
Apache NiFi User Guide
Date published:
Date modified:

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

 | Contents | iii

Contents

Introduction... 6

Browser Support... 6
Unsupported Browsers..6
Viewing the UI in Variably Sized Browsers... 6

Terminology...6

NiFi User Interface...8

Accessing the UI with Multi-Tenant Authorization..11

Logging In..13

Building a DataFlow...13
Adding Components to the Canvas..13
Component Versions...25

Sorting and Filtering Components... 27
Changing Component Versions..28
Understanding Version Dependencies..30

Configuring a Processor... 34
Settings Tab.. 35
Scheduling Tab... 37
Properties Tab... 44
Comments Tab..48
Additional Help...49

Parameters... 50
Parameter Contexts... 52
Adding a Parameter to a Parameter Context... 55
Assigning a Parameter Context to a Process Group.. 63
Referencing Parameters.. 68
Accessing Parameters... 84

Using Custom Properties with Expression Language..86
Variables..89
Custom Properties...106

Controller Services..106
Adding Controller Services for Reporting Tasks...106
Adding Controller Services for Dataflows...114
Enabling/Disabling Controller Services... 119

Reporting Tasks.. 120
Connecting Components...128

Details Tab..128
Settings.. 129

 | Contents | iv

Changing Configuration and Context Menu Options.. 138
Bending Connections.. 140

Processor Validation... 141
Site-to-Site...142

Configure Site-to-Site client NiFi instance.. 143
Configure Site-to-Site Server NiFi Instance.. 145

Example Dataflow.. 149

Command and Control of the DataFlow..149
Starting a Component... 150
Stopping a Component... 150
Enabling/Disabling a Component...150
Remote Process Group Transmission.. 151

Individual Port Transmission..151

Navigating within a DataFlow...155
Component Linking.. 155
Component Alignment..157

Align Vertically.. 157
Align Horizontally.. 161

Monitoring of DataFlow...162
Anatomy of a Processor... 162
Anatomy of a Process Group... 164
Anatomy of a Remote Process Group... 166
Queue Interaction..168
Summary Page.. 168
Historical Statistics of a Component..171

Versioning a DataFlow...173
Connecting to a NiFi Registry... 173
Version States... 178
Import a Versioned Flow... 181
Start Version Control..184
Managing Local Changes... 188

Show Local Changes.. 192
Revert Local Changes...194
Commit Local Changes.. 195

Change Version...196
Stop Version Control..201
Nested Versioned Flows...205
Parameters in Versioned Flows..205
Variables in Versioned Flows.. 209
Restricted Components in Versioned Flows.. 218

Restricted Controller Service Created in Root Process Group.. 224
Restricted Controller Service Created in Process Group... 248

Templates... 264
Creating a Template... 264
Importing a Template... 264
Instantiating a Template... 264

 | Contents | v

Managing Templates...265
Exporting a Template... 265
Removing a Template...265

Data Provenance... 265
Provenance Events.. 267
Searching for Events...268
Details of an Event...272
Replaying a FlowFile... 274
Viewing FlowFile Lineage... 275

Find Parents.. 276
Expanding an Event..278

Write Ahead Provenance Repository... 280
Backwards Compatibility..280
Older Existing NiFi Version.. 280
Bootstrap.conf... 280
System Properties..280
Encrypted Provenance Considerations... 281

Encrypted Provenance Repository..281
What is it?...281
How does it work?... 281
Writing and Reading Event Records..282
Potential Issues..284

Encrypted Content Repository..284
What is it?...284
How does it work?... 285

StaticKeyProvider... 285
FileBasedKeyProvider...285
Key Rotation... 286

Writing and Reading Content Claims.. 286
Potential Issues..288

Encrypted FlowFile Repository...288
What is it?...289
How does it work?... 289

StaticKeyProvider... 289
FileBasedKeyProvider...289
Key Rotation... 290

Writing and Reading FlowFiles... 290
Potential Issues..292

Experimental Warning...292

Other Management Features...293

Introduction

Introduction

Apache NiFi is a dataflow system based on the concepts of flow-based programming. It supports powerful and
scalable directed graphs of data routing, transformation, and system mediation logic. NiFi has a web-based user
interface for design, control, feedback, and monitoring of dataflows. It is highly configurable along several
dimensions of quality of service, such as loss-tolerant versus guaranteed delivery, low latency versus high throughput,
and priority-based queuing. NiFi provides fine-grained data provenance for all data received, forked, joined cloned,
modified, sent, and ultimately dropped upon reaching its configured end-state.

See the System Administrator’s Guide for information about system requirements, installation, and configuration.
Once NiFi is installed, use a supported web browser to view the UI.

Browser Support

Browser Version

Chrome Current and Current - 1

FireFox Current and Current - 1

Edge Current and Current - 1

Safari Current and Current - 1

Current and Current - 1 indicates that the UI is supported in the current stable release of that browser and the
preceding one. For instance, if the current stable release is 45.X then the officially supported versions will be 45.X
and 44.X.

For Safari, which releases major versions much less frequently, Current and Current - 1 simply represent the two
latest releases.

The supported browser versions are driven by the capabilities the UI employs and the dependencies it uses. UI
features will be developed and tested against the supported browsers. Any problem using a supported browser should
be reported to Apache NiFi.

Unsupported Browsers

While the UI may run successfully in unsupported browsers, it is not actively tested against them. Additionally, the
UI is designed as a desktop experience and is not currently supported in mobile browsers.

Viewing the UI in Variably Sized Browsers

In most environments, all of the UI is visible in your browser. However, the UI has a responsive design that allows
you to scroll through screens as needed, in smaller sized browsers or tablet environments.

In environments where your browser width is less than 800 pixels and the height less than 600 pixels, portions of the
UI may become unavailable.

Terminology

6

http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html

Terminology

NiFi Clustering is unique and has its own terminology. It's important to understand the following terms before setting
up a cluster:

NiFi Cluster Coordinator: A NiFi Cluster Coordinator is the node in a NiFi cluster that is responsible for carrying
out tasks to manage which nodes are allowed in the cluster and providing the most up-to-date flow to newly joining
nodes. When a DataFlow Manager manages a dataflow in a cluster, they are able to do so through the User Interface
of any node in the cluster. Any change made is then replicated to all nodes in the cluster.

Nodes: Each cluster is made up of one or more nodes. The nodes do the actual data processing.

Primary Node: Every cluster has one Primary Node. On this node, it is possible to run "Isolated Processors" (see
below). ZooKeeper is used to automatically elect a Primary Node. If that node disconnects from the cluster for any
reason, a new Primary Node will automatically be elected. Users can determine which node is currently elected as the
Primary Node by looking at the Cluster Management page of the User Interface.

Isolated Processors: In a NiFi cluster, the same dataflow runs on all the nodes. As a result, every component in the
flow runs on every node. However, there may be cases when the DFM would not want every processor to run on
every node. The most common case is when using a processor that communicates with an external service using a
protocol that does not scale well. For example, the GetSFTP processor pulls from a remote directory. If the GetSFTP

7

NiFi User Interface

Processor runs on every node in the cluster and tries simultaneously to pull from the same remote directory, there
could be race conditions. Therefore, the DFM could configure the GetSFTP on the Primary Node to run in isolation,
meaning that it only runs on that node. With the proper dataflow configuration, it could pull in data and load-balance
it across the rest of the nodes in the cluster. Note that while this feature exists, it is also very common to simply use a
standalone NiFi instance to pull data and feed it to the cluster. It just depends on the resources available and how the
Administrator decides to configure the cluster.

Heartbeats: The nodes communicate their health and status to the currently elected Cluster Coordinator via
"heartbeats", which let the Coordinator know they are still connected to the cluster and working properly. By default,
the nodes emit heartbeats every 5 seconds, and if the Cluster Coordinator does not receive a heartbeat from a node
within 40 seconds, it disconnects the node due to "lack of heartbeat". The 5-second setting is configurable in the
nifi.properties file. The reason that the Cluster Coordinator disconnects the node is because the Coordinator needs
to ensure that every node in the cluster is in sync, and if a node is not heard from regularly, the Coordinator cannot
be sure it is still in sync with the rest of the cluster. If, after 40 seconds, the node does send a new heartbeat, the
Coordinator will automatically request that the node re-join the cluster, to include the re-validation of the node's flow.
Both the disconnection due to lack of heartbeat and the reconnection once a heartbeat is received are reported to the
DFM in the User Interface.

NiFi User Interface

The NiFi UI provides mechanisms for creating automated dataflows, as well as visualizing, editing, monitoring, and
administering those dataflows. The UI can be broken down into several segments, each responsible for different
functionality of the application. This section provides screenshots of the application and highlights the different
segments of the UI. Each segment is discussed in further detail later in the document.

When the application is started, the user is able to navigate to the UI by going to the default address of http://<host
name>:8080/nifi in a web browser. There are no permissions configured by default, so anyone is able to view and
modify the dataflow. For information on securing the system, see the System Administrator’s Guide.

When a DFM navigates to the UI for the first time, a blank canvas is provided on which a dataflow can be built:

8

http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html

NiFi User Interface

The Components Toolbar runs across the top left portion of your screen. It consists of the components you can drag
onto the canvas to build your dataflow. Each component is described in more detail in Building a DataFlow.

The Status Bar is under the Components Toolbar. The Status bar provides information about the number of threads
that are currently active in the flow, the amount of data that currently exists in the flow, how many Remote Process
Groups exist on the canvas in each state (Transmitting, Not Transmitting), how many Processors exist on the canvas
in each state (Stopped, Running, Invalid, Disabled), how many versioned Process Groups exist on the canvas in each
state (Up to date, Locally modified, Stale, Locally modified and stale, Sync failure) and the timestamp at which all of
this information was last refreshed. Additionally, if the instance of NiFi is clustered, the Status bar shows how many
nodes are in the cluster and how many are currently connected.

9

http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#building-dataflow

NiFi User Interface

The Operate Palette sits to the left-hand side of the screen. It consists of buttons that are used by DFMs to manage
the flow, as well as by administrators who manage user access and configure system properties, such as how many
system resources should be provided to the application.

On the right side of the canvas is Search, and the Global Menu. You can use Search to easily find components on
the canvas and to search by component name, type, identifier, configuration properties, and their values. The Global
Menu contains options that allow you to manipulate existing components on the canvas:

Additionally, the UI has some features that allow you to easily navigate around the canvas. You can use the Navigate
Palette to pan around the canvas, and to zoom in and out. The "Birds Eye View" of the dataflow provides a high-
level view of the dataflow and allows you to pan across large portions of the dataflow. You can also find breadcrumbs
along the bottom of the screen. As you navigate into and out of Process Groups, the breadcrumbs show the depth
in the flow, and each Process Group that you entered to reach this depth. Each of the Process Groups listed in the
breadcrumbs is a link that will take you back up to that level in the flow.

10

Accessing the UI with Multi-Tenant Authorization

Accessing the UI with Multi-Tenant Authorization

11

Accessing the UI with Multi-Tenant Authorization

Multi-tenant authorization enables multiple groups of users (tenants) to command, control, and observe different parts
of the dataflow, with varying levels of authorization. When an authenticated user attempts to view or modify a NiFi
resource, the system checks whether the user has privileges to perform that action. These privileges are defined by
policies that you can apply system wide or to individual components. What this means from a Dataflow Manager
perspective is that once you have access to the NiFi canvas, a range of functionality is visible and available to you,
depending on the privileges assigned to you.

The available global access policies are:

Policy Privilege

view the UI Allows users to view the UI

access the controller Allows users to view and modify the controller including reporting
tasks, Controller Services, and nodes in the cluster

query provenance Allows users to submit a provenance search and request even lineage

access restricted components Allows users to create/modify restricted components assuming other
permissions are sufficient. The restricted components may indicate
which specific permissions are required. Permissions can be granted
for specific restrictions or be granted regardless of restrictions. If
permission is granted regardless of restrictions, the user can create/
modify all restricted components.

access all policies Allows users to view and modify the policies for all components

access users/groups Allows users to view and modify the users and user groups

retrieve site-to-site details Allows other NiFi instances to retrieve Site-To-Site details

view system diagnostics Allows users to view System Diagnostics

proxy user requests Allows proxy machines to send requests on the behalf of others

access counters Allows users to view and modify counters

The available component-level access policies are:

Policy Privilege

view the component Allows users to view component configuration details

modify the component Allows users to modify component configuration details

view provenance Allows users to view provenance events generated by this component

view the data Allows users to view metadata and content for this component in
flowfile queues in outbound connections and through provenance
events

modify the data Allows users to empty flowfile queues in outbound connections and
submit replays through provenance events

view the policies Allows users to view the list of users who can view and modify a
component

modify the policies Allows users to modify the list of users who can view and modify a
component

retrieve data via site-to-site Allows a port to receive data from NiFi instances

send data via site-to-site Allows a port to send data from NiFi instances

12

Logging In

If you are unable to view or modify a NiFi resource, contact your System Administrator or see Configuring Users and
Access Policies in the System Administrator’s Guide for more information.

Logging In

If NiFi is configured to run securely, users will be able to request access to the DataFlow. For information on
configuring NiFi to run securely, see the System Administrator’s Guide. If NiFi supports anonymous access, users
will be given access accordingly and given an option to log in.

Clicking the 'login' link will open the log in page. If the user is logging in with their username/password they will be
presented with a form to do so. If NiFi is not configured to support anonymous access and the user is logging in with
their username/password, they will be immediately sent to the login form bypassing the canvas.

Building a DataFlow

A DFM is able to build an automated dataflow using the NiFi UI. Simply drag components from the toolbar to the
canvas, configure the components to meet specific needs, and connect the components together.

Adding Components to the Canvas

The User Interface section above outlined the different segments of the UI and pointed out a Components Toolbar.
This section looks at each of the Components in that toolbar:

13

http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html
http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html

Building a DataFlow

 Processor: The Processor is the most commonly used component, as it is responsible for data ingress,
egress, routing, and manipulating. There are many different types of Processors. In fact, this is a very common
Extension Point in NiFi, meaning that many vendors may implement their own Processors to perform whatever
functions are necessary for their use case. When a Processor is dragged onto the canvas, the user is presented with a
dialog to choose which type of Processor to use:

14

Building a DataFlow

In the top-right corner, the user is able to filter the list based on the Processor Type or the Tags associated with a
Processor. Processor developers have the ability to add Tags to their Processors. These tags are used in this dialog
for filtering and are displayed on the left-hand side in a Tag Cloud. The more Processors that exist with a particular

15

Building a DataFlow

Tag, the larger the Tag appears in the Tag Cloud. Clicking a Tag in the Cloud will filter the available Processors to
only those that contain that Tag. If multiple Tags are selected, only those Processors that contain all of those Tags
are shown. For example, if we want to show only those Processors that allow us to ingest files, we can select both the
files Tag and the ingest Tag:

16

Building a DataFlow

17

Building a DataFlow

Restricted components will be marked with a icon next to their name. These are components that can be
used to execute arbitrary unsanitized code provided by the operator through the NiFi REST API/UI or can be used
to obtain or alter data on the NiFi host system using the NiFi OS credentials. These components could be used by
an otherwise authorized NiFi user to go beyond the intended use of the application, escalate privilege, or could
expose data about the internals of the NiFi process or the host system. All of these capabilities should be considered
privileged, and admins should be aware of these capabilities and explicitly enable them for a subset of trusted users.
Before a user is allowed to create and modify restricted components they must be granted access. Hovering over

the icon will display the specific permissions a restricted component requires. Permissions can be assigned
regardless of restrictions. In this case, the user will have access to all restricted components. Alternatively, users can
be assigned access to specific restrictions. If the user has been granted access to all restrictions a component requires,
they will have access to that component assuming otherwise sufficient permissions. For more information refer to
Accessing the UI with Multi-Tenant Authorization and Restricted Components in Versioned Flows.

Clicking the "Add" button or double-clicking on a Processor Type will add the selected Processor to the canvas at the
location that it was dropped.

Note: For any component added to the canvas, it is possible to select it with the mouse and move it anywhere
on the canvas. Also, it is possible to select multiple items at once by either holding down the Shift key
and selecting each item or by holding down the Shift key and dragging a selection box around the desired
components.

Once you have dragged a Processor onto the canvas, you can interact with it by right-clicking on the Processor and
selecting an option from the context menu. The options available to you from the context menu vary, depending on
the privileges assigned to you.

18

http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#UI-with-multi-tenant-authorization
http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#Restricted_Components_in_Versioned_Flows

Building a DataFlow

While the options available from the context menu vary, the following options are typically available when you have
full privileges to work with a Processor:

• Configure: This option allows the user to establish or change the configuration of the Processor (see Configuring a
Processor).

Note: For Processors, Ports, Remote Process Groups, Connections and Labels, it is possible to open the
configuration dialog by double-clicking on the desired component.

• Start or Stop: This option allows the user to start or stop a Processor; the option will be either Start or Stop,
depending on the current state of the Processor.

• Enable or Disable: This option allows the user to enable or disable a Processor; the option will be either Enable or
Disable, depending on the current state of the Processor.

• View data provenance: This option displays the NiFi Data Provenance table, with information about data
provenance events for the FlowFiles routed through that Processor (see Data Provenance).

• View status history: This option opens a graphical representation of the Processor's statistical information over
time.

• View usage: This option takes the user to the Processor's usage documentation.
• View connections#Upstream: This option allows the user to see and "jump to" upstream connections that are

coming into the Processor. This is particularly useful when processors connect into and out of other Process
Groups.

19

http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#Configuring_a_Processor
http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#Configuring_a_Processor
http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#data_provenance

Building a DataFlow

• View connections#Downstream: This option allows the user to see and "jump to" downstream connections that
are going out of the Processor. This is particularly useful when processors connect into and out of other Process
Groups.

• Center in view: This option centers the view of the canvas on the given Processor.
• Change color: This option allows the user to change the color of the Processor, which can make the visual

management of large flows easier.
• Create template: This option allows the user to create a template from the selected Processor.
• Copy: This option places a copy of the selected Processor on the clipboard, so that it may be pasted elsewhere on

the canvas by right-clicking on the canvas and selecting Paste. The Copy/Paste actions also may be done using the
keystrokes Ctrl-C (Command-C) and Ctrl-V (Command-V).

• Delete: This option allows the DFM to delete a Processor from the canvas.

 Input Port: Input Ports provide a mechanism for transferring data into a Process Group. When an Input
Port is dragged onto the canvas, the DFM is prompted to name the Port. All Ports within a Process Group must have
unique names.

All components exist only within a Process Group. When a user initially navigates to the NiFi page, the user is
placed in the Root Process Group. If the Input Port is dragged onto the Root Process Group, the Input Port provides
a mechanism to receive data from remote instances of NiFi via Site-to-Site. In this case, the Input Port can be
configured to restrict access to appropriate users, if NiFi is configured to run securely. For information on configuring
NiFi to run securely, see the System Administrator’s Guide.

 Output Port: Output Ports provide a mechanism for transferring data from a Process Group to
destinations outside of the Process Group. When an Output Port is dragged onto the canvas, the DFM is prompted to
name the Port. All Ports within a Process Group must have unique names.

If the Output Port is dragged onto the Root Process Group, the Output Port provides a mechanism for sending data
to remote instances of NiFi via Site-to-Site. In this case, the Port acts as a queue. As remote instances of NiFi pull
data from the port, that data is removed from the queues of the incoming Connections. If NiFi is configured to run
securely, the Output Port can be configured to restrict access to appropriate users. For information on configuring
NiFi to run securely, see the System Administrator’s Guide.

 Process Group: Process Groups can be used to logically group a set of components so that the dataflow is
easier to understand and maintain. When a Process Group is dragged onto the canvas, the DFM is prompted to name
the Process Group. All Process Groups within the same parent group must have unique names. The Process Group
will then be nested within that parent group.

Once you have dragged a Process Group onto the canvas, you can interact with it by right-clicking on the Process
Group and selecting an option from the context menu. The options available to you from the context menu vary,
depending on the privileges assigned to you.

20

http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#site-to-site
http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html
http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#site-to-site
http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html

Building a DataFlow

While the options available from the context menu vary, the following options are typically available when you have
full privileges to work with the Process Group:

• Configure: This option allows the user to establish or change the configuration of the Process Group.
• Variables: This option allows the user to create or configure variables within the NiFi UI.
• Enter group: This option allows the user to enter the Process Group.

Note: It is also possible to double-click on the Process Group to enter it.

• Start: This option allows the user to start a Process Group.
• Stop: This option allows the user to stop a Process Group.
• View status history: This option opens a graphical representation of the Process Group's statistical information

over time.
• View connections#Upstream: This option allows the user to see and "jump to" upstream connections that are

coming into the Process Group.
• View connections#Downstream: This option allows the user to see and "jump to" downstream connections that

are going out of the Process Group.
• Center in view: This option centers the view of the canvas on the given Process Group.
• Group: This option allows the user to create a new Process Group that contains the selected Process Group and

any other components selected on the canvas.
• Create template: This option allows the user to create a template from the selected Process Group.

