level Overview of Key NiFi Features

Multi-tenant Authorization

The authority level of a given dataflow applies to each component, allowing the admin user to
have fine grained level of access control. This means each NiFi cluster is capable of handling
the requirements of one or more organizations. Compared to isolated topologies, multi-tenant
authorization enables a self-service model for dataflow management, allowing each team or
organization to manage flows with a full awareness of the rest of the flow, to which they do not
have access.

Extensible Architecture

Extension

NiFi is at its core built for extension and as such it is a platform on which dataflow processes can
execute and interact in a predictable and repeatable manner. Points of extension include: processors,
Controller Services, Reporting Tasks, Prioritizers, and Customer User Interfaces.

Classloader Isolation

For any component-based system, dependency problems can quickly occur. NiFi addresses this by
providing a custom class loader model, ensuring that each extension bundle is exposed to a very
limited set of dependencies. As a result, extensions can be built with little concern for whether
they might conflict with another extension. The concept of these extension bundles is called 'NiFi
Archives' and is discussed in greater detail in the Developer’s Guide.

Site-to-Site Communication Protocol

The preferred communication protocol between NiFi instances is the NiFi Site-to-Site (S2S)
Protocol. S2S makes it easy to transfer data from one NiFi instance to another easily, efficiently,
and securely. NiFi client libraries can be easily built and bundled into other applications or devices
to communicate back to NiFi via S2S. Both the socket based protocol and HTTP(S) protocol are
supported in S2S as the underlying transport protocol, making it possible to embed a proxy server
into the S2S communication.

Flexible Scaling Model

Scale-out (Clustering)

NiFi is designed to scale-out through the use of clustering many nodes together as described above.
If a single node is provisioned and configured to handle hundreds of MB per second, then a modest
cluster could be configured to handle GB per second. This then brings about interesting challenges
of load balancing and fail-over between NiFi and the systems from which it gets data. Use of
asynchronous queuing based protocols like messaging services, Kafka, etc., can help. Use of NiFi’s
'site-to-site' feature is also very effective as it is a protocol that allows NiFi and a client (including
another NiFi cluster) to talk to each other, share information about loading, and to exchange data on
specific authorized ports.

Scale-up & down

NiFi is also designed to scale-up and down in a very flexible manner. In terms of increasing
throughput from the standpoint of the NiFi framework, it is possible to increase the number of
concurrent tasks on the processor under the Scheduling tab when configuring. This allows more
processes to execute simultaneously, providing greater throughput. On the other side of the
spectrum, you can perfectly scale NiFi down to be suitable to run on edge devices where a small
footprint is desired due to limited hardware resources. To specifically solve the first mile data
collection challenge and edge use cases, you can find more details here: https://cwiki.apache.org/
confluence/display/NIFI/MiNiFi regarding a child project effort of Apache NiFi, MiNiFi
(pronounced "minify", [min-uh-fahy]).

10

https://cwiki.apache.org/confluence/display/NIFI/MiNiFi
https://cwiki.apache.org/confluence/display/NIFI/MiNiFi

	Contents
	What is Apache NiFi?
	The core concepts of NiFi
	NiFi Architecture
	Performance Expectations and Characteristics of NiFi
	High Level Overview of Key NiFi Features

