
NiFi System Administrator's Guide
Date published:
Date modified:

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

 | Contents | iii

Contents

System Requirements... 6

How to install and start NiFi.. 6

Port Configuration..7
NiFi..7
Embedded Zookeeper... 7

Configuration Best Practices... 8

Recommended Antivirus Exclusions.. 9

Security Configuration... 9
TLS Generation Toolkit... 10

User Authentication..10
Lightweight Directory Access Protocol (LDAP)...11
Kerberos.. 12
OpenId Connect.. 13
Apache Knox.. 14

Multi-Tenant Authorization.. 14
Authorizer Configuration..14
Authorizers.xml Setup.. 14

FileUserGroupProvider... 15
LdapUserGroupProvider... 15
ShellUserGroupProvider... 17
Composite Implementations... 17
FileAccessPolicyProvider... 18
StandardManagedAuthorizer...19
FileAuthorizer... 19
Initial Admin Identity (New NiFi Instance).. 19
Legacy Authorized Users (NiFi Instance Upgrade)...26
Cluster Node Identities... 28

Configuring Users & Access Policies..29
Creating Users and Groups.. 29
Access Policies..32
Access Policy Configuration Examples... 34

Encryption Configuration..60
Key Derivation Functions...61

 | Contents | iv

Additional Resources.. 62
Salt and IV Encoding... 63

NiFi Legacy.. 63
OpenSSL PKCS#5 v1.5 EVP_BytesToKey...63
Bcrypt, Scrypt, PBKDF2..64

Java Cryptography Extension (JCE) Limited Strength Jurisdiction Policies...65
Allow Insecure Cryptographic Modes... 66

Encrypted Passwords in Configuration Files.. 68

NiFi Toolkit Administrative Tools..68

Clustering Configuration... 68
Zero-Master Clustering...69
Why Cluster?.. 70
Terminology.. 70
Communication within the Cluster.. 72
Managing Nodes... 72

Disconnect Nodes... 72
Offload Nodes...73
Delete Nodes...75
Decommission Nodes... 75
NiFi CLI Node Commands.. 76

Flow Election..76
Basic Cluster Setup...76
Troubleshooting...78

State Management.. 78
Configuring State Providers... 79
Embedded ZooKeeper Server...80
ZooKeeper Access Control...81
Securing ZooKeeper... 81

Kerberizing Embedded ZooKeeper Server.. 81
Kerberizing NiFi's ZooKeeper Client.. 83
Troubleshooting Kerberos Configuration...84

ZooKeeper Migrator... 85

Bootstrap Properties...85

Notification Services... 86
Email Notification Service... 87
HTTP Notification Service...88

Proxy Configuration... 89

Kerberos Service... 90
Notes..91

 | Contents | v

Analytics Framework... 92

System Properties... 93
Upgrade Recommendations.. 93
Core Properties... 93
State Management...95
H2 Settings..96
FlowFile Repository..96
Write Ahead FlowFile Repository... 96
Encrypted Write Ahead FlowFile Repository Properties.. 97
Volatile FlowFile Repository... 98
RocksDB FlowFile Repository...98
Swap Management..100
Content Repository... 101
File System Content Repository Properties... 101
Encrypted File System Content Repository Properties..102
Volatile Content Repository Properties..103
Provenance Repository... 103
Write Ahead Provenance Repository Properties..104
Encrypted Write Ahead Provenance Repository Properties.. 106
Persistent Provenance Repository Properties... 107
Volatile Provenance Repository Properties..108
Component Status Repository.. 109
Site to Site Properties...109
Site to Site Routing Properties for Reverse Proxies..110

Site to Site protocol sequence..111
Reverse Proxy Configurations..111
Site to Site and Reverse Proxy Examples..111

Web Properties..115
Security Properties.. 116
Identity Mapping Properties... 117
Cluster Common Properties..118
Cluster Node Properties..118
ZooKeeper Properties... 119
Kerberos Properties...120
Analytics Properties.. 120
Custom Properties...121

Upgrading NiFi... 121
Preserve Custom Processors...121
Preserve Modified NARs... 121
Clear Activity and Shutdown Existing NiFi.. 122
Install the new NiFi Version..122
Update the Configuration Files for Your New NiFi Installation...122

Migrating a Flow with Sensitive Properties...124
Start New NiFi..125

System Requirements

System Requirements

Apache NiFi can run on something as simple as a laptop, but it can also be clustered across many enterprise-class
servers. Therefore, the amount of hardware and memory needed will depend on the size and nature of the dataflow
involved. The data is stored on disk while NiFi is processing it. So NiFi needs to have sufficient disk space allocated
for its various repositories, particularly the content repository, flowfile repository, and provenance repository (see the
System Properties section for more information about these repositories). NiFi has the following minimum system
requirements:

• Requires Java 8 or Java 11
• Supported Operating Systems:

• Linux
• Unix
• Windows
• Mac OS X

• Supported Web Browsers:

• Microsoft Edge: Current & (Current - 1)
• Mozilla FireFox: Current & (Current - 1)
• Google Chrome: Current & (Current - 1)
• Safari: Current & (Current - 1)

Note: Under sustained and extremely high throughput the CodeCache settings may need to be tuned to avoid
sudden performance loss. See the Bootstrap Properties section for more information.

How to install and start NiFi

• Linux/Unix/OS X

• Decompress and untar into desired installation directory
• Make any desired edits in files found under <installdir>/conf

• At a minimum, we recommend editing the nifi.properties file and entering a password for the nifi.sensiti
ve.props.key (see System Properties below)

• From the <installdir>/bin directory, execute the following commands by typing ./nifi.sh <command>:

• start: starts NiFi in the background
• stop: stops NiFi that is running in the background
• status: provides the current status of NiFi
• run: runs NiFi in the foreground and waits for a Ctrl-C to initiate shutdown of NiFi
• install: installs NiFi as a service that can then be controlled via

• service nifi start
• service nifi stop
• service nifi status

6

http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#system_properties
http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#system_properties

Port Configuration

• Windows

• Decompress into the desired installation directory
• Make any desired edits in the files found under <installdir>/conf

• At a minimum, we recommend editing the nifi.properties file and entering a password for the nifi.sensiti
ve.props.key (see System Properties below)

• Navigate to the <installdir>/bin directory
• Double-click run-nifi.bat. This runs NiFi in the foreground and waits for a Ctrl-C to initiate shutdown of NiFi
• To see the current status of NiFi, double-click status-nifi.bat

When NiFi first starts up, the following files and directories are created:

• content_repository
• database_repository
• flowfile_repository
• provenance_repository
• work directory
• logs directory
• Within the conf directory, the flow.xml.gz file is created

See the System Properties section of this guide for more information about configuring NiFi repositories and
configuration files.

Port Configuration

NiFi

The following table lists the default ports used by NiFi and the corresponding property in the nifi.properties file.

Function Property Default Value

Web HTTP Forwarding Port nifi.web.http.port.forwarding none

HTTP Port nifi.web.http.port 8080

HTTPS Port* nifi.web.https.port 9443

Remote Input Socket Port* nifi.remote.input.socket.port 10443

Cluster Node Protocol Port* nifi.cluster.node.protocol.port 11443

Cluster Node Load Balancing Port nifi.cluster.node.load.balance.port 6342

Note: The ports marked with an asterisk (*) have property values that are blank by default in nifi.properties.
The values shown in the table are the default values for these ports when TLS Toolkit is used to generate
nifi.properties for a secured NiFi instance. The default Certificate Authority Port used by TLS Toolkit is
8443.

Embedded Zookeeper

The following table lists the default ports used by an Embedded ZooKeeper Server and the corresponding property in
the zookeeper.properties file.

7

http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#system_properties
http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#system_properties
http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#embedded_zookeeper

Configuration Best Practices

Function Property Default Value

Zookeeper Server Quorum and Leader
Election Ports

server.1 none

Zookeeper Client Port (Deprecated: client port
is no longer specified on a separate line as of
NiFi 1.10.x)

clientPort 2181

Note: Commented examples for the Zookeeper server ports are included in the zookeeper.properties file in
the form server.N=nifi-nodeN-hostname:2888:3888;2181.

Configuration Best Practices

If you are running on Linux, consider these best practices. Typical Linux defaults are not necessarily well-tuned
for the needs of an IO intensive application like NiFi. For all of these areas, your distribution's requirements may
vary. Use these sections as advice, but consult your distribution-specific documentation for how best to achieve these
recommendations.

Maximum File Handles

NiFi will at any one time potentially have a very large number of file handles open. Increase the
limits by editing /etc/security/limits.conf to add something like

* hard nofile 50000
* soft nofile 50000

Maximum Forked Processes

NiFi may be configured to generate a significant number of threads. To increase the allowable
number, edit /etc/security/limits.conf

* hard nproc 10000
* soft nproc 10000

And your distribution may require an edit to /etc/security/limits.d/90-nproc.conf by adding

* soft nproc 10000

Increase the number of TCP socket ports available

This is particularly important if your flow will be setting up and tearing down a large number of
sockets in a small period of time.

sudo sysctl -w net.ipv4.ip_local_port_range="10000 65000"

Set how long sockets stay in a TIMED_WAIT state when closed

You don't want your sockets to sit and linger too long given that you want to be able to quickly
setup and teardown new sockets. It is a good idea to read more about it and adjust to something like

sudo sysctl -w net.ipv4.netfilter.ip_conntrack_tcp_timeout_time_wait="1"

Tell Linux you never want NiFi to swap

8

Recommended Antivirus Exclusions

Swapping is fantastic for some applications. It isn't good for something like NiFi that always
wants to be running. To tell Linux you'd like swapping off, you can edit /etc/sysctl.conf to add the
following line

vm.swappiness = 0

For the partitions handling the various NiFi repos, turn off things like atime. Doing so can cause a surprising bump in
throughput. Edit the /etc/fstab file and for the partition(s) of interest, add the noatime option.

Recommended Antivirus Exclusions

Antivirus software can take a long time to scan large directories and the numerous files within them. Additionally,
if the antivirus software locks files or directories during a scan, those resources are unavailable to NiFi processes,
causing latency or unavailability of these resources in a NiFi instance/cluster. To prevent these performance and
reliability issues from occurring, it is highly recommended to configure your antivirus software to skip scans on the
following NiFi directories:

• content_repository
• flowfile_repository
• logs
• provenance_repository
• state

Security Configuration

NiFi provides several different configuration options for security purposes. The most important properties are those
under the "security properties" heading in the nifi.properties file. In order to run securely, the following properties
must be set:

Property Name Description

nifi.security.truststorePasswd The password for the Truststore.

nifi.security.keystore Filename of the Keystore that contains the server's private key.

nifi.security.keystoreType The type of Keystore. Must be either PKCS12 or JKS. JKS is the
preferred type, PKCS12 files will be loaded with BouncyCastle
provider.

nifi.security.keystorePasswd The password for the Keystore.

nifi.security.keyPasswd The password for the certificate in the Keystore. If not set, the value of
nifi.security.keystorePasswd will be used.

nifi.security.truststore Filename of the Truststore that will be used to authorize those
connecting to NiFi. A secured instance with no Truststore will refuse
all incoming connections.

nifi.security.truststoreType The type of the Truststore. Must be either PKCS12 or JKS. JKS is
the preferred type, PKCS12 files will be loaded with BouncyCastle
provider.

Once the above properties have been configured, we can enable the User Interface to be accessed over HTTPS instead
of HTTP. This is accomplished by setting the nifi.web.https.host and nifi.web.https.port properties. The nifi.web
.https.host property indicates which hostname the server should run on. If it is desired that the HTTPS interface be

9

User Authentication

accessible from all network interfaces, a value of 0.0.0.0 should be used. To allow admins to configure the application
to run only on specific network interfaces, nifi.web.http.network.interface* or nifi.web.https.network.interface*
properties can be specified.

Note: It is important when enabling HTTPS that the nifi.web.http.port property be unset. NiFi only supports
running on HTTP or HTTPS, not both simultaneously.

NiFi's web server will REQUIRE certificate based client authentication for users accessing the User Interface when
not configured with an alternative authentication mechanism which would require one way SSL (for instance LDAP,
OpenId Connect, etc). Enabling an alternative authentication mechanism will configure the web server to WANT
certificate base client authentication. This will allow it to support users with certificates and those without that may be
logging in with credentials. See User Authentication for more details.

Now that the User Interface has been secured, we can easily secure Site-to-Site connections and inner-cluster
communications, as well. This is accomplished by setting the nifi.remote.input.secure and nifi.cluster.protocol.is.sec
ure properties, respectively, to true. These communications will always REQUIRE two way SSL as the nodes will use
their configured keystore/truststore for authentication.

TLS Generation Toolkit

In order to facilitate the secure setup of NiFi, you can use the tls-toolkit command line utility to automatically
generate the required keystores, truststore, and relevant configuration files. This is especially useful for securing
multiple NiFi nodes, which can be a tedious and error-prone process. For more information, see the Toolkit section in
the NiFi Toolkit Guide. Related topics include:

• Wildcard Certificates
• Operation Modes: Standalone and Client/Server
• Using An Existing Intermediate Certificate Authority
• Additional Certificate Commands

User Authentication

NiFi supports user authentication via client certificates, via username/password, via Apache Knox, or via OpenId
Connect..

Username/password authentication is performed by a 'Login Identity Provider'. The Login Identity Provider is a
pluggable mechanism for authenticating users via their username/password. Which Login Identity Provider to use is
configured in the nifi.properties file. Currently NiFi offers username/password with Login Identity Providers options
for Lightweight Directory Access Protocol (LDAP) and Kerberos.

The nifi.login.identity.provider.configuration.file property specifies the configuration file for Login Identity
Providers. By default, this property is set to ./conf/login-identity-providers.xml.

The nifi.security.user.login.identity.provider property indicates which of the configured Login Identity Provider
should be used. By default, this property is not configured meaning that username/password must be explicitly
enabled.

During OpenId Connect authentication, NiFi will redirect users to login with the Provider before returning to NiFi.
NiFi will then call the Provider to obtain the user identity.

During Apache Knox authentication, NiFi will redirect users to login with Apache Knox before returning to NiFi.
NiFi will verify the Apache Knox token during authentication.

Note: NiFi can only be configured for username/password, OpenId Connect, or Apache Knox at a given
time. It does not support running each of these concurrently. NiFi will require client certificates for
authenticating users over HTTPS if none of these are configured.

10

http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#user_authentication
http://nifi.apache.org/docs/nifi-docs/html/toolkit-guide.html
http://nifi.apache.org/docs/nifi-docs/html/toolkit-guide.html#wildcard_certificates
http://nifi.apache.org/docs/nifi-docs/html/toolkit-guide.html#tls_operation_modes
http://nifi.apache.org/docs/nifi-docs/html/toolkit-guide.html#tls_intermediate_ca
http://nifi.apache.org/docs/nifi-docs/html/toolkit-guide.html#additional_certificate_commands
http://openid.net/connect
http://openid.net/connect
http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#ldap_login_identity_provider
http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#kerberos_login_identity_provider

User Authentication

A secured instance of NiFi cannot be accessed anonymously unless configured to use an LDAP or Kerberos Login
Identity Provider, which in turn must be configured to explicitly allow anonymous access. Anonymous access is
not currently possible by the default FileAuthorizer but is a future effort (https://issues.apache.org/jira/browse/
NIFI-2730).

Note: NiFi does not perform user authentication over HTTP. Using HTTP, all users will be granted all roles.

Lightweight Directory Access Protocol (LDAP)

Below is an example and description of configuring a Login Identity Provider that integrates with a Directory Server
to authenticate users.

Set the following in nifi.properties to enable LDAP username/password authentication:

nifi.security.user.login.identity.provider=ldap-provider

Modify login-identity-providers.xml to enable the ldap-provider. Here is the sample provided in the file:

<provider>
 <identifier>ldap-provider</identifier>
 <class>org.apache.nifi.ldap.LdapProvider</class>
 <property name="Authentication Strategy">START_TLS</property>

 <property name="Manager DN"></property>
 <property name="Manager Password"></property>
 <property name="TLS - Keystore"></property>
 <property name="TLS - Keystore Password"></property>
 <property name="TLS - Keystore Type"></property>
 <property name="TLS - Truststore"></property>
 <property name="TLS - Truststore Password"></property>
 <property name="TLS - Truststore Type"></property>
 <property name="TLS - Client Auth"></property>
 <property name="TLS - Protocol"></property>
 <property name="TLS - Shutdown Gracefully"></property>

 <property name="Referral Strategy">FOLLOW</property>
 <property name="Connect Timeout">10 secs</property>
 <property name="Read Timeout">10 secs</property>
 <property name="Url"></property>
 <property name="User Search Base"></property>
 <property name="User Search Filter"></property>
 <property name="Identity Strategy">USE_DN</property>
 <property name="Authentication Expiration">12 hours</property>
</provider>

The ldap-provider has the following properties:

Property Name Description

Authentication Expiration The duration of how long the user authentication is valid for. If the
user never logs out, they will be required to log back in following this
duration.

Authentication Strategy How the connection to the LDAP server is authenticated. Possible
values are ANONYMOUS, SIMPLE, LDAPS, or START_TLS.

Manager DN The DN of the manager that is used to bind to the LDAP server to
search for users.

11

https://issues.apache.org/jira/browse/NIFI-2730
https://issues.apache.org/jira/browse/NIFI-2730

User Authentication

Property Name Description

Manager Password The password of the manager that is used to bind to the LDAP server to
search for users.

TLS - Keystore Path to the Keystore that is used when connecting to LDAP using
LDAPS or START_TLS.

TLS - Keystore Password Password for the Keystore that is used when connecting to LDAP using
LDAPS or START_TLS.

TLS - Keystore Type Type of the Keystore that is used when connecting to LDAP using
LDAPS or START_TLS (i.e. JKS or PKCS12).

TLS - Truststore Path to the Truststore that is used when connecting to LDAP using
LDAPS or START_TLS.

TLS - Truststore Password Password for the Truststore that is used when connecting to LDAP
using LDAPS or START_TLS.

TLS - Truststore Type Type of the Truststore that is used when connecting to LDAP using
LDAPS or START_TLS (i.e. JKS or PKCS12).

TLS - Client Auth Client authentication policy when connecting to LDAP using LDAPS
or START_TLS. Possible values are REQUIRED, WANT, NONE.

TLS - Protocol Protocol to use when connecting to LDAP using LDAPS or
START_TLS. (i.e. TLS, TLSv1.1, TLSv1.2, etc).

TLS - Shutdown Gracefully Specifies whether the TLS should be shut down gracefully before the
target context is closed. Defaults to false.

Referral Strategy Strategy for handling referrals. Possible values are FOLLOW, IGNO
RE, THROW.

Connect Timeout Duration of connect timeout. (i.e. 10 secs).

Read Timeout Duration of read timeout. (i.e. 10 secs).

Url Space-separated list of URLs of the LDAP servers (i.e. ldap://<host
name>:<port>).

User Search Base Base DN for searching for users (i.e. CN=Users,DC=example,DC=c
om).

User Search Filter Filter for searching for users against the User Search Base. (i.e.
sAMAccountName={0}). The user specified name is inserted into
'{0}'.

Identity Strategy Strategy to identify users. Possible values are USE_DN and USE_
USERNAME. The default functionality if this property is missing is
USE_DN in order to retain backward compatibility. USE_DN will use
the full DN of the user entry if possible. USE_USERNAME will use
the username the user logged in with.

Note: For changes to nifi.properties and login-identity-providers.xml to take effect, NiFi needs to be
restarted. If NiFi is clustered, configuration files must be the same on all nodes.

Kerberos

Below is an example and description of configuring a Login Identity Provider that integrates with a Kerberos Key
Distribution Center (KDC) to authenticate users.

12

User Authentication

Set the following in nifi.properties to enable Kerberos username/password authentication:

nifi.security.user.login.identity.provider=kerberos-provider

Modify login-identity-providers.xml to enable the kerberos-provider. Here is the sample provided in the file:

<provider>
 <identifier>kerberos-provider</identifier>
 <class>org.apache.nifi.kerberos.KerberosProvider</class>
 <property name="Default Realm">NIFI.APACHE.ORG</property>
 <property name="Authentication Expiration">12 hours</property>
</provider>

The kerberos-provider has the following properties:

Property Name Description

Authentication Expiration The duration of how long the user authentication is valid for. If the
user never logs out, they will be required to log back in following this
duration.

Default Realm Default realm to provide when user enters incomplete user principal
(i.e. NIFI.APACHE.ORG).

See also Kerberos Service to allow single sign-on access via client Kerberos tickets.

Note: For changes to nifi.properties and login-identity-providers.xml to take effect, NiFi needs to be
restarted. If NiFi is clustered, configuration files must be the same on all nodes.

OpenId Connect

To enable authentication via OpenId Connect the following properties must be configured in nifi.properties.

Property Name Description

nifi.security.user.oidc.claim.identifying.user Claim that identifies the user to be logged in; default is email. May
need to be requested via the nifi.security.user.oidc.additional.scopes
before usage. by the OpenId Connect Provider according to the
specification. If this value is HS256, HS384, or HS512, NiFi will
attempt to validate HMAC protected tokens using the specified client
secret. If this value is none, NiFi will attempt to validate unsecured/
plain tokens. Other values for this algorithm will attempt to parse as an
RSA or EC algorithm to be used in conjunction with the JSON Web
Key (JWK) provided through the jwks_uri in the metadata found at the
discovery URL.

nifi.security.user.oidc.discovery.url The discovery URL for the desired OpenId Connect Provider (http://
openid.net/specs/openid-connect-discovery-1_0.html).

nifi.security.user.oidc.connect.timeout Connect timeout when communicating with the OpenId Connect
Provider.

nifi.security.user.oidc.read.timeout Read timeout when communicating with the OpenId Connect Provider.

nifi.security.user.oidc.client.id The client id for NiFi after registration with the OpenId Connect
Provider.

nifi.security.user.oidc.client.secret The client secret for NiFi after registration with the OpenId Connect
Provider.

nifi.security.user.oidc.preferred.jwsalgorithm The preferred algorithm for for validating identity tokens. If this value
is blank, it will default to RS256 which is required to be supported

13

http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#kerberos_service
http://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-discovery-1_0.html

Multi-Tenant Authorization

Property Name Description

nifi.security.user.oidc.additional.scopes Comma separated scopes that are sent to OpenId Connect Provider in
addition to openid and email.

Apache Knox

To enable authentication via Apache Knox the following properties must be configured in nifi.properties.

Property Name Description

nifi.security.user.knox.audiences Optional. A comma separate listed of allowed audiences. If set, the
audience in the token must be present in this listing. The audience that
is populated in the token can be configured in Knox.

nifi.security.user.knox.url The URL for the Apache Knox login page.

nifi.security.user.knox.publicKey The path to the Apache Knox public key that will be used to verify the
signatures of the authentication tokens in the HTTP Cookie.

nifi.security.user.knox.cookieName The name of the HTTP Cookie that Apache Knox will generate after
successful login.

Multi-Tenant Authorization

After you have configured NiFi to run securely and with an authentication mechanism, you must configure who
has access to the system, and the level of their access. You can do this using 'multi-tenant authorization'. Multi-
tenant authorization enables multiple groups of users (tenants) to command, control, and observe different parts of
the dataflow, with varying levels of authorization. When an authenticated user attempts to view or modify a NiFi
resource, the system checks whether the user has privileges to perform that action. These privileges are defined by
policies that you can apply system-wide or to individual components.

Authorizer Configuration

An 'authorizer' grants users the privileges to manage users and policies by creating preliminary authorizations at
startup.

Authorizers are configured using two properties in the nifi.properties file:

• The nifi.authorizer.configuration.file property specifies the configuration file where authorizers are defined. By
default, the authorizers.xml file located in the root installation conf directory is selected.

• The nifi.security.user.authorizer property indicates which of the configured authorizers in the authorizers.xml file
to use.

Authorizers.xml Setup

The authorizers.xml file is used to define and configure available authorizers. The default authorizer is
the StandardManagedAuthorizer. The managed authorizer is comprised of a UserGroupProvider and a
AccessPolicyProvider. The users, group, and access policies will be loaded and optionally configured through these
providers. The managed authorizer will make all access decisions based on these provided users, groups, and access
policies.

14

Multi-Tenant Authorization

During startup there is a check to ensure that there are no two users/groups with the same identity/name. This check
is executed regardless of the configured implementation. This is necessary because this is how users/groups are
identified and authorized during access decisions.

FileUserGroupProvider

The default UserGroupProvider is the FileUserGroupProvider, however, you can develop additional
UserGroupProviders as extensions. The FileUserGroupProvider has the following properties:

• Users File - The file where the FileUserGroupProvider stores users and groups. By default, the users.xml in the
conf directory is chosen.

• Legacy Authorized Users File - The full path to an existing authorized-users.xml that will be automatically be
used to load the users and groups into the Users File.

• Initial User Identity - The identity of a users and systems to seed the Users File. The name of each property must
be unique, for example: "Initial User Identity A", "Initial User Identity B", "Initial User Identity C" or "Initial User
Identity 1", "Initial User Identity 2", "Initial User Identity 3"

LdapUserGroupProvider

Another option for the UserGroupProvider is the LdapUserGroupProvider. By default, this option is commented out
but can be configured in lieu of the FileUserGroupProvider. This will sync users and groups from a directory server
and will present them in the NiFi UI in read only form.