21

Building a DataFlow

• Copy: This option places a copy of the selected Process Group on the clipboard, so that it may be pasted
elsewhere on the canvas by right-clicking on the canvas and selecting Paste. The Copy/Paste actions also may be
done using the keystrokes Ctrl-C (Command-C) and Ctrl-V (Command-V).

• Delete: This option allows the DFM to delete a Process Group.

 Remote Process Group: Remote Process Groups appear and behave similar to Process Groups. However,
the Remote Process Group (RPG) references a remote instance of NiFi. When an RPG is dragged onto the canvas,
rather than being prompted for a name, the DFM is prompted for the URL of the remote NiFi instance. If the remote
NiFi is a clustered instance, adding two or more cluster node URLs is recommended so that an initial connection can
be made even if one of the nodes is unavailable. Multiple URLs can be specified in a comma-separated format.

When data is transferred to a clustered instance of NiFi via an RPG, the RPG will first connect to the remote instance
whose URL is configured to determine which nodes are in the cluster and how busy each node is. This information is
then used to load balance the data that is pushed to each node. The remote instances are then interrogated periodically
to determine information about any nodes that are dropped from or added to the cluster and to recalculate the load
balancing based on each node's load. For more information, see the section on Site-to-Site.

Once you have dragged a Remote Process Group onto the canvas, you can interact with it by right-clicking on the
Remote Process Group and selecting an option from the context menu. The options available to you from the menu
vary, depending on the privileges assigned to you.

22

http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#site-to-site

Building a DataFlow

The following options are typically available when you have full privileges to work with the Remote Process Group:

• Configure: This option allows the user to establish or change the configuration of the Remote Process Group.
• Enable transmission: Makes the transmission of data between NiFi instances active (see Remote Process Group

Transmission).
• Disable transmission: Disables the transmission of data between NiFi instances.
• View status history: This option opens a graphical representation of the Remote Process Group's statistical

information over time.
• View connections#Upstream: This option allows the user to see and "jump to" upstream connections that are

coming into the Remote Process Group.
• View connections#Downstream: This option allows the user to see and "jump to" downstream connections that

are going out of the Remote Process Group.
• Refresh remote: This option refreshes the view of the status of the remote NiFi instance.
• Manage remote ports: This option allows the user to see input ports and/or output ports that exist on the remote

instance of NiFi that the Remote Process Group is connected to. Note that if the Site-to-Site configuration is
secure, only the ports that the connecting NiFi has been given accessed to will be visible.

• Center in view: This option centers the view of the canvas on the given Remote Process Group.
• Go to: This option opens a view of the remote NiFi instance in a new tab of the browser. Note that if the Site-to-

Site configuration is secure, the user must have access to the remote NiFi instance in order to view it.

23

http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#Remote_Group_Transmission
http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#Remote_Group_Transmission

Building a DataFlow

• Group: This option allows the user to create a new Process Group that contains the selected Remote Process
Group and any other components selected on the canvas.

• Create template: This option allows the user to create a template from the selected Remote Process Group.
• Copy: This option places a copy of the selected Process Group on the clipboard, so that it may be pasted

elsewhere on the canvas by right-clicking on the canvas and selecting Paste. The Copy/Paste actions also may be
done using the keystrokes Ctrl-C (Command-C) and Ctrl-V (Command-V).

• Delete: This option allows the DFM to delete a Remote Process Group from the canvas.

 Funnel: Funnels are used to combine the data from many Connections into a single Connection. This has
two advantages. First, if many Connections are created with the same destination, the canvas can become cluttered
if those Connections have to span a large space. By funneling these Connections into a single Connection, that
single Connection can then be drawn to span that large space instead. Secondly, Connections can be configured with
FlowFile Prioritizers. Data from several Connections can be funneled into a single Connection, providing the ability
to Prioritize all of the data on that one Connection, rather than prioritizing the data on each Connection independently.

 Template: Templates can be created by DFMs from sections of the flow, or they can be imported from
other dataflows. These Templates provide larger building blocks for creating a complex flow quickly. When the
Template is dragged onto the canvas, the DFM is provided a dialog to choose which Template to add to the canvas:

Clicking the drop-down box shows all available Templates. Any Template that was created with a description will
show a question mark icon, indicating that there is more information. Hovering over the icon with the mouse will
show this description:

24

Building a DataFlow

 Label: Labels are used to provide documentation to parts of a dataflow. When a Label is dropped onto
the canvas, it is created with a default size. The Label can then be resized by dragging the handle in the bottom-right
corner. The Label has no text when initially created. The text of the Label can be added by right-clicking on the Label
and choosing Configure.

Component Versions

You have access to information about the version of your Processors, Controller Services, and Reporting Tasks.
This is especially useful when you are working within a clustered environment with multiple NiFi instances running
different versions of a component or if you have upgraded to a newer version of a processor. The Add Processor, Add
Controller Service, and Add Reporting Task dialogs include a column identifying the component version, as well as
the name of the component, the organization or group that created the component, and the NAR bundle that contains
the component.

25

Building a DataFlow

Each component displayed on the canvas also contains this information.

26

Building a DataFlow

Sorting and Filtering Components

When you are adding a component, you can sort on version number or filter based on originating source.

To sort based on version, click the version column to display in ascending or descending version order.

To filter based on source group, click the source drop-down in the upper left of your Add Component dialog, and
select the group you want to view.

27

Building a DataFlow

Changing Component Versions

To change a component version, perform the following steps.

1. Right-click the component on the canvas to display configuration options.

28

Building a DataFlow

2. Select Change version.

29

Building a DataFlow

3. In the Component Version dialog, select the version you want to run from the Version drop-down menu.

Understanding Version Dependencies

When you are configuring a component, you can also view information about version dependencies.

1. Right-click your component and select Configure to display the Configure dialog for your component.
2. Click the Properties tab.
3. Click the information icon to view any version dependency information.

30

Building a DataFlow

In the following example, MyProcessor version 1.0 is configured properly with the controller service
StandardMyService version 1.0:

31

Building a DataFlow

If the version of MyProcessor is changed to an incompatible version (MyProcessor 2.0), validation errors will be
displayed on the processor:

32

Building a DataFlow

and an error message will be displayed in the processor's controller service configuration since the service is no
longer valid:

33

Building a DataFlow

Configuring a Processor

To configure a processor, right-click on the Processor and select the Configure option from the context menu.
Alternatively, just double-click on the Processor. The configuration dialog is opened with four different tabs, each of
which is discussed below. Once you have finished configuring the Processor, you can apply the changes by clicking
"Apply" or cancel all changes by clicking "Cancel".

34

Building a DataFlow

Note that after a Processor has been started, the context menu shown for the Processor no longer has a Configure
option but rather has a View Configuration option. Processor configuration cannot be changed while the Processor
is running. You must first stop the Processor and wait for all of its active tasks to complete before configuring the
Processor again.

Note that entering certain control characters are not supported and will be automatically filtered out when entered.
The following characters and any unpaired Unicode surrogate codepoints will not be retained in any configuration:

[#x0], [#x1], [#x2], [#x3], [#x4], [#x5], [#x6], [#x7], [#x8], [#xB], [#xC],
 [#xE], [#xF], [#x10], [#x11], [#x12], [#x13], [#x14], [#x15], [#x16], [#x17
], [#x18], [#x19], [#x1A], [#x1B], [#x1C], [#x1D], [#x1E], [#x1F], [#xFFFE],
 [#xFFFF]

Settings Tab

The first tab in the Processor Configuration dialog is the Settings tab:

35

Building a DataFlow

This tab contains several different configuration items. First, it allows the DFM to change the name of the Processor.
The name of a Processor by default is the same as the Processor type. Next to the Processor Name is a checkbox,
indicating whether the Processor is Enabled. When a Processor is added to the canvas, it is enabled. If the Processor is
disabled, it cannot be started. The disabled state is used to indicate that when a group of Processors is started, such as
when a DFM starts an entire Process Group, this (disabled) Processor should be excluded.

Below the Name configuration, the Processor's unique identifier is displayed along with the Processor's type and
NAR bundle. These values cannot be modified.

36

Building a DataFlow

Next are two dialogues for configuring 'Penalty Duration' and 'Yield Duration'. During the normal course of
processing a piece of data (a FlowFile), an event may occur that indicates that the data cannot be processed at this
time but the data may be processable at a later time. When this occurs, the Processor may choose to Penalize the
FlowFile. This will prevent the FlowFile from being Processed for some period of time. For example, if the Processor
is to push the data to a remote service, but the remote service already has a file with the same name as the filename
that the Processor is specifying, the Processor may penalize the FlowFile. The 'Penalty Duration' allows the DFM to
specify how long the FlowFile should be penalized. The default value is 30 seconds.

Similarly, the Processor may determine that some situation exists such that the Processor can no longer make any
progress, regardless of the data that it is processing. For example, if a Processor is to push data to a remote service
and that service is not responding, the Processor cannot make any progress. As a result, the Processor should 'yield',
which will prevent the Processor from being scheduled to run for some period of time. That period of time is specified
by setting the 'Yield Duration'. The default value is 1 second.

The last configurable option on the left-hand side of the Settings tab is the Bulletin level. Whenever the Processor
writes to its log, the Processor also will generate a Bulletin. This setting indicates the lowest level of Bulletin that
should be shown in the User Interface. By default, the Bulletin level is set to WARN, which means it will display all
warning and error-level bulletins.

The right-hand side of the Settings tab contains an 'Automatically Terminate Relationships' section. Each of the
Relationships that is defined by the Processor is listed here, along with its description. In order for a Processor
to be considered valid and able to run, each Relationship defined by the Processor must be either connected to a
downstream component or auto-terminated. If a Relationship is auto-terminated, any FlowFile that is routed to that
Relationship will be removed from the flow and its processing considered complete. Any Relationship that is already
connected to a downstream component cannot be auto-terminated. The Relationship must first be removed from any
Connection that uses it. Additionally, for any Relationship that is selected to be auto-terminated, the auto-termination
status will be cleared (turned off) if the Relationship is added to a Connection.

Scheduling Tab

The second tab in the Processor Configuration dialog is the Scheduling Tab:

37

Building a DataFlow

Scheduling Strategy

The first configuration option is the Scheduling Strategy. There are three possible options for scheduling components:

Timer driven: This is the default mode. The Processor will be scheduled to run on a regular interval. The interval at
which the Processor is run is defined by the 'Run Schedule' option (see below).

Event driven: When this mode is selected, the Processor will be triggered to run by an event, and that event occurs
when FlowFiles enter Connections feeding this Processor. This mode is currently considered experimental and is

38

Building a DataFlow

not supported by all Processors. When this mode is selected, the 'Run Schedule' option is not configurable, as the
Processor is not triggered to run periodically but as the result of an event. Additionally, this is the only mode for
which the 'Concurrent Tasks' option can be set to 0. In this case, the number of threads is limited only by the size of
the Event-Driven Thread Pool that the administrator has configured.

Note: Experimental

This implementation is marked experimental as of Apache NiFi 1.10.0 (October 2019). The API,
configuration, and internal behavior may change without warning, and such changes may occur during a
minor release. Use at your own risk.

CRON driven: When using the CRON driven scheduling mode, the Processor is scheduled to run periodically, similar
to the Timer driven scheduling mode. However, the CRON driven mode provides significantly more flexibility at
the expense of increasing the complexity of the configuration. The CRON driven scheduling value is a string of six
required fields and one optional field, each separated by a space. These fields are:

Field Valid values

Seconds 0-59

Minutes 0-59

Hours 0-23

Day of Month 1-31

Month 1-12 or JAN-DEC

Day of Week 1-7 or SUN-SAT

Year (optional) empty, 1970-2099

You typically specify values one of the following ways:

• Number: Specify one or more valid value. You can enter more than one value using a comma-separated list.
• Range: Specify a range using the <number>-<number> syntax.
• Increment: Specify an increment using <start value>/<increment> syntax. For example, in the Minutes field, 0/15

indicates the minutes 0, 15, 30, and 45.

You should also be aware of several valid special characters:

• * - Indicates that all values are valid for that field.
• ? - Indicates that no specific value is specified. This special character is valid in the Days of Month and Days of

Week field.
• L - You can append L to one of the Day of Week values, to specify the last occurrence of this day in the month.

For example, 1L indicates the last Sunday of the month.

For example:

• The string 0 0 13 * * ? indicates that you want to schedule the processor to run at 1:00 PM every day.
• The string 0 20 14 ? * MON-FRI indicates that you want to schedule the processor to run at 2:20 PM every

Monday through Friday.
• The string 0 15 10 ? * 6L 2011-2017 indicates that you want to schedule the processor to run at 10:15 AM, on the

last Friday of every month, between 2011 and 2017.

For additional information and examples, see the cron triggers tutorial in the Quartz Documentation.

Concurrent Tasks

Next, the Scheduling tab provides a configuration option named 'Concurrent Tasks'. This controls how many threads
the Processor will use. Said a different way, this controls how many FlowFiles should be processed by this Processor
at the same time. Increasing this value will typically allow the Processor to handle more data in the same amount of
time. However, it does this by using system resources that then are not usable by other Processors. This essentially

39

http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#experimental_warning
https://www.quartz-scheduler.org/documentation/quartz-2.2.2/tutorials/tutorial-lesson-06.html
https://www.quartz-scheduler.org/documentation/

Building a DataFlow

provides a relative weighting of Processors - it controls how much of the system's resources should be allocated to this
Processor instead of other Processors. This field is available for most Processors. There are, however, some types of
Processors that can only be scheduled with a single Concurrent task.

Run Schedule

The 'Run Schedule' dictates how often the Processor should be scheduled to run. The valid values for this field depend
on the selected Scheduling Strategy (see above). If using the Event driven Scheduling Strategy, this field is not
available. When using the Timer driven Scheduling Strategy, this value is a time duration specified by a number
followed by a time unit. For example, 1 second or 5 mins. The default value of 0 sec means that the Processor should
run as often as possible as long as it has data to process. This is true for any time duration of 0, regardless of the time
unit (i.e., 0 sec, 0 mins, 0 days). For an explanation of values that are applicable for the CRON driven Scheduling
Strategy, see the description of the CRON driven Scheduling Strategy itself.

Execution

The Execution setting is used to determine on which node(s) the Processor will be scheduled to execute. Selecting
'All Nodes' will result in this Processor being scheduled on every node in the cluster. Selecting 'Primary Node' will
result in this Processor being scheduled on the Primary Node only. Processors that have been configured for 'Primary
Node' execution are identified by a "P" next to the processor icon:

40

Building a DataFlow

41

Building a DataFlow

To quickly identify 'Primary Node' processors, the "P" icon is also shown in the Processors tab on the Summary page:

42

Building a DataFlow

43

Building a DataFlow

Run Duration

The right-hand side of the Scheduling tab contains a slider for choosing the 'Run Duration'. This controls how long
the Processor should be scheduled to run each time that it is triggered. On the left-hand side of the slider, it is marked
'Lower latency' while the right-hand side is marked 'Higher throughput'. When a Processor finishes running, it must
update the repository in order to transfer the FlowFiles to the next Connection. Updating the repository is expensive,
so the more work that can be done at once before updating the repository, the more work the Processor can handle
(Higher throughput). However, this means that the next Processor cannot start processing those FlowFiles until the
previous Process updates this repository. As a result, the latency will be longer (the time required to process the
FlowFile from beginning to end will be longer). As a result, the slider provides a spectrum from which the DFM can
choose to favor Lower Latency or Higher Throughput.

Properties Tab

The Properties tab provides a mechanism to configure Processor-specific behavior. There are no default properties.
Each type of Processor must define which Properties make sense for its use case. Below, we see the Properties tab for
a RouteOnAttribute Processor:

44

Building a DataFlow

This Processor, by default, has only a single property: 'Routing Strategy'. The default value is 'Route to Property

name'. Next to the name of this property is a small question mark symbol (). This help symbol is seen in other
places throughout the User Interface, and it indicates that more information is available. Hovering over this symbol
with the mouse will provide additional details about the property and the default value, as well as historical values
that have been set for the Property.

45

Building a DataFlow

Clicking on the value for the property will allow a DFM to change the value. Depending on the values that are
allowed for the property, the user is either provided a drop-down from which to choose a value or is given a text area
to type a value:

In the top-right corner of the tab is a button for adding a New Property. Clicking this button will provide the DFM
with a dialog to enter the name and value of a new property. Not all Processors allow User-Defined properties.
In processors that do not allow them, the Processor becomes invalid when User-Defined properties are applied.
RouteOnAttribute, however, does allow User-Defined properties. In fact, this Processor will not be valid until the user
has added a property.

46

Building a DataFlow

Note that after a User-Defined property has been added, an icon will appear on the right-hand side of that row (
). Clicking it will remove the User-Defined property from the Processor.

Some processors also have an Advanced User Interface (UI) built into them. For example, the UpdateAttribute
processor has an Advanced UI. To access the Advanced UI, click the "Advanced" button that appears at the bottom of
the Configure Processor window. Only processors that have an Advanced UI will have this button.

47

Building a DataFlow

Some processors have properties that refer to other components, such as Controller Services, which also need
to be configured. For example, the GetHTTP processor has an SSLContextService property, which refers to the
StandardSSLContextService controller service. When DFMs want to configure this property but have not yet created
and configured the controller service, they have the option to create the service on the spot, as depicted in the image
below. For more information about configuring Controller Services, see the Controller Services section.

Comments Tab

48

http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#Controller_Services

Building a DataFlow

The last tab in the Processor configuration dialog is the Comments tab. This tab simply provides an area for users to
include whatever comments are appropriate for this component. Use of the Comments tab is optional:

Additional Help

You can access additional documentation about each Processor's usage by right-clicking on the Processor and
selecting 'Usage' from the context menu. Alternatively, select Help from the Global Menu in the top-right corner of

49

Building a DataFlow

the UI to display a Help page with all of the documentation, including usage documentation for all the Processors that
are available. Click on the desired Processor to view usage documentation.

Parameters

The values of properties in the flow, including sensitive properties, can be parameterized using Parameters.
Parameters are created and configured within the NiFi UI. Any property can be configured to reference a Parameter
with the following conditions:

• A sensitive property can only reference a Sensitive Parameter
• A non-sensitive property can only reference a Non-Sensitive Parameter
• Properties that reference Controller Services can not use Parameters
• Parameters cannot be referenced in Reporting Tasks or in controller-level Controller Services

The UI indicates whether a Parameter can be used for a property value.

50

Building a DataFlow

51

Building a DataFlow

Note: Parameters have numerous advantages over Variables. In addition to sensitive value support,
Parameters offer more granular control over access policies. Additionally, properties that reference
Parameters are validated against the substituted value, unlike most properties that reference Variables using
Expression Language.

Parameter Contexts

Parameters are created within Parameter Contexts. Parameter Contexts are globally defined/accessible to the NiFi
instance. Access policies can be applied to Parameter Contexts to determine which users can create them. Once
created, policies to read and write to a specific Parameter Context can also be applied (see Accessing Parameters for
more information).

Creating a Parameter Context

To create a Parameter Context, select Parameter Contexts from the Global Menu:

52

http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#accessing-parameters

Building a DataFlow

In the Parameter Contexts window, click the + button in the upper-right corner and the Add Parameter Context
window opens. The window has two tabs: Settings and Parameters.

53

Building a DataFlow

On the "Settings" tab, add a name for the Parameter Context and a description if desired. Select "Apply" to save the
Parameter Context or select the "Parameters" tab to add parameters to the context.

54

Building a DataFlow

Adding a Parameter to a Parameter Context

Parameters can be added during Parameter Context creation or added to existing Parameter Contexts.

During Parameter Context creation, select the "Parameters" tab. Click the + button to open the Add Parameter
window.

55

Building a DataFlow

56

Building a DataFlow

To add parameters to an existing Parameter Context, open the Parameter Context window and click the Edit button

() in the row of the desired Parameter Context.

57

Building a DataFlow

On the "Parameters" tab, click the + button to open the Add Parameter window.

The Add Parameter window has the following settings:

58

Building a DataFlow

• Name - A name that is used to denote the Parameter. Only alpha-numeric characters (a-z, A-Z, 0-9), hyphens (-),
underscores (_), periods (.), and spaces are allowed.

• Value - The value that will be used when the Parameter is referenced. Parameter values do not support Expression
Language or embedded parameter references.

• Set empty string - Check to explicitly set the value of the Parameter to an empty string. Unchecked by default.
(Note: If checked but a value is set, the checkbox is ignored.)

• Sensitive Value - Set to "Yes" if the Parameter's Value should be considered sensitive. If sensitive, the value of
the Parameter will not be shown in the UI once applied. The default setting is "No". Sensitive Parameters can only
be referenced by sensitive properties and Non-Sensitive Parameters by non-sensitive properties. Once a Parameter
is created, its sensitivity flag cannot be changed.

• Description - A description that explains what the Parameter is, how it is to be used, etc. This field is optional.

Once these settings are configured, select "Apply". The Referencing Components lists the components referenced by
the currently selected parameter. Add additional Parameters or edit any existing Parameters.

59

Building a DataFlow

60

Building a DataFlow

To complete the process, select "Apply" from the Parameter Context window. The following operations are
performed to validate all components that reference the added or modified parameters: Stopping/Restarting affected
Processors, Disabling/Re-enabling affected Controller Services, Updating Parameter Context.

61

Building a DataFlow

62

Building a DataFlow

The Referencing Components section now lists an aggregation of all the components referenced by the set of
parameters added/edited/deleted, organized by process group.

Assigning a Parameter Context to a Process Group

For a component to reference a Parameter, its Process Group must first be assigned a Parameter Context. Once
assigned, processors and controller services within that Process Group may only reference Parameters within that
Parameter Context.

A Process Group can only be assigned one Parameter Context, while a given Parameter Context can be assigned to
multiple Process Groups.

Note: A user can only set the Parameter Context of a Process Group to one of the Parameter Contexts that
the user has the view policy for. Additionally, in order to set the Parameter Context, the user must have the
modify policy for the Process Group. See Accessing Parameters for more information.

To assign a Parameter Context to a Process Group, click Configure, either from the Operate Palette or from the
Process Group context menu.

63

Building a DataFlow

64

Building a DataFlow

In the Flow Configuration window, select the "General" tab. From the Process Group Parameter Context drop-down
menu, select an existing Parameter Context or create a new one.

65

Building a DataFlow

Select "Apply" to save the configuration changes. The Process Group context menu now includes a "Parameters"
option which allows quick access to the Update Parameter Context window for the assigned Parameter Context.

66

Building a DataFlow

67

Building a DataFlow

If the Parameter Context for a Process Group is changed, all components that reference any Parameters in that Process
Group will be stopped, validated, and restarted assuming the components were previously running and are still valid.

Note: If a Parameter Context is unset from a Process Group, it does NOT inherit the Parameter Context
from the parent Process Group. Instead, no Parameters can be referenced. Any component that does already
reference a Parameter will become invalid.

Referencing Parameters

Parameter Reference Syntax

To configure an eligible property to reference a Parameter, use the # symbol as the start, with the Parameter's name
enclosed in curly braces:

#{Parameter.Name}

This can be escaped using an additional # character at the beginning. To illustrate this, assume that the Parameter
abc has a value of xxx and Parameter def has a value of yyy. Then, the following user-defined property values will
evaluate to these effective values:

User-Entered Literal Property Value Effective Property Value Explanation

#{abc} xxx Simple substitution

#{abc}/data xxx/data Simple substitution with additional literal data

#{abc}/#{def} xxx/yyy Multiple substitution with additional literal
data

#{abc #{abc No { } for parameter replacement

#abc #abc No { } for parameter replacement

##{abc} #{abc} Escaped # for literal interpretation

###{abc} #xxx Escaped # for literal interpretation, followed
by simple substitution

####{abc} ##{abc} Escaped # for literal interpretation, twice

#####{abc} ##xxx Escaped # for literal interpretation, twice,
followed by simple substitution

#{abc/data} Exception thrown on property set operation / not a valid parameter name character

When referencing a Parameter from within Expression Language, the Parameter reference is evaluated first. As an
example, to replace xxx with zzz for the abc Parameter:

${ #{abc}:replace('xxx', 'zzz') }

Referencing and Creating Parameters During Component Configuration

Parameters can be easily referenced or created as you configure the components in your flow. For example, assume
a process group has the Parameter Context "Kafka Settings" assigned to it. "Kafka Settings" contains the parameters
kafka.broker and kafka.topic1.

68

http://nifi.apache.org/docs/nifi-docs/html/expression-language-guide.html

Building a DataFlow

69

Building a DataFlow

To reference kafka.broker as the value for the "Kafka Brokers" property in the PublishKafka processor, clear the
default value and begin a new entry with the start delimiter #{. Next use the keystroke control+space to show the list
of available parameters:

70

Building a DataFlow

71

Building a DataFlow

Select kafka.broker and complete the entry with a closing curly brace }.

72

Building a DataFlow

73

Building a DataFlow

Help text describing this process is displayed when hovering over the Expression Language and Parameters eligibility
indicators.

74

Building a DataFlow

75

Building a DataFlow

Parameters can also be created on the fly. For example, to create a parameter for the "Topic Name" property, select

the "Convert to Parameter" icon () in that property's row. This icon will only be available if the user has
appropriate permissions to modify the Parameter Context (see Accessing Parameters for more information).

76

http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#accessing-parameters

Building a DataFlow

77

Building a DataFlow

The Add Parameter dialog will open. Configure the new parameter as desired.

78

Building a DataFlow

79

Building a DataFlow

Select "Apply". The process group's Parameter Context will be updated and the new parameter will be referenced by
the property with the proper syntax applied automatically.

80

Building a DataFlow

81

Building a DataFlow

Properties values that are selectable can also reference parameters. In addition to applying the "Convert to Parameter"
method described earlier, the option "Reference parameter.." is available in the value drop-down menu.

Selecting "Reference parameter…" will display a drop-down list of available parameters, determined by the
parameter context assigned to the component's process group and the user's access policies.

82

Building a DataFlow

Hovering over the question mark icon () displays the parameter's description.

Using Parameters with Sensitive Properties

Sensitive properties may only reference sensitive Parameters. This is important for versioned flows. The value of the
sensitive Parameter itself will NOT be sent to the flow registry, only the fact that the property references the sensitive
Parameter. For more information see Parameters in Versioned Flows.

83

http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#versioning_dataflow
http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#parameters-in-versioned-flows

Building a DataFlow

The value of a sensitive property must be set to a single Parameter reference. For example, values of #{password}1
23 and #{password}#{suffix} are not allowed. Sending #{password}123 would lead to exposing part of the sensitive
property's value. This is in contrast to a non-sensitive property, where a value such as #{path}/child/file.txt is valid.

Accessing Parameters

User privileges to Parameters are managed via access policies on the following levels:

• Parameter Context
• Process Group
• Component

Note: For additional information on how to configure access policies, see the Access Policies section in the
System Administrator's Guide.

Parameter Context Access Policies

For a user to see Parameter Contexts, they must be added to either the "access the controller" view policy or the
"access parameter contexts" view policy. For a user to modify Parameter Contexts, they must also be added to the
corresponding modify policies. These policies are accessed via "Policies" from the Global Menu. See the Global
Access Policies section in the System Administrator's Guide for more information.

Note: The "access parameter contexts" policies are inherited from the "access the controller" policies unless
overridden.

View and modify policies can also be set on individual parameter contexts to determine which users can view or add
parameters to the context. Select "Parameter Contexts" from the Global Menu. Select the "Access Policies" button

() in the row of the desired parameter context to manage these policies.

84

http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#access-policies
http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#global-access-policies
http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#global-access-policies

Building a DataFlow

85

Building a DataFlow

See the Component Level Access Policies section in the System Administrator's Guide for more information.

Process Group Access Policies

A user can only set the Parameter Context of a Process Group to one of the Parameter Contexts that the user has the
view policy for. Additionally, in order to set the Parameter Context, the user must have the modify policy for the
Process Group. The Process Group access policies can be managed by highlighting the Process Group and selecting

the "Access Policies" button () from the Operate Palette.

Component Access Policies

To reference Parameters or convert properties to a Parameter in a component, a user needs to have the view and
modify policies for the component. These policies are inherited if the user has view and modify policies to the
component's process group, but these policies can be overridden on the component level.

In order to modify a Parameter, a user must have view and modify policies for any and all components that reference
that Parameter. This is needed because changing the Parameter requires that the components be stopped/started and
also because by taking that action, the user is modifying the behavior of the component.

See the Component Level Access Policies section in the System Administrator's Guide for more information.

Using Custom Properties with Expression Language

You can use NiFi Expression Language to reference FlowFile attributes, compare them to other values, and
manipulate their values when you are creating and configuring dataflows. For more information on Expression
Language, see the Expression Language Guide..

In addition to using FlowFile attributes, system properties, and environment properties within Expression Language,
you can also define custom properties for Expression Language use. Defining custom properties gives you more
flexibility in handling and processing dataflows. You can also create custom properties for connection, server, and
service properties, for easier dataflow configuration.

NiFi properties have resolution precedence of which you should be aware when creating custom properties:

• Processor-specific attributes
• FlowFile properties
• FlowFile attributes
• From Variable Registry:

• User defined properties (custom properties)
• System properties
• Operating System environment variables

When you are creating custom properties, ensure that each custom property contains a distinct property value, so that
it is not overridden by existing environment properties, system properties, or FlowFile attributes.

There are two ways to use and manage custom properties with Expression Language:

• Variables: Variables are created and configured within the NiFi UI. They can be used in any field that supports
Expression Language. Variables cannot be used for sensitive properties. NiFi automatically picks up new or
modified variables. Variables are defined at the Process Group level, as a result, the access policies for viewing
and changing variables are derived from the access policies of the Process Group. See Variables for more
information.

• Custom Properties File: Key/value pairs are defined in a custom properties file that is referenced via the nifi.var
iable.registry.properties in nifi.properties. NiFi must be restarted for updates to be picked up. See Referencing
Custom Properties via nifi.properties for more information.

86

http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#component-level-access-policies
http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#component-level-access-policies
http://nifi.apache.org/docs/nifi-docs/html/expression-language-guide.html
http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#Variables
http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#Custom_Properties
http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#Custom_Properties

Building a DataFlow

Note: Custom properties via Variables and the nifi.properties file are still supported for compatibility
purposes but do not have the same power as Parameters such as support for sensitive properties and more
granular control over who can create, modify or use them. Variables and the nifi.variable.registry.properties
property will be removed in a future release. As a result, it is highly recommended to switch to Parameters.

Expression Language support for a property is indicated in the UI.

87

Building a DataFlow

88

Building a DataFlow

Variables

Note: Custom properties via Variables and the nifi.properties file are still supported for compatibility
purposes but do not have the same power as Parameters such as support for sensitive properties and more
granular control over who can create, modify or use them. Variables and the nifi.variable.registry.properties
property will be removed in a future release. As a result, it is highly recommended to switch to Parameters.

Variables are created and configured within the NiFi UI. They can be used in any field that supports Expression
Language. Variables cannot be used for sensitive properties. Variables are defined at the Process Group level, as
a result, the access policies for viewing and changing variables are derived from the access policies of the Process
Group. Variable values cannot reference other variables or make use of Expression Language.

Variables Window

To access the Variables window, right-click on the canvas with nothing selected:

89

Building a DataFlow

90

Building a DataFlow

Select "Variables" from the Context Menu:

"Variables" is also available in the right-click Context Menu when a process group is selected:

91

Building a DataFlow

92

Building a DataFlow

Creating a Variable

In the Variables window, click the + button to create a new variable. Add a name:

and a value:

93

Building a DataFlow

Select "Apply":

94

Building a DataFlow

Steps to update the variable are performed (Identifying components affected, Stopping affected Processors, etc.).
For example, the Referencing Processors section now lists the "PutFile-Root" processor. Selecting the name of the
processor in the list will navigate to that processor on the canvas. Looking at the properties of the processor, ${putfil
e_dir} is referenced by the Directory property:

95

Building a DataFlow

Variable Scope

Variables are scoped by the Process Group they are defined in and are available to any Processor defined at that level
and below (i.e. any descendant Processors).

Variables in a descendant group override the value in a parent group. More specifically, if a variable x is declared at
the root group and also declared inside a process group, components inside the process group will use the value of x
defined in the process group.

96

Building a DataFlow

For example, in addition to the putfile_dir variable that exists at the root process group, assume another putfile_dir
variable was created within Process Group A. If one of the components within Process Group A references putfile_
dir, both variables will be listed, but the putfile_dir from the root group will have a strikethrough indicating that is is
being overridden:

A variable can only be modified for the process group it was created in, which is listed at the top of the Variables
window. To modify a variable defined in a different process group, select the "arrow" icon in that variable's row:

97

Building a DataFlow

which will navigate to the Variables window for that process group:

98

Building a DataFlow

Variable Permissions

Variable permissions are based solely on the privileges configured on the corresponding Process Group.

For example, if a user does not have access to View a process group, the Variables window can not be viewed for that
process group:

99

Building a DataFlow

100

Building a DataFlow

If a user has access to View a process group but does not have access to Modify the process group, the variables can
be viewed but not modified.

For information on how to manage privileges on components, see the Access Policies section in the System
Administrator's Guide.

Referencing Controller Services

In addition to Referencing Processors, the Variables window also displays Referencing Controller Services:

101

http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#access-policies

Building a DataFlow

Selecting the name of the controller service will navigate to that controller service in the Configuration window:

102

Building a DataFlow

Unauthorized Referencing Components

When View or Modify privileges are not given to a component that references a variable, the UUID of the component
will be displayed in the Variables window:

103

Building a DataFlow

In the above example, the variable property1 is referenced by a processor that "user1" is not able to view:

104

Building a DataFlow

105

Building a DataFlow

Custom Properties

To configure custom properties for use with NiFi's Expression Language:

• Create the custom property. Ensure that:

• Each custom property contains a distinct property value, so that it is not overridden by existing environment
properties, system properties, or FlowFile attributes.

• Each node in a clustered environment is configured with the same custom properties.
• Update nifi.variable.registry.properties with the location of the custom property file(s):

Property Description

nifi.variable.registry.properties This is a comma-separated list of file location paths for one or more
custom property files.

• Restart your NiFi instance(s) for the updates to be picked up.

Custom properties can also be configured in the NiFi UI.

Controller Services

Controller Services are shared services that can be used by reporting tasks, processors, and other services to utilize for
configuration or task execution.

Note: Controller Services defined on the controller level are limited to reporting tasks and other services
defined there. Controller Services for use by processors in your dataflow must be defined in the configuration
of the root process group or sub-process group(s) where they will be used.

Note: If your NiFi instance is secured, your ability to view and add Controller Services is dependent on the
privileges assigned to you. If you do not have access to one or more Controller Services, you are not able to
see or access it in the UI. Access privileges can be assigned on a global or Controller Service-specific basis
(see Accessing the UI with Multi-Tenant Authorization for more information).

Adding Controller Services for Reporting Tasks

To add a Controller Service for a reporting task, select Controller Settings from the Global Menu.

106

Building a DataFlow

This displays the NiFi Settings window. The window has four tabs: General, Reporting Task Controller Services,
Reporting Tasks and Registry Clients. The General tab provides settings for the overall maximum thread counts of the
instance.

107

Building a DataFlow

To the right of the General tab is the Reporting Task Controller Services tab. From this tab, the DFM may click the +
button in the upper-right corner to create a new Controller Service.

108

Building a DataFlow

The Add Controller Service window opens. This window is similar to the Add Processor window. It provides a list
of the available Controller Services on the right and a tag cloud, showing the most common category tags used for
Controller Services, on the left. The DFM may click any tag in the tag cloud in order to narrow down the list of
Controller Services to those that fit the categories desired. The DFM may also use the Filter field at the top-right of

109

Building a DataFlow

the window to search for the desired Controller Service or use the Source drop-down at the top-left to filter the list by
the group who created them. Upon selecting a Controller Service from the list, the DFM can see a description of the
service below. Select the desired controller service and click Add, or simply double-click the name of the service to
add it.

110

Building a DataFlow

Once you have added a Controller Service, you can configure it by clicking the "Configure" button in the far-right
column. Other buttons in this column include "Enable", "Remove" and "Access Policies".

111

Building a DataFlow

You can obtain information about Controller Services by clicking the "Usage" and "Alerts" buttons in the left-hand
column.

When the DFM clicks the "Configure" button, a Configure Controller Service window opens. It has three tabs:
Settings, Properties,and Comments. This window is similar to the Configure Processor window. The Settings tab
provides a place for the DFM to give the Controller Service a unique name (if desired). It also lists the UUID, Type,
Bundle and Support information for the service and provides a list of other components (reporting tasks or other
controller services) that reference the service.

112

Building a DataFlow

The Properties tab lists the various properties that apply to the particular controller service. As with configuring
processors, the DFM may hover over the question mark icons to see more information about each property.

113

Building a DataFlow

The Comments tab is just an open-text field, where the DFM may include comments about the service. After
configuring a Controller Service, click "Apply" to save the configuration and close the window, or click "Cancel" to
discard the changes and close the window.

Adding Controller Services for Dataflows

To add a Controller Service for a dataflow, you can either right click a Process Group and select Configure, or click
Configure from the Operate Palette.

114

Building a DataFlow

When you click Configure from the Operate Palette with nothing selected on your canvas, you add a Controller
Service for your Root Process Group. That Controller Service is then available to all nested Process Groups in your
dataflow. When you select a Process Group on the canvas and then click Configure from either the Operate Palette or

115

Building a DataFlow

the Process Group context menu, the service will be available to all Processors and Controller Services defined in that
Process Group and below.

Use the following steps to add a Controller Service:

116

Building a DataFlow

1. Click Configure, either from the Operate Palette, or from the Process Group context menu. This displays the
process group Configuration window. The window has two tabs: General and Controller Services. The General
tab is for settings that pertain to general information about the process group. For example, if configuring the root
process group, the DFM can provide a unique name for the overall dataflow, as well as comments that describe

117

Building a DataFlow

the flow (Note: this information is visible to any other NiFi instance that connects remotely to this instance (using
Remote Process Groups, a.k.a., Site-to-Site)).

118

Building a DataFlow

2. From the Process Group Configuration page, select the Controller Services tab.
3. Click the + button to display the Add Controller Service dialog.
4. Select the Controller Service desired, and click Add.
5.

Perform any necessary Controller Service configuration tasks by clicking the Configure icon () in the right-
hand column.

Enabling/Disabling Controller Services

After a Controller Service has been configured, it must be enabled in order to run. Do this using the "Enable" button

() in the far-right column of the Controller Services tab. In order to modify an existing/running controller
service, the DFM needs to stop/disable it (as well as all referencing reporting tasks and controller services). Do this

using the "Disable" button (). Rather than having to hunt down each component that is referenced by that
controller service, the DFM has the ability to stop/disable them when disabling the controller service in question.
When enabling a controller service, the DFM has the option to either start/enable the controller service and all
referencing components or start/enable only the controller service itself.

119

Building a DataFlow

Reporting Tasks

Reporting Tasks run in the background to provide statistical reports about what is happening in the NiFi instance. The
DFM adds and configures Reporting Tasks similar to the process for Controller Services. To add a Reporting Task,
select Controller Settings from the Global Menu.

120

Building a DataFlow

This displays the NiFi Settings window. Select the Reporting Tasks tab and click the + button in the upper-right
corner to create a new Reporting Task.

121

Building a DataFlow

The Add Reporting Task window opens. This window is similar to the Add Processor window. It provides a list of the
available Reporting Tasks on the right and a tag cloud, showing the most common category tags used for Reporting
Tasks, on the left. The DFM may click any tag in the tag cloud in order to narrow down the list of Reporting Tasks to
those that fit the categories desired. The DFM may also use the Filter field at the top-right of the window to search for

122

Building a DataFlow

the desired Reporting Task or use the Source drop-down at the top-left to filter the list by the group who created them.
Upon selecting a Reporting Task from the list, the DFM can see a description of the task below. Select the desired
reporting task and click Add, or simply double-click the name of the service to add it.

123

Building a DataFlow

124

Building a DataFlow

Once a Reporting Task has been added, the DFM may configure it by clicking the "Edit" button in the far-right
column. Other buttons in this column include "Start", "Remove", "State" and "Access Policies".

You can obtain information about Reporting Tasks by clicking the "View Details", "Usage", and "Alerts" buttons in
the left-hand column.

When the DFM clicks the "Edit" button, a Configure Reporting Task window opens. It has three tabs: Settings,
Properties, and Comments. This window is similar to the Configure Processor window. The Settings tab provides a
place for the DFM to give the Reporting Task a unique name (if desired). It also lists the UUID, Type, and Bundle
information for the task and provides settings for the task's Scheduling Strategy and Run Schedule (similar to the
same settings in a processor). The DFM may hover the mouse over the question mark icons to see more information
about each setting.

125

Building a DataFlow

The Properties tab lists the various properties that may be configured for the task. The DFM may hover the mouse
over the question mark icons to see more information about each property.

126

Building a DataFlow

The Comments tab is just an open-text field, where the DFM may include comments about the task. After configuring
the Reporting Task, click "Apply" to save the configuration and close the window, or click "Cancel" to discard the
changes and close the window.

When you want to run the Reporting Task, click the "Start" button ().

127

Building a DataFlow

Connecting Components

Once processors and other components have been added to the canvas and configured, the next step is to connect
them to one another so that NiFi knows what to do with each FlowFile after it has been processed. This is
accomplished by creating a Connection between each component. When the user hovers the mouse over the center of

a component, a new Connection icon () appears:

The user drags the Connection bubble from one component to another until the second component is highlighted.
When the user releases the mouse, a 'Create Connection' dialog appears. This dialog consists of two tabs: 'Details' and
'Settings'. They are discussed in detail below. Note that it is possible to draw a connection so that it loops back on the
same processor. This can be useful if the DFM wants the processor to try to re-process FlowFiles if they go down a
failure Relationship. To create this type of looping connection, simply drag the connection bubble away and then back
to the same processor until it is highlighted. Then release the mouse and the same 'Create Connection' dialog appears.