The LdapUserGroupProvider has the following properties:

Property Name Description

Group Member Attribute - Referenced User Attribute If blank, the value of the attribute defined in Group Member
 Attribute is expected to be the full dn of the user. If not blank, this
property will define the attribute of the user ldap entry that the value
of the attribute defined in Group Member Attribute is referencing
(i.e. uid). Use of this property requires that User Search Base is also
configured. (i.e. member: cn=User 1,ou=users,o=nifi vs. memberUi
d: user1)

Authentication Strategy How the connection to the LDAP server is authenticated. Possible
values are ANONYMOUS, SIMPLE, LDAPS, or START_TLS.

Manager DN The DN of the manager that is used to bind to the LDAP server to
search for users.

Manager Password The password of the manager that is used to bind to the LDAP server to
search for users.

TLS - Keystore Path to the Keystore that is used when connecting to LDAP using
LDAPS or START_TLS.

TLS - Keystore Password Password for the Keystore that is used when connecting to LDAP using
LDAPS or START_TLS.

TLS - Keystore Type Type of the Keystore that is used when connecting to LDAP using
LDAPS or START_TLS (i.e. JKS or PKCS12).

TLS - Truststore Path to the Truststore that is used when connecting to LDAP using
LDAPS or START_TLS.

TLS - Truststore Password Password for the Truststore that is used when connecting to LDAP
using LDAPS or START_TLS.

TLS - Truststore Type Type of the Truststore that is used when connecting to LDAP using
LDAPS or START_TLS (i.e. JKS or PKCS12).

TLS - Client Auth Client authentication policy when connecting to LDAP using LDAPS
or START_TLS. Possible values are REQUIRED, WANT, NONE.

15

Multi-Tenant Authorization

Property Name Description

TLS - Protocol Protocol to use when connecting to LDAP using LDAPS or
START_TLS. (i.e. TLS, TLSv1.1, TLSv1.2, etc).

TLS - Shutdown Gracefully Specifies whether the TLS should be shut down gracefully before the
target context is closed. Defaults to false.

Referral Strategy Strategy for handling referrals. Possible values are FOLLOW, IGNO
RE, THROW.

Connect Timeout Duration of connect timeout. (i.e. 10 secs).

Read Timeout Duration of read timeout. (i.e. 10 secs).

Url Space-separated list of URLs of the LDAP servers (i.e. ldap://<host
name>:<port>).

Page Size Sets the page size when retrieving users and groups. If not specified, no
paging is performed.

Group Membership - Enforce Case Sensitivity Sets whether group membership decisions are case sensitive. When
a user or group is inferred (by not specifying or user or group search
base or user identity attribute or group name attribute) case sensitivity
is enforced since the value to use for the user identity or group name
would be ambiguous. Defaults to false.

Sync Interval Duration of time between syncing users and groups. (i.e. 30 mins).
Minimum allowable value is 10 secs.

User Search Base Base DN for searching for users (i.e. ou=users,o=nifi). Required to
search users.

User Object Class Object class for identifying users (i.e. person). Required if searching
users.

User Search Scope Search scope for searching users (ONE_LEVEL, OBJECT, or SUBT
REE). Required if searching users.

User Search Filter Filter for searching for users against the User Search Base (i.e. (mem
berof=cn=team1,ou=groups,o=nifi)). Optional.

User Identity Attribute Attribute to use to extract user identity (i.e. cn). Optional. If not set, the
entire DN is used.

User Group Name Attribute Attribute to use to define group membership (i.e. memberof). Optional.
If not set group membership will not be calculated through the users.
Will rely on group membership being defined through Group Member
 Attribute if set. The value of this property is the name of the attribute
in the user ldap entry that associates them with a group. The value of
that user attribute could be a dn or group name for instance. What value
is expected is configured in the User Group Name Attribute - Refer
enced Group Attribute.

User Group Name Attribute - Referenced Group Attribute If blank, the value of the attribute defined in User Group Name
 Attribute is expected to be the full dn of the group. If not blank,
this property will define the attribute of the group ldap entry that the
value of the attribute defined in User Group Name Attribute is
referencing (i.e. name). Use of this property requires that Group Search
 Base is also configured.

Group Search Base Base DN for searching for groups (i.e. ou=groups,o=nifi). Required to
search groups.

Group Object Class Object class for identifying groups (i.e. groupOfNames). Required if
searching groups.

16

Multi-Tenant Authorization

Property Name Description

Group Search Scope Search scope for searching groups (ONE_LEVEL, OBJECT, or SUBT
REE). Required if searching groups.

Group Search Filter Filter for searching for groups against the Group Search Base.
Optional.

Group Name Attribute Attribute to use to extract group name (i.e. cn). Optional. If not set, the
entire DN is used.

Group Member Attribute Attribute to use to define group membership (i.e. member). Optional.
If not set group membership will not be calculated through the groups.
Will rely on group membership being defined through User Grou
p Name Attribute if set. The value of this property is the name of the
attribute in the group ldap entry that associates them with a user. The
value of that group attribute could be a dn or memberUid for instance.
What value is expected is configured in the Group Member Attribut
e - Referenced User Attribute. (i.e. member: cn=User 1,ou=user
s,o=nifi vs. memberUid: user1)

Note: Any identity mapping rules specified in nifi.properties will also be applied to the user identities. Group
names are not mapped.

ShellUserGroupProvider

The ShellUserGroupProvider fetches user and group details from Unix-like systems using shell commands.

This provider executes various shell pipelines with commands such as getent on Linux and dscl on MacOS.

Supported systems may be configured to retrieve users and groups from an external source, such as LDAP or NIS.
In these cases the shell commands will return those external users and groups. This provides administrators another
mechanism to integrate user and group directory services.

The ShellUserGroupProvider has the following properties:

Property Name Description

Exclude Users Regular expression used to exclude users. Default is '', which means no
users are excluded.

Initial Refresh Delay Duration of initial delay before first user and group refresh. (i.e. 10 s
ecs). Default is 5 mins.

Refresh Delay Duration of delay between each user and group refresh. (i.e. 10 se
cs). Default is 5 mins.

Exclude Groups Regular expression used to exclude groups. Default is '', which means
no groups are excluded.

Like LdapUserGroupProvider, the ShellUserGroupProvider is commented out in the authorizers.xml file. Refer to
that comment for usage examples.

Composite Implementations

Another option for the UserGroupProvider are composite implementations. This means that multiple sources/
implementations can be configured and composed. For instance, an admin can configure users/groups to
be loaded from a file and a directory server. There are two composite implementations, one that supports
multiple UserGroupProviders and one that supports multiple UserGroupProviders and a single configurable
UserGroupProvider.

The CompositeUserGroupProvider will provide support for retrieving users and groups from multiple sources. The
CompositeUserGroupProvider has the following property:

17

Multi-Tenant Authorization

Property Name Description

User Group Provider [unique key] The identifier of user group providers to load from. The name of each
property must be unique, for example: "User Group Provider A", "User
Group Provider B", "User Group Provider C" or "User Group Provider
1", "User Group Provider 2", "User Group Provider 3"

Note: Any identity mapping rules specified in nifi.properties are not applied in this implementation. This
behavior would need to be applied by the base implementation.

The CompositeConfigurableUserGroupProvider will provide support for retrieving users and groups from multiple
sources. Additionally, a single configurable user group provider is required. Users from the configurable user group
provider are configurable, however users loaded from one of the User Group Provider [unique key] will not be. The
CompositeConfigurableUserGroupProvider has the following properties:

Property Name Description

User Group Provider [unique key] The identifier of user group providers to load from. The name of each
property must be unique, for example: "User Group Provider A", "User
Group Provider B", "User Group Provider C" or "User Group Provider
1", "User Group Provider 2", "User Group Provider 3"

Configurable User Group Provider A configurable user group provider.

FileAccessPolicyProvider

The default AccessPolicyProvider is the FileAccessPolicyProvider, however, you can develop additional
AccessPolicyProvider as extensions. The FileAccessPolicyProvider has the following properties:

Property Name Description

Node Group The name of a group containing NiFi cluster nodes. The typical use for
this is when nodes are dynamically added/removed from the cluster.

User Group Provider The identifier for an User Group Provider defined above that will be
used to access users and groups for use in the managed access policies.

Authorizations File The file where the FileAccessPolicyProvider will store policies.

Initial Admin Identity The identity of an initial admin user that will be granted access to the
UI and given the ability to create additional users, groups, and policies.
The value of this property could be a DN when using certificates or
LDAP, or a Kerberos principal. This property will only be used when
there are no other policies defined. If this property is specified then a
Legacy Authorized Users File can not be specified.

Legacy Authorized Users File The full path to an existing authorized-users.xml that will be
automatically converted to the new authorizations model. If this
property is specified then an Initial Admin Identity can not be
specified, and this property will only be used when there are no other
users, groups, and policies defined.

Node Identity The identity of a NiFi cluster node. When clustered, a property for each
node should be defined, so that every node knows about every other
node. If not clustered these properties can be ignored. The name of
each property must be unique, for example for a three node cluster:
"Node Identity A", "Node Identity B", "Node Identity C" or "Node
Identity 1", "Node Identity 2", "Node Identity 3"

Note: The identities configured in the Initial Admin Identity, the Node Identity properties, or discovered in a
Legacy Authorized Users File must be available in the configured User Group Provider.

18

Multi-Tenant Authorization

Note: Any users in the legacy users file must be found in the configured User Group Provider.

Note: Any identity mapping rules specified in nifi.properties will also be applied to the node identities, so the
values should be the unmapped identities (i.e. full DN from a certificate). This identity must be found in the
configured User Group Provider.

StandardManagedAuthorizer

The default authorizer is the StandardManagedAuthorizer, however, you can develop additional authorizers as
extensions. The StandardManagedAuthorizer has the following property:

Property Name Description

Access Policy Provider The identifier for an Access Policy Provider defined above.

FileAuthorizer

The FileAuthorizer has been replaced with the more granular StandardManagedAuthorizer approach described above.
However, it is still available for backwards compatibility reasons. The FileAuthorizer has the following properties:

Property Name Description

Node Identity The identity of a NiFi cluster node. When clustered, a property for each
node should be defined, so that every node knows about every other
node. If not clustered, these properties can be ignored.

Authorizations File The file where the FileAuthorizer stores policies. By default, the
authorizations.xml in the conf directory is chosen.

Users File The file where the FileAuthorizer stores users and groups. By default,
the users.xml in the conf directory is chosen.

Initial Admin Identity The identity of an initial admin user that is granted access to the UI
and given the ability to create additional users, groups, and policies.
This property is only used when there are no other users, groups, and
policies defined.

Legacy Authorized Users File The full path to an existing authorized-users.xml that is automatically
converted to the multi-tenant authorization model. This property is only
used when there are no other users, groups, and policies defined.

Note: Any identity mapping rules specified in nifi.properties will also be applied to the initial admin identity,
so the value should be the unmapped identity.

Note: Any identity mapping rules specified in nifi.properties will also be applied to the node identities, so the
values should be the unmapped identities (i.e. full DN from a certificate).

Initial Admin Identity (New NiFi Instance)

If you are setting up a secured NiFi instance for the first time, you must manually designate an "Initial Admin
Identity" in the authorizers.xml file. This initial admin user is granted access to the UI and given the ability to create
additional users, groups, and policies. The value of this property could be a DN (when using certificates or LDAP) or
a Kerberos principal. If you are the NiFi administrator, add yourself as the "Initial Admin Identity".

After you have edited and saved the authorizers.xml file, restart NiFi. The "Initial Admin Identity" user and
administrative policies are added to the users.xml and authorizations.xml files during restart. Once NiFi starts, the
"Initial Admin Identity" user is able to access the UI and begin managing users, groups, and policies.

19

Multi-Tenant Authorization

Note: For a brand new secure flow, providing the "Initial Admin Identity" gives that user access to get into
the UI and to manage users, groups and policies. But if that user wants to start modifying the flow, they need
to grant themselves policies for the root process group. The system is unable to do this automatically because
in a new flow the UUID of the root process group is not permanent until the flow.xml.gz is generated. If the
NiFi instance is an upgrade from an existing flow.xml.gz or a 1.x instance going from unsecure to secure,
then the "Initial Admin Identity" user is automatically given the privileges to modify the flow.

Some common use cases are described below.

File-based (LDAP Authentication)

Here is an example LDAP entry using the name John Smith:

<authorizers>
 <userGroupProvider>
 <identifier>file-user-group-provider</identifier>
 <class>org.apache.nifi.authorization.FileUserGroupProvider</class>
 <property name="Users File">./conf/users.xml</property>
 <property name="Legacy Authorized Users File"></property>

 <property name="Initial User Identity 1">cn=John Smith,ou=people,d
c=example,dc=com</property>
 </userGroupProvider>
 <accessPolicyProvider>
 <identifier>file-access-policy-provider</identifier>
 <class>org.apache.nifi.authorization.FileAccessPolicyProvider</clas
s>
 <property name="User Group Provider">file-user-group-provider</pr
operty>
 <property name="Authorizations File">./conf/authorizations.xml</prop
erty>
 <property name="Initial Admin Identity">cn=John Smith,ou=people,dc
=example,dc=com</property>
 <property name="Legacy Authorized Users File"></property>

 <property name="Node Identity 1"></property>
 </accessPolicyProvider>
 <authorizer>
 <identifier>managed-authorizer</identifier>
 <class>org.apache.nifi.authorization.StandardManagedAuthorizer</clas
s>
 <property name="Access Policy Provider">file-access-policy-provid
er</property>
 </authorizer>
</authorizers>

File-based (Kerberos Authentication)

Here is an example Kerberos entry using the name John Smith and realm NIFI.APACHE.ORG:

<authorizers>
 <userGroupProvider>
 <identifier>file-user-group-provider</identifier>
 <class>org.apache.nifi.authorization.FileUserGroupProvider</class>
 <property name="Users File">./conf/users.xml</property>
 <property name="Legacy Authorized Users File"></property>

 <property name="Initial User Identity 1">johnsmith@NIFI.APACHE.ORG</
property>
 </userGroupProvider>
 <accessPolicyProvider>
 <identifier>file-access-policy-provider</identifier>

20

Multi-Tenant Authorization

 <class>org.apache.nifi.authorization.FileAccessPolicyProvider</clas
s>
 <property name="User Group Provider">file-user-group-provider</pr
operty>
 <property name="Authorizations File">./conf/authorizations.xml</prop
erty>
 <property name="Initial Admin Identity">johnsmith@NIFI.APACHE.ORG</
property>
 <property name="Legacy Authorized Users File"></property>

 <property name="Node Identity 1"></property>
 </accessPolicyProvider>
 <authorizer>
 <identifier>managed-authorizer</identifier>
 <class>org.apache.nifi.authorization.StandardManagedAuthorizer</clas
s>
 <property name="Access Policy Provider">file-access-policy-provid
er</property>
 </authorizer>
</authorizers>

LDAP-based Users/Groups Referencing User DN

Here is an example loading users and groups from LDAP. Group membership will be driven through the member
attribute of each group. Authorization will still use file-based access policies:

dn: cn=User 1,ou=users,o=nifi
objectClass: organizationalPerson
objectClass: person
objectClass: inetOrgPerson
objectClass: top
cn: User 1
sn: User1
uid: user1
dn: cn=User 2,ou=users,o=nifi
objectClass: organizationalPerson
objectClass: person
objectClass: inetOrgPerson
objectClass: top
cn: User 2
sn: User2
uid: user2

dn: cn=admins,ou=groups,o=nifi
objectClass: groupOfNames
objectClass: top
cn: admins
member: cn=User 1,ou=users,o=nifi
member: cn=User 2,ou=users,o=nifi

<authorizers>
 <userGroupProvider>
 <identifier>ldap-user-group-provider</identifier>
 <class>org.apache.nifi.ldap.tenants.LdapUserGroupProvider</class>
 <property name="Authentication Strategy">ANONYMOUS</property>
 <property name="Manager DN"></property>
 <property name="Manager Password"></property>

 <property name="TLS - Keystore"></property>
 <property name="TLS - Keystore Password"></property>
 <property name="TLS - Keystore Type"></property>
 <property name="TLS - Truststore"></property>
 <property name="TLS - Truststore Password"></property>

21

Multi-Tenant Authorization

 <property name="TLS - Truststore Type"></property>
 <property name="TLS - Client Auth"></property>
 <property name="TLS - Protocol"></property>
 <property name="TLS - Shutdown Gracefully"></property>
 <property name="Referral Strategy">FOLLOW</property>
 <property name="Connect Timeout">10 secs</property>
 <property name="Read Timeout">10 secs</property>

 <property name="Url">ldap://localhost:10389</property>
 <property name="Page Size"></property>
 <property name="Sync Interval">30 mins</property>
 <property name="Group Membership - Enforce Case Sensitivity">false</
property>

 <property name="User Search Base">ou=users,o=nifi</property>
 <property name="User Object Class">person</property>
 <property name="User Search Scope">ONE_LEVEL</property>
 <property name="User Search Filter"></property>
 <property name="User Identity Attribute">cn</property>
 <property name="User Group Name Attribute"></property>
 <property name="User Group Name Attribute - Referenced Group Attr
ibute"></property>

 <property name="Group Search Base">ou=groups,o=nifi</property>
 <property name="Group Object Class">groupOfNames</property>
 <property name="Group Search Scope">ONE_LEVEL</property>
 <property name="Group Search Filter"></property>
 <property name="Group Name Attribute">cn</property>
 <property name="Group Member Attribute">member</property>
 <property name="Group Member Attribute - Referenced User Attribut
e"></property>
 </userGroupProvider>
 <accessPolicyProvider>
 <identifier>file-access-policy-provider</identifier>
 <class>org.apache.nifi.authorization.FileAccessPolicyProvider</class
>
 <property name="User Group Provider">ldap-user-group-provider</pro
perty>
 <property name="Authorizations File">./conf/authorizations.xml</p
roperty>
 <property name="Initial Admin Identity">John Smith</property>
 <property name="Legacy Authorized Users File"></property>

 <property name="Node Identity 1"></property>
 </accessPolicyProvider>
 <authorizer>
 <identifier>managed-authorizer</identifier>
 <class>org.apache.nifi.authorization.StandardManagedAuthorizer</clas
s>
 <property name="Access Policy Provider">file-access-policy-provid
er</property>
 </authorizer>
</authorizers>

The Initial Admin Identity value would have loaded from the cn from John Smith's entry based on the User Identity
Attribute value.

LDAP-based Users/Groups Referencing User Attribute

Here is an example loading users and groups from LDAP. Group membership will be driven through the member uid
attribute of each group. Authorization will still use file-based access policies:

dn: uid=User 1,ou=Users,dc=local

22

Multi-Tenant Authorization

objectClass: inetOrgPerson
objectClass: posixAccount
objectClass: shadowAccount
uid: user1
cn: User 1

dn: uid=User 2,ou=Users,dc=local
objectClass: inetOrgPerson
objectClass: posixAccount
objectClass: shadowAccount
uid: user2
cn: User 2

dn: cn=Managers,ou=Groups,dc=local
objectClass: posixGroup
cn: Managers
memberUid: user1
memberUid: user2

<authorizers>
 <userGroupProvider>
 <identifier>ldap-user-group-provider</identifier>
 <class>org.apache.nifi.ldap.tenants.LdapUserGroupProvider</class>
 <property name="Authentication Strategy">ANONYMOUS</property>

 <property name="Manager DN"></property>
 <property name="Manager Password"></property>

 <property name="TLS - Keystore"></property>
 <property name="TLS - Keystore Password"></property>
 <property name="TLS - Keystore Type"></property>
 <property name="TLS - Truststore"></property>
 <property name="TLS - Truststore Password"></property>
 <property name="TLS - Truststore Type"></property>
 <property name="TLS - Client Auth"></property>
 <property name="TLS - Protocol"></property>
 <property name="TLS - Shutdown Gracefully"></property>

 <property name="Referral Strategy">FOLLOW</property>
 <property name="Connect Timeout">10 secs</property>
 <property name="Read Timeout">10 secs</property>

 <property name="Url">ldap://localhost:10389</property>
 <property name="Page Size"></property>
 <property name="Sync Interval">30 mins</property>
 <property name="Group Membership - Enforce Case Sensitivity">false</
property>

 <property name="User Search Base">ou=Users,dc=local</property>
 <property name="User Object Class">posixAccount</property>
 <property name="User Search Scope">ONE_LEVEL</property>
 <property name="User Search Filter"></property>
 <property name="User Identity Attribute">cn</property>
 <property name="User Group Name Attribute"></property>
 <property name="User Group Name Attribute - Referenced Group Attri
bute"></property>

 <property name="Group Search Base">ou=Groups,dc=local</property>
 <property name="Group Object Class">posixGroup</property>
 <property name="Group Search Scope">ONE_LEVEL</property>
 <property name="Group Search Filter"></property>
 <property name="Group Name Attribute">cn</property>
 <property name="Group Member Attribute">memberUid</property>

23

Multi-Tenant Authorization

 <property name="Group Member Attribute - Referenced User Attribute"
>uid</property>
 </userGroupProvider>
 <accessPolicyProvider>
 <identifier>file-access-policy-provider</identifier>
 <class>org.apache.nifi.authorization.FileAccessPolicyProvider</clas
s>
 <property name="User Group Provider">ldap-user-group-provider</pr
operty>
 <property name="Authorizations File">./conf/authorizations.xml</prop
erty>
 <property name="Initial Admin Identity">John Smith</property>
 <property name="Legacy Authorized Users File"></property>

 <property name="Node Identity 1"></property>
 </accessPolicyProvider>
 <authorizer>
 <identifier>managed-authorizer</identifier>
 <class>org.apache.nifi.authorization.StandardManagedAuthorizer</cla
ss>
 <property name="Access Policy Provider">file-access-policy-provider<
/property>
 </authorizer>
</authorizers>

Composite - File and LDAP-based Users/Groups

Here is an example composite implementation loading users and groups from LDAP and a local file. Group
membership will be driven through the member attribute of each group. The users from LDAP will be read only while
the users loaded from the file will be configurable in UI.

dn: cn=User 1,ou=users,o=nifi
objectClass: organizationalPerson
objectClass: person
objectClass: inetOrgPerson
objectClass: top
cn: User 1
sn: User1
uid: user1
dn: cn=User 2,ou=users,o=nifi
objectClass: organizationalPerson
objectClass: person
objectClass: inetOrgPerson
objectClass: top
cn: User 2
sn: User2
uid: user2

dn: cn=admins,ou=groups,o=nifi
objectClass: groupOfNames
objectClass: top
cn: admins
member: cn=User 1,ou=users,o=nifi
member: cn=User 2,ou=users,o=nifi

<authorizers>
 <userGroupProvider>
 <identifier>file-user-group-provider</identifier>
 <class>org.apache.nifi.authorization.FileUserGroupProvider</class>
 <property name="Users File">./conf/users.xml</property>
 <property name="Legacy Authorized Users File"></property>

24

Multi-Tenant Authorization

 <property name="Initial User Identity 1">cn=nifi-node1,ou=servers,
dc=example,dc=com</property>
 <property name="Initial User Identity 2">cn=nifi-node2,ou=servers,d
c=example,dc=com</property>
 </userGroupProvider>
 <userGroupProvider>
 <identifier>ldap-user-group-provider</identifier>
 <class>org.apache.nifi.ldap.tenants.LdapUserGroupProvider</class>
 <property name="Authentication Strategy">ANONYMOUS</property>

 <property name="Manager DN"></property>
 <property name="Manager Password"></property>

 <property name="TLS - Keystore"></property>
 <property name="TLS - Keystore Password"></property>
 <property name="TLS - Keystore Type"></property>
 <property name="TLS - Truststore"></property>
 <property name="TLS - Truststore Password"></property>
 <property name="TLS - Truststore Type"></property>
 <property name="TLS - Client Auth"></property>
 <property name="TLS - Protocol"></property>
 <property name="TLS - Shutdown Gracefully"></property>

 <property name="Referral Strategy">FOLLOW</property>
 <property name="Connect Timeout">10 secs</property>
 <property name="Read Timeout">10 secs</property>

 <property name="Url">ldap://localhost:10389</property>
 <property name="Page Size"></property>
 <property name="Sync Interval">30 mins</property>
 <property name="Group Membership - Enforce Case Sensitivity">false</
property>

 <property name="User Search Base">ou=users,o=nifi</property>
 <property name="User Object Class">person</property>
 <property name="User Search Scope">ONE_LEVEL</property>
 <property name="User Search Filter"></property>
 <property name="User Identity Attribute">cn</property>
 <property name="User Group Name Attribute"></property>
 <property name="User Group Name Attribute - Referenced Group Attri
bute"></property>

 <property name="Group Search Base">ou=groups,o=nifi</property>
 <property name="Group Object Class">groupOfNames</property>
 <property name="Group Search Scope">ONE_LEVEL</property>
 <property name="Group Search Filter"></property>
 <property name="Group Name Attribute">cn</property>
 <property name="Group Member Attribute">member</property>
 <property name="Group Member Attribute - Referenced User Attribute
"></property>
 </userGroupProvider>
 <userGroupProvider>
 <identifier>composite-user-group-provider</identifier>
 <class>org.apache.nifi.authorization.CompositeConfigurableUserGrou
pProvider</class>
 <property name="Configurable User Group Provider">file-user-group-
provider</property>
 <property name="User Group Provider 1">ldap-user-group-provider</pro
perty>
 </userGroupProvider>
 <accessPolicyProvider>
 <identifier>file-access-policy-provider</identifier>
 <class>org.apache.nifi.authorization.FileAccessPolicyProvider</class
>

25

Multi-Tenant Authorization

 <property name="User Group Provider">composite-user-group-provider</
property>
 <property name="Authorizations File">./conf/authorizations.xml</prop
erty>
 <property name="Initial Admin Identity">John Smith</property>
 <property name="Legacy Authorized Users File"></property>

 <property name="Node Identity 1">cn=nifi-node1,ou=servers,dc=exam
ple,dc=com</property>
 <property name="Node Identity 2">cn=nifi-node2,ou=servers,dc=examp
le,dc=com</property>
 </accessPolicyProvider>
 <authorizer>
 <identifier>managed-authorizer</identifier>
 <class>org.apache.nifi.authorization.StandardManagedAuthorizer</cl
ass>
 <property name="Access Policy Provider">file-access-policy-provider
</property>
 </authorizer>
</authorizers>

In this example, the users and groups are loaded from LDAP but the servers are managed in a local file. The Initial
Admin Identity value came from an attribute in a LDAP entry based on the User Identity Attribute. The Node Identity
values are established in the local file using the Initial User Identity properties.