Details Tab

The Details tab of the 'Create Connection' dialog provides information about the source and destination components,
including the component name, the component type, and the Process Group in which the component lives:

128

Building a DataFlow

Additionally, this tab provides the ability to choose which Relationships should be included in this Connection. At
least one Relationship must be selected. If only one Relationship is available, it is automatically selected.

Note: If multiple Connections are added with the same Relationship, any FlowFile that is routed to that
Relationship will automatically be 'cloned', and a copy will be sent to each of those Connections.

Settings

129

Building a DataFlow

The Settings tab provides the ability to configure the Connection's Name, FlowFile Expiration, Back Pressure
Thresholds, Load Balance Strategy and Prioritization:

The Connection name is optional. If not specified, the name shown for the Connection will be names of the
Relationships that are active for the Connection.

FlowFile Expiration

130

Building a DataFlow

FlowFile expiration is a concept by which data that cannot be processed in a timely fashion can be automatically
removed from the flow. This is useful, for example, when the volume of data is expected to exceed the volume that
can be sent to a remote site. In this case, the expiration can be used in conjunction with Prioritizers to ensure that
the highest priority data is processed first and then anything that cannot be processed within a certain time period
(one hour, for example) can be dropped. The expiration period is based on the time that the data entered the NiFi
instance. In other words, if the file expiration on a given connection is set to '1 hour', and a file that has been in the
NiFi instance for one hour reaches that connection, it will expire. The default value of 0 sec indicates that the data
will never expire. When a file expiration other than '0 sec' is set, a small clock icon appears on the connection label,
so the DFM can see it at-a-glance when looking at a flow on the canvas.

Back Pressure

NiFi provides two configuration elements for Back Pressure. These thresholds indicate how much data should be
allowed to exist in the queue before the component that is the source of the Connection is no longer scheduled to
run. This allows the system to avoid being overrun with data. The first option provided is the "Back pressure object
threshold." This is the number of FlowFiles that can be in the queue before back pressure is applied. The second
configuration option is the "Back pressure data size threshold." This specifies the maximum amount of data (in size)
that should be queued up before applying back pressure. This value is configured by entering a number followed by a
data size (B for bytes, KB for kilobytes, MB for megabytes, GB for gigabytes, or TB for terabytes).

Note: By default each new connection added will have a default Back Pressure Object Threshold of 10,000
objects and Back Pressure Data Size Threshold of 1 GB. These defaults can be changed by modifying the
appropriate properties in the nifi.properties file.

When back pressure is enabled, small progress bars appear on the connection label, so the DFM can see it at-a-glance
when looking at a flow on the canvas. The progress bars change color based on the queue percentage: Green (0-60%),
Yellow (61-85%) and Red (86-100%).

131

Building a DataFlow

Hovering your mouse over a bar displays the exact percentage.

When the queue is completely full, the Connection is highlighted in red.

Load Balancing

132

Building a DataFlow

Load Balance Strategy

To distribute the data in a flow across the nodes in the cluster, NiFi offers the following load balance strategies:

• Do not load balance: Do not load balance FlowFiles between nodes in the cluster. This is the default.
• Partition by attribute: Determines which node to send a given FlowFile to based on the value of a user-specified

FlowFile Attribute. All FlowFiles that have the same value for the Attribute will be sent to the same node in the
cluster. If the destination node is disconnected from the cluster or if unable to communicate, the data does not
fail over to another node. The data will queue, waiting for the node to be available again. Additionally, if a node
joins or leaves the cluster necessitating a rebalance of the data, consistent hashing is applied to avoid having to
redistribute all of the data.

• Round robin: FlowFiles will be distributed to nodes in the cluster in a round-robin fashion. If a node is
disconnected from the cluster or if unable to communicate with a node, the data that is queued for that node will
be automatically redistributed to another node(s). If a node is not able to receive the data as fast other nodes in
the cluster, the node may also be skipped for one or more iterations in order to maximize throughput of data
distribution across the cluster.

• Single node: All FlowFiles will be sent to a single node in the cluster. Which node they are sent to is not
configurable. If the node is disconnected from the cluster or if unable to communicate with the node, the data that
is queued for that node will remain queued until the node is available again.

Note: In addition to the UI settings, there are Cluster Node Properties related to load balancing that must also
be configured in nifi.properties.

Note: NiFi persists the nodes that are in a cluster across restarts. This prevents the redistribution of data
until all of the nodes have connected. If the cluster is shutdown and a node is not intended to be brought
back up, the user is responsible for removing the node from the cluster via the "Cluster" dialog in the UI (see
Managing Nodes for more information).b12c5421ad8ffdc527d64d83268c3825e4a9ed3c.xml#load-balance-
compressionLoad Balance Compression. After selecting the load balance strategy, the user can configure
whether or not data should be compressed when being transferred between nodes in the cluster.

133

b12c5421ad8ffdc527d64d83268c3825e4a9ed3c.xml#load-balance-compression
b12c5421ad8ffdc527d64d83268c3825e4a9ed3c.xml#load-balance-compression

Building a DataFlow

The following compression options are available:

• Do not compress: FlowFiles will not be compressed. This is the default.
• Compress attributes only: FlowFile attributes will be compressed, but FlowFile contents will not.
• Compress attributes and content: FlowFile attributes and contents will be compressed.

134

Building a DataFlow

Load Balance Indicator When a load balance strategy has been implemented for a connection, a load balance

indicator () will appear on the connection:

Hovering over the icon will display the connection's load balance strategy and compression configuration. The icon in
this state also indicates that all data in the connection has been distributed across the cluster.

When data is actively being transferred between the nodes in the cluster, the load balance indicator will change
orientation and color:

Cluster Connection Summary To see where data has been distributed among the cluster nodes, select Summary from
the Global Menu. Then select the "Connections" tab and the "View Connection Details" icon for a source:

135

Building a DataFlow

This will open the Cluster Connection Summary dialog, which shows the data on each node in the cluster:

136

Building a DataFlow

Prioritization

The right-hand side of the tab provides the ability to prioritize the data in the queue so that higher priority data is
processed first. Prioritizers can be dragged from the top ('Available prioritizers') to the bottom ('Selected prioritizers').
Multiple prioritizers can be selected. The prioritizer that is at the top of the 'Selected prioritizers' list is the highest
priority. If two FlowFiles have the same value according to this prioritizer, the second prioritizer will determine
which FlowFile to process first, and so on. If a prioritizer is no longer desired, it can then be dragged from the
'Selected prioritizers' list to the 'Available prioritizers' list.

137

Building a DataFlow

The following prioritizers are available:

• FirstInFirstOutPrioritizer: Given two FlowFiles, the one that reached the connection first will be processed first.
• NewestFlowFileFirstPrioritizer: Given two FlowFiles, the one that is newest in the dataflow will be processed

first.
• OldestFlowFileFirstPrioritizer: Given two FlowFiles, the one that is oldest in the dataflow will be processed first.

'This is the default scheme that is used if no prioritizers are selected'.
• PriorityAttributePrioritizer: Given two FlowFiles, an attribute called "priority" will be extracted. The one that has

the lowest priority value will be processed first.

• Note that an UpdateAttribute processor should be used to add the "priority" attribute to the FlowFiles before
they reach a connection that has this prioritizer set.

• If only one has that attribute it will go first.
• Values for the "priority" attribute can be alphanumeric, where "a" will come before "z" and "1" before "9"
• If "priority" attribute cannot be parsed as a long, unicode string ordering will be used. For example: "99" and

"100" will be ordered so the flowfile with "99" comes first, but "A-99" and "A-100" will sort so the flowfile
with "A-100" comes first.

Note: With a Load Balance Strategy configured, the connection has a queue per node in addition to the local
queue. The prioritizer will sort the data in each queue independently.

Changing Configuration and Context Menu Options

After a connection has been drawn between two components, the connection's configuration may be changed, and
the connection may be moved to a new destination; however, the processors on either side of the connection must be
stopped before a configuration or destination change may be made.

138

Building a DataFlow

To change a connection's configuration or interact with the connection in other ways, right-click on the connection to
open the connection context menu.

139

Building a DataFlow

The following options are available:

• Configure: This option allows the user to change the configuration of the connection.
• View status history: This option opens a graphical representation of the connection's statistical information over

time.
• List queue: This option lists the queue of FlowFiles that may be waiting to be processed.
• Go to source: This option can be useful if there is a long distance between the connection's source and destination

components on the canvas. By clicking this option, the view of the canvas will jump to the source of the
connection.

• Go to destination: Similar to the "Go to source" option, this option changes the view to the destination component
on the canvas and can be useful if there is a long distance between two connected components.

• Bring to front: This option brings the connection to the front of the canvas if something else (such as another
connection) is overlapping it.

• Empty queue: This option allows the DFM to clear the queue of FlowFiles that may be waiting to be processed.
This option can be especially useful during testing, when the DFM is not concerned about deleting data from the
queue. When this option is selected, users must confirm that they want to delete the data in the queue.

• Delete: This option allows the DFM to delete a connection between two components. Note that the components on
both sides of the connection must be stopped and the connection must be empty before it can be deleted.

Bending Connections

To add a bend point (or elbow) to an existing connection, simply double-click on the connection in the spot where
you want the bend point to be. Then, you can use the mouse to grab the bend point and drag it so that the connection
is bent in the desired way. You can add as many bend points as you want. You can also use the mouse to drag and
move the label on the connection to any existing bend point. To remove a bend point, simply double-click it again.

140

Building a DataFlow

Processor Validation

Before trying to start a Processor, it's important to make sure that the Processor's configuration is valid. A status
indicator is shown in the top-left of the Processor. If the Processor is invalid, the indicator will show a yellow
Warning indicator with an exclamation mark indicating that there is a problem:

In this case, hovering over the indicator icon with the mouse will provide a tooltip showing all of the validation errors
for the Processor. Once all of the validation errors have been addressed, the status indicator will change to a Stop
icon, indicating that the Processor is valid and ready to be started but currently is not running:

141

Building a DataFlow

Site-to-Site

When sending data from one instance of NiFi to another, there are many different protocols that can be used. The
preferred protocol, though, is the NiFi Site-to-Site Protocol. Site-to-Site makes it easy to securely and efficiently
transfer data to/from nodes in one NiFi instance or data producing application to nodes in another NiFi instance or
other consuming application.

Using Site-to-Site provides the following benefits:

• Easy to configure

• After entering the URL(s) of the remote NiFi instance/cluster, the available ports (endpoints) are automatically
discovered and provided in a drop-down list.

• Secure

• Site-to-Site optionally makes use of Certificates in order to encrypt data and provide authentication and
authorization. Each port can be configured to allow only specific users, and only those users will be able to
see that the port even exists. For information on configuring the Certificates, see the Security Configuration
section of the System Administrator’s Guide.

• Scalable

• As nodes in the remote cluster change, those changes are automatically detected and data is scaled out across
all nodes in the cluster.

• Efficient

• Site-to-Site allows batches of FlowFiles to be sent at once in order to avoid the overhead of establishing
connections and making multiple round-trip requests between peers.

• Reliable

• Checksums are automatically produced by both the sender and receiver and compared after the data has been
transmitted, in order to ensure that no corruption has occurred. If the checksums don't match, the transaction
will simply be canceled and tried again.

• Automatically load balanced

• As nodes come online or drop out of the remote cluster, or a node's load becomes heavier or lighter, the
amount of data that is directed to that node will automatically be adjusted.

• FlowFiles maintain attributes

• When a FlowFile is transferred over this protocol, all of the FlowFile's attributes are automatically transferred
with it. This can be very advantageous in many situations, as all of the context and enrichment that has been
determined by one instance of NiFi travels with the data, making for easy routing of the data and allowing
users to easily inspect the data.

• Adaptable

• As new technologies and ideas emerge, the protocol for handling Site-to-Site communications are able to
change with them. When a connection is made to a remote NiFi instance, a handshake is performed in order

142

http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#security-configuration
http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html

Building a DataFlow

to negotiate which protocol and which version of the protocol will be used. This allows new capabilities to be
added while still maintaining backward compatibility with all older instances. Additionally, if a vulnerability
or deficiency is ever discovered in a protocol, it allows a newer version of NiFi to forbid communication over
the compromised versions of the protocol.

Site-to-Site is a protocol transferring data between two NiFi instances. Both end can be a standalone NiFi or a NiFi
cluster. In this section, the NiFi instance initiates the communications is called Site-to-Site client NiFi instance and
the other end as Site-to-Site server NiFi instance to clarify what configuration needed on each NiFi instances.

A NiFi instance can be both client and server for Site-to-Site protocol, however, it can only be a client or server
within a specific Site-to-Site communication. For example, if there are three NiFi instances A, B and C. A pushes data
to B, and B pulls data from C. A - push # B # pull - C. Then B is not only a server in the communication between A
and B, but also a client in B and C.

It is important to understand which NiFi instance will be the client or server in order to design your data flow, and
configure each instance accordingly. Here is a summary of what components run on which side based on data flow
direction:

• Push: a client sends data to a Remote Process Group, the server receives it with an Input Port
• Pull: a client receives data from a Remote Process Group, the server sends data through an Output Port

Configure Site-to-Site client NiFi instance

Remote Process Group: In order to communicate with a remote NiFi instance via Site-to-Site, simply drag a Remote
Process Group onto the canvas and enter the URL(s) of the remote NiFi instance (for more information on the
components of a Remote Process Group, see the Remote Process Group Transmission section of this guide.) The
URL is the same URL you would use to go to that instance’s User Interface or in the case of a cluster, the URLs of
the cluster nodes. At this point, you can drag a connection to or from the Remote Process Group in the same way
you would drag a connection to or from a Processor or a local Process Group. When you drag the connection, you
will have a chance to choose which Port to connect to. Note that it may take up to one minute for the Remote Process
Group to determine which ports are available.

If the connection is dragged starting from the Remote Process Group, the ports shown will be the Output Ports of the
remote group, as this indicates that you will be pulling data from the remote instance. If the connection instead ends
on the Remote Process Group, the ports shown will be the Input Ports of the remote group, as this implies that you
will be pushing data to the remote instance.

Note: If the remote instance is configured to use secure data transmission, you will see only ports that you
are authorized to communicate with. For information on configuring NiFi to run securely, see the System
Administrator’s Guide.

Transport Protocol: On a Remote Process Group creation or configuration dialog, you can choose Transport Protocol
to use for Site-to-Site communication as shown in the following image:

143

http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#remote_process_group
http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#remote_process_group
http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#Remote_Group_Transmission
http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html
http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html

Building a DataFlow

By default, it is set to RAW which uses raw socket communication using a dedicated port. HTTP transport protocol
is especially useful if the remote NiFi instance is in a restricted network that only allow access through HTTP(S)
protocol or only accessible from a specific HTTP Proxy server. For accessing through a HTTP Proxy Server, BASIC
and DIGEST authentication are supported.

Local Network Interface: In some cases, it may be desirable to prefer one network interface over another. For
example, if a wired interface and a wireless interface both exist, the wired interface may be preferred. This can be
configured by specifying the name of the network interface to use in this box. If the value entered is not valid, the
Remote Process Group will not be valid and will not communicate with other NiFi instances until this is resolved.

144

Building a DataFlow

Configure Site-to-Site Server NiFi Instance

Retrieve Site-to-Site Details: If your NiFi is running securely, in order for another NiFi instance to retrieve
information from your instance, it needs to be added to the Global Access "retrieve site-to-site details" policy. This
will allow the other instance to query your instance for details such as name, description, available peers (nodes when
clustered), statistics, OS port information and available Input and Output ports. Utilizing Input and Output ports in a
secured instance requires additional policy configuration as described below.

Input Port: In order to allow another NiFi instance to push data to your local instance, you can simply drag an Input
Port onto the Root Process Group of your canvas. After entering a name for the port, it will be added to your flow.
You can now right-click on the Input Port and choose Configure in order to adjust the name and the number of
concurrent tasks that are used for the port.

To create an Input Port for Site-to-Site in a child Process Group, enter the name for the port and select "Remote
connections (site-to-site)" from the Receive From drop-down menu.

145

http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#input_port
http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#input_port

Building a DataFlow

If Site-to-Site is configured to run securely, you will need to manage the input port’s "receive data via site-to-site"
component access policy. Only those users who have been added to the policy will be able to communicate with the
port.

146

Building a DataFlow

Output Port: Similar to an Input Port, a DataFlow Manager may choose to add an Output Port to the Root Process
Group. The Output Port allows an authorized NiFi instance to remotely connect to your instance and pull data from
the Output Port. After dragging an Output Port onto the canvas, right-click and choose Configure to adjust the name
and how many concurrent tasks are allowed. Manage the output port’s "receive data via site-to-site" component
access policy to control which users are authorized to pull data from the instance being configured.

To create an Output Port for Site-to-Site in a child Process Group, enter the name for the port and select "Remote
connections (site-to-site)" from the Send To drop-down menu.

147

http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#output_port

Building a DataFlow

In addition to other instances of NiFi, some other applications may use a Site-to-Site client in order to push data to or
receive data from a NiFi instance. For example, NiFi provides an Apache Storm spout and an Apache Spark Receiver
that are able to pull data from NiFi’s Output Ports for Site-to-Site connections.

148

Command and Control of the DataFlow

Note: For information on how to enable and configure Site-to-Site on a NiFi instance, see the Site-to-Site
Properties section of the System Administrator’s Guide.

Note: For information on how to configure access policies, see the Access Policies section of the System
Administrator’s Guide.

Example Dataflow

This section has described the steps required to build a dataflow. Now, to put it all together. The following example
dataflow consists of just two processors: GenerateFlowFile and LogAttribute. These processors are normally used for
testing, but they can also be used to build a quick flow for demonstration purposes and see NiFi in action.

After you drag the GenerateFlowFile and LogAttribute processors to the canvas and connect them (using the
guidelines provided above), configure them as follows:

• Generate FlowFile

• On the Scheduling tab, set Run schedule to: 5 sec. Note that the GenerateFlowFile processor can create many
FlowFiles very quickly; that's why setting the Run schedule is important so that this flow does not overwhelm
the system NiFi is running on.

• On the Properties tab, set File Size to: 10 KB
• Log Attribute

• On the Settings tab, under Auto-terminate relationships, select the checkbox next to Success. This will
terminate FlowFiles after this processor has successfully processed them.

• Also on the Settings tab, set the Bulletin level to Info. This way, when the dataflow is running, this processor
will display the bulletin icon (see Anatomy of a Processor), and the user may hover over it with the mouse to
see the attributes that the processor is logging.

The dataflow should look like the following:

Now see the following section on how to start and stop the dataflow. When the dataflow is running, be sure to note
the statistical information that is displayed on the face of each processor (see Anatomy of a Processor).

Command and Control of the DataFlow

When a component is added to the NiFi canvas, it is in the Stopped state. In order to cause the component to be
triggered, the component must be started. Once started, the component can be stopped at any time. From a Stopped
state, the component can be configured, started, or disabled.

149

http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#site_to_site_properties
http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#site_to_site_properties
http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html
http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#access-policies
http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html
http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html
http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#processor_anatomy
http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#processor_anatomy

Command and Control of the DataFlow

Starting a Component

In order to start a component, the following conditions must be met:

• The component's configuration must be valid.
• All defined Relationships for the component must be connected to another component or auto-terminated.
• The component must be stopped.
• The component must be enabled.
• The component must have no active tasks. For more information about active tasks, see the "Anatomy of …"

sections under Monitoring of DataFlow (Anatomy of a Processor, Anatomy of a Process Group, Anatomy of a
Remote Process Group).

Components can be started by selecting all of the components to start and then clicking the "Start" button ()
in the Operate Palette or by right-clicking a single component and choosing Start from the context menu.

If starting a Process Group, all components within that Process Group (including child Process Groups) will be
started, with the exception of those components that are invalid or disabled.

Once started, the status indicator of a Processor will change to a Play symbol ().

Stopping a Component

A component can be stopped any time that it is running. A component is stopped by right-clicking on the component

and clicking Stop from the context menu, or by selecting the component and clicking the "Stop" button () in
the Operate Palette.

If a Process Group is stopped, all of the components within the Process Group (including child Process Groups) will
be stopped.

Once stopped, the status indicator of a component will change to the Stop symbol ().

Stopping a component does not interrupt its currently running tasks. Rather, it stops scheduling new tasks to be
performed. The number of active tasks is shown in the top-right corner of the Processor.

Enabling/Disabling a Component

When a component is enabled, it is able to be started. Users may choose to disable components when they are part
of a dataflow that is still being assembled, for example. Typically, if a component is not intended to be run, the
component is disabled, rather than being left in the Stopped state. This helps to distinguish between components
that are intentionally not running and those that may have been stopped temporarily (for instance, to change the
component's configuration) and inadvertently were never restarted.

When it is desirable to re-enable a component, it can be enabled by selecting the component and clicking the "Enable"

button () in the Operate Palette. This is available only when the selected component or components are
disabled. Alternatively, a component can be enabled by checking the checkbox next to the "Enabled" option in the
Settings tab of the Processor configuration dialog or the configuration dialog for a Port.

150

http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#monitoring
http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#processor_anatomy
http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#process_group_anatomy
http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#remote_group_anatomy
http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#remote_group_anatomy

Command and Control of the DataFlow

Once enabled, the component's status indicator will change to either Invalid () or Stopped (), depending
on whether or not the component is valid.

A component is then disabled by selecting the component and clicking the "Disable" button () in the Operate
Palette, or by clearing the checkbox next to the "Enabled" option in the Settings tab of the Processor configuration
dialog or the configuration dialog for a Port.

Only Ports and Processors can be enabled and disabled.

Remote Process Group Transmission

Remote Process Groups provide a mechanism for sending data to or retrieving data from a remote instance of NiFi.
When a Remote Process Group (RPG) is added to the canvas, it is added with the Transmission Disabled, as indicated

by the icon () in the top-left corner. When Transmission is Disabled, it can be enabled by right-clicking on the
RPG and clicking the "Enable transmission" menu item. This will cause all ports for which there is a Connection to

begin transmitting data. This will cause the status indicator to then change to the Transmission Enabled icon ().

If there are problems communicating with the Remote Process Group, a Warning indicator () may instead be
present in the top-left corner. Hovering over this Warning indicator with the mouse will provide more information
about the problem.

Individual Port Transmission

There are times when the DFM may want to either enable or disable transmission for only a specific port within the
Remote Process Group. This can be accomplished by right-clicking on the Remote Process Group and choosing the
"Manage remote ports" menu item. This provides a configuration dialog from which ports can be configured:

151

Command and Control of the DataFlow

The left-hand side lists all of the Input Ports that the remote instance of NiFi allows data to be sent to. The right-hand
side lists all of the Output Ports from which this instance is able to pull data. If the remote instance is using secure
communications (the URL of the NiFi instance begins with https://, rather than http://), any ports that the remote
instance has not made available to this instance will not be shown.

152

Command and Control of the DataFlow

Note: If a port that is expected to be shown is not shown in this dialog, ensure that the instance has proper
permissions and that the Remote Process Group's flow is current. This can be checked by closing the Remote
Process Group Ports dialog and looking at the bottom-left corner of the Remote Process Group. The date
and time when the flow was last refreshed is displayed. If the flow appears to be outdated, it can be updated
by right-clicking on the Remote Process Group and selecting "Refresh remote". (See Anatomy of a Remote
Process Group for more information).

Each port is shown with its Name, its Description, configured number of Concurrent Tasks, and whether or not data
sent to this port will be Compressed. Additionally, the port's configured Batch Settings (Count, Size and Duration) are
displayed. To the left of this information is a toggle switch to turn the port on or off. Ports that have no connections
attached to them are grayed out:

153

Command and Control of the DataFlow

The on/off toggle switch provides a mechanism to enable and disable transmission for each port in the Remote
Process Group independently. Those ports that are connected but are not currently transmitting can be configured by

clicking the pencil icon () below the on/off toggle switch. Clicking this icon will allow the DFM to change the
number of Concurrent Tasks, whether or not compression should be used when transmitting data to or from this port,
and Batch Settings.

154

Navigating within a DataFlow

For an Input Port, the batch settings control how NiFi sends data to the remote input port in a transaction. NiFi will
transfer flow files, as they are queued in incoming relationships, until any of the limits (Count, Size, Duration) is met.
If none of the settings are configured, a 500 milliseconds batch duration is used by default.

For an Output Port, the batch settings tells the remote NiFi how NiFi prefers to receive data from the remote output
port in a transaction. The remote NiFi will use the specified settings (Count, Size, Duration) to control the transfer of
flow files. If none of the settings are configured, a 5 seconds batch duration is used by default.

Navigating within a DataFlow

NiFi provides various mechanisms for getting around a dataflow. The NiFi User Interface section describes various
ways to navigate around the NiFi canvas; however, once a flow exists on the canvas, there are additional ways to get
from one component to another. When multiple Process Groups exist in a flow, breadcrumbs appear at the bottom of
the screen, providing a way to navigate between them. In addition, to enter a Process Group that is currently visible
on the canvas, simply double-click it, thereby "drilling down" into it. Connections also provide a way to jump from
one location to another within the flow. Right-click on a connection and select "Go to source" or "Go to destination"
in order to jump to one end of the connection or another. This can be very useful in large, complex dataflows, where
the connection lines may be long and span large areas of the canvas. Finally, all components provide the ability
to jump forward or backward within the flow. Right-click any component (e.g., a processor, process group, port,
etc.) and select either "Upstream connections" or "Downstream connections". A dialog window will open, showing
the available upstream or downstream connections that the user may jump to. This can be especially useful when
trying to follow a dataflow in a backward direction. It is typically easy to follow the path of a dataflow from start to
finish, drilling down into nested process groups; however, it can be more difficult to follow the dataflow in the other
direction.

Component Linking

A hyperlink can be used to navigate directly to a component on the NiFi canvas. This is especially useful when Multi-
Tenant Authorization is configured. For example, a URL can be given to a user to direct them to the specific process
group to which they have privileges.

The default URL for a NiFI instance is http://<hostname>:8080/nifi which points to the root process group. When a
component is selected on the canvas, the URL is updated with the component’s process group id and component id in
the form http://<hostname>:8080/nifi/?processGroupId=<UUID>&componentIds=<UUIDs>;

In the following screenshot, the GenerateFlowFile processor in the process group PG1 is the selected component:

155

http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#User_Interface
http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#multi-tenant-authorization
http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#multi-tenant-authorization

Navigating within a DataFlow

156

Navigating within a DataFlow

Note: Linking to multiple components on the canvas is supported, with the restriction that the length of the
URL cannot exceed a 2000 character limit.

Component Alignment

Components on the NiFi canvas can be aligned to more precisely arrange your dataflow. To do this, first select all
the components you want to align. Then right-click to see the context menu and select "Align vertically" or "Align
horizontally" depending on your desired result.

Align Vertically

Here is an example of aligning components vertically on your canvas. With all components selected/highlighted,
right-click:

157

Navigating within a DataFlow

158

Navigating within a DataFlow

and select "Align vertically" to achieve these results:

159

Navigating within a DataFlow

160

Navigating within a DataFlow

Align Horizontally

Here is an example of aligning components horizontally on your canvas. With all components selected/highlighted,
right-click:

and select "Align horizontally" to achieve these results:

161

Monitoring of DataFlow

Monitoring of DataFlow

NiFi provides a great deal of information about the DataFlow in order to monitor its health and status. The Status
bar provides information about the overall system health (see NiFi User Interface)). Processors, Process Groups,
and Remote Process Groups provide fine-grained details about their operations. Connections and Process Groups
provide information about the amount of data in their queues. The Summary Page provides information about all
of the components on the canvas in a tabular format and also provides System Diagnostics that include disk usage,
CPU utilization, and Java Heap and Garbage Collection information. In a clustered environment, this information is
available per-node or as aggregates across the entire cluster. We will explore each of these monitoring artifacts below.

Anatomy of a Processor

NiFi provides a significant amount of information about each Processor on the canvas. The following diagram shows
the anatomy of a Processor:

162

http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#User_Interface

Monitoring of DataFlow

The image outlines the following elements:

• Processor Type: NiFi provides several different types of Processors in order to allow for a wide range of tasks to
be performed. Each type of Processor is designed to perform one specific task. The Processor type (PutFile, in this
example) describes the task that this Processor performs. In this case, the Processor writes a FlowFile to disk - or
"Puts" a FlowFile to a File.

• Bulletin Indicator: When a Processor logs that some event has occurred, it generates a Bulletin to notify those who
are monitoring NiFi via the User Interface. The DFM is able to configure which bulletins should be displayed
in the User Interface by updating the "Bulletin level" field in the "Settings" tab of the Processor configuration
dialog. The default value is WARN, which means that only warnings and errors will be displayed in the UI. This
icon is not present unless a Bulletin exists for this Processor. When it is present, hovering over the icon with the
mouse will provide a tooltip explaining the message provided by the Processor as well as the Bulletin level. If the
instance of NiFi is clustered, it will also show the Node that emitted the Bulletin. Bulletins automatically expire
after five minutes.

• Status Indicator: Shows the current Status of the Processor. The following indicators are possible:

•
 Running: The Processor is currently running.

•
 Stopped: The Processor is valid and enabled but is not running.

•
 Invalid: The Processor is enabled but is not currently valid and cannot be started. Hovering over this icon

will provide a tooltip indicating why the Processor is not valid.
•

 Disabled: The Processor is not running and cannot be started until it has been enabled. This status does
not indicate whether or not the Processor is valid.

• Processor Name: This is the user-defined name of the Processor. By default, the name of the Processor is the same
as the Processor Type. In the example, this value is "Copy to /review".

• Active Tasks: The number of tasks that this Processor is currently executing. This number is constrained by the
"Concurrent tasks" setting in the "Scheduling" tab of the Processor configuration dialog. Here, we can see that the

163

Monitoring of DataFlow

Processor is currently performing one task. If the NiFi instance is clustered, this value represents the number of
tasks that are currently executing across all nodes in the cluster.

• 5-Minute Statistics: The Processor shows several different statistics in tabular form. Each of these statistics
represents the amount of work that has been performed in the past five minutes. If the NiFi instance is clustered,
these values indicate how much work has been done by all of the Nodes combined in the past five minutes. These
metrics are:

• In: The amount of data that the Processor has pulled from the queues of its incoming Connections. This value
is represented as <count> (<size>) where <count> is the number of FlowFiles that have been pulled from the
queues and <size> is the total size of those FlowFiles' content. In this example, the Processor has pulled 29
FlowFiles from the input queues, for a total of 14.16 megabytes (MB).

• Read/Write: The total size of the FlowFile content that the Processor has read from disk and written to disk.
This provides valuable information about the I/O performance that this Processor requires. Some Processors
may only read the data without writing anything while some will not read the data but will only write data.
Others will neither read nor write data, and some Processors will both read and write data. In this example, we
see that in the past five minutes, this Processor has read 4.88 MB of the FlowFile content and has written 4.88
MB as well. This is what we would expect, since this Processor simply copies the contents of a FlowFile to
disk. Note, however, that this is not the same as the amount of data that it pulled from its input queues. This
is because some of the files that it pulled from the input queues already exist in the output directory, and the
Processor is configured to route FlowFiles to failure when this occurs. Therefore, for those files which already
existed in the output directory, data was neither read nor written to disk.

• Out: The amount of data that the Processor has transferred to its outbound Connections. This does not
include FlowFiles that the Processor removes itself, or FlowFiles that are routed to connections that are
auto-terminated. Like the "In" metric above, this value is represented as <count> (<size>) where <count> is
the number of FlowFiles that have been transferred to outbound Connections and <size> is the total size of
those FlowFiles' content. In this example, all of the Relationships are configured to be auto-terminated, so no
FlowFiles are reported as having been transferred Out.

• Tasks/Time: The number of times that this Processor has been triggered to run in the past 5 minutes, and the
amount of time taken to perform those tasks. The format of the time is <hour>:<minute>:<second>. Note
that the amount of time taken can exceed five minutes, because many tasks can be executed in parallel. For
instance, if the Processor is scheduled to run with 60 Concurrent tasks, and each of those tasks takes one
second to complete, it is possible that all 60 tasks will be completed in a single second. However, in this case
we will see the Time metric showing that it took 60 seconds, instead of 1 second. This time can be thought
of as "System Time," or said another way, this value is 60 seconds because that's the amount of time it would
have taken to perform the action if only a single concurrent task were used.

Anatomy of a Process Group

The Process Group provides a mechanism for grouping components together into a logical construct in order
to organize the DataFlow in a way that makes it more understandable from a higher level. The following image
highlights the different elements that make up the anatomy of a Process Group:

164

Monitoring of DataFlow

The Process Group consists of the following elements:

• Name: This is the user-defined name of the Process Group. This name is set when the Process Group is added to
the canvas. The name can later by changed by right-clicking on the Process Group and clicking the "Configure"
menu option. In this example, the name of the Process Group is "Process Group ABC."

• Bulletin Indicator: When a child component of a Process Group emits a bulletin, that bulletin is propagated to
the component's parent Process Group, as well. When any component has an active Bulletin, this indicator will
appear, allowing the user to hover over the icon with the mouse to see the Bulletin.

• Active Tasks: The number of tasks that are currently executing by the components within this Process Group.
Here, we can see that the Process Group is currently performing two tasks. If the NiFi instance is clustered, this
value represents the number of tasks that are currently executing across all nodes in the cluster.

• Statistics: Process Groups provide statistics about the amount of data that has been processed by the Process
Group in the past 5 minutes as well as the amount of data currently enqueued within the Process Group. The
following elements comprise the "Statistics" portion of a Process Group:

• Queued: The number of FlowFiles currently enqueued within the Process Group. This field is represented as
<count> (<size>) where <count> is the number of FlowFiles that are currently enqueued in the Process Group
and <size> is the total size of those FlowFiles' content. In this example, the Process Group currently has 26
FlowFiles enqueued with a total size of 12.7 megabytes (MB).

• In: The number of FlowFiles that have been transferred into the Process Group through all of its Input Ports
over the past 5 minutes. This field is represented as <count> / <size> # <ports> where <count> is the number
of FlowFiles that have entered the Process Group in the past 5 minutes, <size> is the total size of those
FlowFiles' content and <ports> is the number of Input Ports. In this example, 8 FlowFiles have entered the
Process Group with a total size of 800 KB and two Input Ports exist.

165

Monitoring of DataFlow

• Read/Write: The total size of the FlowFile content that the components within the Process Group have read
from disk and written to disk. This provides valuable information about the I/O performance that this Process
Group requires. In this example, we see that in the past five minutes, components within this Process Group
have read 14.72 MB of the FlowFile content and have written 14.8 MB.

• Out: The number of FlowFiles that have been transferred out of the Process Group through its Output Ports
over the past 5 minutes. This field is represented as <ports> # <count> (<size>) where <ports> is the number
of Output Ports, <count> is the number of FlowFiles that have exited the Process Group in the past 5 minutes
and <size> is the total size of those FlowFiles' content. In this example, there are three Output Ports, 16
FlowFiles have exited the Process Group and their total size is 78.57 KB.

• Component Counts: The Component Counts element provides information about how many components of each
type exist within the Process Group. The following provides information about each of these icons and their
meanings:

•
 Transmitting Ports: The number of Remote Process Group Ports that currently are configured to transmit

data to remote instances of NiFi or pull data from remote instances of NiFi.
•

 Non-Transmitting Ports: The number of Remote Process Group Ports that are currently connected to
components within this Process Group but currently have their transmission disabled.

•
 Running Components: The number of Processors, Input Ports, and Output Ports that are currently

running within this Process Group.
•

 Stopped Components: The number of Processors, Input Ports, and Output Ports that are currently not
running but are valid and enabled. These components are ready to be started.

•
 Invalid Components: The number of Processors, Input Ports, and Output Ports that are enabled but are

currently not in a valid state. This may be due to misconfigured properties or missing Relationships.
•

 Disabled Components: The number of Processors, Input Ports, and Output Ports that are currently
disabled. These components may or may not be valid. If the Process Group is started, these components will
not cause any errors but will not be started.

• Version State Counts: The Version State Counts element provides information about how many versioned process
groups are within the Process Group. See Version States for more information.

• Comments: When the Process Group is added to the canvas, the user is given the option of specifying Comments
in order to provide information about the Process Group. The comments can later be changed by right-clicking on
the Process Group and clicking the "Configure" menu option.

Anatomy of a Remote Process Group

When creating a DataFlow, it is often necessary to transfer data from one instance of NiFi to another. In this case, the
remote instance of NiFi can be thought of as a Process Group. For this reason, NiFi provides the concept of a Remote
Process Group. From the User Interface, the Remote Process Group looks similar to the Process Group. However,
rather than showing information about the inner workings and state of a Remote Process Group, such as queue sizes,
the information rendered about a Remote Process Group is related to the interaction that occurs between this instance
of NiFi and the remote instance.

166

http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#version_states

Monitoring of DataFlow

The image above shows the different elements that make up a Remote Process Group. Here, we provide an
explanation of the icons and details about the information provided.

• Transmission Status: The Transmission Status indicates whether or not data Transmission between this instance

of NiFi and the remote instance is currently enabled. The icon shown will be the Transmission Enabled icon (
) if any of the Input Ports or Output Ports is currently configured to transmit or the Transmission Disabled icon (

) if all of the Input Ports and Output Ports that are currently connected are stopped.
• Remote Instance Name: This is the name of the NiFi instance that was reported by the remote instance. When

the Remote Process Group is first created, before this information has been obtained, the URL(s) of the remote
instance will be shown here instead.

• Remote Instance URL: This is the URL of the remote instance that the Remote Process Group points to. This URL
is entered when the Remote Process Group is added to the canvas and it cannot be changed.

• Secure Indicator: This icon indicates whether or not communications with the remote NiFi instance are secure. If

communications with the remote instance are secure, this will be indicated by the "Locked" icon (). If the

communications are not secure, this will be indicated by the "Unlocked" icon (). If the communications
are secure, this instance of NiFi will not be able to communicate with the remote instance until an administrator
for the remote instance grants access. Whenever the Remote Process Group is added to the canvas, this will
automatically initiate a request to have a user for this instance of NiFi created on the remote instance. This
instance will be unable to communicate with the remote instance until an administrator on the remote instance
adds the user to the system and adds the "NiFi" role to the user. In the event that communications are not secure,
the Remote Process Group is able to receive data from anyone, and the data is not encrypted while it is transferred
between instances of NiFi.

• 5-Minute Statistics: Two statistics are shown for Remote Process Groups: Sent and Received. Both of these are
in the format <count> (<size>) where <count> is the number of FlowFiles that have been sent or received in the
previous five minutes and <size> is the total size of those FlowFiles' content.

167

Monitoring of DataFlow

• Last Refresh Time: The information that is pulled from a remote instance and rendered on the Remote Process
Group in the User Interface is periodically refreshed in the background. This element indicates the time at which
that refresh last happened, or if the information has not been refreshed for a significant amount of time, the value
will change to indicate Remote flow not current. NiFi can be triggered to initiate a refresh of this information by
right-clicking on the Remote Process Group and choosing the "Refresh remote" menu item.

Queue Interaction

The FlowFiles enqueued in a Connection can be viewed when necessary. The Queue listing is opened via List que
ue in a Connection's context menu. The listing will return the top 100 FlowFiles in the active queue according to the
configured priority. The listing can be performed even if the source and destination are actively running.

Additionally, details for a Flowfile in the listing can be viewed by clicking the "Details" button () in the left most
column. From here, the FlowFile details and attributes are available as well as buttons for downloading or viewing
the content. Viewing the content is only available if the nifi.content.viewer.url has been configured. If the source or
destination of the Connection are actively running, there is a chance that the desired FlowFile will no longer be in the
active queue.

The FlowFiles enqueued in a Connection can also be deleted when necessary. The removal of the FlowFiles is
initiated via Empty queue in the Connection's context menu. This action can also be performed if the source and
destination are actively running.

If the analytics prediction feature is enabled, hovering over the queue will also reveal predicted statistics on when
the queue may encounter back pressure, either due to the object count or content size meeting the current threshold
settings. Predictions will only be available when NiFi has enough data in its internal repository and if its model is
accurate enough to broadcast a prediction. For more information, see the Analytics Framework section in the System
Administrator's Guide.

Summary Page

While the NiFi canvas is useful for understanding how the configured DataFlow is laid out, this view is not always
optimal when trying to discern the status of the system. In order to help the user understand how the DataFlow is
functioning at a higher level, NiFi provides a Summary page. This page is available in the Global Menu in the top-
right corner of the User Interface. See the NiFi User Interface section for more information about the location of this
toolbar.

The Summary Page is opened by selecting Summary from the Global Menu. This opens the Summary table dialog:

168

http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#analytics_framework
http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#User_Interface

Monitoring of DataFlow

This dialog provides a great deal of information about each of the components on the canvas. Below, we have
annotated the different elements within the dialog in order to make the discussion of the dialog easier.

169

Monitoring of DataFlow

The Summary page is primarily comprised of a table that provides information about each of the components
on the canvas. Above this table is a set of five tabs that can be used to view the different types of components.
The information provided in the table is the same information that is provided for each component on the canvas.
Each of the columns in the table may be sorted by clicking on the heading of the column. For more on the types of
information displayed, see the sections Anatomy of a Processor, Anatomy of a Process Group, and Anatomy of a
Remote Process Group above.