Legacy Authorized Users (NiFi Instance Upgrade)

If you are upgrading from a 0.x NiFi instance, you can convert your previously configured users and roles to the
multi-tenant authorization model. In the authorizers.xml file, specify the location of your existing authorized-
users.xml file in the Legacy Authorized Users File property.

Here is an example entry:

<authorizers>
 <userGroupProvider>
 <identifier>file-user-group-provider</identifier>
 <class>org.apache.nifi.authorization.FileUserGroupProvider</class>
 <property name="Users File">./conf/users.xml</property>
 <property name="Legacy Authorized Users File">/Users/johnsmith/co
nfig_files/authorized-users.xml</property>

 <property name="Initial User Identity 1"></property>
 </userGroupProvider>
 <accessPolicyProvider>
 <identifier>file-access-policy-provider</identifier>
 <class>org.apache.nifi.authorization.FileAccessPolicyProvider</cla
ss>
 <property name="User Group Provider">file-user-group-provider</prope
rty>
 <property name="Authorizations File">./conf/authorizations.xml</pro
perty>
 <property name="Initial Admin Identity"></property>
 <property name="Legacy Authorized Users File">/Users/johnsmith/co
nfig_files/authorized-users.xml</property>

 <property name="Node Identity 1"></property>
 </accessPolicyProvider>
 <authorizer>
 <identifier>managed-authorizer</identifier>
 <class>org.apache.nifi.authorization.StandardManagedAuthorizer</cl
ass>
 <property name="Access Policy Provider">file-access-policy-provider
</property>

26

Multi-Tenant Authorization

 </authorizer>
</authorizers>

After you have edited and saved the authorizers.xml file, restart NiFi. Users and roles from the authorized-users.xml
file are converted and added as identities and policies in the users.xml and authorizations.xml files. Once the
application starts, users who previously had a legacy Administrator role can access the UI and begin managing users,
groups, and policies.

The following tables summarize the global and component policies assigned to each legacy role if the NiFi instance
has an existing flow.xml.gz:

Global Access Policies

Admin DFM Monitor Provenance NiFi Proxy

view the UI * * *

access the
controller - view

* * * *

access the
controller -
modify

*

access parameter
contexts - view

access parameter
contexts - modify

query provenance *

access restricted
components

*

access all policies
- view

*

access all policies
- modify

*

access users/user
groups - view

*

access users/user
groups - modify

*

retrieve site-to-site
details

*

view system
diagnostics

* *

proxy user
requests

*

access counters

Component Access Policies on the Root Process Group

Admin DFM Monitor Provenance NiFi Proxy

view the
component

* * *

27

Multi-Tenant Authorization

Admin DFM Monitor Provenance NiFi Proxy

modify the
component

*

view the data * * *

modify the data * *

view provenance *

Note: NiFi fails to restart if values exist for both the Initial Admin Identity and Legacy Authorized Users File
properties. You can specify only one of these values to initialize authorizations.

Note: Do not manually edit the authorizations.xml file. Create authorizations only during initial setup and
afterwards using the NiFi UI.

Cluster Node Identities

If you are running NiFi in a clustered environment, you must specify the identities for each node. The authorization
policies required for the nodes to communicate are created during startup.

For example, if you are setting up a 2 node cluster with the following DNs for each node:

cn=nifi-1,ou=people,dc=example,dc=com
cn=nifi-2,ou=people,dc=example,dc=com

<authorizers>
 <userGroupProvider>
 <identifier>file-user-group-provider</identifier>
 <class>org.apache.nifi.authorization.FileUserGroupProvider</class>
 <property name="Users File">./conf/users.xml</property>
 <property name="Legacy Authorized Users File"></property>

 <property name="Initial User Identity 1">johnsmith@NIFI.APACHE.ORG</
property>
 <property name="Initial User Identity 2">cn=nifi-1,ou=people,dc=exam
ple,dc=com</property>
 <property name="Initial User Identity 3">cn=nifi-2,ou=people,dc=ex
ample,dc=com</property>
 </userGroupProvider>
 <accessPolicyProvider>
 <identifier>file-access-policy-provider</identifier>
 <class>org.apache.nifi.authorization.FileAccessPolicyProvider</clas
s>
 <property name="User Group Provider">file-user-group-provider</pr
operty>
 <property name="Authorizations File">./conf/authorizations.xml</prop
erty>
 <property name="Initial Admin Identity">johnsmith@NIFI.APACHE.ORG</
property>
 <property name="Legacy Authorized Users File"></property>

 <property name="Node Identity 1">cn=nifi-1,ou=people,dc=example,dc
=com</property>
 <property name="Node Identity 2">cn=nifi-2,ou=people,dc=example,dc=c
om</property>
 </accessPolicyProvider>
 <authorizer>
 <identifier>managed-authorizer</identifier>

28

Multi-Tenant Authorization

 <class>org.apache.nifi.authorization.StandardManagedAuthorizer</c
lass>
 <property name="Access Policy Provider">file-access-policy-provide
r</property>
 </authorizer>
</authorizers>

Note: In a cluster, all nodes must have the same authorizations.xml and users.xml. The only exception is if
a node has empty authorizations.xml and user.xml files prior to joining the cluster. In this scenario, the node
inherits them from the cluster during startup.

Now that initial authorizations have been created, additional users, groups and authorizations can be created and
managed in the NiFi UI.

Configuring Users & Access Policies

Depending on the capabilities of the configured UserGroupProvider and AccessPolicyProvider the users, groups, and
policies will be configurable in the UI. If the extensions are not configurable the users, groups, and policies will read-
only in the UI. If the configured authorizer does not use UserGroupProvider and AccessPolicyProvider the users and
policies may or may not be visible and configurable in the UI based on the underlying implementation.

This section assumes the users, groups, and policies are configurable in the UI and describes:

• How to create users and groups
• How access policies are used to define authorizations
• How to view policies that are set on a user
• How to configure access policies by walking through specific examples

Note: Instructions requiring interaction with the UI assume the application is being accessed by User1, a user
with administrator privileges, such as the "Initial Admin Identity" user or a converted legacy admin user (see
Authorizers.xml Setup).

Creating Users and Groups

From the UI, select "Users" from the Global Menu. This opens a dialog to create and manage users and groups.

29

Multi-Tenant Authorization

Click the Add icon (). To create a user, enter the 'Identity' information relevant to the authentication method
chosen to secure your NiFi instance. Click OK.

30

Multi-Tenant Authorization

To create a group, select the "Group" radio button, enter the name of the group and select the users to be included in
the group. Click OK.

31

Multi-Tenant Authorization

Access Policies

You can manage the ability for users and groups to view or modify NiFi resources using 'access policies'. There are
two types of access policies that can be applied to a resource:

• View - If a view policy is created for a resource, only the users or groups that are added to that policy are able to
see the details of that resource.

• Modify - If a resource has a modify policy, only the users or groups that are added to that policy can change the
configuration of that resource.

You can create and apply access policies on both global and component levels.

Global Access Policies

32

Multi-Tenant Authorization

Global access policies govern the following system level authorizations:

Policy Privilege Global Menu Selection Resource Descriptor

view the UI Allows users to view the UI N/A /flow

access the controller Allows users to view/modify the
controller including Reporting
Tasks, Controller Services,
Parameter Contexts and Nodes in
the Cluster

Controller Settings /controller

access parameter contexts Allows users to view/modify
Parameter Contexts. Access to
Parameter Contexts are inherited
from the "access the controller"
policies unless overridden.

Parameter Contexts /parameter-contexts

query provenance Allows users to submit a
Provenance Search and request
Event Lineage

Data Provenance /provenance

access restricted components Allows users to create/modify
restricted components assuming
other permissions are sufficient.
The restricted components
may indicate which specific
permissions are required.
Permissions can be granted for
specific restrictions or be granted
regardless of restrictions. If
permission is granted regardless
of restrictions, the user can create/
modify all restricted components.

N/A /restricted-components

access all policies Allows users to view/modify the
policies for all components

Policies /policies

access users/user groups Allows users to view/modify the
users and user groups

Users /tenants

retrieve site-to-site details Allows other NiFi instances to
retrieve Site-To-Site details

N/A /site-to-site

view system diagnostics Allows users to view System
Diagnostics

Summary /system

proxy user requests Allows proxy machines to send
requests on the behalf of others

N/A /proxy

access counters Allows users to view/modify
Counters

Counters /counters

Component Level Access Policies

Component level access policies govern the following component level authorizations:

Policy Privilege Resource Descriptor & Action

view the component Allows users to view component configuration
details

resource="/<component-type>/<component-U
UID>" action="R"

modify the component Allows users to modify component
configuration details

resource="/<component-type>/<component-U
UID>" action="W"

33

Multi-Tenant Authorization

Policy Privilege Resource Descriptor & Action

operate the component Allows users to operate components by
changing component run status (start/stop/
enable/disable), remote port transmission
status, or terminating processor threads

resource="/operation/<component-type>/<c
omponent-UUID>" action="W"

view provenance Allows users to view provenance events
generated by this component

resource="/provenance-data/<component-ty
pe>/<component-UUID>" action="R"

view the data Allows users to view metadata and content for
this component in flowfile queues in outbound
connections and through provenance events

resource="/data/<component-type>/<compon
ent-UUID>" action="R"

modify the data Allows users to empty flowfile queues in
outbound connections and submit replays
through provenance events

resource="/data/<component-type>/<compon
ent-UUID>" action="W"

view the policies Allows users to view the list of users who can
view/modify a component

resource="/policies/<component-type>/<co
mponent-UUID>" action="R"

modify the policies Allows users to modify the list of users who
can view/modify a component

resource="/policies/<component-type>/<co
mponent-UUID>" action="W"

receive data via site-to-site Allows a port to receive data from NiFi
instances

resource="/data-transfer/input-ports/<port-U
UID>" action="W"

send data via site-to-site Allows a port to send data from NiFi instances resource="/data-transfer/output-ports/<port-
UUID>" action="W"

Note: You can apply access policies to all component types except connections. Connection authorizations
are inferred by the individual access policies on the source and destination components of the connection, as
well as the access policy of the process group containing the components. This is discussed in more detail in
the Creating a Connection and Editing a Connection examples below.

Note: In order to access List Queue or Delete Queue for a connection, a user requires permission to the "view
the data" and "modify the data" policies on the component. In a clustered environment, all nodes must be be
added to these policies as well, as a user request could be replicated through any node in the cluster.

Access Policy Inheritance

An administrator does not need to manually create policies for every component in the dataflow. To reduce the
amount of time admins spend on authorization management, policies are inherited from parent resource to child
resource. For example, if a user is given access to view and modify a process group, that user can also view and
modify the components in the process group. Policy inheritance enables an administrator to assign policies at one
time and have the policies apply throughout the entire dataflow.

You can override an inherited policy. Overriding a policy removes the inherited policy, breaking the chain of
inheritance from parent to child, and creates a replacement policy to add users as desired. Inherited policies and their
users can be restored by deleting the replacement policy.

Note: "View the policies" and "modify the policies" component-level access policies are an exception to this
inherited behavior. When a user is added to either policy, they are added to the current list of administrators.
 They do not override higher level administrators. For this reason, only component specific administrators
are displayed for the "view the policies" and "modify the policies" access policies.

Note: You cannot modify the users/groups on an inherited policy. Users and groups can only be added or
removed from a parent policy or an override policy.

Access Policy Configuration Examples

34

Multi-Tenant Authorization

The most effective way to understand how to create and apply access policies is to walk through some common
examples. The following scenarios assume User1 is an administrator and User2 is a newly added user that has only
been given access to the UI.

Let's begin with two processors on the canvas as our starting point: GenerateFlowFile and LogAttribute.

35

Multi-Tenant Authorization

User1 can add components to the dataflow and is able to move, edit and connect all processors. The details and
properties of the root process group and processors are visible to User1.

User1 wants to maintain their current privileges to the dataflow and its components.

36

Multi-Tenant Authorization

User2 is unable to add components to the dataflow or move, edit, or connect components. The details and properties
of the root process group and processors are hidden from User2.

Moving a Processor

37

Multi-Tenant Authorization

To allow User2 to move the GenerateFlowFile processor in the dataflow and only that processor, User1 performs the
following steps:

1. Select the GenerateFlowFile processor so that it is highlighted.
2.

Select the Access Policies icon () from the Operate palette and the Access Policies dialog opens.

38

Multi-Tenant Authorization

3. Select "modify the component" from the policy drop-down. The "modify the component" policy that currently
exists on the processor (child) is the "modify the component" policy inherited from the root process group (parent)
on which User1 has privileges.

39

Multi-Tenant Authorization

4. Select the Override link in the policy inheritance message. When creating the replacement policy, you are given
a choice to override with a copy of the inherited policy or an empty policy. Select the Override button to create a
copy.

40

Multi-Tenant Authorization

5.

On the replacement policy that is created, select the Add User icon (). Find or enter User2 in the User
Identity field and select OK. With these changes, User1 maintains the ability to move both processors on the
canvas. User2 can now move the GenerateFlowFile processor but cannot move the LogAttribute processor.

41

Multi-Tenant Authorization

42

Multi-Tenant Authorization

Editing a Processor

In the "Moving a Processor" example above, User2 was added to the "modify the component" policy for
GenerateFlowFile. Without the ability to view the processor properties, User2 is unable to modify the processor's
configuration. In order to edit a component, a user must be on both the "view the component" and "modify the
component" policies. To implement this, User1 performs the following steps:

1. Select the GenerateFlowFile processor.
2.

Select the Access Policies icon () from the Operate palette and the Access Policies dialog opens.

43

Multi-Tenant Authorization

3. Select "view the component" from the policy drop-down. The view the component" policy that currently exists on
the processor (child) is the "view the component" policy inherited from the root process group (parent) on which
User1 has privileges.

4. Select the Override link in the policy inheritance message, keep the default of Copy policy and select the Override
button.

44

Multi-Tenant Authorization

5.

On the override policy that is created, select the Add User icon (). Find or enter User2 in the User Identity
field and select OK. With these changes, User1 maintains the ability to view and edit the processors on the canvas.
User2 can now view and edit the GenerateFlowFile processor.

45

Multi-Tenant Authorization

46

Multi-Tenant Authorization

Creating a Connection

With the access policies configured as discussed in the previous two examples, User1 is able to connect
GenerateFlowFile to LogAttribute:

User2 cannot make the connection:

47

Multi-Tenant Authorization

This is because:

• User2 does not have modify access on the process group.
• Even though User2 has view and modify access to the source component (GenerateFlowFile), User2 does not

have an access policy on the destination component (LogAttribute).

48

Multi-Tenant Authorization

To allow User2 to connect GenerateFlowFile to LogAttribute, as User1:

1. Select the root process group. The Operate palette is updated with details for the root process group.
2.

Select the Access Policies icon () from the Operate palette and the Access Policies dialog opens.

49

Multi-Tenant Authorization

3. Select "modify the component" from the policy drop-down.

4.

Select the Add User icon (). Find or enter User2 and select OK.

50

Multi-Tenant Authorization

By adding User2 to the "modify the component" policy on the process group, User2 is added to the "modify the
component" policy on the LogAttribute processor by policy inheritance. To confirm this, highlight the LogAttribute

processor and select the Access Policies icon () from the Operate palette:

51

Multi-Tenant Authorization

With these changes, User2 can now connect the GenerateFlowFile processor to the LogAttribute processor.

52

Multi-Tenant Authorization

53

Multi-Tenant Authorization

Editing a Connection

Assume User1 or User2 adds a ReplaceText processor to the root process group:

54

Multi-Tenant Authorization

User1 can select and change the existing connection (between GenerateFlowFile to LogAttribute) to now connect
GenerateFlowFile to ReplaceText:

55

Multi-Tenant Authorization

User 2 is unable to perform this action.

56

Multi-Tenant Authorization

To allow User2 to connect GenerateFlowFile to ReplaceText, as User1:

1. Select the root process group. The Operate palette is updated with details for the root process group.
2.

Select the Access Policies icon ().

57

Multi-Tenant Authorization

3. Select "view the component" from the policy drop-down.

4.

Select the Add User icon (). Find or enter User2 and select OK.

58

Multi-Tenant Authorization

Being added to both the view and modify policies for the process group, User2 can now connect the
GenerateFlowFile processor to the ReplaceText processor.

59

Encryption Configuration

Encryption Configuration

This section provides an overview of the capabilities of NiFi to encrypt and decrypt data.

60

Encryption Configuration

The EncryptContent processor allows for the encryption and decryption of data, both internal to NiFi and integrated
with external systems, such as openssl and other data sources and consumers.

Key Derivation Functions

Key Derivation Functions (KDF) are mechanisms by which human-readable information, usually a password or other
secret information, is translated into a cryptographic key suitable for data protection. For further information, read
the Wikipedia entry on Key Derivation Functions. Currently, KDFs are ingested by CipherProvider implementations
and return a fully-initialized Cipher object to be used for encryption or decryption. Due to the use of a CipherProvid
erFactory, the KDFs are not customizable at this time. Future enhancements will include the ability to provide custom
cost parameters to the KDF at initialization time. As a work-around, CipherProvider instances can be initialized with
custom cost parameters in the constructor but this is not currently supported by the CipherProviderFactory. Here are
the KDFs currently supported by NiFi (primarily in the EncryptContent processor for password-based encryption
(PBE)) and relevant notes:

• NiFi Legacy KDF

• The original KDF used by NiFi for internal key derivation for PBE, this is 1000 iterations of the MD5 digest
over the concatenation of the password and 8 or 16 bytes of random salt (the salt length depends on the
selected cipher block size).

• This KDF is deprecated as of NiFi 0.5.0 and should only be used for backwards compatibility to decrypt data
that was previously encrypted by a legacy version of NiFi.

• OpenSSL PKCS#5 v1.5 EVP_BytesToKey

• This KDF was added in v0.4.0.
• This KDF is provided for compatibility with data encrypted using OpenSSL's default PBE, known as EVP_

BytesToKey. This is a single iteration of MD5 over the concatenation of the password and 8 bytes of random
ASCII salt. OpenSSL recommends using PBKDF2 for key derivation but does not expose the library method
necessary to the command-line tool, so this KDF is still the de facto default for command-line encryption.

• Bcrypt

• This KDF was added in v0.5.0.
• https://en.wikipedia.org/wiki/Bcrypt is an adaptive function based on the https://en.wikipedia.org/wiki/

Blowfish_(cipher) cipher. This KDF is strongly recommended as it automatically incorporates a random 16
byte salt, configurable cost parameter (or "work factor"), and is hardened against brute-force attacks using
https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units (which share
memory between cores) by requiring access to "large" blocks of memory during the key derivation. It is less
resistant to https://en.wikipedia.org/wiki/Field-programmable_gate_array brute-force attacks where the gate
arrays have access to individual embedded RAM blocks.

• Because the length of a Bcrypt-derived key is always 184 bits, the complete output is then fed to a SHA-
512 digest and truncated to the desired key length. This provides the benefit of the avalanche effect on the
formatted input.

• The recommended minimum work factor is 12 (212 key derivation rounds) (as of 2/1/2016 on commodity
hardware) and should be increased to the threshold at which legitimate systems will encounter detrimental
delays (see schedule below or use BcryptCipherProviderGroovyTest#testDefaultConstructorShouldProvideSt
rongWorkFactor() to calculate safe minimums).

• The salt format is $2a$10$ABCDEFGHIJKLMNOPQRSTUV. The salt is delimited by $ and the three
sections are as follows:

• 2a - the version of the format. An extensive explanation can be found http://blog.ircmaxell.com/2012/12/
seven-ways-to-screw-up-bcrypt.html. NiFi currently uses 2a for all salts generated internally.

• 10 - the work factor. This is actually the log2 value, so the total iteration count would be 210 in this case.
• ABCDEFGHIJKLMNOPQRSTUV - the 22 character, Base64-encoded, unpadded, raw salt value. This

decodes to a 16 byte salt used in the key derivation.

61

https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Bcrypt
https://en.wikipedia.org/wiki/Blowfish_(cipher)
https://en.wikipedia.org/wiki/Blowfish_(cipher)
https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
https://en.wikipedia.org/wiki/Field-programmable_gate_array
http://blog.ircmaxell.com/2012/12/seven-ways-to-screw-up-bcrypt.html
http://blog.ircmaxell.com/2012/12/seven-ways-to-screw-up-bcrypt.html

Encryption Configuration

• Scrypt

• This KDF was added in v0.5.0.
• https://en.wikipedia.org/wiki/Scrypt is an adaptive function designed in response to bcrypt. This KDF is

recommended as it requires relatively large amounts of memory for each derivation, making it resistant to
hardware brute-force attacks.

• The recommended minimum cost is N=214, r=8, p=1 (as of 2/1/2016 on commodity hardware). p must be
a positive integer and less than (2^32 # 1) * (Hlen/MFlen) where Hlen is the length in octets of the digest
function output (32 for SHA-256) and MFlen is the length in octets of the mixing function output, defined
as r * 128. These parameters should be increased to the threshold at which legitimate systems will encounter
detrimental delays (see schedule below or use ScryptCipherProviderGroovyTest#testDefaultConstructorSho
uldProvideStrongParameters() to calculate safe minimums).

• The salt format is $s0$e0101$ABCDEFGHIJKLMNOPQRSTUV. The salt is delimited by $ and the three
sections are as follows:

• s0 - the version of the format. NiFi currently uses s0 for all salts generated internally.
• e0101 - the cost parameters. This is actually a hexadecimal encoding of N, r, p using shifts. This can be

formed/parsed using Scrypt#encodeParams() and Scrypt#parseParameters().

• Some external libraries encode N, r, and p separately in the form $400$1$1$. A utility method is
available at ScryptCipherProvider#translateSalt() which will convert the external form to the internal
form.

• ABCDEFGHIJKLMNOPQRSTUV - the 12-44 character, Base64-encoded, unpadded, raw salt value. This
decodes to a 8-32 byte salt used in the key derivation.

• PBKDF2

• This KDF was added in v0.5.0.
• https://en.wikipedia.org/wiki/PBKDF2 is an adaptive derivation function which uses an internal pseudorandom

function (PRF) and iterates it many times over a password and salt (at least 16 bytes).
• The PRF is recommended to be HMAC/SHA-256 or HMAC/SHA-512. The use of an HMAC cryptographic

hash function mitigates a length extension attack.
• The recommended minimum number of iterations is 160,000 (as of 2/1/2016 on commodity hardware). This

number should be doubled every two years (see schedule below or use PBKDF2CipherProviderGroovyTest#t
estDefaultConstructorShouldProvideStrongIterationCount() to calculate safe minimums).

• This KDF is not memory-hard (can be parallelized massively with commodity hardware) but is still
recommended as sufficient by https://csrc.nist.gov/publications/detail/sp/800-132/final and many
cryptographers (when used with a proper iteration count and HMAC cryptographic hash function).

• None

• This KDF was added in v0.5.0.
• This KDF performs no operation on the input and is a marker to indicate the raw key is provided to the

cipher. The key must be provided in hexadecimal encoding and be of a valid length for the associated cipher/
algorithm.

Additional Resources

• http://stackoverflow.com/a/30308723/70465
• https://csrc.nist.gov/publications/detail/sp/800-132/final
• https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet#Work_Factor
• http://security.stackexchange.com/a/3993/16485
• http://blog.ircmaxell.com/2014/03/why-i-dont-recommend-scrypt.html
• http://security.stackexchange.com/a/26253/16485
• http://security.stackexchange.com/a/6415/16485
• http://wildlyinaccurate.com/bcrypt-choosing-a-work-factor/
• https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/crypto/bcrypt/

BCrypt.html

62

https://en.wikipedia.org/wiki/Scrypt
https://en.wikipedia.org/wiki/PBKDF2
https://csrc.nist.gov/publications/detail/sp/800-132/final
http://stackoverflow.com/a/30308723/70465
https://csrc.nist.gov/publications/detail/sp/800-132/final
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet#Work_Factor
http://security.stackexchange.com/a/3993/16485
http://blog.ircmaxell.com/2014/03/why-i-dont-recommend-scrypt.html
http://security.stackexchange.com/a/26253/16485
http://security.stackexchange.com/a/6415/16485
http://wildlyinaccurate.com/bcrypt-choosing-a-work-factor/
https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/crypto/bcrypt/BCrypt.html
https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/crypto/bcrypt/BCrypt.html

Encryption Configuration

• http://security.stackexchange.com/a/29139/16485

Salt and IV Encoding

Initially, the EncryptContent processor had a single method of deriving the encryption key from a user-provided
password. This is now referred to as NiFiLegacy mode, effectively MD5 digest, 1000 iterations. In v0.4.0, another
method of deriving the key, OpenSSL PKCS#5 v1.5 EVP_BytesToKey was added for compatibility with content
encrypted outside of NiFi using the openssl command-line tool. Both of these Key Derivation Functions (KDF) had
hard-coded digest functions and iteration counts, and the salt format was also hard-coded. With v0.5.0, additional
KDFs are introduced with variable iteration counts, work factors, and salt formats. In addition, raw keyed encryption
was also introduced. This required the capacity to encode arbitrary salts and Initialization Vectors (IV) into the cipher
stream in order to be recovered by NiFi or a follow-on system to decrypt these messages.

For the existing KDFs, the salt format has not changed.

NiFi Legacy

The first 8 or 16 bytes of the input are the salt. The salt length is determined based on the selected algorithm's cipher
block length. If the cipher block size cannot be determined (such as with a stream cipher like RC4), the default value
of 8 bytes is used. On decryption, the salt is read in and combined with the password to derive the encryption key and
IV.

OpenSSL PKCS#5 v1.5 EVP_BytesToKey

OpenSSL allows for salted or unsalted key derivation. *Unsalted key derivation is a security risk and is not
recommended.* If a salt is present, the first 8 bytes of the input are the ASCII string "Salted__" (0x53 61 6C 74 65
 64 5F 5F) and the next 8 bytes are the ASCII-encoded salt. On decryption, the salt is read in and combined with the
password to derive the encryption key and IV. If there is no salt header, the entire input is considered to be the cipher
text.

63

http://security.stackexchange.com/a/29139/16485
http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#key-derivation-functions

Encryption Configuration

For new KDFs, each of which allow for non-deterministic IVs, the IV must be stored alongside the cipher text. This
is not a vulnerability, as the IV is not required to be secret, but simply to be unique for messages encrypted using the
same key to reduce the success of cryptographic attacks. For these KDFs, the output consists of the salt, followed
by the salt delimiter, UTF-8 string "NiFiSALT" (0x4E 69 46 69 53 41 4C 54) and then the IV, followed by the IV
delimiter, UTF-8 string "NiFiIV" (0x4E 69 46 69 49 56), followed by the cipher text.

Bcrypt, Scrypt, PBKDF2

64

Encryption Configuration

Java Cryptography Extension (JCE) Limited Strength Jurisdiction Policies

Because of US export regulations, default JVMs have http://docs.oracle.com/javase/7/docs/technotes/guides/security/
SunProviders.html#importlimits available to them. For example, AES operations are limited to 128 bit keys by

65

http://docs.oracle.com/javase/7/docs/technotes/guides/security/SunProviders.html#importlimits
http://docs.oracle.com/javase/7/docs/technotes/guides/security/SunProviders.html#importlimits

Encryption Configuration

default. While AES-128 is cryptographically safe, this can have unintended consequences, specifically on Password-
based Encryption (PBE).

PBE is the process of deriving a cryptographic key for encryption or decryption from user-provided secret material,
usually a password. Rather than a human remembering a (random-appearing) 32 or 64 character hexadecimal string, a
password or passphrase is used.

A number of PBE algorithms provided by NiFi impose strict limits on the length of the password due to the
underlying key length checks. Below is a table listing the maximum password length on a JVM with limited
cryptographic strength.

Table 1: Table 1. Maximum Password Length on Limited Cryptographic Strength JVM

Algorithm Max Password Length

PBEWITHMD5AND128BITAES-CBC-OPENSSL 16

PBEWITHMD5AND192BITAES-CBC-OPENSSL 16

PBEWITHMD5AND256BITAES-CBC-OPENSSL 16

PBEWITHMD5ANDDES 16

PBEWITHMD5ANDRC2 16

PBEWITHSHA1ANDRC2 16

PBEWITHSHA1ANDDES 16

PBEWITHSHAAND128BITAES-CBC-BC 7

PBEWITHSHAAND192BITAES-CBC-BC 7

PBEWITHSHAAND256BITAES-CBC-BC 7

PBEWITHSHAAND40BITRC2-CBC 7

PBEWITHSHAAND128BITRC2-CBC 7

PBEWITHSHAAND40BITRC4 7

PBEWITHSHAAND128BITRC4 7

PBEWITHSHA256AND128BITAES-CBC-BC 7

PBEWITHSHA256AND192BITAES-CBC-BC 7

PBEWITHSHA256AND256BITAES-CBC-BC 7

PBEWITHSHAAND2-KEYTRIPLEDES-CBC 7

PBEWITHSHAAND3-KEYTRIPLEDES-CBC 7

PBEWITHSHAANDTWOFISH-CBC 7

Allow Insecure Cryptographic Modes

By default, the Allow Insecure Cryptographic Modes property in EncryptContent processor settings is set to not-
allowed. This means that if a password of fewer than 10 characters is provided, a validation error will occur. 10
characters is a conservative estimate and does not take into consideration full entropy calculations, patterns, etc.

66

Encryption Configuration

On a JVM with limited strength cryptography, some PBE algorithms limit the maximum password length to 7, and in
this case it will not be possible to provide a "safe" password. It is recommended to install the JCE Unlimited Strength
Jurisdiction Policy files for the JVM to mitigate this issue.

• http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

If on a system where the unlimited strength policies cannot be installed, it is recommended to switch to an algorithm
that supports longer passwords (see table above).

67

http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

Encrypted Passwords in Configuration Files

Note: Allowing Weak Crypto

If it is not possible to install the unlimited strength jurisdiction policies, the Allow Weak Crypto setting
can be changed to allowed, but this is not recommended. Changing this setting explicitly acknowledges the
inherent risk in using weak cryptographic configurations.

It is preferable to request upstream/downstream systems to switch to https://cwiki.apache.org/confluence/display/
NIFI/Encryption+Information or use a "strong" https://cwiki.apache.org/confluence/display/NIFI/Key+Derivation
+Function+Explanations.

Encrypted Passwords in Configuration Files

In order to facilitate the secure setup of NiFi, you can use the encrypt-config command line utility to encrypt raw
configuration values that NiFi decrypts in memory on startup. This extensible protection scheme transparently allows
NiFi to use raw values in operation, while protecting them at rest. In the future, hardware security modules (HSM)
and external secure storage mechanisms will be integrated, but for now, an AES encryption provider is the default
implementation.

This is a change in behavior; prior to 1.0, all configuration values were stored in plaintext on the file system. POSIX
file permissions were recommended to limit unauthorized access to these files.

If no administrator action is taken, the configuration values remain unencrypted.

For more information, see the Encrypt-Config Tool section in the NiFi Toolkit Guide.

NiFi Toolkit Administrative Tools

In addition to tls-toolkit and encrypt-config, the NiFi Toolkit also contains command line utilities for administrators
to support NiFi maintenance in standalone and clustered environments. These utilities include:

• CLI - The cli tool enables administrators to interact with NiFi and NiFi Registry instances to automate tasks such
as deploying versioned flows and managing process groups and cluster nodes.

• File Manager - The file-manager tool enables administrators to backup, install or restore a NiFi installation from
backup.

• Flow Analyzer - The flow-analyzer tool produces a report that helps administrators understand the max amount of
data which can be stored in backpressure for a given flow.

• Node Manager - The node-manager tool enables administrators to perform status checks on nodes as well as the
ability to connect, disconnect, or remove nodes from the cluster.

• Notify - The notify tool enables administrators to send bulletins to the NiFi UI.
• S2S - The s2s tool enables administrators to send data into or out of NiFi flows over site-to-site.

For more information about each utility, see the NiFi Toolkit Guide.

Clustering Configuration

This section provides a quick overview of NiFi Clustering and instructions on how to set up a basic cluster. In the
future, we hope to provide supplemental documentation that covers the NiFi Cluster Architecture in depth.

68

https://cwiki.apache.org/confluence/display/NIFI/Encryption+Information
https://cwiki.apache.org/confluence/display/NIFI/Encryption+Information
https://cwiki.apache.org/confluence/display/NIFI/Key+Derivation+Function+Explanations
https://cwiki.apache.org/confluence/display/NIFI/Key+Derivation+Function+Explanations
http://nifi.apache.org/docs/nifi-docs/html/toolkit-guide.html#encrypt_config_tool
http://nifi.apache.org/docs/nifi-docs/html/toolkit-guide.html
http://nifi.apache.org/docs/nifi-docs/html/toolkit-guide.html

Clustering Configuration

Zero-Master Clustering

NiFi employs a Zero-Master Clustering paradigm. Each node in the cluster performs the same tasks on the data,
but each operates on a different set of data. One of the nodes is automatically elected (via Apache ZooKeeper)
as the Cluster Coordinator. All nodes in the cluster will then send heartbeat/status information to this node, and
this node is responsible for disconnecting nodes that do not report any heartbeat status for some amount of time.

69

Clustering Configuration

Additionally, when a new node elects to join the cluster, the new node must first connect to the currently-elected
Cluster Coordinator in order to obtain the most up-to-date flow. If the Cluster Coordinator determines that the node is
allowed to join (based on its configured Firewall file), the current flow is provided to that node, and that node is able
to join the cluster, assuming that the node's copy of the flow matches the copy provided by the Cluster Coordinator.
If the node's version of the flow configuration differs from that of the Cluster Coordinator's, the node will not join the
cluster.

Why Cluster?

NiFi Administrators or DataFlow Managers (DFMs) may find that using one instance of NiFi on a single server is not
enough to process the amount of data they have. So, one solution is to run the same dataflow on multiple NiFi servers.
However, this creates a management problem, because each time DFMs want to change or update the dataflow, they
must make those changes on each server and then monitor each server individually. By clustering the NiFi servers,
it's possible to have that increased processing capability along with a single interface through which to make dataflow
changes and monitor the dataflow. Clustering allows the DFM to make each change only once, and that change is
then replicated to all the nodes of the cluster. Through the single interface, the DFM may also monitor the health and
status of all the nodes.

Terminology

NiFi Clustering is unique and has its own terminology. It's important to understand the following terms before setting
up a cluster:

NiFi Cluster Coordinator: A NiFi Cluster Coordinator is the node in a NiFi cluster that is responsible for carrying
out tasks to manage which nodes are allowed in the cluster and providing the most up-to-date flow to newly joining
nodes. When a DataFlow Manager manages a dataflow in a cluster, they are able to do so through the User Interface
of any node in the cluster. Any change made is then replicated to all nodes in the cluster.

Nodes: Each cluster is made up of one or more nodes. The nodes do the actual data processing.

Primary Node: Every cluster has one Primary Node. On this node, it is possible to run "Isolated Processors" (see
below). ZooKeeper is used to automatically elect a Primary Node. If that node disconnects from the cluster for any
reason, a new Primary Node will automatically be elected. Users can determine which node is currently elected as the
Primary Node by looking at the Cluster Management page of the User Interface.

70

Clustering Configuration

Isolated Processors: In a NiFi cluster, the same dataflow runs on all the nodes. As a result, every component in the
flow runs on every node. However, there may be cases when the DFM would not want every processor to run on
every node. The most common case is when using a processor that communicates with an external service using a
protocol that does not scale well. For example, the GetSFTP processor pulls from a remote directory. If the GetSFTP
Processor runs on every node in the cluster and tries simultaneously to pull from the same remote directory, there
could be race conditions. Therefore, the DFM could configure the GetSFTP on the Primary Node to run in isolation,
meaning that it only runs on that node. With the proper dataflow configuration, it could pull in data and load-balance
it across the rest of the nodes in the cluster. Note that while this feature exists, it is also very common to simply use a
standalone NiFi instance to pull data and feed it to the cluster. It just depends on the resources available and how the
Administrator decides to configure the cluster.

Heartbeats: The nodes communicate their health and status to the currently elected Cluster Coordinator via
"heartbeats", which let the Coordinator know they are still connected to the cluster and working properly. By default,
the nodes emit heartbeats every 5 seconds, and if the Cluster Coordinator does not receive a heartbeat from a node
within 40 seconds, it disconnects the node due to "lack of heartbeat". The 5-second setting is configurable in the
nifi.properties file. The reason that the Cluster Coordinator disconnects the node is because the Coordinator needs
to ensure that every node in the cluster is in sync, and if a node is not heard from regularly, the Coordinator cannot

71

Clustering Configuration

be sure it is still in sync with the rest of the cluster. If, after 40 seconds, the node does send a new heartbeat, the
Coordinator will automatically request that the node re-join the cluster, to include the re-validation of the node's flow.
Both the disconnection due to lack of heartbeat and the reconnection once a heartbeat is received are reported to the
DFM in the User Interface.

Communication within the Cluster

As noted, the nodes communicate with the Cluster Coordinator via heartbeats. When a Cluster Coordinator is elected,
it updates a well-known ZNode in Apache ZooKeeper with its connection information so that nodes understand where
to send heartbeats. If one of the nodes goes down, the other nodes in the cluster will not automatically pick up the
load of the missing node. It is possible for the DFM to configure the dataflow for failover contingencies; however,
this is dependent on the dataflow design and does not happen automatically.

When the DFM makes changes to the dataflow, the node that receives the request to change the flow communicates
those changes to all nodes and waits for each node to respond, indicating that it has made the change on its local flow.

Managing Nodes

Disconnect Nodes

A DFM may manually disconnect a node from the cluster. A node may also become disconnected for other reasons,
such as due to a lack of heartbeat. The Cluster Coordinator will show a bulletin on the User Interface when a node is
disconnected. The DFM will not be able to make any changes to the dataflow until the issue of the disconnected node
is resolved. The DFM or the Administrator will need to troubleshoot the issue with the node and resolve it before
any new changes can be made to the dataflow. However, it is worth noting that just because a node is disconnected
does not mean that it is not working. This may happen for a few reasons, for example when the node is unable to
communicate with the Cluster Coordinator due to network problems.

To manually disconnect a node, select the "Disconnect" icon () from the node's row.

72

Clustering Configuration

A disconnected node can be connected (), offloaded () or deleted ().

Note: Not all nodes in a "Disconnected" state can be offloaded. If the node is disconnected and unreachable,
the offload request can not be received by the node to start the offloading. Additionally, offloading may be
interrupted or prevented due to firewall rules.

Offload Nodes

Flowfiles that remain on a disconnected node can be rebalanced to other active nodes in the cluster via offloading.

In the Cluster Management dialog, select the "Offload" icon () for a Disconnected node. This will stop all
processors, terminate all processors, stop transmitting on all remote process groups and rebalance flowfiles to the
other connected nodes in the cluster.

73

Clustering Configuration

Nodes that remain in "Offloading" state due to errors encountered (out of memory, no network connection, etc.) can
be reconnected to the cluster by restarting NiFi on the node. Offloaded nodes can be either reconnected to the cluster
(by selecting Connect or restarting NiFi on the node) or deleted from the cluster.

74

Clustering Configuration

Delete Nodes

There are cases where a DFM may wish to continue making changes to the flow, even though a node is not connected
to the cluster. In this case, the DFM may elect to delete the node from the cluster entirely. In the Cluster Management

dialog, select the "Delete" icon () for a Disconnected or Offloaded node. Once deleted, the node cannot be
rejoined to the cluster until it has been restarted.

Decommission Nodes

The steps to decommission a node and remove it from a cluster are as follows:

1. Disconnect the node.
2. Once disconnect completes, offload the node.
3. Once offload completes, delete the node.
4. Once the delete request has finished, stop/remove the NiFi service on the host.

75

Clustering Configuration

NiFi CLI Node Commands

As an alternative to the UI, the following NiFi CLI commands can be used for retrieving a single node, retrieving a
list of nodes, and connecting/disconnecting/offloading/deleting nodes:

• nifi get-node
• nifi get-nodes
• nifi connect-node
• nifi disconnect-node
• nifi offload-node
• nifi delete-node

For more information, see the NiFi CLI section in the NiFi Toolkit Guide.

Flow Election

When a cluster first starts up, NiFi must determine which of the nodes have the "correct" version of the flow. This
is done by voting on the flows that each of the nodes has. When a node attempts to connect to a cluster, it provides a
copy of its local flow to the Cluster Coordinator. If no flow has yet been elected the "correct" flow, the node's flow is
compared to each of the other Nodes' flows. If another Node's flow matches this one, a vote is cast for this flow. If no
other Node has reported the same flow yet, this flow will be added to the pool of possibly elected flows with one vote.
After some amount of time has elapsed (configured by setting the nifi.cluster.flow.election.max.wait.time property) or
some number of Nodes have cast votes (configured by setting the nifi.cluster.flow.election.max.candidates property),
a flow is elected to be the "correct" copy of the flow. All nodes that have incompatible flows are then disconnected
from the cluster while those with compatible flows inherit the cluster's flow. Election is performed according to the
"popular vote" with the caveat that the winner will never be an "empty flow" unless all flows are empty. This allows
an administrator to remove a node's flow.xml.gz file and restart the node, knowing that the node's flow will not be
voted to be the "correct" flow unless no other flow is found.

Basic Cluster Setup

This section describes the setup for a simple three-node, non-secure cluster comprised of three instances of NiFi.

For each instance, certain properties in the nifi.properties file will need to be updated. In particular, the Web and
Clustering properties should be evaluated for your situation and adjusted accordingly. All the properties are described
in the System Properties section of this guide; however, in this section, we will focus on the minimum properties that
must be set for a simple cluster.

For all three instances, the Cluster Common Properties can be left with the default settings. Note, however, that if you
change these settings, they must be set the same on every instance in the cluster.

For each Node, the minimum properties to configure are as follows:

• Under the Web Properties section, set either the HTTP or HTTPS port that you want the Node to run on. Also,
consider whether you need to set the HTTP or HTTPS host property. All nodes in the cluster should use the same
protocol setting.

• Under the State Management section, set the nifi.state.management.provider.cluster property to the identifier
of the Cluster State Provider. Ensure that the Cluster State Provider has been configured in the state-
management.xml file. See Configuring State Providers for more information.

76

http://nifi.apache.org/docs/nifi-docs/html/toolkit-guide.html#nifi_CLI
http://nifi.apache.org/docs/nifi-docs/html/toolkit-guide.html
http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#system_properties
http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#cluster_common_properties
http://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#state_providers

Clustering Configuration

• Under Cluster Node Properties, set the following:

• nifi.cluster.is.node - Set this to true.
• nifi.cluster.node.address - Set this to the fully qualified hostname of the node. If left blank, it defaults to loca

lhost.
• nifi.cluster.node.protocol.port - Set this to an open port that is higher than 1024 (anything lower requires root).
• nifi.cluster.node.protocol.threads - The number of threads that should be used to communicate with other

nodes in the cluster. This property defaults to 10. A thread pool is used for replicating requests to all nodes,
and the thread pool will never have fewer than this number of threads. It will grow as needed up to the
maximum value set by the nifi.cluster.node.protocol.max.threads property.

• nifi.cluster.node.protocol.max.threads - The maximum number of threads that should be used to communicate
with other nodes in the cluster. This property defaults to 50. A thread pool is used for replication requests to all
nodes, and the thread pool will have a "core" size that is configured by the nifi.cluster.node.protocol.threads
property. However, if necessary, the thread pool will increase the number of active threads to the limit set by
this property.

• nifi.zookeeper.connect.string - The Connect String that is needed to connect to Apache ZooKeeper. This is a
comma-separated list of hostname:port pairs. For example, localhost:2181,localhost:2182,localhost:2183. This
should contain a list of all ZooKeeper instances in the ZooKeeper quorum.

• nifi.zookeeper.root.node - The root ZNode that should be used in ZooKeeper. ZooKeeper provides a directory-
like structure for storing data. Each 'directory' in this structure is referred to as a ZNode. This denotes the root
ZNode, or 'directory', that should be used for storing data. The default value is /root. This is important to set
correctly, as which cluster the NiFi instance attempts to join is determined by which ZooKeeper instance it
connects to and the ZooKeeper Root Node that is specified.

• nifi.cluster.flow.election.max.wait.time - Specifies the amount of time to wait before electing a Flow as the
"correct" Flow. If the number of Nodes that have voted is equal to the number specified by the nifi.cluster.flo
w.election.max.candidates property, the cluster will not wait this long. The default value is 5 mins. Note that
the time starts as soon as the first vote is cast.

• nifi.cluster.flow.election.max.candidates - Specifies the number of Nodes required in the cluster to cause early
election of Flows. This allows the Nodes in the cluster to avoid having to wait a long time before starting
processing if we reach at least this number of nodes in the cluster.

Now, it is possible to start up the cluster. It does not matter which order the instances start up. Navigate to the URL
for one of the nodes, and the User Interface should look similar to the following:

77

State Management

Troubleshooting

If you encounter issues and your cluster does not work as described, investigate the nifi-app.log and nifi-user.log
files on the nodes. If needed, you can change the logging level to DEBUG by editing the conf/logback.xml file.
Specifically, set the level="DEBUG" in the following line (instead of "INFO"):

<logger name="org.apache.nifi.web.api.config" level="INFO" additivity="false
">
 <appender-ref ref="USER_FILE"/>
 </logger>

State Management

NiFi provides a mechanism for Processors, Reporting Tasks, Controller Services, and the framework itself to
persist state. This allows a Processor, for example, to resume from the place where it left off after NiFi is restarted.
Additionally, it allows for a Processor to store some piece of information so that the Processor can access that
information from all of the different nodes in the cluster. This allows one node to pick up where another node left off,
or to coordinate across all of the nodes in a cluster.

78

State Management

Configuring State Providers

When a component decides to store or retrieve state, it does so by providing a "Scope" - either Node-local or Cluster-
wide. The mechanism that is used to store and retrieve this state is then determined based on this Scope, as well as the
configured State Providers. The nifi.properties file contains three different properties that are relevant to configuring
these State Providers.

Property Description

nifi.state.management.configuration.file The first is the property that specifies an external XML file that is used
for configuring the local and/or cluster-wide State Providers. This
XML file may contain configurations for multiple providers

nifi.state.management.provider.local The property that provides the identifier of the local State Provider
configured in this XML file

nifi.state.management.provider.cluster Similarly, the property provides the identifier of the cluster-wide State
Provider configured in this XML file.

This XML file consists of a top-level state-management element, which has one or more local-provider and zero
or more cluster-provider elements. Each of these elements then contains an id element that is used to specify the
identifier that can be referenced in the nifi.properties file, as well as a class element that specifies the fully-qualified
class name to use in order to instantiate the State Provider. Finally, each of these elements may have zero or more
property elements. Each property element has an attribute, name that is the name of the property that the State
Provider supports. The textual content of the property element is the value of the property.

Once these State Providers have been configured in the state-management.xml file (or whatever file is configured),
those Providers may be referenced by their identifiers.

By default, the Local State Provider is configured to be a WriteAheadLocalStateProvider that persists the data to the
$NIFI_HOME/state/local directory. The default Cluster State Provider is configured to be a ZooKeeperStateProvid
er. The default ZooKeeper-based provider must have its Connect String property populated before it can be used. It
is also advisable, if multiple NiFi instances will use the same ZooKeeper instance, that the value of the Root Node
property be changed. For instance, one might set the value to /nifi/<team name>/production. A Connect String takes
the form of comma separated <host>:<port> tuples, such as my-zk-server1:2181,my-zk-server2:2181,my-zk-server3:
2181. In the event a port is not specified for any of the hosts, the ZooKeeper default of 2181 is assumed.

When adding data to ZooKeeper, there are two options for Access Control: Open and CreatorOnly. If the Access
 Control property is set to Open, then anyone is allowed to log into ZooKeeper and have full permissions to see,
change, delete, or administer the data. If CreatorOnly is specified, then only the user that created the data is allowed
to read, change, delete, or administer the data. In order to use the CreatorOnly option, NiFi must provide some
form of authentication. See the ZooKeeper Access Control section below for more information on how to configure
authentication.

If NiFi is configured to run in a standalone mode, the cluster-provider element need not be populated in the state-
management.xml file and will actually be ignored if they are populated. However, the local-provider element must
always be present and populated. Additionally, if NiFi is run in a cluster, each node must also have the cluster-prov
ider element present and properly configured. Otherwise, NiFi will fail to startup.

While there are not many properties that need to be configured for these providers, they were externalized into a
separate state-management.xml file, rather than being configured via the nifi.properties file, simply because different
implementations may require different properties, and it is easier to maintain and understand the configuration in
an XML-based file such as this, than to mix the properties of the Provider in with all of the other NiFi framework-
specific properties.

It should be noted that if Processors and other components save state using the Clustered scope, the Local State
Provider will be used if the instance is a standalone instance (not in a cluster) or is disconnected from the cluster. This
also means that if a standalone instance is migrated to become a cluster, then that state will no longer be available, as
the component will begin using the Clustered State Provider instead of the Local State Provider.

79

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#zk_access_control

State Management

Embedded ZooKeeper Server

As mentioned above, the default State Provider for cluster-wide state is the ZooKeeperStateProvider. At the time of
this writing, this is the only State Provider that exists for handling cluster-wide state. What this means is that NiFi has
dependencies on ZooKeeper in order to behave as a cluster. However, there are many environments in which NiFi is
deployed where there is no existing ZooKeeper ensemble being maintained. In order to avoid the burden of forcing
administrators to also maintain a separate ZooKeeper instance, NiFi provides the option of starting an embedded
ZooKeeper server.

Property Description

nifi.state.management.embedded.zookeeper.start Specifies whether or not this instance of NiFi should run an embedded
ZooKeeper server

nifi.state.management.embedded.zookeeper.properties Properties file that provides the ZooKeeper properties to use if nifi.sta
te.management.embedded.zookeeper.start is set to true

This can be accomplished by setting the nifi.state.management.embedded.zookeeper.start property in nifi.properties
to true on those nodes that should run the embedded ZooKeeper server. Generally, it is advisable to run ZooKeeper
on either 3 or 5 nodes. Running on fewer than 3 nodes provides less durability in the face of failure. Running on
more than 5 nodes generally produces more network traffic than is necessary. Additionally, running ZooKeeper on 4
nodes provides no more benefit than running on 3 nodes, ZooKeeper requires a majority of nodes be active in order
to function. However, it is up to the administrator to determine the number of nodes most appropriate to the particular
deployment of NiFi.