The Summary page also includes the following elements:

• Bulletin Indicator: As in other places throughout the User Interface, when this icon is present, hovering over the
icon will provide information about the Bulletin that was generated, including the message, the severity level, the

170

http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#processor_anatomy
http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#process_group_anatomy
http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#remote_group_anatomy
http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#remote_group_anatomy

Monitoring of DataFlow

time at which the Bulletin was generated, and (in a clustered environment) the node that generated the Bulletin.
Like all the columns in the Summary table, this column where bulletins are shown may be sorted by clicking on
the heading so that all the currently existing bulletins are shown at the top of the list.

• Details: Clicking the Details icon will provide the user with the details of the component. This dialog is the same
as the dialog provided when the user right-clicks on the component and chooses the "View Configuration" menu
item.

• Go To: Clicking this button will close the Summary page and take the user directly to the component on the NiFi
canvas. This may change the Process Group that the user is currently in. This icon is not available if the Summary
page has been opened in a new browser tab or window (by clicking the "Pop Out" button, as described below).

• Status History: Clicking the Status History icon will open a new dialog that shows a historical view of the
statistics that are rendered for this component. See the section Historical Statistics of a Component for more
information.

• Refresh: The "Refresh" button allows the user to refresh the information displayed without closing the dialog and
opening it again. The time at which the information was last refreshed is shown just to the right of the "Refresh"
button. The information on the page is not automatically refreshed.

• Filter: The Filter element allows users to filter the contents of the Summary table by typing in all or part of some
criteria, such as a Processor Type or Processor Name. The types of filters available differ according to the selected
tab. For instance, if viewing the Processor tab, the user is able to filter by name or by type. When viewing the
Connections tab, the user is able to filter by source, by name, or by destination name. The filter is automatically
applied when the contents of the text box are changed. Below the text box is an indicator of how many entries in
the table match the filter and how many entries exist in the table.

• Pop-Out: When monitoring a flow, it is helpful to be able to open the Summary table in a separate browser tab or
window. The "Pop Out" button, next to the "Close" button, will cause the entire Summary dialog to be opened in
a new browser tab or window (depending on the configuration of the browser). Once the page is "popped out", the
dialog is closed in the original browser tab/window. In the new tab/window, the "Pop Out" button and the "Go To"
button will no longer be available.

• System Diagnostics: The System Diagnostics window provides information about how the system is performing
with respect to system resource utilization. While this is intended mostly for administrators, it is provided in this
view because it does provide a summary of the system. This dialog shows information such as CPU utilization,
how full the disks are, and Java-specific metrics, such as memory size and utilization, as well as Garbage
Collection information.

Historical Statistics of a Component

While the Summary table and the canvas show numeric statistics pertaining to the performance of a component over
the past five minutes, it is often useful to have a view of historical statistics as well. This information is available by
right-clicking on a component and choosing the "Status History" menu option or by clicking on the Status History in
the Summary page (see Summary Page for more information).

The amount of historical information that is stored is configurable in the NiFi properties but defaults to 24 hours. For
specific configuration information reference the Component Status Repository of the System Administrator’s Guide.
When the Status History dialog is opened, it provides a graph of historical statistics:

171

http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#Status_History
http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#Summary_Page
http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html

Monitoring of DataFlow

The left-hand side of the dialog provides information about the component that the stats are for, as well as a textual
representation of the statistics being graphed. The following information is provided on the left-hand side:

• Id: The ID of the component for which the stats are being shown.
• Group Id: The ID of the Process Group in which the component resides.
• Name: The Name of the Component for which the stats are being shown.
• Component-Specific Entries: Information is shown for each different type of component. For example, for a

Processor, the type of Processor is displayed. For a Connection, the source and destination names and IDs are
shown.

172

Versioning a DataFlow

• Start: The earliest time shown on the graph.
• End: The latest time shown on the graph.
• Min/Max/Mean: The minimum, maximum, and mean (arithmetic mean, or average) values are shown. These

values are based only on the range of time selected, if any time range is selected. If this instance of NiFi is
clustered, these values are shown for the cluster as a whole, as well as each individual node. In a clustered
environment, each node is shown in a different color. This also serves as the graph's legend, showing the color of
each node that is shown in the graph. Hovering the mouse over the Cluster or one of the nodes in the legend will
also make the corresponding node bold in the graph.

The right-hand side of the dialog provides a drop-down list of the different types of metrics to render in the graphs
below. The top graph is larger so as to provide an easier-to-read rendering of the information. In the bottom-right

corner of this graph is a small handle () that can be dragged to resize the graph. The blank areas of the dialog
can also be dragged around to move the entire dialog.

The bottom graph is much shorter and provides the ability to select a time range. Selecting a time range here will
cause the top graph to show only the time range selected, but in a more detailed manner. Additionally, this will cause
the Min/Max/Mean values on the left-hand side to be recalculated. Once a selection has been created by dragging
a rectangle over the graph, double-clicking on the selected portion will cause the selection to fully expand in the
vertical direction (i.e., it will select all values in this time range). Clicking on the bottom graph without dragging will
remove the selection.

Versioning a DataFlow

When NiFi is connected to a NiFi Registry, dataflows can be version controlled on the process group level. For more
information about NiFi Registry usage and configuration, see the documentation at https://nifi.apache.org/docs/nifi-
registry-docs/index.html.

Connecting to a NiFi Registry

To connect NiFi to a Registry, select Controller Settings from the Global Menu.

173

https://nifi.apache.org/docs/nifi-registry-docs/index.html
https://nifi.apache.org/docs/nifi-registry-docs/index.html

Versioning a DataFlow

This displays the NiFi Settings window. Select the Registry Clients tab and click the + button in the upper-right
corner to register a new Registry client.

174

Versioning a DataFlow

175

Versioning a DataFlow

In the Add Registry Client window, provide a name and URL.

Click "Add" to complete the registration.

176

Versioning a DataFlow

177

Versioning a DataFlow

Note: Versioned flows are stored and organized in registry buckets. Bucket Policies and Special Privileges
configured by the registry administrator determine which buckets a user can import versioned flows from
and which buckets a user can save versioned flows to. Information on Bucket Policies and Special Privileges
can be found in the NiFi Registry User Guide (https://nifi.apache.org/docs/nifi-registry-docs/html/user-
guide.html).

Version States

Versioned process groups exist in the following states:

•

 Up to date: The flow version is the latest.
•

 Locally modified: Local changes have been made.
•

 Stale: A newer version of the flow is available.
•

 Locally modified and stale: Local changes have been made and a newer version of the flow is available.
•

 Sync failure: Unable to synchronize the flow with the registry.

Version state information is displayed:

1. Next to the process group name, for the versioned process group itself. Hovering over the state icon displays
additional information about the versioned flow.

2. At the bottom of a process group, for the versioned flows contained in the process group.
3. In the Status Bar at the top of the UI, for the versioned flows contained in the root process group.

178

https://nifi.apache.org/docs/nifi-registry-docs/html/user-guide.html
https://nifi.apache.org/docs/nifi-registry-docs/html/user-guide.html

Versioning a DataFlow

Version state information is also shown in the "Process Groups" tab of the Summary Page.

179

Versioning a DataFlow

Note: To see the most recent version states, it may be necessary to right-click on the NiFi canvas and select
'Refresh' from the context menu.

180

Versioning a DataFlow

Import a Versioned Flow

When a NiFi instance is connected to a registry, an "Import" link will appear in the Add Process Group dialog.

Selecting the link will open the Import Version dialog.

181

Versioning a DataFlow

Connected registries will appear as options in the Registry drop-down menu. For the chosen Registry, buckets the
user has access to will appear as options in the Bucket drop-down menu. The names of the flows in the chosen bucket
will appear as options in the Name drop-down menu. Select the desired version of the flow to import and select
"Import" for the dataflow to be placed on the canvas.

182

Versioning a DataFlow

183

Versioning a DataFlow

Since the version imported in this example is the latest version (MySQL CDC, Version 3), the state of the versioned

process group is "Up to date" (). If the version imported had been an older version, the state would be

"Stale" ().

Start Version Control

To place a process group under version control, right-click on the process group and in the context menu, select
"Version#Start version control".

184

Versioning a DataFlow

185

Versioning a DataFlow

In the Save Flow Version window, select a Registry and Bucket and enter a Name for the Flow. If desired, add
content for the Description and Comment fields.

Select Save and Version 1 of the flow is saved.

186

Versioning a DataFlow

187

Versioning a DataFlow

As the first and latest version of the flow, the state of the versioned process group is "Up to date" ().

Note: The root process group can not be placed under version control.

Managing Local Changes

When changes are made to a versioned process group, the state of the component updates to "Locally

modified" (). The DFM can show, revert or commit the local changes. These options are available for selection
in the context menu when right-clicking on the process group:

188

Versioning a DataFlow

189

Versioning a DataFlow

or when right-clicking on the canvas inside the process group:

190

Versioning a DataFlow

191

Versioning a DataFlow

The following actions are not considered local changes:

• disabling/enabling processors and controller services
• stopping/starting processors
• modifying sensitive property values
• modifying remote process group URLs
• updating a processor that was referencing a non-existent controller service to reference an externally available

controller service
• assigning, creating, modifying or deleting parameter contexts
• creating, modifying or deleting variables

Note: Assigning or creating a parameter context does not trigger a local change because assigning or creating
a parameter context on its own has not changed anything about what the flow processes. A component will
have to be created or modified that uses a parameter in the parameter context, which will trigger a local
change. Modifying a parameter context does not trigger a local change because parameters are intended to be
different in each environment. When a versioned flow is imported, it is assumed there is a one-time operation
required to set those parameters specific for the given environment. Deleting a parameter context does not
trigger a local change because any components that reference parameters in that parameter context will need
need to be modified, which will trigger a local change.

Note: Creating a variable does not trigger a local change because creating a variable on its own has not
changed anything about what the flow processes. A component will have to be created or modified that uses
the new variable, which will trigger a local change. Modifying a variable does not trigger a local change
because variable values are intended to be different in each environment. When a versioned flow is imported,
it is assumed there is a one-time operation required to set those variables specific for the given environment.
Deleting a variable does not trigger a local change because the component that references that variable will
need need to be modified, which will trigger a local change.

Note: Variables do not support sensitive values and will be included when versioning a Process Group.
Variables are still supported for compatibility purposes but do not have the same power as Parameters such as
support for sensitive properties and more granular control over who can create, modify or use them. Variables
will be removed in a future release. As a result, it is highly recommended to switch to Parameters.

Show Local Changes

The local changes made to a versioned process group can be viewed in the Show Local Changes dialog by selecting
"Version#Show local changes" from the context menu.

192

Versioning a DataFlow

You can navigate to a component by selecting the "Go To" icon () in its row.

Note: As described in the Managing Local Changes section, there are exceptions to which actions are
reviewable local changes. Additionally, multiple changes to the same property will only appear as one change
in the list as the changes are determined by diffing the current state of the process group and the saved version
of the process group noted in the Show Local Changes dialog.

193

Versioning a DataFlow

Revert Local Changes

Revert the local changes made to a versioned process group by selecting "Version#Revert local changes" from the
context menu. The Revert Local Changes dialog displays a list of the local changes for the DFM to review and
consider prior to initiating the revert. Select "Revert" to remove all changes.

You can navigate to a component by selecting the "Go To" icon () in its row.

194

Versioning a DataFlow

Note: As described in the Managing Local Changes section, there are exceptions to which actions are
revertible local changes. Additionally, multiple changes to the same property will only appear as one change
in the list as the changes are determined by diffing the current state of the process group and the saved version
of the process group noted in the Revert Local Changes dialog.

Commit Local Changes

To commit and save a flow version, select "Version#Commit local changes" from the context menu. In the Save Flow
Version dialog, add comments if desired and select "Save".

195

Versioning a DataFlow

Local changes can not be committed if the version that has been modified is not the latest version. In this scenario, the

version state is "Locally modified and stale" ().

Change Version

196

Versioning a DataFlow

To change the version of a flow, right-click on the versioned process group and select "Version#Change version".

197

Versioning a DataFlow

198

Versioning a DataFlow

In the Change Version dialog, select the desired version and select "Change":

The version of the flow is changed:

199

Versioning a DataFlow

In the example shown, the versioned flow is upgraded from an older to the newer latest version. However, a versioned
flow can also be rollbacked to an older version.

200

Versioning a DataFlow

Note: For "Change version" to be an available selection, local changes to the process group need to be
reverted.

Stop Version Control

To stop version control on a flow, right-click on the versioned process group and select "Version#Stop version
control":

201

Versioning a DataFlow

202

Versioning a DataFlow

In the Stop Version Control dialog, select "Disconnect".

The removal of the process group from version control is confirmed.

203

Versioning a DataFlow

204

Versioning a DataFlow

Nested Versioned Flows

A versioned process group can contain other versioned process groups. However, local changes to a parent process
group cannot be reverted or saved if it contains a child process group that also has local changes. The child process
group must first be reverted or have its changes committed for those actions to be performed on the parent process
group.

Parameters in Versioned Flows

When exporting a versioned flow to a Flow Registry, the name of the Parameter Context is sent for each process
group that is stored. The Parameters (names, descriptions, values, whether or not sensitive) are also stored with the
flow. However, Sensitive Parameter values are not stored.

When a versioned flow is imported, a Parameter Context will be created for each one that doesn't already exist in the
NiFi instance. When importing a versioned flow from Flow Registry, if NiFi has a Parameter Context with the same
name, the values are merged, as described in the following example:

A flow has a Parameter Context "PC1" with the following parameters:

205

Versioning a DataFlow

The flow is exported and saved to the Flow Registry.

A NiFi instance has a Parameter Context also named "PC1" with the following parameters:

206

Versioning a DataFlow

The versioned flow is imported into the NiFi instance. The Parameter Context "PC1" now has the following
parameters:

207

Versioning a DataFlow

The "Letters" parameter did not exist in the NiFi instance and was added. The "Numbers" parameter existed in both
the versioned flow and NiFi instance with identical values, so no changes were made. "Password" is a sensitive

208

Versioning a DataFlow

Parameter missing from the NiFi instance, so it was added but with no value. "Port" existed in the NiFi instance with
a different value than the versioned flow, so its value remained unchanged.

Parameter Contexts are handled similarly when a flow version is changed. Consider the following two examples:

If the versioned flow referenced earlier is changed to another version (Version 2) and Version 2's Parameter Context
"PC1" has a "Colors" Parameter, "Colors" will be added to "PC1" in the NiFi instance.

Version 1 of a flow does not have a Parameter Context associated with it. A new version (Version 2) does. When the
flow is changed from Version 1 to Version 2, one of the following occurs:

• A new Parameter Context is created if it does not already exist
• An existing Parameter Context is assigned (by name) to the Process Group and the values of the Parameter

Contexts are merged

Variables in Versioned Flows

Variables are included when a process group is placed under version control. If a versioned flow is imported that
references a variable not defined in the versioned process group, the reference is maintained if the variable exists.
If the referenced variable does not exist, a copy of the variable will be defined in the process group. To illustrate,
assume the variable "RPG_Var" is defined in the root process group:

209

Versioning a DataFlow

A process group PG1 is created:

210

Versioning a DataFlow

211

Versioning a DataFlow

The GetFile processor in PG1 references the variable "RPG_Var":

PG1 is saved as a versioned flow:

212

Versioning a DataFlow

213

Versioning a DataFlow

If PG1 versioned flow is imported into this same NiFi instance:

214

Versioning a DataFlow

215

Versioning a DataFlow

the added GetFile processor will also reference the "RPG_Var" variable that exists in the root process group:

If PG1 versioned flow is imported into a different NiFi instance where "RPG_Var" does not exist:

216

Versioning a DataFlow

217

Versioning a DataFlow

A "RPG_Var" variable is created in the PG1 process group:

Restricted Components in Versioned Flows

To import a versioned flow or revert local changes in a versioned flow, a user must have access to all the components
in the versioned flow. As such, it is recommended that restricted components are created at the root process group

218

Versioning a DataFlow

level if they are to be utilized in versioned flows. Let's walk through some examples to illustrate the benefits of this
configuration. Assume the following:

• There are two users, "sys_admin" and "test_user" who have access to both view and modify the root process
group.

219

Versioning a DataFlow

• "sys_admin" has access to all restricted components.

220

Versioning a DataFlow

221

Versioning a DataFlow

• "test_user" has access to restricted components requiring 'read filesystem' and 'write filesystem'.

222

Versioning a DataFlow

223

Versioning a DataFlow

Restricted Controller Service Created in Root Process Group

In this first example, sys_admin creates a KeytabCredentialsService controller service at the root process group level.

224

Versioning a DataFlow

225

Versioning a DataFlow

KeytabCredentialService controller service is a restricted component that requires 'access keytab' permissions:

226

Versioning a DataFlow

227

Versioning a DataFlow

Sys_admin creates a process group ABC containing a flow with GetFile and PutHDFS processors:

228

Versioning a DataFlow

229

Versioning a DataFlow

GetFile processor is a restricted component that requires 'write filesystem' and 'read filesystem' permissions:

230

Versioning a DataFlow

231

Versioning a DataFlow

PutHDFS is a restricted component that requires 'write filesystem' permissions:

232

Versioning a DataFlow

233

Versioning a DataFlow

The PutHDFS processor is configured to use the root process group level KeytabCredentialsService controller
service:

234

Versioning a DataFlow

235

Versioning a DataFlow

Sys_admin saves the process group as a versioned flow:

236

Versioning a DataFlow

237

Versioning a DataFlow

Test_user changes the flow by removing the KeytabCredentialsService controller service:

238

Versioning a DataFlow

239

Versioning a DataFlow

If test_user chooses to revert this change:

240

Versioning a DataFlow

241

Versioning a DataFlow

the revert is successful:

242

Versioning a DataFlow

243

Versioning a DataFlow

Additionally, if test_user chooses to import the ABC versioned flow:

244

Versioning a DataFlow

245

Versioning a DataFlow

The import is successful:

246

Versioning a DataFlow

247

Versioning a DataFlow

Restricted Controller Service Created in Process Group

Now, consider a second scenario where the controller service is created on the process group level.

Sys_admin creates a process group XYZ:

248

Versioning a DataFlow

249

Versioning a DataFlow

Sys_admin creates a KeytabCredentialsService controller service at the process group level:

250

Versioning a DataFlow

251

Versioning a DataFlow

The same GetFile and PutHDFS flow is created in the process group:

252

Versioning a DataFlow

253

Versioning a DataFlow

However, PutHDFS now references the process group level controller service:

254

Versioning a DataFlow

255

Versioning a DataFlow

Sys_admin saves the process group as a versioned flow.

Test_user changes the flow by removing the KeytabCredentialsService controller service. However, with this
configuration, if test_user attempts to revert this change:

256

Versioning a DataFlow

257

Versioning a DataFlow

the revert is unsuccessful because test_user does not have the 'access keytab' permissions required by the
KeytabCredentialService controller service:

258

Versioning a DataFlow

259

Versioning a DataFlow

Similarly, if test_user tries to import the XYZ versioned flow:

260

Versioning a DataFlow

261

Versioning a DataFlow

The import fails:

262

Versioning a DataFlow

263

Templates

Templates

DFMs have the ability to build very large and complex DataFlows using NiFi. This is achieved by using the basic
components: Processor, Funnel, Input/Output Port, Process Group, and Remote Process Group. These can be thought
of as the most basic building blocks for constructing a DataFlow. At times, though, using these small building blocks
can become tedious if the same logic needs to be repeated several times.

To solve this issue, NiFi provides the concept of a Template. A Template is a way of combining these basic building
blocks into larger building blocks. Once a DataFlow has been created, parts of it can be formed into a Template. This
Template can then be dragged onto the canvas, or can be exported as an XML file and shared with others. Templates
received from others can then be imported into an instance of NiFi and dragged onto the canvas.

Creating a Template

To create a Template, select the components that are to be a part of the template, and then click the "Create

Template" () button in the Operate Palette (See NiFi User Interface for more information on the Operate
Palette).

Clicking this button without selecting anything will create a Template that contains all of the contents of the current
Process Group. This means that creating a Template with nothing selected while on the Root Process Group will
create a single Template that contains the entire flow.

After clicking this button, the user is prompted to provide a name and an optional description for the template. Each
template must have a unique name. After entering the name and optional description, clicking the "Create" button will
generate the template and notify the user that the template was successfully created, or provide an appropriate error
message if unable to create the template for some reason.

Note: It is important to note that if any Processor that is Templated has a sensitive property (such as a
password), the value of that sensitive property is not included in the Template. As a result, when dragging
the Template onto the canvas, newly created Processors may not be valid if they are missing values for
their sensitive properties. Additionally, any Connection that was selected when making the Template is not
included in the Template if either the source or the destination of the Connection is not also included in the
Template.

Importing a Template

After receiving a Template that has been exported from another NiFi, the first step needed to use the template is to
import the template into this instance of NiFi. You may import templates into any Process Group where you have the
appropriate authorization.

From the Operate Palette, click the "Upload Template" () button (see NiFi User Interface for more information
on the Operate Palette). This will display the Upload Template dialog. Click the find icon and use the File Selection
dialog to choose which template file to upload. Select the file and click Open. Clicking the "Upload" button will
attempt to import the Template into this instance of NiFi. The Upload Template dialog will update to show "Success"
or an error message if there was a problem importing the template.