If the nifi.state.management.embedded.zookeeper.start property is set to true, the nifi.state.management.embedded.z
ookeeper.properties property in nifi.properties also becomes relevant. This specifies the ZooKeeper properties file
to use. At a minimum, this properties file needs to be populated with the list of ZooKeeper servers. The servers are
specified as properties in the form of server.1, server.2, to server.n. As of NiFi 1.10.x, Zookeeper has been upgraded
to 3.5.5 and servers are now defined with the client port appended at the end as per the https://zookeeper.apache.org/
doc/r3.5.2-alpha/zookeeperReconfig.html#sc_reconfig_clientport. As such, each of these servers is configured
as <hostname>:<quorum port>[:<leader election port>][:role];[<client port address>:]<client port>. As a simple
example this would be server.1 = myhost:2888:3888;2181. This list of nodes should be the same nodes in the NiFi
cluster that have the nifi.state.management.embedded.zookeeper.start property set to true. Also note that because
ZooKeeper will be listening on these ports, the firewall may need to be configured to open these ports for incoming
traffic, at least between nodes in the cluster.

When using an embedded ZooKeeper, the ./conf/zookeeper.properties file has a property named dataDir. By default,
this value is set to ./state/zookeeper. If more than one NiFi node is running an embedded ZooKeeper, it is important to
tell the server which one it is. This is accomplished by creating a file named myid and placing it in ZooKeeper's data
directory. The contents of this file should be the index of the server as specific by the server.<number>. So for one of
the ZooKeeper servers, we will accomplish this by performing the following commands:

 cd $NIFI_HOME
mkdir state
mkdir state/zookeeper
echo 1 > state/zookeeper/myid

For the next NiFi Node that will run ZooKeeper, we can accomplish this by performing the following commands:

 cd $NIFI_HOME
mkdir state
mkdir state/zookeeper
echo 2 > state/zookeeper/myid

80

https://zookeeper.apache.org/doc/r3.5.2-alpha/zookeeperReconfig.html#sc_reconfig_clientport
https://zookeeper.apache.org/doc/r3.5.2-alpha/zookeeperReconfig.html#sc_reconfig_clientport

State Management

And so on.

For more information on the properties used to administer ZooKeeper, see the https://zookeeper.apache.org/doc/
current/zookeeperAdmin.html.

For information on securing the embedded ZooKeeper Server, see the Securing ZooKeeper section.

ZooKeeper Access Control

ZooKeeper provides Access Control to its data via an Access Control List (ACL) mechanism. When data is written
to ZooKeeper, NiFi will provide an ACL that indicates that any user is allowed to have full permissions to the data,
or an ACL that indicates that only the user that created the data is allowed to access the data. Which ACL is used
depends on the value of the Access Control property for the ZooKeeperStateProvider (see the Configuring State
Providers section for more information).

In order to use an ACL that indicates that only the Creator is allowed to access the data, we need to tell ZooKeeper
who the Creator is. There are two mechanisms for accomplishing this. The first mechanism is to provide
authentication using Kerberos. See Kerberizing NiFi’s ZooKeeper Client for more information.

The second option is to use a user name and password. This is configured by specifying a value for the Username
and a value for the Password properties for the ZooKeeperStateProvider (see the Securing ZooKeeper with TLS
section for more information). The important thing to keep in mind here, though, is that ZooKeeper will pass around
the password in plain text. This means that using a user name and password should not be used unless ZooKeeper
is running on localhost as a one-instance cluster, or if communications with ZooKeeper occur only over encrypted
communications, such as a VPN or an SSL connection. ZooKeeper will be providing support for SSL connections in
version 3.5.0.

Securing ZooKeeper

When NiFi communicates with ZooKeeper, all communications, by default, are non-secure, and anyone who logs into
ZooKeeper is able to view and manipulate all of the NiFi state that is stored in ZooKeeper. To prevent this, we can
use Kerberos to manage the authentication. At this time, ZooKeeper does not provide support for encryption via SSL.
Support for SSL in ZooKeeper is being actively developed and is expected to be available in the 3.5.x release version.

In order to secure the communications, we need to ensure that both the client and the server support the same
configuration. Instructions for configuring the NiFi ZooKeeper client and embedded ZooKeeper server to use
Kerberos are provided below.

If Kerberos is not already setup in your environment, you can find information on installing and setting up a Kerberos
Server at Red Hat Customer Portal: Configuring a Kerberos 5 Server. This guide assumes that Kerberos already has
been installed in the environment in which NiFi is running.

Note, the following procedures for kerberizing an Embedded ZooKeeper server in your NiFi Node and kerberizing a
ZooKeeper NiFi client will require that Kerberos client libraries be installed. This is accomplished in Fedora-based
Linux distributions via:

 yum install krb5-workstation

Once this is complete, the /etc/krb5.conf will need to be configured appropriately for your organization's Kerberos
environment.

Kerberizing Embedded ZooKeeper Server

The krb5.conf file on the systems with the embedded zookeeper servers should be identical to the one on the system
where the krb5kdc service is running. When using the embedded ZooKeeper server, we may choose to secure the

81

https://zookeeper.apache.org/doc/current/zookeeperAdmin.html
https://zookeeper.apache.org/doc/current/zookeeperAdmin.html
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#state_providers
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#state_providers
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#zk_kerberos_client
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#zk_tls_client
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/managing_smart_cards/configuring_a_kerberos_5_server

State Management

server by using Kerberos. All nodes configured to launch an embedded ZooKeeper and using Kerberos should follow
these steps. When using the embedded ZooKeeper server, we may choose to secure the server by using Kerberos. All
nodes configured to launch an embedded ZooKeeper and using Kerberos should follow these steps.

In order to use Kerberos, we first need to generate a Kerberos Principal for our ZooKeeper servers. The following
command is run on the server where the krb5kdc service is running. This is accomplished via the kadmin tool:

 kadmin: addprinc "zookeeper/myHost.example.com@EXAMPLE.COM"

Here, we are creating a Principal with the primary zookeeper/myHost.example.com, using the realm EXAMPLE.
COM. We need to use a Principal whose name is <service name>/<instance name>. In this case, the service is zook
eeper and the instance name is myHost.example.com (the fully qualified name of our host).

Next, we will need to create a KeyTab for this Principal, this command is run on the server with the NiFi instance
with an embedded zookeeper server:

 kadmin: xst -k zookeeper-server.keytab zookeeper/myHost.example.
com@EXAMPLE.COM

This will create a file in the current directory named zookeeper-server.keytab. We can now copy that file into the
$NIFI_HOME/conf/ directory. We should ensure that only the user that will be running NiFi is allowed to read this
file.

We will need to repeat the above steps for each of the instances of NiFi that will be running the embedded ZooKeeper
server, being sure to replace myHost.example.com with myHost2.example.com, or whatever fully qualified hostname
the ZooKeeper server will be run on.

Now that we have our KeyTab for each of the servers that will be running NiFi, we will need to configure NiFi's
embedded ZooKeeper server to use this configuration. ZooKeeper uses the Java Authentication and Authorization
Service (JAAS), so we need to create a JAAS-compatible file In the $NIFI_HOME/conf/ directory, create a file
named zookeeper-jaas.conf (this file will already exist if the Client has already been configured to authenticate via
Kerberos. That's okay, just add to the file). We will add to this file, the following snippet:

 Server {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab="./conf/zookeeper-server.keytab"
 storeKey=true
 useTicketCache=false
 principal="zookeeper/myHost.example.com@EXAMPLE.COM";
};

Be sure to replace the value of principal above with the appropriate Principal, including the fully qualified domain
name of the server.

Next, we need to tell NiFi to use this as our JAAS configuration. This is done by setting a JVM System Property,
so we will edit the conf/bootstrap.conf file. If the Client has already been configured to use Kerberos, this is not
necessary, as it was done above. Otherwise, we will add the following line to our bootstrap.conf file:

 java.arg.15=-Djava.security.auth.login.config=./conf/zookeeper-j
aas.conf

82

State Management

Note: This additional line in the file doesn't have to be number 15, it just has to be added to the
bootstrap.conf file. Use whatever number is appropriate for your configuration.

We will want to initialize our Kerberos ticket by running the following command:

 kinit -kt zookeeper-server.keytab "zookeeper/myHost.example.com@
EXAMPLE.COM"

Again, be sure to replace the Principal with the appropriate value, including your realm and your fully qualified
hostname.

Finally, we need to tell the Kerberos server to use the SASL Authentication Provider. To do this, we edit the
$NIFI_HOME/conf/zookeeper.properties file and add the following lines:

 authProvider.1=org.apache.zookeeper.server.auth.SASLAuthenticati
onProvider
kerberos.removeHostFromPrincipal=true
kerberos.removeRealmFromPrincipal=true
jaasLoginRenew=3600000
requireClientAuthScheme=sasl

The kerberos.removeHostFromPrincipal and the kerberos.removeRealmFromPrincipal properties are used to
normalize the user principal name before comparing an identity to acls applied on a Znode. By default the full
principal is used however setting the kerberos.removeHostFromPrincipal and the kerberos.removeRealmFromPrin
cipal properties to true will instruct Zookeeper to remove the host and the realm from the logged in user's identity for
comparison. In cases where NiFi nodes (within the same cluster) use principals that have different host(s)/realm(s)
values, these kerberos properties can be configured to ensure that the nodes' identity will be normalized and that the
nodes will have appropriate access to shared Znodes in Zookeeper.

The last line is optional but specifies that clients MUST use Kerberos to communicate with our ZooKeeper instance.

Now, we can start NiFi, and the embedded ZooKeeper server will use Kerberos as the authentication mechanism.

Kerberizing NiFi's ZooKeeper Client

Note: The NiFi nodes running the embedded zookeeper server will also need to follow the below procedure
since they will also be acting as a client at the same time.

The preferred mechanism for authenticating users with ZooKeeper is to use Kerberos. In order to use Kerberos to
authenticate, we must configure a few system properties, so that the ZooKeeper client knows who the user is and
where the KeyTab file is. All nodes configured to store cluster-wide state using ZooKeeperStateProvider and using
Kerberos should follow these steps.

First, we must create the Principal that we will use when communicating with ZooKeeper. This is generally done via
the kadmin tool:

 kadmin: addprinc "nifi@EXAMPLE.COM"

A Kerberos Principal is made up of three parts: the primary, the instance, and the realm. Here, we are creating a
Principal with the primary nifi, no instance, and the realm EXAMPLE.COM. The primary (nifi, in this case) is the
identifier that will be used to identify the user when authenticating via Kerberos.

After we have created our Principal, we will need to create a KeyTab for the Principal:

83

State Management

 kadmin: xst -k nifi.keytab nifi@EXAMPLE.COM

This keytab file can be copied to the other NiFi nodes with embedded zookeeper servers.

This will create a file in the current directory named nifi.keytab. We can now copy that file into the $NIFI_HOME/c
onf/ directory. We should ensure that only the user that will be running NiFi is allowed to read this file.

Next, we need to configure NiFi to use this KeyTab for authentication. Since ZooKeeper uses the Java Authentication
and Authorization Service (JAAS), we need to create a JAAS-compatible file. In the $NIFI_HOME/conf/ directory,
create a file named zookeeper-jaas.conf and add to it the following snippet:

 Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab="./conf/nifi.keytab"
 storeKey=true
 useTicketCache=false
 principal="nifi@EXAMPLE.COM";
};

We then need to tell NiFi to use this as our JAAS configuration. This is done by setting a JVM System Property, so
we will edit the conf/bootstrap.conf file. We add the following line anywhere in this file in order to tell the NiFi JVM
to use this configuration:

 java.arg.15=-Djava.security.auth.login.config=./conf/zookeeper-j
aas.conf

Finally we need to update nifi.properties to ensure that NiFi knows to apply SASL specific ACLs for the Znodes it
will create in Zookeeper for cluster management. To enable this, in the $NIFI_HOME/conf/nifi.properties file and
edit the following properties as shown below:

 nifi.zookeeper.auth.type=sasl
nifi.zookeeper.kerberos.removeHostFromPrincipal=true
nifi.zookeeper.kerberos.removeRealmFromPrincipal=true

Note: The kerberos.removeHostFromPrincipal and kerberos.removeRealmFromPrincipal should be
consistent with what is set in Zookeeper configuration.

We can initialize our Kerberos ticket by running the following command:

 kinit -kt nifi.keytab nifi@EXAMPLE.COM

Now, when we start NiFi, it will use Kerberos to authentication as the nifi user when communicating with
ZooKeeper.

Troubleshooting Kerberos Configuration

When using Kerberos, it is import to use fully-qualified domain names and not use localhost. Please ensure that the
fully qualified hostname of each server is used in the following locations:

• conf/zookeeper.properties file should use FQDN for server.1, server.2, …, server.N values.

84

Bootstrap Properties

• The Connect String property of the ZooKeeperStateProvider
• The /etc/hosts file should also resolve the FQDN to an IP address that is not 127.0.0.1.

Failure to do so, may result in errors similar to the following:

 2016-01-08 16:08:57,888 ERROR [pool-26-thread-1-SendThread(local
host:2181)] o.a.zookeeper.client.ZooKeeperSaslClient An error: (java.securit
y.PrivilegedActionException: javax.security.sasl.SaslException: GSS initiate
 failed [Caused by GSSException: No valid credentials provided (Mechanism le
vel: Server not found in Kerberos database (7) - LOOKING_UP_SERVER)]) occurr
ed when evaluating Zookeeper Quorum Member's received SASL token. Zookeeper
 Client will go to AUTH_FAILED state.

If there are problems communicating or authenticating with Kerberos, this http://docs.oracle.com/javase/7/docs/
technotes/guides/security/jgss/tutorials/Troubleshooting.html may be of value.

One of the most important notes in the above Troubleshooting guide is the mechanism for turning on Debug output
for Kerberos. This is done by setting the sun.security.krb5.debug environment variable. In NiFi, this is accomplished
by adding the following line to the $NIFI_HOME/conf/bootstrap.conf file:

 java.arg.16=-Dsun.security.krb5.debug=true

This will cause the debug output to be written to the NiFi Bootstrap log file. By default, this is located at
$NIFI_HOME/logs/nifi-bootstrap.log. This output can be rather verbose but provides extremely valuable information
for troubleshooting Kerberos failures.

ZooKeeper Migrator

You can use the zk-migrator tool to perform the following tasks:

• Moving ZooKeeper information from one ZooKeeper cluster to another
• Migrating ZooKeeper node ownership

For example, you may want to use the ZooKeeper Migrator when you are:

• Upgrading from NiFi 0.x to NiFi 1.x in which embedded ZooKeepers are used
• Migrating from an embedded ZooKeeper in NiFi 0.x or 1.x to an external ZooKeeper
• Upgrading from NiFi 0.x with an external ZooKeeper to NiFi 1.x with the same external ZooKeeper
• Migrating from an external ZooKeeper to an embedded ZooKeeper in NiFi 1.x

Bootstrap Properties

The bootstrap.conf file in the conf directory allows users to configure settings for how NiFi should be started. This
includes parameters, such as the size of the Java Heap, what Java command to run, and Java System Properties.

Here, we will address the different properties that are made available in the file. Any changes to this file will take
effect only after NiFi has been stopped and restarted.

Property Description

java Specifies the fully qualified java command to run. By default, it is
simply java but could be changed to an absolute path or a reference an
environment variable, such as $JAVA_HOME/bin/java

85

http://docs.oracle.com/javase/7/docs/technotes/guides/security/jgss/tutorials/Troubleshooting.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jgss/tutorials/Troubleshooting.html

Notification Services

Property Description

run.as The username to run NiFi as. For instance, if NiFi should be run as the
nifi user, setting this value to nifi will cause the NiFi Process to be run
as the nifi user. This property is ignored on Windows. For Linux, the
specified user may require sudo permissions.

lib.dir The lib directory to use for NiFi. By default, this is set to ./lib

conf.dir The conf directory to use for NiFi. By default, this is set to ./conf

graceful.shutdown.seconds When NiFi is instructed to shutdown, the Bootstrap will wait this number
of seconds for the process to shutdown cleanly. At this amount of time, if
the service is still running, the Bootstrap will kill the process, or terminate
it abruptly.

java.arg.N Any number of JVM arguments can be passed to the NiFi JVM when the
process is started. These arguments are defined by adding properties to
bootstrap.conf that begin with java.arg.. The rest of the property name
is not relevant, other than to differentiate property names, and will be
ignored. The default includes properties for minimum and maximum
Java Heap size, the garbage collector to use, etc.

nifi.bootstrap.sensitive.key The master key in hexadecimal format for encrypted sensitive
configuration values. When NiFi is started, the master key is used to
decrypt sensitive values from the nifi.properties file into memory for later
use.

The Encrypt-Config Tool can be used to specify the master key, encrypt
sensitive values in nifi.properties and update bootstrap.conf. See the NiFi
Toolkit Guide for an example.

notification.services.file When NiFi is started, or stopped, or when the Bootstrap detects that
NiFi has died, the Bootstrap is able to send notifications of these events
to interested parties. This is configured by specifying an XML file that
defines which notification services can be used. More about this file can
be found in the Notification Services section.

notification.max.attempts If a notification service is configured but is unable to perform its function,
it will try again up to a maximum number of attempts. This property
configures what that maximum number of attempts is. The default value
is 5.

nifi.start.notification.services This property is a comma-separated list of Notification Service
identifiers that correspond to the Notification Services defined in the noti
fication.services.file property. The services with the specified identifiers
will be used to notify their configured recipients whenever NiFi is started.

nifi.stop.notification.services This property is a comma-separated list of Notification Service
identifiers that correspond to the Notification Services defined in the noti
fication.services.file property. The services with the specified identifiers
will be used to notify their configured recipients whenever NiFi is
stopped.

nifi.died.notification.services This property is a comma-separated list of Notification Service
identifiers that correspond to the Notification Services defined in the noti
fication.services.file property. The services with the specified identifiers
will be used to notify their configured recipients if the bootstrap
determines that NiFi has unexpectedly died.

Notification Services

86

https://nifi.apache.org/docs/nifi-docs/html/toolkit-guide.html#encrypt_config_tool
https://nifi.apache.org/docs/nifi-docs/html/toolkit-guide.html#encrypt_config_tool
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#notification_services

Notification Services

When the NiFi bootstrap starts or stops NiFi, or detects that it has died unexpectedly, it is able to notify configured
recipients. Currently, the only mechanisms supplied are to send an e-mail or HTTP POST notification. The
notification services configuration file is an XML file where the notification capabilities are configured.

The default location of the XML file is conf/bootstrap-notification-services.xml, but this value can be changed in the
conf/bootstrap.conf file.

The syntax of the XML file is as follows:

<services>
 <!-- any number of service elements can be defined. -->
 <service>
 <id>some-identifier</id>
 <!-- The fully-qualified class name of the Notification Service. -->
 <class>org.apache.nifi.bootstrap.notification.email.EmailNotifica
tionService</class>
 <!-- Any number of properties can be set using this syntax.
 The properties available depend on the Notification Service. --
>
 <property name="Property Name 1">Property Value</property>
 <property name="Another Property Name">Property Value 2</property>
 </service>
</services>

Once the desired services have been configured, they can then be referenced in the bootstrap.conf file.

Email Notification Service

The first Notifier is to send emails and the implementation is org.apache.nifi.bootstrap.notification.email.EmailNotifi
cationService. It has the following properties available:

Property Required Description

SMTP Hostname true The hostname of the SMTP Server that is used
to send Email Notifications

SMTP Port true The Port used for SMTP communications

SMTP Username true Username for the SMTP account

SMTP Password Password for the SMTP account

SMTP Auth Flag indicating whether authentication should
be used

SMTP TLS Flag indicating whether TLS should be
enabled

SMTP Socket Factory javax.net.ssl.SSLSocketFactory

SMTP X-Mailer Header X-Mailer used in the header of the outgoing
email

Content Type Mime Type used to interpret the contents of
the email, such as text/plain or text/html

From true Specifies the Email address to use as the
sender. Otherwise, a "friendly name" can be
used as the From address, but the value must
be enclosed in double-quotes.

87

Notification Services

Property Required Description

To The recipients to include in the To-Line of the
email

CC The recipients to include in the CC-Line of the
email

BCC The recipients to include in the BCC-Line of
the email

In addition to the properties above that are marked as required, at least one of the To, CC, or BCC properties must be
set.

A complete example of configuring the Email service would look like the following:

 <service>
 <id>email-notification</id>
 <class>org.apache.nifi.bootstrap.notification.email.EmailNotifica
tionService</class>
 <property name="SMTP Hostname">smtp.gmail.com</property>
 <property name="SMTP Port">587</property>
 <property name="SMTP Username">username@gmail.com</property>
 <property name="SMTP Password">super-secret-password</property>
 <property name="SMTP TLS">true</property>
 <property name="From">"NiFi Service Notifier"</property>
 <property name="To">username@gmail.com</property>
 </service>

HTTP Notification Service

The second Notifier is to send HTTP POST requests and the implementation is org.apache.nifi.bootstrap.notificati
on.http.HttpNotificationService. It has the following properties available:

Property Required Description

URL true The URL to send the notification to.
Expression language is supported.

Connection timeout Max wait time for connection to remote
service. Expression language is supported.
This defaults to 10s.

Write timeout Max wait time for remote service to read
the request sent. Expression language is
supported. This defaults to 10s.

Truststore Filename The fully-qualified filename of the Truststore

Truststore Type The Type of the Truststore. Either JKS or
PKCS12

Truststore Password The password for the Truststore

Keystore Filename The fully-qualified filename of the Keystore

Keystore Type The Type of the Keystore. Either JKS or
PKCS12

Keystore Password The password for the Keystore

88

Proxy Configuration

Property Required Description

Key Password The password for the key. If this is not
specified, but the Keystore Filename,
Password, and Type are specified, then the
Key Password will be assumed to be the same
as the Keystore Password.

SSL Protocol The algorithm to use for this SSL context.
This can either be SSL or TLS.

In addition to the properties above, dynamic properties can be added. They will be added as headers to the HTTP
request. Expression language is supported.

The notification message is in the body of the POST request. The type of notification is in the header
"notification.type" and the subject uses the header "notification.subject".

A complete example of configuring the HTTP service could look like the following:

 <service>
 <id>http-notification</id>
 <class>org.apache.nifi.bootstrap.notification.http.HttpNotificatio
nService</class>
 <property name="URL">https://testServer.com:8080/</property>
 <property name="Truststore Filename">localhost-ts.jks</property>
 <property name="Truststore Type">JKS</property>
 <property name="Truststore Password">localtest<property>
 <property name="Keystore Filename">localhost-ts.jks</property>
 <property name="Keystore Type">JKS</property>
 <property name="Keystore Password">localtest</property>
 <property name="notification.timestamp">${now()}</property>
 </service>

Proxy Configuration

When running Apache NiFi behind a proxy there are a couple of key items to be aware of during deployment.

• NiFi is comprised of a number of web applications (web UI, web API, documentation, custom UIs, data viewers,
etc), so the mapping needs to be configured for the root path. That way all context paths are passed through
accordingly. For instance, if only the /nifi context path was mapped, the custom UI for UpdateAttribute will not
work, since it is available at /update-attribute-ui-<version>.

• NiFi's REST API will generate URIs for each component on the graph. Since requests are coming through a
proxy, certain elements of the URIs being generated need to be overridden. Without overriding, the users will
be able to view the dataflow on the canvas but will be unable to modify existing components. Requests will be
attempting to call back directly to NiFi, not through the proxy. The elements of the URI can be overridden by
adding the following HTTP headers when the proxy generates the HTTP request to the NiFi instance:

X-ProxyScheme - the scheme to use to connect to the proxy
X-ProxyHost - the host of the proxy
X-ProxyPort - the port the proxy is listening on
X-ProxyContextPath - the path configured to map to the NiFi instance

• If NiFi is running securely, any proxy needs to be authorized to proxy user requests. These can be configured
in the NiFi UI through the Global Menu. Once these permissions are in place, proxies can begin proxying user
requests. The end user identity must be relayed in a HTTP header. For example, if the end user sent a request

89

Kerberos Service

to the proxy, the proxy must authenticate the user. Following this the proxy can send the request to NiFi. In this
request an HTTP header should be added as follows.

X-ProxiedEntitiesChain: <end-user-identity>

If the proxy is configured to send to another proxy, the request to NiFi from the second proxy should contain a header
as follows.

X-ProxiedEntitiesChain: <end-user-identity><proxy-1-identity>

An example Apache proxy configuration that sets the required properties may look like the following. Complete
proxy configuration is outside of the scope of this document. Please refer the documentation of the proxy for guidance
for your deployment environment and use case.

...
<Location "/my-nifi">
 ...
 SSLEngine On
 SSLCertificateFile /path/to/proxy/certificate.crt
 SSLCertificateKeyFile /path/to/proxy/key.key
 SSLCACertificateFile /path/to/ca/certificate.crt
 SSLVerifyClient require
 RequestHeader add X-ProxyScheme "https"
 RequestHeader add X-ProxyHost "proxy-host"
 RequestHeader add X-ProxyPort "443"
 RequestHeader add X-ProxyContextPath "/my-nifi"
 RequestHeader add X-ProxiedEntitiesChain "<%{SSL_CLIENT_S_DN}>"
 ProxyPass https://nifi-host:8443
 ProxyPassReverse https://nifi-host:8443
 ...
</Location>
...

• Additional NiFi proxy configuration must be updated to allow expected Host and context paths HTTP headers.

• By default, if NiFi is running securely it will only accept HTTP requests with a Host header matching the
host[:port] that it is bound to. If NiFi is to accept requests directed to a different host[:port] the expected values
need to be configured. This may be required when running behind a proxy or in a containerized environment.
This is configured in a comma separated list in nifi.properties using the nifi.web.proxy.host property (e.g.
localhost:18443, proxyhost:443). IPv6 addresses are accepted. Please refer to RFC 5952 Sections https://
tools.ietf.org/html/rfc5952#section-4 and https://tools.ietf.org/html/rfc5952#section-6 for additional details.

• NiFi will only accept HTTP requests with a X-ProxyContextPath, X-Forwarded-Context, or X-Forwarded-
Prefix header if the value is whitelisted in the nifi.web.proxy.context.path property in nifi.properties. This
property accepts a comma separated list of expected values. In the event an incoming request has an X-
ProxyContextPath, X-Forwarded-Context, or X-Forwarded-Prefix header value that is not present in the
whitelist, the "An unexpected error has occurred" page will be shown and an error will be written to the nifi-
app.log.

• Additional configurations at both proxy server and NiFi cluster are required to make NiFi Site-to-Site work behind
reverse proxies. See Site to Site Routing Properties for Reverse Proxies for details.

• In order to transfer data via Site-to-Site protocol through reverse proxies, both proxy and Site-to-Site client
NiFi users need to have following policies, 'retrieve site-to-site details', 'receive data via site-to-site' for input
ports, and 'send data via site-to-site' for output ports.

Kerberos Service

90

https://tools.ietf.org/html/rfc5952#section-4
https://tools.ietf.org/html/rfc5952#section-4
https://tools.ietf.org/html/rfc5952#section-6
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#site_to_site_reverse_proxy_properties

Kerberos Service

NiFi can be configured to use Kerberos SPNEGO (or "Kerberos Service") for authentication. In this scenario, users
will hit the REST endpoint /access/kerberos and the server will respond with a 401 status code and the challenge
response header WWW-Authenticate: Negotiate. This communicates to the browser to use the GSS-API and load
the user's Kerberos ticket and provide it as a Base64-encoded header value in the subsequent request. It will be of the
form Authorization: Negotiate YII…. NiFi will attempt to validate this ticket with the KDC. If it is successful, the
user's principal will be returned as the identity, and the flow will follow login/credential authentication, in that a JWT
will be issued in the response to prevent the unnecessary overhead of Kerberos authentication on every subsequent
request. If the ticket cannot be validated, it will return with the appropriate error response code. The user will then be
able to provide their Kerberos credentials to the login form if the KerberosLoginIdentityProvider has been configured.
See Kerberos login identity provider for more details.

NiFi will only respond to Kerberos SPNEGO negotiation over an HTTPS connection, as unsecured requests are never
authenticated.

The following properties must be set in nifi.properties to enable Kerberos service authentication.

Property Required Description

Service Principal true The service principal used by NiFi to
communicate with the KDC

Keytab Location true The file path to the keytab containing the
service principal

See Kerberos Properties for complete documentation.

Notes

• Kerberos is case-sensitive in many places and the error messages (or lack thereof) may not be sufficiently
explanatory. Check the case sensitivity of the service principal in your configuration files. Convention is HTTP/
fully.qualified.domain@REALM.

• Browsers have varying levels of restriction when dealing with SPNEGO negotiations. Some will provide the local
Kerberos ticket to any domain that requests it, while others whitelist the trusted domains. See http://docs.spring.io/
autorepo/docs/spring-security-kerberos/1.0.2.BUILD-SNAPSHOT/reference/htmlsingle/#browserspnegoconfig
for common browsers.

• Some browsers (legacy IE) do not support recent encryption algorithms such as AES, and are restricted to legacy
algorithms (DES). This should be noted when generating keytabs.

• The KDC must be configured and a service principal defined for NiFi and a keytab exported. Comprehensive
instructions for Kerberos server configuration and administration are beyond the scope of this document (see
http://web.mit.edu/kerberos/krb5-current/doc/admin/index.html), but an example is below:

Adding a service principal for a server at nifi.nifi.apache.org and exporting the keytab from the KDC:

root@kdc:/etc/krb5kdc# kadmin.local
Authenticating as principal admin/admin@NIFI.APACHE.ORG with password.
kadmin.local: listprincs
K/M@NIFI.APACHE.ORG
admin/admin@NIFI.APACHE.ORG
...
kadmin.local: addprinc -randkey HTTP/nifi.nifi.apache.org
WARNING: no policy specified for HTTP/nifi.nifi.apache.org@NIFI.APACHE.ORG;
defaulting to no policy
Principal "HTTP/nifi.nifi.apache.org@NIFI.APACHE.ORG" created.
kadmin.local: ktadd -k /http-nifi.keytab HTTP/nifi.nifi.apache.org
Entry for principal HTTP/nifi.nifi.apache.org with kvno 2, encryption type
 des3-cbc-sha1 added to keytab WRFILE:/http-nifi.keytab.
Entry for principal HTTP/nifi.nifi.apache.org with kvno 2, encryption type
 des-cbc-crc added to keytab WRFILE:/http-nifi.keytab.
kadmin.local: listprincs

91

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#kerberos_login_identity_provider
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#kerberos_properties
http://docs.spring.io/autorepo/docs/spring-security-kerberos/1.0.2.BUILD-SNAPSHOT/reference/htmlsingle/#browserspnegoconfig
http://docs.spring.io/autorepo/docs/spring-security-kerberos/1.0.2.BUILD-SNAPSHOT/reference/htmlsingle/#browserspnegoconfig
http://web.mit.edu/kerberos/krb5-current/doc/admin/index.html

Analytics Framework

HTTP/nifi.nifi.apache.org@NIFI.APACHE.ORG
K/M@NIFI.APACHE.ORG
admin/admin@NIFI.APACHE.ORG
...
kadmin.local: q
root@kdc:~# ll /http*
-rw------- 1 root root 162 Mar 14 21:43 /http-nifi.keytab
root@kdc:~#

Analytics Framework

NiFi has an internal analytics framework which can be enabled to predict back pressure occurrence, given the
configured settings for threshold on a queue. The model used by default for prediction is an ordinary least squares
(OLS) linear regression. It uses recent observations from a queue (either number of objects or content size over time)
and calculates a regression line for that data. The line's equation is then used to determine the next value that will be
reached within a given time interval (e.g. number of objects in queue in the next 5 minutes). Below is an example
graph of the linear regression model for Queue/Object Count over time which is used for predictions:

In order to generate predictions, local status snapshot history is queried to obtain enough data to generate a model. By
default, component status snapshots are captured every minute. Internal models need at least 2 or more observations
to generate a prediction, therefore it may take up to 2 or more minutes for predictions to be available by default. If
predictions are needed sooner than what is provided by default, the timing of snapshots can be adjusted using the nifi
.components.status.snapshot.frequency value in nifi.properties.

NiFi evaluates the model's effectiveness before sending prediction information by using the model's R-Squared score
by default. One important note: R-Square is a measure of how close the regression line fits the observation data vs.
how accurate the prediction will be; therefore there may be some measure of error. If the R-Squared score for the
calculated model meets the configured threshold (as defined by nifi.analytics.connection.model.score.threshold) then
the model will be used for prediction. Otherwise the model will not be used and predictions will not be available until

92

System Properties

a model is generated with a score that exceeds the threshold. Default R-Squared threshold value is .90 however this
can be tuned based on prediction requirements.

The prediction interval nifi.analytics.predict.interval can be configured to project out further when back pressure will
occur. The prediction query interval nifi.analytics.query.interval can also be configured to determine how far back in
time past observations should be queried in order to generate the model. Adjustments to these settings may require
tuning of the model's scoring threshold value to select a score that can offer reasonable predictions.

See Analytics Properties for complete information on configuring analytic properties.

System Properties

The nifi.properties file in the conf directory is the main configuration file for controlling how NiFi runs. This section
provides an overview of the properties in this file and their setting options.

Note: Values for periods of time and data sizes must include the unit of measure, for example "10 secs" or
"10 MB", not simply "10".

Upgrade Recommendations

The contents of the nifi.properties file are relatively stable but can change from version to version. It is always a good
idea to review this file when upgrading and pay attention to any changes.

Consider configuring items below marked with an asterisk (*) in such a way that upgrading will be easier. For
example, change the default directory configurations to locations outside the main root installation. In this way,
these items can remain in their configured location through an upgrade, allowing NiFi to find all the repositories and
configuration files and pick up where it left off as soon as the old version is stopped and the new version is started.
Furthermore, the administrator may reuse this nifi.properties file and any other configuration files without having to
re-configure them each time an upgrade takes place. See Upgrading NiFi for more details.

Core Properties

The first section of the nifi.properties file is for the Core Properties. These properties apply to the core framework as a
whole.

Property Description

nifi.flow.configuration.file* The location of the flow configuration file (i.e., the file that contains
what is currently displayed on the NiFi graph). The default value is ./co
nf/flow.xml.gz.

nifi.flow.configuration.archive.enabled* Specifies whether NiFi creates a backup copy of the flow automatically
when the flow is updated. The default value is true.

93

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#analytics_properties
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#upgrading_nifi

System Properties

Property Description

nifi.flow.configuration.archive.dir* The location of the archive directory where backup copies of the
flow.xml are saved. The default value is ./conf/archive. NiFi removes
old archive files to limit disk usage based on archived file lifespan,
total size, and number of files, as specified with nifi.flow.config
uration.archive.max.time, max.storage and max.count properties
respectively. If none of these limitation for archiving is specified,
NiFi uses default conditions, that is 30 days for max.time and 500
MB for max.storage. This cleanup mechanism takes into account
only automatically created archived flow.xml files. If there are other
files or directories in this archive directory, NiFi will ignore them.
Automatically created archives have filename with ISO 8601 format
timestamp prefix followed by <original-filename>. That is <year><m
onth><day>T<hour><minute><second>+<timezone offset>_<orig
inal filename>. For example, 20160706T160719+0900_flow.xml.gz.
NiFi checks filenames when it cleans archive directory. If you would
like to keep a particular archive in this directory without worrying
about NiFi deleting it, you can do so by copying it with a different
filename pattern.

nifi.flow.configuration.archive.max.time* The lifespan of archived flow.xml files. NiFi will delete expired
archive files when it updates flow.xml if this property is specified.
Expiration is determined based on current system time and the last
modified timestamp of an archived flow.xml. If no archive limitation is
specified in nifi.properties, NiFi removes archives older than 30 days.

nifi.flow.configuration.archive.max.storage* The total data size allowed for the archived flow.xml files. NiFi will
delete the oldest archive files until the total archived file size becomes
less than this configuration value, if this property is specified. If no
archive limitation is specified in nifi.properties, NiFi uses 500 MB for
this.

nifi.flow.configuration.archive.max.count* The number of archive files allowed. NiFi will delete the oldest archive
files so that only N latest archives can be kept, if this property is
specified.

nifi.flowcontroller.autoResumeState Indicates whether -upon restart- the components on the NiFi graph
should return to their last state. The default value is true.

nifi.flowcontroller.graceful.shutdown.period Indicates the shutdown period. The default value is 10 secs.

nifi.flowservice.writedelay.interval When many changes are made to the flow.xml, this property specifies
how long to wait before writing out the changes, so as to batch the
changes into a single write. The default value is 500 ms.

nifi.administrative.yield.duration If a component allows an unexpected exception to escape, it
is considered a bug. As a result, the framework will pause (or
administratively yield) the component for this amount of time. This is
done so that the component does not use up massive amounts of system
resources, since it is known to have problems in the existing state. The
default value is 30 secs.

nifi.bored.yield.duration When a component has no work to do (i.e., is "bored"), this is the
amount of time it will wait before checking to see if it has new data to
work on. This way, it does not use up CPU resources by checking for
new work too often. When setting this property, be aware that it could
add extra latency for components that do not constantly have work to
do, as once they go into this "bored" state, they will wait this amount of
time before checking for more work. The default value is 10 ms.

nifi.queue.backpressure.count When drawing a new connection between two components, this is the
default value for that connection's back pressure object threshold. The
default is 10000 and the value must be an integer.

94

System Properties

Property Description

nifi.queue.backpressure.size When drawing a new connection between two components, this is the
default value for that connection's back pressure data size threshold.
The default is 1 GB and the value must be a data size including the unit
of measure.

nifi.authorizer.configuration.file* This is the location of the file that specifies how authorizers are
defined. The default value is ./conf/authorizers.xml.

nifi.login.identity.provider.configuration.file* This is the location of the file that specifies how username/password
authentication is performed. This file is only considered if nifi.securit
y.user.login.identity.provider is configured with a provider identifier.
The default value is ./conf/login-identity-providers.xml.

nifi.templates.directory* This is the location of the directory where flow templates are saved (for
backward compatibility only). Templates are stored in the flow.xml.gz
starting with NiFi 1.0. The template directory can be used to (bulk)
import templates into the flow.xml.gz automatically on NiFi startup.
The default value is ./conf/templates.

nifi.ui.banner.text This is banner text that may be configured to display at the top of the
User Interface. It is blank by default.

nifi.ui.autorefresh.interval The interval at which the User Interface auto-refreshes. The default
value is 30 secs.

nifi.nar.library.directory The location of the nar library. The default value is ./lib and probably
should be left as is.NOTE: Additional library directories can be
specified by using the nifi.nar.library.directory. prefix with unique
suffixes and separate paths as values. For example, to provide two
additional library locations, a user could also specify additional
properties with keys of:nifi.nar.library.directory.lib1=/nars/lib1 nifi
.nar.library.directory.lib2=/nars/lib2 Providing three total locations,
including nifi.nar.library.directory.

nifi.nar.working.directory The location of the nar working directory. The default value is ./work/n
ar and probably should be left as is.

nifi.documentation.working.directory The documentation working directory. The default value is ./work/d
ocs/components and probably should be left as is.

nifi.processor.scheduling.timeout Time to wait for a Processor's life-cycle operation (@OnScheduled
and @OnUnscheduled) to finish before other life-cycle operation (e.g.,
stop) could be invoked. The default value is 1 min.

State Management

The State Management section of the Properties file provides a mechanism for configuring local and cluster-wide
mechanisms for components to persist state. See the State Management section for more information on how this is
used.

Property Description

nifi.state.management.configuration.file The XML file that contains configuration for the local and cluster-wide
State Providers. The default value is ./conf/state-management.xml.

nifi.state.management.provider.local The ID of the Local State Provider to use. This value must match the
value of the id element of one of the local-provider elements in the
state-management.xml file.

95

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#state_management

System Properties

Property Description

nifi.state.management.provider.cluster The ID of the Cluster State Provider to use. This value must match the
value of the id element of one of the cluster-provider elements in the
state-management.xml file. This value is ignored if not clustered but is
required for nodes in a cluster.

nifi.state.management.embedded.zookeeper.start Specifies whether or not this instance of NiFi should start an
embedded ZooKeeper Server. This is used in conjunction with the
ZooKeeperStateProvider.

nifi.state.management.embedded.zookeeper.properties Specifies a properties file that contains the configuration for the
embedded ZooKeeper Server that is started (if the nifi.state.manag
ement.embedded.zookeeper.start property is set to true)

H2 Settings

The H2 Settings section defines the settings for the H2 database, which keeps track of user access and flow controller
history.

Property Description

nifi.database.directory* The location of the H2 database directory. The default value is ./databa
se_repository.

nifi.h2.url.append This property specifies additional arguments to add to the connection
string for the H2 database. The default value should be used and should
not be changed. It is: ;LOCK_TIMEOUT=25000;WRITE_DELAY=
0;AUTO_SERVER=FALSE.

FlowFile Repository

The FlowFile repository keeps track of the attributes and current state of each FlowFile in the system. By default, this
repository is installed in the same root installation directory as all the other repositories; however, it is advisable to
configure it on a separate drive if available.

There are currently three implementations of the FlowFile Repository, which are detailed below.

Property Description

nifi.flowfile.repository.implementation The FlowFile Repository implementation. The default value is org.apac
he.nifi.controller.repository.WriteAheadFlowFileRepository. The other
current options are org.apache.nifi.controller.repository.VolatileFlowFi
leRepository and org.apache.nifi.controller.repository.RocksDBFlo
wFileRepository.

Note: Switching repository implementations should only be done on an instance with zero queued FlowFiles,
and should only be done with caution.

Write Ahead FlowFile Repository

WriteAheadFlowFileRepository is the default implementation. It persists FlowFiles to disk, and can optionally be
configured to synchronize all changes to disk. This is very expensive and can significantly reduce NiFi performance.
However, if it is false, there could be the potential for data loss if either there is a sudden power loss or the operating
system crashes. The default value is false.

96

System Properties

Property Description

nifi.flowfile.repository.wal.implementation If the repository implementation is configured to use the WriteAhe
adFlowFileRepository, this property can be used to specify which
implementation of the Write-Ahead Log should be used. The default
value is org.apache.nifi.wali.SequentialAccessWriteAheadLog.
This version of the write-ahead log was added in version 1.6.0 of
Apache NiFi and was developed in order to address an issue that
exists in the older implementation. In the event of power loss or an
operating system crash, the old implementation was susceptible to
recovering FlowFiles incorrectly. This could potentially lead to the
wrong attributes or content being assigned to a FlowFile upon restart,
following the power loss or OS crash. However, one can still choose
to opt into using the previous implementation and accept that risk, if
desired (for example, if the new implementation were to exhibit some
unexpected error). To do so, set the value of this property to org.wali
.MinimalLockingWriteAheadLog. Another available implementation is
org.apache.nifi.wali.EncryptedSequentialAccessWriteAheadLog. If the
value of this property is changed, upon restart, NiFi will still recover
the records written using the previously configured repository and
delete the files written by the previously configured implementation.

nifi.flowfile.repository.directory* The location of the FlowFile Repository. The default value is ./flowfi
le_repository.

nifi.flowfile.repository.partitions The number of partitions. The default value is 256.

nifi.flowfile.repository.checkpoint.interval The FlowFile Repository checkpoint interval. The default value is 2
 mins.

nifi.flowfile.repository.always.sync If set to true, any change to the repository will be synchronized to the
disk, meaning that NiFi will ask the operating system not to cache the
information. This is very expensive and can significantly reduce NiFi
performance. However, if it is false, there could be the potential for
data loss if either there is a sudden power loss or the operating system
crashes. The default value is false.

Encrypted Write Ahead FlowFile Repository Properties

All of the properties defined above (see Write Ahead FlowFile Repository) still apply. Only encryption-specific
properties are listed here. See Encrypted FlowFile Repository in the User Guide for more information.

Note: Unlike the encrypted content and provenance repositories, the repository implementation does not
change here, only the underlying write-ahead log implementation. This allows for cleaner separation and
more flexibility in implementation selection. The property that should be changed to enable encryption is
nifi.flowfile.repository.wal.implementation.

Property Description

nifi.flowfile.repository.encryption.key.provider.implementation This is the fully-qualified class name of the key provider. A key
provider is the datastore interface for accessing the encryption
key to protect the content claims. There are currently two
implementations - StaticKeyProvider which reads a key directly from
nifi.properties, and FileBasedKeyProvider which reads n many keys
from an encrypted file. The interface is extensible, and HSM-backed or
other providers are expected in the future.

nifi.flowfile.repository.encryption.key.provider.location The path to the key definition resource (empty for StaticKeyProvider,
./keys.nkp or similar path for FileBasedKeyProvider). For future
providers like an HSM, this may be a connection string or URL.

nifi.flowfile.repository.encryption.key.id The active key ID to use for encryption (e.g. Key1).

97

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#write-ahead-flowfile-repository
https://nifi.apache.org/docs/nifi-docs/html/user-guide.html#encrypted-flowfile

System Properties

Property Description

nifi.flowfile.repository.encryption.key The key to use for StaticKeyProvider. The key format is hex-encoded
(0123456789ABCDEFFEDCBA98765432100123456789ABCDEF
FEDCBA9876543210) but can also be encrypted using the ./encrypt-co
nfig.sh tool in NiFi Toolkit (see the Encrypt-Config Tool section in the
NiFi Toolkit Guide for more information).

nifi.flowfile.repository.encryption.key.id.* Allows for additional keys to be specified for the StaticKeyProvider.
For example, the line nifi.flowfile.repository.encryption.key.id.Key2=
012…210 would provide an available key Key2.

The simplest configuration is below:

nifi.flowfile.repository.implementation=org.apache.nifi.controller.repositor
y.WriteAheadFlowFileRepository
nifi.flowfile.repository.wal.implementation=org.apache.nifi.wali.Encrypte
dSequentialAccessWriteAheadLog
nifi.flowfile.repository.encryption.key.provider.implementation=org.apach
e.nifi.security.kms.StaticKeyProvider
nifi.flowfile.repository.encryption.key.provider.location=
nifi.flowfile.repository.encryption.key.id=Key1
nifi.flowfile.repository.encryption.key=0123456789ABCDEFFEDCBA9876543210012
3456789ABCDEFFEDCBA9876543210

Volatile FlowFile Repository

This implementation stores FlowFiles in memory instead of on disk. It will result in data loss in the event of power/
machine failure or a restart of NiFi. To use this implementation, set nifi.flowfile.repository.implementation to org.
apache.nifi.controller.repository.VolatileFlowFileRepository.

RocksDB FlowFile Repository

This implementation makes use of the RocksDB key-value store. It uses periodic synchronization to ensure that no
created or received data is lost (as long as nifi.flowfile.repository.rocksdb.accept.data.loss is set false). In the event of
a failure (e.g. power loss), work done on FlowFiles through the system (i.e. routing and transformation) may still be
lost. Specifically, the record of these actions may be lost, reverting the affected FlowFiles to a previous, valid state.
From there, they will resume their path through the flow as normal. This guarantee comes at the expense of a delay
on operations that add new data to the system. This delay is configurable (as nifi.flowfile.repository.rocksdb.sync.pe
riod), and can be tuned to the individual system.

The configuration parameters for this repository fall in to two categories, "NiFi-centric" and "RocksDB-centric". The
NiFi-centric settings have to do with the operations of the FlowFile Repository and its interaction with NiFi. The
RocksDB-centric settings directly correlate to settings on the underlying RocksDB repo. More information on these
settings can be found in the RocksDB documentation: https://github.com/facebook/rocksdb/wiki/RocksJava-Basics.

Note: Windows users will need to ensure "Microsoft Visual C++ 2015 Redistributable" is installed for
this repository to work. See the following link for more details: https://github.com/facebook/rocksdb/wiki/
RocksJava-Basics#maven-windows.

To use this implementation, set nifi.flowfile.repository.implementation to org.apache.nifi.controller.repository.Ro
cksDBFlowFileRepository.

NiFi-centric Configuration Properties:

98

https://nifi.apache.org/docs/nifi-docs/html/toolkit-guide.html#encrypt_config_tool
https://nifi.apache.org/docs/nifi-docs/html/toolkit-guide.html
https://github.com/facebook/rocksdb/wiki/RocksJava-Basics

System Properties

Property Description

nifi.flowfile.repository.directory The location of the FlowFile Repository. The default value is`./
flowfile_repository`.

nifi.flowfile.repository.rocksdb.sync.warning.period How often to log warnings if unable to sync. The default value is 30
seconds.

nifi.flowfile.repository.rocksdb.claim.cleanup.period How often to mark content claims destructible (so they can be removed
from the content repo). The default value is 30 seconds.

nifi.flowfile.repository.rocksdb.deserialization.threads How many threads to use on startup restoring the FlowFile state. The
default value is 16.

nifi.flowfile.repository.rocksdb.deserialization.buffer.size Size of the buffer to use on startup restoring the FlowFile state. The
default value is 1000.

nifi.flowfile.repository.rocksdb.sync.period Frequency at which to force a sync to disk. This is the maximum period
a data creation operation may block if nifi.flowfile.repository.rocksdb
.accept.data.loss is false. The default value is 10 milliseconds.

nifi.flowfile.repository.rocksdb.accept.data.loss Whether to accept the loss of received / created data. Setting this true
increases throughput if loss of data is acceptable. The default value is
false.

nifi.flowfile.repository.rocksdb.enable.stall.stop Whether to enable the stall / stop of writes to the repository based on
configured limits. Enabling this feature allows the system to protect
itself by restricting (delaying or denying) operations that increase the
total FlowFile count on the node to prevent the system from being
overwhelmed. The default value is false.

nifi.flowfile.repository.rocksdb.stall.period The period of time to stall when the specified criteria are encountered.
The default value is 100 milliseconds.

nifi.flowfile.repository.rocksdb.stall.flowfile.count The FlowFile count at which to begin stalling writes to the repo. The
default value is 800000.

nifi.flowfile.repository.rocksdb.stall.heap.usage.percent The heap usage at which to begin stalling writes to the repo. The
default value is 95%.

nifi.flowfile.repository.rocksdb.stop.flowfile.count The FlowFile count at which to begin stopping the creation of new
FlowFiles. The default value is 1100000.

nifi.flowfile.repository.rocksdb.stop.heap.usage.percent The heap usage at which to begin stopping the creation of new
FlowFiles. The default value is 99.9%.

nifi.flowfile.repository.rocksdb.remove.orphaned.flowfiles.on.startup Whether to allow the repository to remove FlowFiles it cannot
identify on startup. As this is often the result of a configuration or
synchronization error, it is disabled by default. This should only be
enabled if you are absolutely certain you want to lose the data in
question. The default value is false.

nifi.flowfile.repository.rocksdb.enable.recovery.mode Whether to enable "recovery mode". This limits the number of
FlowFiles loaded into the graph at a time, while not actually removing
any FlowFiles (or content) from the system. This allows for the
recovery of a system that is encountering OutOfMemory errors or
similar on startup. This should not be enabled unless necessary to
recover a system, and should be disabled as soon as that has been
accomplished.