Instantiating a Template

264

http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#User_Interface
http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#User_Interface

Data Provenance

Once a Template has been created (see Creating a Template) or imported (see Importing a Template), it is ready to be
instantiated, or added to the canvas. This is accomplished by dragging the Template icon (

) from the Components Toolbar (see NiFi User Interface) onto the canvas.

This will present a dialog to choose which Template to add to the canvas. After choosing the Template to add, simply
click the "Add" button. The Template will be added to the canvas with the upper-left-hand side of the Template being
placed wherever the user dropped the Template icon.

This leaves the contents of the newly instantiated Template selected. If there was a mistake, and this Template is no
longer wanted, it may be deleted.

Managing Templates

One of the most powerful features of NiFi Templates is the ability to easily export a Template to an XML file and
to import a Template that has already been exported. This provides a very simple mechanism for sharing parts of a
DataFlow with others. You can select Templates from the Global Menu (see NiFi User Interface) to open a dialog that
displays all of the Templates that are currently available, filter the templates to see only those of interest, export, and
delete Templates.

Exporting a Template

Once a Template has been created, it can be shared with others in the Template Management page. To export a
Template, locate the Template in the table. The Filter in the top-right corner can be used to help find the appropriate

Template if several are available. Then click the "Download" button (). This will download the template as an
XML file to your computer. This XML file can then be sent to others and imported into other instances of NiFi (see
Importing a Template).

Removing a Template

Once it is decided that a Template is no longer needed, it can be easily removed from the Template Management
page. To delete a Template, locate it in the table (the Filter in the top-right corner may be used to find the appropriate

Template if several are available) and click the "Delete" button (). This will prompt for confirmation. After
confirming the deletion, the Template will be removed from this table and will no longer be available to add to the
canvas.

Data Provenance

While monitoring a dataflow, users often need a way to determine what happened to a particular data object
(FlowFile). NiFi's Data Provenance page provides that information. Because NiFi records and indexes data
provenance details as objects flow through the system, users may perform searches, conduct troubleshooting and
evaluate things like dataflow compliance and optimization in real time. By default, NiFi updates this information
every five minutes, but that is configurable.

To access the Data Provenance page, select "Data Provenance" from the Global Menu. This opens a dialog window
that allows the user to see the most recent Data Provenance information available, search the information for specific
items, and filter the search results. It is also possible to open additional dialog windows to see event details, replay

265

http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#Create_Template
http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#Import_Template
http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#User_Interface
http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#User_Interface
http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#Import_Template

Data Provenance

data at any point within the dataflow, and see a graphical representation of the data's lineage, or path through the
flow. (These features are described in depth below.)

When authorization is enabled, accessessing Data Provenance information requires the 'query provenance' Global
Policy as well as the 'view provenance' Component Policy for the component which generated the event. In addition,
access to event details which include FlowFile attributes and content require the 'view the data' Component Policy for
the component which generated the event.

266

Data Provenance

Provenance Events

The different event types for provenance reporting are:

Provenance Event Description

ADDINFO Indicates a provenance event for adding additional information such as
new linkage to a new URI or UUID

ATTRIBUTES_MODIFIED Indicates that a FlowFile's attributes were modified in some way. This
event is not needed when another event is reported at the same time, as
the other event will already contain all FlowFile attributes

CLONE Indicates that a FlowFile is an exact duplicate of its parent FlowFile

CONTENT_MODIFIED Indicates that a FlowFile's content was modified in some way. When
using this Event Type, it is advisable to provide details about how the
content is modified

CREATE Indicates that a FlowFile was generated from data that was not received
from a remote system or external process

DOWNLOAD Indicates that the contents of a FlowFile were downloaded by a user or
external entity

DROP Indicates a provenance event for the conclusion of an object's life for
some reason other than object expiration

EXPIRE Indicates a provenance event for the conclusion of an object's life due
to the object not being processed in a timely manner

FETCH Indicates that the contents of a FlowFile were overwritten using the
contents of some external resource. This is similar to the RECEIVE
event but varies in that RECEIVE events are intended to be used as the
event that introduces the FlowFile into the system, whereas FETCH
is used to indicate that the contents of an existing FlowFile were
overwritten

FORK Indicates that one or more FlowFiles were derived from a parent
FlowFile

JOIN Indicates that a single FlowFile is derived from joining together
multiple parent FlowFiles

RECEIVE Indicates a provenance event for receiving data from an external
process. This Event Type is expected to be the first event for a
FlowFile. As such, a Processor that receives data from an external
source and uses that data to replace the content of an existing FlowFile
should use the FETCH event type, rather than the RECEIVE event type

REPLAY Indicates a provenance event for replaying a FlowFile. The UUID of
the event indicates the UUID of the original FlowFile that is being
replayed. The event contains one Parent UUID that is also the UUID
of the FlowFile that is being replayed and one Child UUID that is
the UUID of the a newly created FlowFile that will be re-queued for
processing

ROUTE Indicates that a FlowFile was routed to a specified relationship and
provides information about why the FlowFile was routed to this
relationship

SEND Indicates a provenance event for sending data to an external process

UNKNOWN Indicates that the type of provenance event is unknown because the
user who is attempting to access the event is not authorized to know the
type

267

Data Provenance

Searching for Events

One of the most common tasks performed in the Data Provenance page is a search for a given FlowFile to determine
what happened to it. To do this, click the "Search" button in the upper-right corner of the Data Provenance page. This
opens a dialog window with parameters that the user can define for the search. The parameters include the processing
event of interest, distinguishing characteristics about the FlowFile or the component that produced the event, the
timeframe within which to search, and the size of the FlowFile.

268

Data Provenance

269

Data Provenance

For example, to determine if a particular FlowFile was received, search for an Event Type of "RECEIVE" and include
an identifier for the FlowFile, such as its uuid or filename. The asterisk (*) may be used as a wildcard for any number
of characters. So, to determine whether a FlowFile with "ABC" anywhere in its filename was received at any time on
Jan. 6, 2015, the search shown in the following image could be performed:

270

Data Provenance

271

Data Provenance

Details of an Event

In the far-left column of the Data Provenance page, there is a "View Details" icon for each event (). Clicking this
button opens a dialog window with three tabs: Details, Attributes, and Content.

The Details tab shows various details about the event, such as when it occurred, what type of event it was, and the
component that produced the event. The information that is displayed will vary according to the event type. This

272

Data Provenance

tab also shows information about the FlowFile that was processed. In addition to the FlowFile's UUID, which is
displayed on the left side of the Details tab, the UUIDs of any parent or children FlowFiles that are related to that
FlowFile are displayed on the right side of the Details tab.

The Attributes tab shows the attributes that exist on the FlowFile as of that point in the flow. In order to see only the
attributes that were modified as a result of the processing event, the user may select the checkbox next to "Only show
modified" in the upper-right corner of the Attributes tab.

273

Data Provenance

Replaying a FlowFile

A DFM may need to inspect a FlowFile's content at some point in the dataflow to ensure that it is being processed
as expected. And if it is not being processed properly, the DFM may need to make adjustments to the dataflow and
replay the FlowFile again. The Content tab of the View Details dialog window is where the DFM can do these things.
The Content tab shows information about the FlowFile's content, such as its location in the Content Repository and
its size. In addition, it is here that the user may click the "Download" button to download a copy of the FlowFile's
content as it existed at this point in the flow. The user may also click the "Submit" button to replay the FlowFile at
this point in the flow. Upon clicking "Submit", the FlowFile is sent to the connection feeding the component that
produced this processing event.

274

Data Provenance

Viewing FlowFile Lineage

It is often useful to see a graphical representation of the lineage or path a FlowFile took within the dataflow. To see a

FlowFile's lineage, click on the "Show Lineage" icon () in the far-right column of the Data Provenance table.

275

Data Provenance

This opens a graph displaying the FlowFile () and the various processing events that have occurred. The
selected event will be highlighted in red. It is possible to right-click or double-click on any event to see that event's
details (see Details of an Event). To see how the lineage evolved over time, click the slider at the bottom-left of the
window and move it to the left to see the state of the lineage at earlier stages in the dataflow.

Find Parents

276

http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#event_details

Data Provenance

Sometimes, a user may need to track down the original FlowFile that another FlowFile was spawned from. For
example, when a FORK or CLONE event occurs, NiFi keeps track of the parent FlowFile that produced other
FlowFiles, and it is possible to find that parent FlowFile in the Lineage. Right-click on the event in the lineage graph
and select "Find parents" from the context menu.

Once "Find parents" is selected, the graph is re-drawn to show the parent FlowFile and its lineage as well as the child
and its lineage.

277

Data Provenance

Expanding an Event

In the same way that it is useful to find a parent FlowFile, the user may also want to determine what children were
spawned from a given FlowFile. To do this, right-click on the event in the lineage graph and select "Expand" from the
context menu.

278

Data Provenance

Once "Expand" is selected, the graph is re-drawn to show the children and their lineage.

279

Data Provenance

Write Ahead Provenance Repository

By default, the Provenance Repository is implemented in a Persistent Provenance configuration. In Apache NiFi
1.2.0, the Write Ahead configuration was introduced to provide the same capabilities as Persistent Provenance, but
with far better performance. Migrating to the Write Ahead configuration is easy to accomplish. Simply change the
setting for the nifi.provenance.repository.implementation system property in the nifi.properties file from the default
value of org.apache.nifi.provenance.PersistentProvenanceRepository to org.apache.nifi.provenance.WriteAheadPro
venanceRepository and restart NiFi.

However, to increase the chances of a successful migration consider the following factors and recommended actions.

Backwards Compatibility

The WriteAheadProvenanceRepository can use the Provenance data stored by the PersistentProvenanceRepository.
However, the PersistentProvenanceRepository may not be able to read the data written by the WriteAheadProven
anceRepository. Therefore, once the Provenance Repository is changed to use the WriteAheadProvenanceReposito
ry, it cannot be changed back to the PersistentProvenanceRepository without first deleting the data in the Provenance
Repository. It is therefore recommended that before changing the implementation to Write Ahead, ensure your
version of NiFi is stable, in case an issue arises that requires the need to roll back to a previous version of NiFi that
did not support the WriteAheadProvenanceRepository.

Older Existing NiFi Version

If you are upgrading from an older version of NiFi to 1.2.0 or later, it is recommended that you do not change the
provenance configuration to Write Ahead until you confirm your flows and environment are stable in 1.2.0 first. This
reduces the number of variables in your upgrade and can simplify the debugging process if any issues arise.

Bootstrap.conf

While better performance is achieved with the G1 garbage collector, Java 8 bugs may surface more frequently in the
Write Ahead configuration. It is recommended that the following line is commented out in the bootstrap.conf file in
the conf directory:

java.arg.13=-XX:+UseG1GC

System Properties

Many of the same system properties are supported by both the Persistent and Write Ahead configurations, however
the default values have been chosen for a Persistent Provenance configuration. The following exceptions and
recommendations should be noted when changing to a Write Ahead configuration:

• nifi.provenance.repository.journal.count is not relevant to a Write Ahead configuration
• nifi.provenance.repository.concurrent.merge.threads and nifi.provenance.repository.warm.cache.frequency are

new properties. The default values of 2 for threads and blank for frequency (i.e. disabled) should remain for most
installations.

• Change the settings for nifi.provenance.repository.max.storage.time (default value of 24 hours) and nifi.provena
nce.repository.max.storage.size (default value of 1 GB) to values more suitable for your production environment

• Change nifi.provenance.repository.index.shard.size from the default value of 500 MB to 4 GB
• Change nifi.provenance.repository.index.threads from the default value of 2 to either 4 or 8 as the Write Ahead

repository enables this to scale better
• If processing a high volume of events, change nifi.provenance.repository.rollover.time from a default of 30 secs to

1 min and nifi.provenance.repository.rollover.size from the default of 100 MB to 1 GB

Once these property changes have been made, restart NiFi.

Note: Detailed descriptions for each of these properties can be found in System Properties.

280

http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#system_properties

Data Provenance

Encrypted Provenance Considerations

The above migration recommendations for WriteAheadProvenanceRepository also apply to the encrypted version of
the configuration, EncryptedWriteAheadProvenanceRepository.

The next section has more information about implementing an Encrypted Provenance Repository.

Encrypted Provenance Repository

While OS-level access control can offer some security over the provenance data written to the disk in a repository,
there are scenarios where the data may be sensitive, compliance and regulatory requirements exist, or NiFi is running
on hardware not under the direct control of the organization (cloud, etc.). In this case, the provenance repository
allows for all data to be encrypted before being persisted to the disk.

Note: Experimental

This implementation is marked experimental as of Apache NiFi 1.10.0 (October 2019). The API,
configuration, and internal behavior may change without warning, and such changes may occur during a
minor release. Use at your own risk.

Note: Performance

The current implementation of the encrypted provenance repository intercepts the record writer and reader
of WriteAheadProvenanceRepository, which offers significant performance improvements over the legacy
PersistentProvenanceRepository and uses the AES/GCM algorithm, which is fairly performant on commodity
hardware. In most scenarios, the added cost will not be significant (unnoticable on a flow with hundreds of
provenance events per second, moderately noticable on a flow with thousands - tens of thousands of events
per second). However, administrators should perform their own risk assessment and performance analysis and
decide how to move forward. Switching back and forth between encrypted/unencrypted implementations is
not recommended at this time.

What is it?

The EncryptedWriteAheadProvenanceRepository is a new implementation of the provenance repository which
encrypts all event record information before it is written to the repository. This allows for storage on systems where
OS-level access controls are not sufficient to protect the data while still allowing querying and access to the data
through the NiFi UI/API.

How does it work?

The WriteAheadProvenanceRepository was introduced in NiFi 1.2.0 and provided a refactored and much
faster provenance repository implementation than the previous PersistentProvenanceRepository. The encrypted
version wraps that implementation with a record writer and reader which encrypt and decrypt the serialized bytes
respectively.

The fully qualified class org.apache.nifi.provenance.EncryptedWriteAheadProvenanceRepository is specified as the
provenance repository implementation in nifi.properties as the value of nifi.provenance.repository.implementation. In
addition, new properties must be populated to allow successful initialization.

StaticKeyProvider

The StaticKeyProvider implementation defines keys directly in nifi.properties. Individual keys are provided in
hexadecimal encoding. The keys can also be encrypted like any other sensitive property in nifi.properties using the ./
encrypt-config.sh tool in the NiFi Toolkit.

The following configuration section would result in a key provider with two available keys, "Key1" (active) and
"AnotherKey".

nifi.provenance.repository.encryption.key.provider.implementation=org.apache
.nifi.security.kms.StaticKeyProvider

281

http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#experimental_warning
http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#encrypted-write-ahead-provenance-repository-properties

Data Provenance

nifi.provenance.repository.encryption.key.id=Key1
nifi.provenance.repository.encryption.key=0123456789ABCDEFFEDCBA987654321
00123456789ABCDEFFEDCBA9876543210
nifi.provenance.repository.encryption.key.id.AnotherKey=010101010101010101
01

FileBasedKeyProvider

The FileBasedKeyProvider implementation reads from an encrypted definition file of the format:

key1=NGCpDpxBZNN0DBodz0p1SDbTjC2FG5kp1pCmdUKJlxxtcMSo6GC4fMlTyy1mPeKOxzLut3D
RX+51j6PCO5SznA==
key2=GYxPbMMDbnraXs09eGJudAM5jTvVYp05XtImkAg4JY4rIbmHOiVUUI6OeOf7ZW+hH42jt
PgNW9pSkkQ9HWY/vQ==
key3=SFe11xuz7J89Y/IQ7YbJPOL0/YKZRFL/VUxJgEHxxlXpd/8ELA7wwN59K1KTr3BURCcFP5Y
GmwrSKfr4OE4Vlg==
key4=kZprfcTSTH69UuOU3jMkZfrtiVR/eqWmmbdku3bQcUJ/+UToecNB5lzOVEMBChyEXppyX
XC35Wa6GEXFK6PMKw==
key5=c6FzfnKm7UR7xqI2NFpZ+fEKBfSU7+1NvRw+XWQ9U39MONWqk5gvoyOCdFR1kUgeg46jrN5
dGXk13sRqE0GETQ==

Each line defines a key ID and then the Base64-encoded cipher text of a 16 byte IV and wrapped AES-128, AES-192,
or AES-256 key depending on the JCE policies available. The individual keys are wrapped by AES/GCM encryption
using the master key defined by nifi.bootstrap.sensitive.key in conf/bootstrap.conf.

Key Rotation

Simply update nifi.properties to reference a new key ID in nifi.provenance.repository.encryption.key.id. Previously-
encrypted events can still be decrypted as long as that key is still available in the key definition file or nifi.provena
nce.repository.encryption.key.id.<OldKeyID> as the key ID is serialized alongside the encrypted record.

Writing and Reading Event Records

Once the repository is initialized, all provenance event record write operations are serialized according to the
configured schema writer (EventIdFirstSchemaRecordWriter by default for WriteAheadProvenanceRepository) to
a byte[]. Those bytes are then encrypted using an implementation of ProvenanceEventEncryptor (the only current
implementation is AES/GCM/NoPadding) and the encryption metadata (keyId, algorithm, version, IV) is serialized
and prepended. The complete byte[] is then written to the repository on disk as normal.

282

Data Provenance

283

Encrypted Content Repository

On record read, the process is reversed. The encryption metadata is parsed and used to decrypt the serialized bytes,
which are then deserialized into a ProvenanceEventRecord object. The delegation to the normal schema record writer/
reader allows for "random-access" (i.e. immediate seek without decryption of unnecessary records).

Within the NiFi UI/API, there is no detectable difference between an encrypted and unencrypted provenance
repository. The Provenance Query operations work as expected with no change to the process.

Potential Issues

Note: Switching Implementations

When switching between implementation "families" (i.e. VolatileProvenanceRepository or PersistentProven
anceRepository to EncryptedWriteAheadProvenanceRepository), the existing repository must be cleared from
the file system before starting NiFi. A terminal command like localhost:$NIFI_HOME $ rm -rf provenance
_repository/ is sufficient.

• Switching between unencrypted and encrypted repositories

• If a user has an existing repository (WriteAheadProvenanceRepository only - not PersistentProvenanceRepo
sitory) that is not encrypted and switches their configuration to use an encrypted repository, the application
writes an error to the log but starts up. However, previous events are not accessible through the provenance
query interface and new events will overwrite the existing events. The same behavior occurs if a user switches
from an encrypted repository to an unencrypted repository. Automatic roll-over is a future effort (NIFI-3722)
but NiFi is not intended for long-term storage of provenance events so the impact should be minimal. There
are two scenarios for roll-over:

• Encrypted # unencrypted - if the previous repository implementation was encrypted, these events should be
handled seamlessly as long as the key provider available still has the keys used to encrypt the events (see
Key Rotation)

• Unencrypted # encrypted - if the previous repository implementation was unencrypted, these events should
be handled seamlessly as the previously recorded events simply need to be read with a plaintext schema
record reader and then written back with the encrypted record writer

• There is also a future effort to provide a standalone tool in NiFi Toolkit to encrypt/decrypt an existing
provenance repository to make the transition easier. The translation process could take a long time depending
on the size of the existing repository, and being able to perform this task outside of application startup would
be valuable (NIFI-3723).

• Multiple repositories - No additional effort or testing has been applied to multiple repositories at this time. It is
possible/likely issues will occur with repositories on different physical devices. There is no option to provide a
heterogenous environment (i.e. one encrypted, one plaintext repository).

• Corruption - when a disk is filled or corrupted, there have been reported issues with the repository becoming
corrupted and recovery steps are necessary. This is likely to continue to be an issue with the encrypted repository,
although still limited in scope to individual records (i.e. an entire repository file won't be irrecoverable due to the
encryption).

Encrypted Content Repository

While OS-level access control can offer some security over the flowfile content data written to the disk in a
repository, there are scenarios where the data may be sensitive, compliance and regulatory requirements exist, or
NiFi is running on hardware not under the direct control of the organization (cloud, etc.). In this case, the content
repository allows for all data to be encrypted before being persisted to the disk. For more information on the internal
workings of the content repository, see NiFi In-Depth - Content Repository..

What is it?

284

https://issues.apache.org/jira/browse/NIFI-3722
http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#provenance-repository-key-rotation
https://issues.apache.org/jira/browse/NIFI-3723
http://nifi.apache.org/docs/nifi-docs/html/nifi-in-depth.html#content-repository

Encrypted Content Repository

The EncryptedFileSystemRepository is a new implementation of the content repository which encrypts all content
data before it is written to the repository. This allows for storage on systems where OS-level access controls are not
sufficient to protect the data while still allowing querying and access to the data through the NiFi UI/API.

How does it work?