WARNING: While in recovery mode, do not make modifications to
the graph. Changes to the graph may result in the inability to restore
further FlowFiles from the repository. The default value is false.

nifi.flowfile.repository.rocksdb.recovery.mode.flowfile.count The number of FlowFiles to load into the graph when in "recovery
mode". As FlowFiles leave the system, additional FlowFiles will be
loaded up to this limit. This setting does not prevent FlowFiles from
coming into the system via normal means. The default value is 5000.

99

System Properties

RocksDB-centric Configuration Properties:

Property Description

nifi.flowfile.repository.rocksdb.parallel.threads The number of threads to use for flush and compaction. A good value
is the number of cores. See RockDB DBOptions.setIncreaseParallelism
() for more information. The default value is 8.

nifi.flowfile.repository.rocksdb.max.write.buffer.number The maximum number of write buffers that are built up in memory.
See RockDB ColumnFamilyOptions.setMaxWriteBufferNumber() /
max_write_buffer_number for more information. The default value is
4.

nifi.flowfile.repository.rocksdb.write.buffer.size The amount of data to build up in memory before converting to a
sorted on disk file. Larger values increase performance, especially
during bulk loads. Up to max_write_buffer_number write buffers may
be held in memory at the same time, so you may wish to adjust this
parameter to control memory usage. See RockDB ColumnFamilyOpti
ons.setWriteBufferSize() / write_buffer_size for more information. The
default value is 256 MB.

nifi.flowfile.repository.rocksdb.level.0.slowdown.writes.trigger A soft limit on number of level-0 files. Writes are slowed at this point.
A values less than 0 means no write slow down will be triggered by the
number of files in level-0. See RocksDB ColumnFamilyOptions.setL
evel0SlowdownWritesTrigger() / level0_slowdown_writes_trigger for
more information. The default value is 20.

nifi.flowfile.repository.rocksdb.level.0.stop.writes.trigger The maximum number of level-0 files. Writes will be stopped at this
point. See RocksDB ColumnFamilyOptions.setLevel0StopWritesT
rigger() / level0_stop_writes_trigger for more information. The default
value is 40.

nifi.flowfile.repository.rocksdb.delayed.write.bytes.per.second The limited write rate to the DB if slowdown is triggered. RocksDB
may decide to slow down more if the compaction gets behind
further. See RocksDB DBOptions.setDelayedWriteRate() for more
information. The default value is 16 MB.

nifi.flowfile.repository.rocksdb.max.background.flushes Specifies the maximum number of concurrent background flush jobs.
See RocksDB DBOptions.setMaxBackgroundFlushes() / max_back
ground_flushes for more information. The default value is 1.

nifi.flowfile.repository.rocksdb.max.background.compactions Specifies the maximum number of concurrent background compaction
jobs. See RocksDB DBOptions.setMaxBackgroundCompactions() /
max_background_compactions for more information. The default value
is 1.

nifi.flowfile.repository.rocksdb.min.write.buffer.number.to.merge The minimum number of write buffers to merge together before writing
to storage. See RocksDB ColumnFamilyOptions.setMinWriteBuffe
rNumberToMerge() / min_write_buffer_number_to_merge for more
information. The default value is 1.

nifi.flowfile.repository.rocksdb.stat.dump.period The period at which to dump rocksdb.stats to the log. See RocksDB
DBOptions.setStatsDumpPeriodSec() / stats_dump_period_sec for
more information. The default value is 600 sec.

Swap Management

NiFi keeps FlowFile information in memory (the JVM) but during surges of incoming data, the FlowFile information
can start to take up so much of the JVM that system performance suffers. To counteract this effect, NiFi "swaps" the
FlowFile information to disk temporarily until more JVM space becomes available again. These properties govern
how that process occurs.

100

System Properties

Property Description

nifi.swap.manager.implementation The Swap Manager implementation. The default value is org.apache.n
ifi.controller.FileSystemSwapManager and should not be changed.

nifi.queue.swap.threshold The queue threshold at which NiFi starts to swap FlowFile information
to disk. The default value is 20000.

nifi.swap.in.period The swap in period. The default value is 5 sec.

nifi.swap.in.threads The number of threads to use for swapping in. The default value is 1.

nifi.swap.out.period The swap out period. The default value is 5 sec.

nifi.swap.out.threads The number of threads to use for swapping out. The default value is 4.

Content Repository

The Content Repository holds the content for all the FlowFiles in the system. By default, it is installed in the same
root installation directory as all the other repositories; however, administrators will likely want to configure it on a
separate drive if available. If nothing else, it is best if the Content Repository is not on the same drive as the FlowFile
Repository. In dataflows that handle a large amount of data, the Content Repository could fill up a disk and the
FlowFile Repository, if also on that disk, could become corrupt. To avoid this situation, configure these repositories
on different drives.

Property Description

nifi.content.repository.implementation The Content Repository implementation. The default value is org.apac
he.nifi.controller.repository.FileSystemRepository and should only be
changed with caution. To store flowfile content in memory instead of
on disk (at the risk of data loss in the event of power/machine failure),
set this property to org.apache.nifi.controller.repository.VolatileConten
tRepository.

File System Content Repository Properties

Property Description

nifi.content.repository.implementation The Content Repository implementation. The default value is org.apac
he.nifi.controller.repository.FileSystemRepository and should only be
changed with caution. To store flowfile content in memory instead of
on disk (at the risk of data loss in the event of power/machine failure),
set this property to org.apache.nifi.controller.repository.VolatileConten
tRepository.

nifi.content.claim.max.appendable.size The maximum size for a content claim. The default value is 1 MB.

nifi.content.claim.max.flow.files The maximum number of FlowFiles to assign to one content claim. The
default value is 100.

nifi.content.repository.directory.default* The location of the Content Repository. The default value is ./conten
t_repository.NOTE: Multiple content repositories can be specified by
using the nifi.content.repository.directory. prefix with unique suffixes
and separate paths as values. For example, to provide two additional
locations to act as part of the content repository, a user could also
specify additional properties with keys of:nifi.content.repository.dire
ctory.content1=/repos/content1 nifi.content.repository.directory.conten
t2=/repos/content2 Providing three total locations, including nifi.con
tent.repository.directory.default.

101

System Properties

Property Description

nifi.content.repository.archive.max.retention.period If archiving is enabled (see nifi.content.repository.archive.enabled
below), then this property specifies the maximum amount of time to
keep the archived data. The default value is 12 hours.

nifi.content.repository.archive.max.usage.percentage If archiving is enabled (see nifi.content.repository.archive.enabled
below), then this property must have a value that indicates the content
repository disk usage percentage at which archived data begins to be
removed. If the archive is empty and content repository disk usage
is above this percentage, then archiving is temporarily disabled.
Archiving will resume when disk usage is below this percentage. The
default value is 50%.

nifi.content.repository.archive.enabled To enable content archiving, set this to true and specify a value for the
nifi.content.repository.archive.max.usage.percentage property above.
Content archiving enables the provenance UI to view or replay content
that is no longer in a dataflow queue. By default, archiving is enabled.

nifi.content.repository.always.sync If set to true, any change to the repository will be synchronized to the
disk, meaning that NiFi will ask the operating system not to cache the
information. This is very expensive and can significantly reduce NiFi
performance. However, if it is false, there could be the potential for
data loss if either there is a sudden power loss or the operating system
crashes. The default value is false.

nifi.content.viewer.url The URL for a web-based content viewer if one is available. It is blank
by default.

Encrypted File System Content Repository Properties

All of the properties defined above (see File System Content Repository Properties) still apply. Only encryption-
specific properties are listed here. See Encrypted Content Repository in the User Guide for more information.

Property Description

nifi.content.repository.encryption.key.provider.implementation This is the fully-qualified class name of the key provider. A key
provider is the datastore interface for accessing the encryption
key to protect the content claims. There are currently two
implementations - StaticKeyProvider which reads a key directly from
nifi.properties, and FileBasedKeyProvider which reads n many keys
from an encrypted file. The interface is extensible, and HSM-backed or
other providers are expected in the future.

nifi.content.repository.encryption.key.provider.location The path to the key definition resource (empty for StaticKeyProvider,
./keys.nkp or similar path for FileBasedKeyProvider). For future
providers like an HSM, this may be a connection string or URL.

nifi.content.repository.encryption.key.id The active key ID to use for encryption (e.g. Key1).

nifi.content.repository.encryption.key The key to use for StaticKeyProvider. The key format is hex-encoded
(0123456789ABCDEFFEDCBA98765432100123456789ABCDEF
FEDCBA9876543210) but can also be encrypted using the ./encrypt-co
nfig.sh tool in NiFi Toolkit (see the Encrypt-Config Tool section in the
NiFi Toolkit Guide for more information).

nifi.content.repository.encryption.key.id.* Allows for additional keys to be specified for the StaticKeyProvider.
For example, the line nifi.content.repository.encryption.key.id.Key2=0
12…210 would provide an available key Key2.

The simplest configuration is below:

nifi.content.repository.implementation=org.apache.nifi.controller.repository
.crypto.EncryptedFileSystemRepository

102

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#file-system-content-repository-properties
https://nifi.apache.org/docs/nifi-docs/html/user-guide.html#encrypted-content
https://nifi.apache.org/docs/nifi-docs/html/toolkit-guide.html#encrypt_config_tool
https://nifi.apache.org/docs/nifi-docs/html/toolkit-guide.html

System Properties

nifi.content.repository.encryption.key.provider.implementation=org.apache.
nifi.security.kms.StaticKeyProvider
nifi.content.repository.encryption.key.provider.location=
nifi.content.repository.encryption.key.id=Key1
nifi.content.repository.encryption.key=0123456789ABCDEFFEDCBA98765432100123
456789ABCDEFFEDCBA9876543210

Volatile Content Repository Properties

Property Description

nifi.volatile.content.repository.max.size The Content Repository maximum size in memory. The default value
is 100 MB.

nifi.volatile.content.repository.block.size The Content Repository block size. The default value is 32 KB.

Provenance Repository

The Provenance Repository contains the information related to Data Provenance. The next four sections are for
Provenance Repository properties.

103

System Properties

Property Description

nifi.provenance.repository.implementation The Provenance Repository implementation. The default value is org.
apache.nifi.provenance.WriteAheadProvenanceRepository. Three
additional repositories are available as well. To store provenance
events in memory instead of on disk (in which case all events will be
lost on restart, and events will be evicted in a first-in-first-out order),
set this property to org.apache.nifi.provenance.VolatileProvenanceRep
ository. This leaves a configurable number of Provenance Events in the
Java heap, so the number of events that can be retained is very limited.

A third and fourth option are available: org.apache.nifi.provenance.P
ersistentProvenanceRepository and org.apache.nifi.provenance.Encry
ptedWriteAheadProvenanceRepository. The PersistentProvenance
Repository was originally written with the simple goal of persisting
Provenance Events as they are generated and providing the ability to
iterate over those events sequentially. Later, it was desired to be able
to compress the data so that more data could be stored. After that, the
ability to index and query the data was added. As requirements evolved
over time, the repository kept changing without any major redesigns.
When used in a NiFi instance that is responsible for processing large
volumes of small FlowFiles, the PersistentProvenanceRepository can
quickly become a bottleneck. The WriteAheadProvenanceReposito
ry was then written to provide the same capabilities as the Persiste
ntProvenanceRepository while providing far better performance. The
WriteAheadProvenanceRepository was added in version 1.2.0 of NiFi.
Since then, it has proven to be very stable and robust and as such was
made the default implementation. The PersistentProvenanceRepo
sitory is now considered deprecated and should no longer be used. If
administering an instance of NiFi that is currently using the Persiste
ntProvenanceRepository, it is highly recommended to upgrade to the
WriteAheadProvenanceRepository. Doing so is as simple as changing
the implementation property value from org.apache.nifi.provenance.P
ersistentProvenanceRepository to org.apache.nifi.provenance.Write
AheadProvenanceRepository. Because the Provenance Repository is
backward compatible, there will be no loss of data or functionality.

The EncryptedWriteAheadProvenanceRepository builds upon the Writ
eAheadProvenanceRepository and ensures that data is encrypted at
rest.

NOTE: The WriteAheadProvenanceRepository will make use of
the Provenance data stored by the PersistentProvenanceRepository.
However, the PersistentProvenanceRepository may not be able to read
the data written by the WriteAheadProvenanceRepository. Therefore,
once the Provenance Repository is changed to use the WriteAheadPr
ovenanceRepository, it cannot be changed back to the PersistentProven
anceRepository without deleting the data in the Provenance Repository.

Write Ahead Provenance Repository Properties

Property Description

nifi.provenance.repository.directory.default* The location of the Provenance Repository. The default value is ./pr
ovenance_repository.NOTE: Multiple provenance repositories can be
specified by using the nifi.provenance.repository.directory. prefix with
unique suffixes and separate paths as values. For example, to provide
two additional locations to act as part of the provenance repository, a
user could also specify additional properties with keys of:nifi.provena
nce.repository.directory.provenance1=/repos/provenance1 nifi.provena
nce.repository.directory.provenance2=/repos/provenance2 Providing
three total locations, including nifi.provenance.repository.directory.def
ault.

nifi.provenance.repository.max.storage.time The maximum amount of time to keep data provenance information.
The default value is 24 hours.

104

System Properties

Property Description

nifi.provenance.repository.max.storage.size The maximum amount of data provenance information to store at
a time. The default value is 1 GB. The Data Provenance capability
can consume a great deal of storage space because so much data is
kept. For production environments, values of 1-2 TB or more is not
uncommon. The repository will write to a single "event file" (or set
of "event files" if multiple storage locations are defined, as described
above) for some period of time (defined by the nifi.provenance.
repository.rollover.time and nifi.provenance.repository.rollover.size
properties). Data is always aged off one file at a time, so it is not
advisable to write to a single "event file" for a tremendous amount of
time, as it will prevent old data from aging off as smoothly.

nifi.provenance.repository.rollover.time The amount of time to wait before rolling over the "event file" that the
repository is writing to.

nifi.provenance.repository.rollover.size The amount of data to write to a single "event file." The default value
is 100 MB. For production environments where a very large amount of
Data Provenance is generated, a value of 1 GB is also very reasonable.

nifi.provenance.repository.query.threads The number of threads to use for Provenance Repository queries. The
default value is 2.

nifi.provenance.repository.index.threads The number of threads to use for indexing Provenance events so that
they are searchable. The default value is 2. For flows that operate on
a very high number of FlowFiles, the indexing of Provenance events
could become a bottleneck. If this happens, increasing the value of this
property may increase the rate at which the Provenance Repository is
able to process these records, resulting in better overall throughput. It
is advisable to use at least 1 thread per storage location (i.e., if there
are 3 storage locations, at least 3 threads should be used). For high
throughput environments, where more CPU and disk I/O is available,
it may make sense to increase this value significantly. Typically going
beyond 2-4 threads per storage location is not valuable. However, this
can be tuned depending on the CPU resources available compared to
the I/O resources.

nifi.provenance.repository.compress.on.rollover Indicates whether to compress the provenance information when an
"event file" is rolled over. The default value is true.

nifi.provenance.repository.always.sync If set to true, any change to the repository will be synchronized to the
disk, meaning that NiFi will ask the operating system not to cache the
information. This is very expensive and can significantly reduce NiFi
performance. However, if it is false, there could be the potential for
data loss if either there is a sudden power loss or the operating system
crashes. The default value is false.

nifi.provenance.repository.indexed.fields This is a comma-separated list of the fields that should be indexed and
made searchable. Fields that are not indexed will not be searchable.
Valid fields are: EventType, FlowFileUUID, Filename, TransitURI,
ProcessorID, AlternateIdentifierURI, Relationship, Details. The default
value is: EventType, FlowFileUUID, Filename, ProcessorID.

nifi.provenance.repository.indexed.attributes This is a comma-separated list of FlowFile Attributes that should
be indexed and made searchable. It is blank by default. But some
good examples to consider are filename and mime.type as well as any
custom attributes you might use which are valuable for your use case.

105

System Properties

Property Description

nifi.provenance.repository.index.shard.size The repository uses Apache Lucene to performing indexing and
searching capabilities. This value indicates how large a Lucene Index
should become before the Repository starts writing to a new Index.
Large values for the shard size will result in more Java heap usage
when searching the Provenance Repository but should provide better
performance. The default value is 500 MB. However, this is due to the
fact that defaults are tuned for very small environments where most
users begin to use NiFi. For production environments, it is advisable
to change this value to 4 to 8 GB. Once all Provenance Events in the
index have been aged off from the "event files," the index will be
destroyed as well.

NOTE: This value should be smaller than (no more than half of) the
nifi.provenance.repository.max.storage.size property.

nifi.provenance.repository.max.attribute.length Indicates the maximum length that a FlowFile attribute can be when
retrieving a Provenance Event from the repository. If the length of
any attribute exceeds this value, it will be truncated when the event is
retrieved. The default value is 65536.

nifi.provenance.repository.concurrent.merge.threads Apache Lucene creates several "segments" in an Index. These
segments are periodically merged together in order to provide faster
querying. This property specifies the maximum number of threads that
are allowed to be used for each of the storage directories. The default
value is 2. For high throughput environments, it is advisable to set the
number of index threads larger than the number of merge threads *
the number of storage locations. For example, if there are 2 storage
locations and the number of index threads is set to 8, then the number
of merge threads should likely be less than 4. While it is not critical
that this be done, setting the number of merge threads larger than
this can result in all index threads being used to merge, which would
cause the NiFi flow to periodically pause while indexing is happening,
resulting in some data being processed with much higher latency than
other data.

nifi.provenance.repository.warm.cache.frequency Each time that a Provenance query is run, the query must first search
the Apache Lucene indices (at least, in most cases - there are some
queries that are run often and the results are cached to avoid searching
the Lucene indices). When a Lucene index is opened for the first time,
it can be very expensive and take several seconds. This is compounded
by having many different indices, and can result in a Provenance query
taking much longer. After the index has been opened, the Operating
System's disk cache will typically hold onto enough data to make re-
opening the index much faster - at least for a period of time, until the
disk cache evicts this data. If this value is set, NiFi will periodically
open each Lucene index and then close it, in order to "warm" the cache.
This will result in far faster queries when the Provenance Repository is
large. As with all great things, though, it comes with a cost. Warming
the cache does take some CPU resources, but more importantly it will
evict other data from the Operating System disk cache and will result
in reading (potentially a great deal of) data from the disk. This can
result in lower NiFi performance. However, if NiFi is running in an
environment where CPU and disk are not fully utilized, this feature
can result in far faster Provenance queries. The default value for this
property is blank (i.e. disabled).

Encrypted Write Ahead Provenance Repository Properties

All of the properties defined above (see Write Ahead Repository Properties) still apply. Only encryption-specific
properties are listed here. See Encrypted Provenance Repository in the User Guide for more information.

106

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#write-ahead-provenance-repository-properties
https://nifi.apache.org/docs/nifi-docs/html/user-guide.html#encrypted-provenance

System Properties

Property Description

nifi.provenance.repository.debug.frequency Controls the number of events processed between DEBUG statements
documenting the performance metrics of the repository. This value
is only used when DEBUG level statements are enabled in the log
configuration.

nifi.provenance.repository.encryption.key.provider.implementation This is the fully-qualified class name of the key provider. A key
provider is the datastore interface for accessing the encryption
key to protect the provenance events. There are currently two
implementations - StaticKeyProvider which reads a key directly from
nifi.properties, and FileBasedKeyProvider which reads n many keys
from an encrypted file. The interface is extensible, and HSM-backed or
other providers are expected in the future.

nifi.provenance.repository.encryption.key.provider.location The path to the key definition resource (empty for StaticKeyProvider,
./keys.nkp or similar path for FileBasedKeyProvider). For future
providers like an HSM, this may be a connection string or URL.

nifi.provenance.repository.encryption.key.id The active key ID to use for encryption (e.g. Key1).

nifi.provenance.repository.encryption.key The key to use for StaticKeyProvider. The key format is hex-encoded
(0123456789ABCDEFFEDCBA98765432100123456789ABCDEF
FEDCBA9876543210) but can also be encrypted using the ./encrypt-co
nfig.sh tool in NiFi Toolkit (see the Encrypt-Config Tool section in the
NiFi Toolkit Guide for more information).

nifi.provenance.repository.encryption.key.id.* Allows for additional keys to be specified for the StaticKeyProvider.
For example, the line nifi.provenance.repository.encryption.key.id.Key
2=012…210 would provide an available key Key2.

The simplest configuration is below:

nifi.provenance.repository.implementation=org.apache.nifi.provenance.Encrypt
edWriteAheadProvenanceRepository
nifi.provenance.repository.debug.frequency=100
nifi.provenance.repository.encryption.key.provider.implementation=org.apache
.nifi.security.kms.StaticKeyProvider
nifi.provenance.repository.encryption.key.provider.location=
nifi.provenance.repository.encryption.key.id=Key1
nifi.provenance.repository.encryption.key=0123456789ABCDEFFEDCBA987654321001
23456789ABCDEFFEDCBA9876543210

Persistent Provenance Repository Properties

Property Description

nifi.provenance.repository.directory.default* The location of the Provenance Repository. The default value is ./pr
ovenance_repository.NOTE: Multiple provenance repositories can be
specified by using the nifi.provenance.repository.directory. prefix with
unique suffixes and separate paths as values. For example, to provide
two additional locations to act as part of the provenance repository, a
user could also specify additional properties with keys of:nifi.provena
nce.repository.directory.provenance1=/repos/provenance1 nifi.provena
nce.repository.directory.provenance2=/repos/provenance2 Providing
three total locations, including nifi.provenance.repository.directory.def
ault.

nifi.provenance.repository.max.storage.time The maximum amount of time to keep data provenance information.
The default value is 24 hours.

nifi.provenance.repository.max.storage.size The maximum amount of data provenance information to store at a
time. The default value is 1 GB.

107

https://nifi.apache.org/docs/nifi-docs/html/toolkit-guide.html#encrypt_config_tool
https://nifi.apache.org/docs/nifi-docs/html/toolkit-guide.html

System Properties

Property Description

nifi.provenance.repository.rollover.time The amount of time to wait before rolling over the latest data
provenance information so that it is available in the User Interface. The
default value is 30 secs.

nifi.provenance.repository.rollover.size The amount of information to roll over at a time. The default value is
100 MB.

nifi.provenance.repository.query.threads The number of threads to use for Provenance Repository queries. The
default value is 2.

nifi.provenance.repository.index.threads The number of threads to use for indexing Provenance events so that
they are searchable. The default value is 2. For flows that operate on
a very high number of FlowFiles, the indexing of Provenance events
could become a bottleneck. If this is the case, a bulletin will appear,
indicating that "The rate of the dataflow is exceeding the provenance
recording rate. Slowing down flow to accommodate." If this happens,
increasing the value of this property may increase the rate at which the
Provenance Repository is able to process these records, resulting in
better overall throughput.

nifi.provenance.repository.compress.on.rollover Indicates whether to compress the provenance information when
rolling it over. The default value is true.

nifi.provenance.repository.always.sync If set to true, any change to the repository will be synchronized to the
disk, meaning that NiFi will ask the operating system not to cache the
information. This is very expensive and can significantly reduce NiFi
performance. However, if it is false, there could be the potential for
data loss if either there is a sudden power loss or the operating system
crashes. The default value is false.

nifi.provenance.repository.journal.count The number of journal files that should be used to serialize
Provenance Event data. Increasing this value will allow more tasks to
simultaneously update the repository but will result in more expensive
merging of the journal files later. This value should ideally be equal
to the number of threads that are expected to update the repository
simultaneously, but 16 tends to work well in must environments. The
default value is 16.

nifi.provenance.repository.indexed.fields This is a comma-separated list of the fields that should be indexed and
made searchable. Fields that are not indexed will not be searchable.
Valid fields are: EventType, FlowFileUUID, Filename, TransitURI,
ProcessorID, AlternateIdentifierURI, Relationship, Details. The default
value is: EventType, FlowFileUUID, Filename, ProcessorID.

nifi.provenance.repository.indexed.attributes This is a comma-separated list of FlowFile Attributes that should be
indexed and made searchable. It is blank by default. But some good
examples to consider are filename, uuid, and mime.type as well as any
custom attritubes you might use which are valuable for your use case.

nifi.provenance.repository.index.shard.size Large values for the shard size will result in more Java heap usage
when searching the Provenance Repository but should provide better
performance. The default value is 500 MB.

nifi.provenance.repository.max.attribute.length Indicates the maximum length that a FlowFile attribute can be when
retrieving a Provenance Event from the repository. If the length of
any attribute exceeds this value, it will be truncated when the event is
retrieved. The default value is 65536.

Volatile Provenance Repository Properties

108

System Properties

Property Description

nifi.provenance.repository.buffer.size The Provenance Repository buffer size. The default value is 100000
provenance events.

Component Status Repository

The Component Status Repository contains the information for the Component Status History tool in the User
Interface. These properties govern how that tool works.

The buffer.size and snapshot.frequency work together to determine the amount of historical data to retain. As an
example to configure two days worth of historical data with a data point snapshot occurring every 5 minutes you
would configure snapshot.frequency to be "5 mins" and the buffer.size to be "576". To further explain this example
for every 60 minutes there are 12 (60 / 5) snapshot windows for that time period. To keep that data for 48 hours (12 *
48) you end up with a buffer size of 576.

Property Description

nifi.components.status.repository.implementation The Component Status Repository implementation. The default value
is org.apache.nifi.controller.status.history.VolatileComponentStatu
sRepository and should not be changed.

nifi.components.status.repository.buffer.size Specifies the buffer size for the Component Status Repository. The
default value is 1440.

nifi.components.status.snapshot.frequency This value indicates how often to present a snapshot of the components'
status history. The default value is 1 min.