The FileSystemRepository was introduced in NiFi 0.2.1 and provided the only persistent content repository
implementation. The encrypted version wraps that implementation with functionality to return to the Session (usually
StandardProcessSession) a special OutputStream/InputStream which encrypt and decrypt the serialized bytes
respectively. This allows all components to continue interacting with the content repository interface in the same way
as before and continue operating on content data in a streaming manner, without requiring any changes to handle the
data protection.

The fully qualified class org.apache.nifi.content.EncryptedFileSystemRepository is specified as the content repository
implementation in nifi.properties as the value of nifi.content.repository.implementation. In addition, new properties
must be populated to allow successful initialization.

StaticKeyProvider

The StaticKeyProvider implementation defines keys directly in nifi.properties. Individual keys are provided in
hexadecimal encoding. The keys can also be encrypted like any other sensitive property in nifi.properties using the ./
encrypt-config.sh tool in the NiFi Toolkit.

The following configuration section would result in a key provider with two available keys, "Key1" (active) and
"AnotherKey".

nifi.content.repository.encryption.key.provider.implementation=org.apache.ni
fi.security.kms.StaticKeyProvider
nifi.content.repository.encryption.key.id=Key1
nifi.content.repository.encryption.key=0123456789ABCDEFFEDCBA98765432100123
456789ABCDEFFEDCBA9876543210
nifi.content.repository.encryption.key.id.AnotherKey=0101010101010101010101
01

FileBasedKeyProvider

The FileBasedKeyProvider implementation reads from an encrypted definition file of the format:

key1=NGCpDpxBZNN0DBodz0p1SDbTjC2FG5kp1pCmdUKJlxxtcMSo6GC4fMlTyy1mPeKOxzLut3D
RX+51j6PCO5SznA==
key2=GYxPbMMDbnraXs09eGJudAM5jTvVYp05XtImkAg4JY4rIbmHOiVUUI6OeOf7ZW+hH42jt
PgNW9pSkkQ9HWY/vQ==
key3=SFe11xuz7J89Y/IQ7YbJPOL0/YKZRFL/VUxJgEHxxlXpd/8ELA7wwN59K1KTr3BURCcFP5Y
GmwrSKfr4OE4Vlg==
key4=kZprfcTSTH69UuOU3jMkZfrtiVR/eqWmmbdku3bQcUJ/+UToecNB5lzOVEMBChyEXppyX
XC35Wa6GEXFK6PMKw==
key5=c6FzfnKm7UR7xqI2NFpZ+fEKBfSU7+1NvRw+XWQ9U39MONWqk5gvoyOCdFR1kUgeg46jrN5
dGXk13sRqE0GETQ==

Each line defines a key ID and then the Base64-encoded cipher text of a 16 byte IV and wrapped AES-128, AES-192,
or AES-256 key depending on the JCE policies available. The individual keys are wrapped by AES/GCM encryption
using the master key defined by nifi.bootstrap.sensitive.key in conf/bootstrap.conf.

Data Protection vs. Key Protection

Even though the flowfile content is encrypted using AES/CTR to handle streaming data, if using the Config Encrypt
Tool or FileBasedKeyProvider, those keys will be protected using AES/GCM to provide authenticated encryption
over the key material.

285

http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#encrypted-file-system-content-repository-properties

Encrypted Content Repository

Key Rotation

Simply update nifi.properties to reference a new key ID in nifi.content.repository.encryption.key.id. Previously-
encrypted content claims can still be decrypted as long as that key is still available in the key definition file or nifi.con
tent.repository.encryption.key.id.<OldKeyID> as the key ID is serialized alongside the encrypted content.

Writing and Reading Content Claims

Once the repository is initialized, all content claim write operations are serialized using RepositoryObjectStre
amEncryptor (the only currently existing implementation is RepositoryObjectAESCTREncryptor) to an OutputSt
ream. The actual implementation is EncryptedContentRepositoryOutputStream, which encrypts the data written by
the component via StandardProcessSession inline and the encryption metadata (keyId, algorithm, version, IV) is
serialized and prepended. The complete OutputStream is then written to the repository on disk as normal.

286

Encrypted Content Repository

287

Encrypted FlowFile Repository

On content claim read, the process is reversed. The encryption metadata (RepositoryObjectEncryptionMetadata) is
parsed and used to decrypt the serialized bytes, which are then deserialized into a CipherInputStream object. The
delegation to the normal repository file system interaction allows for "random-access" (i.e. immediate seek without
decryption of unnecessary content claims).

Within the NiFi UI/API, there is no detectable difference between an encrypted and unencrypted content repository.
The Provenance Query operations to view content work as expected with no change to the process.

Potential Issues

Note: Switching Implementations

When switching between implementation "families" (i.e. VolatileContentRepository or FileSystemReposi
tory to EncryptedFileSystemRepository), the existing repository must be cleared from the file system before
starting NiFi. A terminal command like localhost:$NIFI_HOME $ rm -rf content_repository/ is sufficient.

• Switching between unencrypted and encrypted repositories

• If a user has an existing repository (FileSystemRepository) that is not encrypted and switches their
configuration to use an encrypted repository, the application writes an error to the log but starts up. However,
previous content claims are not accessible through the provenance query interface and new content claims will
overwrite the existing claims. The same behavior occurs if a user switches from an encrypted repository to an
unencrypted repository. Automatic roll-over is a future effort (https://issues.apache.org/jira/browse/NIFI-6783)
but NiFi is not intended for long-term storage of content claims so the impact should be minimal. There are
two scenarios for roll-over:

• Encrypted # unencrypted - if the previous repository implementation was encrypted, these claims should be
handled seamlessly as long as the key provider available still has the keys used to encrypt the claims (see
Key Rotation).

• Unencrypted # encrypted - if the previous repository implementation was unencrypted, these claims should
be handled seamlessly as the previously written claims simply need to be read with a plaintext InputStream
and then be written back with the EncryptedContentRepositoryOutputStream

• There is also a future effort to provide a standalone tool in NiFi Toolkit to encrypt/decrypt an existing content
repository to make the transition easier. The translation process could take a long time depending on the size
of the existing repository, and being able to perform this task outside of application startup would be valuable
(https://issues.apache.org/jira/browse/NIFI-6783).

• Multiple repositories - No additional effort or testing has been applied to multiple repositories at this time. It is
possible/likely issues will occur with repositories on different physical devices. There is no option to provide a
heterogenous environment (i.e. one encrypted, one plaintext repository).

• Corruption - when a disk is filled or corrupted, there have been reported issues with the repository becoming
corrupted and recovery steps are necessary. This is likely to continue to be an issue with the encrypted repository,
although still limited in scope to individual claims (i.e. an entire repository file won't be irrecoverable due to the
encryption). Some testing has been performed on scenarios where disk space is exhausted. While the flow can
no longer write additional content claims to the repository in that case, the NiFi application continues to function
properly, and successfully written content claims are still available via the Provenance Query operations. Stopping
NiFi and removing the content repository (or moving it to a larger disk) resolves the issue.

Encrypted FlowFile Repository

While OS-level access control can offer some security over the flowfile attribute and content claim data written to
the disk in a repository, there are scenarios where the data may be sensitive, compliance and regulatory requirements
exist, or NiFi is running on hardware not under the direct control of the organization (cloud, etc.). In this case, the
flowfile repository allows for all data to be encrypted before being persisted to the disk.

288

https://issues.apache.org/jira/browse/NIFI-6783
https://nifi.apache.org/docs/nifi-docs/html/user-guide.html#content-repository-key-rotation
https://issues.apache.org/jira/browse/NIFI-6783

Encrypted FlowFile Repository

What is it?

The EncryptedSequentialAccessWriteAheadLog is a new implementation of the flowfile write-ahead log which
encrypts all flowfile attribute data before it is written to the repository. This allows for storage on systems where OS-
level access controls are not sufficient to protect the data while still allowing querying and access to the data through
the NiFi UI/API.

How does it work?

The SequentialAccessWriteAheadLog was introduced in NiFi 1.6.0 and provided a faster flowfile repository
implementation. The encrypted version wraps that implementation with functionality to transparently encrypt and
decrypt the serialized RepositoryRecord objects during file system interaction. During all writes to disk (swapping,
snapshotting, journaling, and checkpointing), the flowfile containers are serialized to bytes based on a schema, and
this serialized form is encrypted before writing. This allows the snapshot handler to continue interacting with the
flowfile repository interface in the same way as before and continue operating on flowfile data in a random access
manner, without requiring any changes to handle the data protection.

The fully qualified class org.apache.nifi.wali.EncryptedSequentialAccessWriteAheadLog is specified as the flowfile
repository write-ahead log implementation in nifi.properties as the value of nifi.flowfile.repository.wal.implementat
ion. In addition, new properties must be populated to allow successful initialization.

StaticKeyProvider

The StaticKeyProvider implementation defines keys directly in nifi.properties. Individual keys are provided in
hexadecimal encoding. The keys can also be encrypted like any other sensitive property in nifi.properties using the ./
encrypt-config.sh tool in the NiFi Toolkit.

The following configuration section would result in a key provider with two available keys, "Key1" (active) and
"AnotherKey".

nifi.flowfile.repository.encryption.key.provider.implementation=org.apache.n
ifi.security.kms.StaticKeyProvider
nifi.flowfile.repository.encryption.key.id=Key1
nifi.flowfile.repository.encryption.key=0123456789ABCDEFFEDCBA98765432100
123456789ABCDEFFEDCBA9876543210
nifi.flowfile.repository.encryption.key.id.AnotherKey=0101010101010101010101
01

FileBasedKeyProvider

The FileBasedKeyProvider implementation reads from an encrypted definition file of the format:

key1=NGCpDpxBZNN0DBodz0p1SDbTjC2FG5kp1pCmdUKJlxxtcMSo6GC4fMlTyy1mPeKOxzLut3D
RX+51j6PCO5SznA==
key2=GYxPbMMDbnraXs09eGJudAM5jTvVYp05XtImkAg4JY4rIbmHOiVUUI6OeOf7ZW+hH42jt
PgNW9pSkkQ9HWY/vQ==
key3=SFe11xuz7J89Y/IQ7YbJPOL0/YKZRFL/VUxJgEHxxlXpd/8ELA7wwN59K1KTr3BURCcFP5Y
GmwrSKfr4OE4Vlg==
key4=kZprfcTSTH69UuOU3jMkZfrtiVR/eqWmmbdku3bQcUJ/+UToecNB5lzOVEMBChyEXppyX
XC35Wa6GEXFK6PMKw==
key5=c6FzfnKm7UR7xqI2NFpZ+fEKBfSU7+1NvRw+XWQ9U39MONWqk5gvoyOCdFR1kUgeg46jrN5
dGXk13sRqE0GETQ==

Each line defines a key ID and then the Base64-encoded cipher text of a 16 byte IV and wrapped AES-128, AES-192,
or AES-256 key depending on the JCE policies available. The individual keys are wrapped by AES/GCM encryption
using the master key defined by nifi.bootstrap.sensitive.key in conf/bootstrap.conf.

289

http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#encrypted-write-ahead-flowfile-repository-properties
http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#encrypt-config_tool
http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#encrypt-config_tool

Encrypted FlowFile Repository

Key Rotation

Simply update nifi.properties to reference a new key ID in nifi.flowfile.repository.encryption.key.id. Previously-
encrypted flowfile records can still be decrypted as long as that key is still available in the key definition file or nifi
.flowfile.repository.encryption.key.id.<OldKeyID> as the key ID is serialized alongside the encrypted record.

Writing and Reading FlowFiles

Once the repository is initialized, all flowfile record write operations are serialized using RepositoryObjectBlockEnc
ryptor (the only currently existing implementation is RepositoryObjectAESGCMEncryptor) to the provided Data
OutputStream. The original stream is swapped with a temporary wrapped stream, which encrypts the data written by
the wrapped serializer/deserializer via EncryptedSchemaRepositoryRecordSerde inline and the encryption metadata
(keyId, algorithm, version, IV, cipherByteLength) is serialized and prepended. The complete length and encrypted
bytes are then written to the original DataOutputStream on disk as normal.

290

Encrypted FlowFile Repository

291

Experimental Warning

On flowfile record read, the process is reversed. The encryption metadata (RepositoryObjectEncryptionMetadata) is
parsed and used to decrypt the serialized bytes, which are then deserialized into a DataInputStream object.

During swaps and recoveries, the flowfile records are deserialized and reserialized, so if the active key has been
changed, the flowfile records will be re-encrypted with the new active key.

Within the NiFi UI/API, there is no detectable difference between an encrypted and unencrypted flowfile repository.
All framework interactions with flowfiles work as expected with no change to the process.

Potential Issues

Note: Switching Implementations

It is not recommended to switch between any implementation other than SequentialAccessWriteAheadLog
and the EncryptedSequentialAccessWriteAheadLog. To migrate from a different provider, first migrate to
the plaintext sequential log, allow NiFi to automatically recover the flowfiles, then stop NiFi and change the
configuration to enable encryption. NiFi will automatically recover the plaintext flowfiles from the repository,
and begin encrypting them on subsequent writes.

• Switching between unencrypted and encrypted repositories

• If a user has an existing write-ahead repository (WriteAheadFlowFileRepository) that is not encrypted (uses
the SequentialAccessWriteAheadLog) and switches their configuration to use an encrypted repository, the
application handles this and all flowfile records will be recovered on startup. Future writes (including re-
serialization of these same flowfiles) will be encrypted. If a user switches from an encrypted repository
to an unencrypted repository, the flowfiles cannot be recovered, and it is recommended to delete the
existing flowfile repository before switching in this direction. Automatic roll-over is a future effort (https://
issues.apache.org/jira/browse/NIFI-6994) but NiFi is not intended for long-term storage of flowfile records so
the impact should be minimal. There are two scenarios for roll-over:

• Encrypted # unencrypted - if the previous repository implementation was encrypted, these records should
be handled seamlessly as long as the key provider available still has the keys used to encrypt the claims
(see Key Rotation)

• Unencrypted # encrypted - currently handled seamlesssly for SequentialAccessWriteAheadLog but there
are other initial implementations which could be handled

• There is also a future effort to provide a standalone tool in NiFi Toolkit to encrypt/decrypt an existing flowfile
repository to make the transition easier. The translation process could take a long time depending on the size
of the existing repository, and being able to perform this task outside of application startup would be valuable
(https://issues.apache.org/jira/browse/NIFI-6994).

• Multiple repositories - No additional effort or testing has been applied to multiple repositories at this time. Current
implementations of the flowfile repository allow only for one repository, though it can reside across multiple
volumes and partitions. It is possible/likely issues will occur with repositories on different physical devices. There
is no option to provide a heterogenous environment (i.e. one encrypted, one plaintext partition/directory).

• Corruption - when a disk is filled or corrupted, there have been reported issues with the repository becoming
corrupted and recovery steps are necessary. This is likely to continue to be an issue with the encrypted repository,
although still limited in scope to individual records (i.e. an entire repository file won't be irrecoverable due to
the encryption). It is important for the continued operation of NiFi to ensure that the disk storing the flowfile
repository does not run out of available space.

Experimental Warning

While all Apache licensed code is provided "on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied" (see https://www.apache.org/licenses/LICENSE-2.0), some features of
Apache NiFi may be marked experimental. Experimental features may:

292

https://issues.apache.org/jira/browse/NIFI-6994
https://issues.apache.org/jira/browse/NIFI-6994
http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#flowfile-repository-key-rotation
https://issues.apache.org/jira/browse/NIFI-6994
https://www.apache.org/licenses/LICENSE-2.0

Other Management Features

• have undergone less extensive testing than is normal for standard NiFi features
• interact with unstable external dependencies
• be subject to change (any exposed APIs should not be considered covered under the minor release backward

compatibility guidelines of https://semver.org)
• potentially cause data loss
• not be directly supported by the community in the event issues arise

Every attempt is made to provide more detailed and specific information around the nature of the experimental
warning on a per-feature basis. Questions around specific experimental features should be directed to the Apache NiFi
Developer Mailing List.

Other Management Features

In addition to the Summary Page, Data Provenance Page, Template Management Page, and Bulletin Board
Page, there are other tools in the Global Menu (see NiFi User Interface) that are useful to the DFM. Select
Flow Configuration History to view all the changes that have been made to the dataflow. The history can aid in
troubleshooting, such as if a recent change to the dataflow has caused a problem and needs to be fixed. The DFM
can see what changes have been made and adjust the flow as needed to fix the problem. While NiFi does not have an
"undo" feature, the DFM can make new changes to the dataflow that will fix the problem.

Select Node Status History to view instance specific metrics from the last 24 hours or if the instance runs for less
time, then since it has been started. The status history can help the DFM in troubleshooting performance issues and
provides a general view on the health of the node. The status history includes information about the memory usage
and disk usage among other things.

Two other tools in the Global Menu are Controller Settings and Users. The Controller Settings page provides the
ability to change the name of the NiFi instance, add comments describing the NiFi instance, and set the maximum
number of threads that are available to the application. It also provides tabs where DFMs may add and configure
Controller Services and Reporting Tasks. The Users page is used to manage user access, which is described in the
System Administrator’s Guide.

293

https://semver.org
mailto:dev@nifi.apache.org
mailto:dev@nifi.apache.org
http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#User_Interface
http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#Controller_Services
http://nifi.apache.org/docs/nifi-docs/html/user-guide.html#Reporting_Tasks
http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html

	Contents
	Introduction
	Browser Support
	Unsupported Browsers
	Viewing the UI in Variably Sized Browsers

	Terminology
	NiFi User Interface
	Accessing the UI with Multi-Tenant Authorization
	Logging In
	Building a DataFlow
	Adding Components to the Canvas
	Component Versions
	Sorting and Filtering Components
	Changing Component Versions
	Understanding Version Dependencies

	Configuring a Processor
	Settings Tab
	Scheduling Tab
	Scheduling Strategy
	Concurrent Tasks
	Run Schedule
	Execution
	Run Duration

	Properties Tab
	Comments Tab
	Additional Help

	Parameters
	Parameter Contexts
	Creating a Parameter Context

	Adding a Parameter to a Parameter Context
	Assigning a Parameter Context to a Process Group
	Referencing Parameters
	Parameter Reference Syntax
	Referencing and Creating Parameters During Component Configuration
	Using Parameters with Sensitive Properties

	Accessing Parameters
	Parameter Context Access Policies
	Process Group Access Policies
	Component Access Policies

	Using Custom Properties with Expression Language
	Variables
	Variables Window
	Creating a Variable
	Variable Scope
	Variable Permissions
	Referencing Controller Services
	Unauthorized Referencing Components

	Custom Properties

	Controller Services
	Adding Controller Services for Reporting Tasks
	Adding Controller Services for Dataflows
	Enabling/Disabling Controller Services

	Reporting Tasks
	Connecting Components
	Details Tab
	Settings
	FlowFile Expiration
	Back Pressure
	Load Balancing
	Prioritization

	Changing Configuration and Context Menu Options
	Bending Connections

	Processor Validation
	Site-to-Site
	Configure Site-to-Site client NiFi instance
	Configure Site-to-Site Server NiFi Instance

	Example Dataflow

	Command and Control of the DataFlow
	Starting a Component
	Stopping a Component
	Enabling/Disabling a Component
	Remote Process Group Transmission
	Individual Port Transmission

	Navigating within a DataFlow
	Component Linking
	Component Alignment
	Align Vertically
	Align Horizontally

	Monitoring of DataFlow
	Anatomy of a Processor
	Anatomy of a Process Group
	Anatomy of a Remote Process Group
	Queue Interaction
	Summary Page
	Historical Statistics of a Component

	Versioning a DataFlow
	Connecting to a NiFi Registry
	Version States
	Import a Versioned Flow
	Start Version Control
	Managing Local Changes
	Show Local Changes
	Revert Local Changes
	Commit Local Changes

	Change Version
	Stop Version Control
	Nested Versioned Flows
	Parameters in Versioned Flows
	Variables in Versioned Flows
	Restricted Components in Versioned Flows
	Restricted Controller Service Created in Root Process Group
	Restricted Controller Service Created in Process Group

	Templates
	Creating a Template
	Importing a Template
	Instantiating a Template
	Managing Templates
	Exporting a Template
	Removing a Template

	Data Provenance
	Provenance Events
	Searching for Events
	Details of an Event
	Replaying a FlowFile
	Viewing FlowFile Lineage
	Find Parents
	Expanding an Event

	Write Ahead Provenance Repository
	Backwards Compatibility
	Older Existing NiFi Version
	Bootstrap.conf
	System Properties
	Encrypted Provenance Considerations

	Encrypted Provenance Repository
	What is it?
	How does it work?
	StaticKeyProvider
	FileBasedKeyProvider
	Key Rotation

	Writing and Reading Event Records
	Potential Issues

	Encrypted Content Repository
	What is it?
	How does it work?
	StaticKeyProvider
	FileBasedKeyProvider
	Key Rotation

	Writing and Reading Content Claims
	Potential Issues

	Encrypted FlowFile Repository
	What is it?
	How does it work?
	StaticKeyProvider
	FileBasedKeyProvider
	Key Rotation

	Writing and Reading FlowFiles
	Potential Issues

	Experimental Warning
	Other Management Features