Site to Site Properties

These properties govern how this instance of NiFi communicates with remote instances of NiFi when Remote Process
Groups are configured in the dataflow. Remote Process Groups can choose transport protocol from RAW and HTTP.
Properties named with nifi.remote.input.socket.* are RAW transport protocol specific. Similarly, nifi.remote.input.ht
tp.* are HTTP transport protocol specific properties.

Property Description

nifi.remote.input.host The host name that will be given out to clients to connect to this NiFi
instance for Site-to-Site communication. By default, it is the value from
InetAddress.getLocalHost().getHostName(). On UNIX-like operating
systems, this is typically the output from the hostname command.

nifi.remote.input.secure This indicates whether communication between this instance of NiFi
and remote NiFi instances should be secure. By default, it is set to
false. In order for secure site-to-site to work, set the property to true.
Many other Security Properties must also be configured.

nifi.remote.input.socket.port The remote input socket port for Site-to-Site communication. By
default, it is blank, but it must have a value in order to use RAW socket
as transport protocol for Site-to-Site.

nifi.remote.input.http.enabled Specifies whether HTTP Site-to-Site should be enabled on this host.
By default, it is set to true. Whether a Site-to-Site client uses HTTP or
HTTPS is determined by nifi.remote.input.secure. If it is set to true,
then requests are sent as HTTPS to nifi.web.https.port. If set to false,
HTTP requests are sent to nifi.web.http.port.

109

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#security_properties

System Properties

Property Description

nifi.remote.input.http.transaction.ttl Specifies how long a transaction can stay alive on the server. By
default, it is set to 30 secs. If a Site-to-Site client hasn't proceeded to
the next action after this period of time, the transaction is discarded
from the remote NiFi instance. For example, when a client creates a
transaction but doesn't send or receive flow files, or when a client sends
or receives flow files but doesn't confirm that transaction.

nifi.remote.contents.cache.expiration Specifies how long NiFi should cache information about a remote NiFi
instance when communicating via Site-to-Site. By default, NiFi will
cache the responses from the remote system for 30 secs. This allows
NiFi to avoid constantly making HTTP requests to the remote system,
which is particularly important when this instance of NiFi has many
instances of Remote Process Groups.

Site to Site Routing Properties for Reverse Proxies

Site-to-Site requires peer-to-peer communication between a client and a remote NiFi node. E.g. if a remote NiFi
cluster has 3 nodes (nifi0, nifi1 and nifi2) then client requests have to be reachable to each of those remote nodes.

If a NiFi cluster is planned to receive/transfer data from/to Site-to-Site clients over the internet or a company firewall,
a reverse proxy server can be deployed in front of the NiFi cluster nodes as a gateway to route client requests to
upstream NiFi nodes, to reduce number of servers and ports those have to be exposed.

In such environment, the same NiFi cluster would also be expected to be accessed by Site-to-Site clients within the
same network. Sending FlowFiles to itself for load distribution among NiFi cluster nodes can be a typical example. In
this case, client requests should be routed directly to a node without going through the reverse proxy.

In order to support such deployments, remote NiFi clusters need to expose its Site-to-Site endpoints dynamically
based on client request contexts. Following properties configure how peers should be exposed to clients. A routing
definition consists of 4 properties, when, hostname, port, and secure, grouped by protocol and name. Multiple routing
definitions can be configured. protocol represents Site-to-Site transport protocol, i.e. RAW or HTTP.

Property Description

nifi.remote.route.{protocol}.{name}.when Boolean value, true or false. Controls whether the routing definition for
this name should be used.

nifi.remote.route.{protocol}.{name}.hostname Specify hostname that will be introduced to Site-to-Site clients for
further communications.

nifi.remote.route.{protocol}.{name}.port Specify port number that will be introduced to Site-to-Site clients for
further communications.

nifi.remote.route.{protocol}.{name}.secure Boolean value, true or false. Specify whether the remote peer should be
accessed via secure protocol. Defaults to false.

All of above routing properties can use NiFi Expression Language to compute target peer description from request
context. Available variables are:

Variable name Description

s2s.{source|target}.hostname Hostname of the source where the request came from, and the original
target.

s2s.{source|target}.port Same as above, for ports. Source port may not be useful as it is just a
client side TCP port.

s2s.{source|target}.secure Same as above, for secure or not.

s2s.protocol The name of Site-to-Site protocol being used, RAW or HTTP.

110

System Properties

Variable name Description

s2s.request The name of current request type, SiteToSiteDetail or Peers. See Site-
to-Site protocol sequence below for detail.

HTTP request headers HTTP request header values can be referred by its name.

Site to Site protocol sequence

Configuring these properties correctly would require some understandings on Site-to-Site protocol sequence.

1. A client initiates Site-to-Site protocol by sending a HTTP(S) request to the specified remote URL to get remote
cluster Site-to-Site information. Specifically, to '/nifi-api/site-to-site'. This request is called SiteToSiteDetail.

2. A remote NiFi node responds with its input and output ports, and TCP port numbers for RAW and TCP transport
protocols.

3. The client sends another request to get remote peers using the TCP port number returned at #2. From this request,
raw socket communication is used for RAW transport protocol, while HTTP keeps using HTTP(S). This request is
called Peers.

4. A remote NiFi node responds with list of available remote peers containing hostname, port, secure and workload
such as the number of queued FlowFiles. From this point, further communication is done between the client and
the remote NiFi node.

5. The client decides which peer to transfer data from/to, based on workload information.
6. The client sends a request to create a transaction to a remote NiFi node.
7. The remote NiFi node accepts the transaction.
8. Data is sent to the target peer. Multiple Data packets can be sent in batch manner.
9. When there is no more data to send, or reached to batch limit, the transaction is confirmed on both end by

calculating CRC32 hash of sent data.
10. The transaction is committed on both end.

Reverse Proxy Configurations

Most reverse proxy software implement HTTP and TCP proxy mode. For NiFi RAW Site-to-Site protocol, both
HTTP and TCP proxy configurations are required, and at least 2 ports needed to be opened. NiFi HTTP Site-to-Site
protocol can minimize the required number of open ports at the reverse proxy to 1.

Setting correct HTTP headers at reverse proxies are crucial for NiFi to work correctly, not only routing requests but
also authorize client requests. See also Proxy Configuration for details.

There are two types of requests-to-NiFi-node mapping techniques those can be applied at reverse proxy servers. One
is 'Server name to Node' and the other is 'Port number to Node'.

With 'Server name to Node', the same port can be used to route requests to different upstream NiFi nodes based on the
requested server name (e.g. nifi0.example.com, nifi1.example.com). Host name resolution should be configured to
map different host names to the same reverse proxy address, that can be done by adding /etc/hosts file or DNS server
entries. Also, if clients to reverse proxy uses HTTPS, reverse proxy server certificate should have wildcard common
name or SAN to be accessed by different host names.

Some reverse proxy technologies do not support server name routing rules, in such case, use 'Port number to Node'
technique. 'Port number to Node' mapping requires N open port at a reverse proxy for a NiFi cluster consists of N
nodes.

Refer to the following examples for actual configurations.

Site to Site and Reverse Proxy Examples

Here are some example reverse proxy and NiFi setups to illustrate what configuration files look like.

Client1 in the following diagrams represents a client that does not have direct access to NiFi nodes, and it accesses
through the reverse proxy, while Client2 has direct access.

111

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#proxy_configuration

System Properties

In this example, Nginx is used as a reverse proxy.

Example 1: RAW - Server name to Node mapping

1. Client1 initiates Site-to-Site protocol, the request is routed to one of upstream NiFi nodes. The NiFi node
computes Site-to-Site port for RAW. By the routing rule example1 in nifi.properties shown below, port 10443 is
returned.

2. Client1 asks peers to nifi.example.com:10443, the request is routed to nifi0:8081. The NiFi node computes
available peers, by example1 routing rule, nifi0:8081 is converted to nifi0.example.com:10443, so are nifi1 and
nifi2. As a result, nifi0.example.com:10443, nifi1.example.com:10443 and nifi2.example.com:10443 are returned.

3. Client1 decides to use nifi2.example.com:10443 for further communication.
4. On the other hand, Client2 has two URIs for Site-to-Site bootstrap URIs, and initiates the protocol using one of

them. The example1 routing does not match this for this request, and port 8081 is returned.
5. Client2 asks peers from nifi1:8081. The example1 does not match, so the original nifi0:8081, nifi1:8081 and nifi

2:8081 are returned as they are.
6. Client2 decides to use nifi2:8081 for further communication.

Routing rule example1 defined in nifi.properties (all nodes have the same routing configuration):

S2S Routing for RAW, using server name to node
nifi.remote.route.raw.example1.when=\
${X-ProxyHost:equals('nifi.example.com'):or(\
${s2s.source.hostname:equals('nifi.example.com'):or(\
${s2s.source.hostname:equals('192.168.99.100')})})}
nifi.remote.route.raw.example1.hostname=${s2s.target.hostname}.example.com
nifi.remote.route.raw.example1.port=10443
nifi.remote.route.raw.example1.secure=true

nginx.conf :

http {

 upstream nifi {
 server nifi0:8443;
 server nifi1:8443;
 server nifi2:8443;
 }

 # Use dnsmasq so that hostnames such as 'nifi0' can be resolved by /etc/
hosts
 resolver 127.0.0.1;

 server {
 listen 443 ssl;
 server_name nifi.example.com;
 ssl_certificate /etc/nginx/nginx.crt;
 ssl_certificate_key /etc/nginx/nginx.key;

 proxy_ssl_certificate /etc/nginx/nginx.crt;
 proxy_ssl_certificate_key /etc/nginx/nginx.key;
 proxy_ssl_trusted_certificate /etc/nginx/nifi-cert.pem;

112

System Properties

 location / {
 proxy_pass https://nifi;
 proxy_set_header X-ProxyScheme https;
 proxy_set_header X-ProxyHost nginx.example.com;
 proxy_set_header X-ProxyPort 17590;
 proxy_set_header X-ProxyContextPath /;
 proxy_set_header X-ProxiedEntitiesChain $ssl_client_s_dn;
 }
 }
}

stream {

 map $ssl_preread_server_name $nifi {
 nifi0.example.com nifi0;
 nifi1.example.com nifi1;
 nifi2.example.com nifi2;
 default nifi0;
 }

 resolver 127.0.0.1;
 server {
 listen 10443;
 proxy_pass $nifi:8081;
 }
}

Example 2: RAW - Port number to Node mapping

The example2 routing maps original host names (nifi0, nifi1 and nifi2) to different proxy ports (10443, 10444 and
10445) using equals and ifElse expressions.

Routing rule example2 defined in nifi.properties (all nodes have the same routing configuration):

S2S Routing for RAW, using port number to node
nifi.remote.route.raw.example2.when=\
${X-ProxyHost:equals('nifi.example.com'):or(\
${s2s.source.hostname:equals('nifi.example.com'):or(\
${s2s.source.hostname:equals('192.168.99.100')})})}
nifi.remote.route.raw.example2.hostname=nifi.example.com
nifi.remote.route.raw.example2.port=\
${s2s.target.hostname:equals('nifi0'):ifElse('10443',\
${s2s.target.hostname:equals('nifi1'):ifElse('10444',\
${s2s.target.hostname:equals('nifi2'):ifElse('10445',\
'undefined')})})}
nifi.remote.route.raw.example2.secure=true

nginx.conf :

http {
 # Same as example 1.

113

System Properties

}

stream {
 map $ssl_preread_server_name $nifi {
 nifi0.example.com nifi0;
 nifi1.example.com nifi1;
 nifi2.example.com nifi2;
 default nifi0;
 }

 resolver 127.0.0.1;

 server {
 listen 10443;
 proxy_pass nifi0:8081;
 }
 server {
 listen 10444;
 proxy_pass nifi1:8081;
 }
 server {
 listen 10445;
 proxy_pass nifi2:8081;
 }
}

Example 3: HTTP - Server name to Node mapping

Routing rule example3 defined in nifi.properties (all nodes have the same routing configuration):

S2S Routing for HTTP
nifi.remote.route.http.example3.when=${X-ProxyHost:contains('.example.com')}
nifi.remote.route.http.example3.hostname=${s2s.target.hostname}.example.com
nifi.remote.route.http.example3.port=443
nifi.remote.route.http.example3.secure=true

nginx.conf :

http {
 upstream nifi_cluster {
 server nifi0:8443;
 server nifi1:8443;
 server nifi2:8443;
 }

 # If target node is not specified, use one from cluster.
 map $http_host $nifi {
 nifi0.example.com:443 "nifi0:8443";
 nifi1.example.com:443 "nifi1:8443";
 nifi2.example.com:443 "nifi2:8443";
 default "nifi_cluster";
 }

114

System Properties

 resolver 127.0.0.1;

 server {
 listen 443 ssl;
 server_name ~^(.+\.example\.com)$;
 ssl_certificate /etc/nginx/nginx.crt;
 ssl_certificate_key /etc/nginx/nginx.key;

 proxy_ssl_certificate /etc/nginx/nginx.crt;
 proxy_ssl_certificate_key /etc/nginx/nginx.key;
 proxy_ssl_trusted_certificate /etc/nginx/nifi-cert.pem;
 location / {
 proxy_pass https://$nifi;
 proxy_set_header X-ProxyScheme https;
 proxy_set_header X-ProxyHost $1;
 proxy_set_header X-ProxyPort 443;
 proxy_set_header X-ProxyContextPath /;
 proxy_set_header X-ProxiedEntitiesChain $ssl_client_s_dn;
 }
 }
}

Web Properties

These properties pertain to the web-based User Interface.

Property Description

nifi.web.war.directory This is the location of the web war directory. The default value is ./lib.

nifi.web.http.host The HTTP host. It is blank by default.

nifi.web.http.port The HTTP port. The default value is 8080.

nifi.web.http.port.forwarding The port which forwards incoming HTTP requests to nifi.web.http.host.
This property is designed to be used with 'port forwarding', when NiFi
has to be started by a non-root user for better security, yet it needs to be
accessed via low port to go through a firewall. For example, to expose
NiFi via HTTP protocol on port 80, but actually listening on port 8080,
you need to configure OS level port forwarding such as iptables (Linux/
Unix) or pfctl (OS X) that redirects requests from 80 to 8080. Then set
nifi.web.http.port as 8080, and nifi.web.http.port.forwarding as 80. It is
blank by default.

nifi.web.http.network.interface* The name of the network interface to which NiFi should bind for HTTP
requests. It is blank by default.NOTE: Multiple network interfaces can
be specified by using the nifi.web.http.network.interface. prefix with
unique suffixes and separate network interface names as values. For
example, to provide two additional network interfaces, a user could also
specify additional properties with keys of:nifi.web.http.network.interf
ace.eth0=eth0 nifi.web.http.network.interface.eth1=eth1 Providing three
total network interfaces, including nifi.web.http.network.interface.defa
ult.

nifi.web.https.host The HTTPS host. It is blank by default.

nifi.web.https.port The HTTPS port. It is blank by default. When configuring NiFi to run
securely, this port should be configured.

nifi.web.https.port.forwarding Same as nifi.web.http.port.forwarding, but with HTTPS for secure
communication. It is blank by default.

115

System Properties

Property Description

nifi.web.https.network.interface* The name of the network interface to which NiFi should bind for
HTTPS requests. It is blank by default.NOTE: Multiple network
interfaces can be specified by using the nifi.web.https.network.interface.
prefix with unique suffixes and separate network interface names as
values. For example, to provide two additional network interfaces, a
user could also specify additional properties with keys of:nifi.web.htt
ps.network.interface.eth0=eth0 nifi.web.https.network.interface.eth1=et
h1 Providing three total network interfaces, including nifi.web.https.n
etwork.interface.default.

nifi.web.jetty.working.directory The location of the Jetty working directory. The default value is ./work/
jetty.

nifi.web.jetty.threads The number of Jetty threads. The default value is 200.

nifi.web.max.header.size The maximum size allowed for request and response headers. The default
value is 16 KB.

nifi.web.proxy.host A comma separated list of allowed HTTP Host header values to consider
when NiFi is running securely and will be receiving requests to a different
host[:port] than it is bound to. For example, when running in a Docker
container or behind a proxy (e.g. localhost:18443, proxyhost:443). By
default, this value is blank meaning NiFi should only allow requests sent
to the host[:port] that NiFi is bound to.

nifi.web.proxy.context.path A comma separated list of allowed HTTP X-ProxyContextPath, X-
Forwarded-Context, or X-Forwarded-Prefix header values to consider.
By default, this value is blank meaning all requests containing a proxy
context path are rejected. Configuring this property would allow requests
where the proxy path is contained in this listing.

Security Properties

These properties pertain to various security features in NiFi. Many of these properties are covered in more detail in
the Security Configuration section of this Administrator's Guide.

Property Description

nifi.sensitive.props.key This is the password used to encrypt any sensitive property values that
are configured in processors. By default, it is blank, but the system
administrator should provide a value for it. It can be a string of any
length, although the recommended minimum length is 10 characters.
Be aware that once this password is set and one or more sensitive
processor properties have been configured, this password should not be
changed.

nifi.sensitive.props.algorithm The algorithm used to encrypt sensitive properties. The default value is
PBEWITHMD5AND256BITAES-CBC-OPENSSL.

nifi.sensitive.props.provider The sensitive property provider. The default value is BC.

nifi.sensitive.props.additional.keys The comma separated list of properties in nifi.properties to encrypt in
addition to the default sensitive properties.

nifi.security.keystore* The full path and name of the keystore. It is blank by default.

nifi.security.keystoreType The keystore type. It is blank by default.

nifi.security.keystorePasswd The keystore password. It is blank by default.

nifi.security.keyPasswd The key password. It is blank by default.

116

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#security_configuration

System Properties

Property Description

nifi.security.truststore* The full path and name of the truststore. It is blank by default.

nifi.security.truststoreType The truststore type. It is blank by default.

nifi.security.truststorePasswd The truststore password. It is blank by default.

nifi.security.user.authorizer Specifies which of the configured Authorizers in the authorizers.xml
file to use. By default, it is set to file-provider.

nifi.security.user.login.identity.provider This indicates what type of login identity provider to use. The
default value is blank, can be set to the identifier from a provider in
the file specified in nifi.login.identity.provider.configuration.file.
Setting this property will trigger NiFi to support username/password
authentication.

nifi.security.ocsp.responder.url This is the URL for the Online Certificate Status Protocol (OCSP)
responder if one is being used. It is blank by default.

nifi.security.ocsp.responder.certificate This is the location of the OCSP responder certificate if one is being
used. It is blank by default.

Identity Mapping Properties

These properties can be utilized to normalize user identities. When implemented, identities authenticated by different
identity providers (certificates, LDAP, Kerberos) are treated the same internally in NiFi. As a result, duplicate users
are avoided and user-specific configurations such as authorizations only need to be setup once per user.

The following examples demonstrate normalizing DNs from certificates and principals from Kerberos:

nifi.security.identity.mapping.pattern.dn=^CN=(.*?), OU=(.*?), O=(.*?), L=(.
?), ST=(.?), C=(.*?)$
nifi.security.identity.mapping.value.dn=$1@$2
nifi.security.identity.mapping.transform.dn=NONE
nifi.security.identity.mapping.pattern.kerb=^(.*?)/instance@(.*?)$
nifi.security.identity.mapping.value.kerb=$1@$2
nifi.security.identity.mapping.transform.kerb=NONE

The last segment of each property is an identifier used to associate the pattern with the replacement value. When a
user makes a request to NiFi, their identity is checked to see if it matches each of those patterns in lexicographical
order. For the first one that matches, the replacement specified in the nifi.security.identity.mapping.value.xxxx
property is used. So a login with CN=localhost, OU=Apache NiFi, O=Apache, L=Santa Monica, ST=CA, C=US
matches the DN mapping pattern above and the DN mapping value $1@$2 is applied. The user is normalized to loca
lhost@Apache NiFi.

In addition to mapping, a transform may be applied. The supported versions are NONE (no transform applied),
LOWER (identity lowercased), and UPPER (identity uppercased). If not specified, the default value is NONE.

Note: These mappings are also applied to the "Initial Admin Identity", "Cluster Node Identity", and any
legacy users in the authorizers.xml file as well as users imported from LDAP (See Authorizers.xml Setup).

Group names can also be mapped. The following example will accept the existing group name but will lowercase it.
This may be helpful when used in conjunction with an external authorizer.

nifi.security.group.mapping.pattern.anygroup=^(.*)$
nifi.security.group.mapping.value.anygroup=$1
nifi.security.group.mapping.transform.anygroup=LOWER

117

System Properties

Note: These mappings are applied to any legacy groups referenced in the authorizers.xml as well as groups
imported from LDAP.

Cluster Common Properties

When setting up a NiFi cluster, these properties should be configured the same way on all nodes.

Property Description

nifi.cluster.protocol.heartbeat.interval The interval at which nodes should emit heartbeats to the Cluster
Coordinator. The default value is 5 sec.

nifi.cluster.protocol.is.secure This indicates whether cluster communications are secure. The default
value is false.

Cluster Node Properties

Configure these properties for cluster nodes.

Property Description

nifi.cluster.is.node Set this to true if the instance is a node in a cluster. The default value is
false.

nifi.cluster.node.address The fully qualified address of the node. It is blank by default.

nifi.cluster.node.protocol.port The node's protocol port. It is blank by default.

nifi.cluster.node.protocol.threads The number of threads that should be used to communicate with other
nodes in the cluster. This property defaults to 10, but for large clusters,
this value may need to be larger.

nifi.cluster.node.protocol.max.threads The maximum number of threads that should be used to communicate
with other nodes in the cluster. This property defaults to 50.

nifi.cluster.node.event.history.size When the state of a node in the cluster is changed, an event is
generated and can be viewed in the Cluster page. This value indicates
how many events to keep in memory for each node. The default value
is 25.

nifi.cluster.node.connection.timeout When connecting to another node in the cluster, specifies how long
this node should wait before considering the connection a failure. The
default value is 5 secs.

nifi.cluster.node.read.timeout When communicating with another node in the cluster, specifies how
long this node should wait to receive information from the remote node
before considering the communication with the node a failure. The
default value is 5 secs.

nifi.cluster.node.max.concurrent.requests The maximum number of outstanding web requests that can be
replicated to nodes in the cluster. If this number of requests is
exceeded, the embedded Jetty server will return a "409: Conflict"
response. This property defaults to 100.

nifi.cluster.firewall.file The location of the node firewall file. This is a file that may be used to
list all the nodes that are allowed to connect to the cluster. It provides
an additional layer of security. This value is blank by default, meaning
that no firewall file is to be used.

118

System Properties

Property Description

nifi.cluster.flow.election.max.wait.time Specifies the amount of time to wait before electing a Flow as the
"correct" Flow. If the number of Nodes that have voted is equal to
the number specified by the nifi.cluster.flow.election.max.candidates
property, the cluster will not wait this long. The default value is 5 mins.
Note that the time starts as soon as the first vote is cast.

nifi.cluster.flow.election.max.candidates Specifies the number of Nodes required in the cluster to cause early
election of Flows. This allows the Nodes in the cluster to avoid having
to wait a long time before starting processing if we reach at least this
number of nodes in the cluster.

nifi.cluster.load.balance.port Specifies the port to listen on for incoming connections for load
balancing data across the cluster. The default value is 6342.

nifi.cluster.load.balance.host Specifies the hostname to listen on for incoming connections for load
balancing data across the cluster. If not specified, will default to the
value used by the nifi.cluster.node.address property.

nifi.cluster.load.balance.connections.per.node The maximum number of connections to create between this node
and each other node in the cluster. For example, if there are 5 nodes
in the cluster and this value is set to 4, there will be up to 20 socket
connections established for load-balancing purposes (5 x 4 = 20). The
default value is 4.

nifi.cluster.load.balance.max.thread.count The maximum number of threads to use for transferring data from
this node to other nodes in the cluster. While a given thread can only
write to a single socket at a time, a single thread is capable of servicing
multiple connections simultaneously because a given connection may
not be available for reading/writing at any given time. The default
value is 8-i.e., up to 8 threads will be responsible for transferring data
to other nodes, regardless of how many nodes are in the cluster.

NOTE: Increasing this value will allow additional threads to be
used for communicating with other nodes in the cluster and writing
the data to the Content and FlowFile Repositories. However, if this
property is set to a value greater than the number of nodes in the cluster
multiplied by the number of connections per node (nifi.cluster.load.ba
lance.connections.per.node), then no further benefit will be gained and
resources will be wasted.

nifi.cluster.load.balance.comms.timeout When communicating with another node, if this amount of time elapses
without making any progress when reading from or writing to a socket,
then a TimeoutException will be thrown. This will then result in
the data either being retried or sent to another node in the cluster,
depending on the configured Load Balancing Strategy. The default
value is 30 sec.

ZooKeeper Properties

NiFi depends on Apache ZooKeeper for determining which node in the cluster should play the role of Primary Node
and which node should play the role of Cluster Coordinator. These properties must be configured in order for NiFi to
join a cluster.

Property Description

nifi.zookeeper.connect.string The Connect String that is needed to connect to Apache ZooKeeper.
This is a comma-separated list of hostname:port pairs. For example,
localhost:2181,localhost:2182,localhost:2183. This should contain a list
of all ZooKeeper instances in the ZooKeeper quorum. This property
must be specified to join a cluster and has no default value.

nifi.zookeeper.connect.timeout How long to wait when connecting to ZooKeeper before considering
the connection a failure. The default value is 3 secs.

119

System Properties

Property Description

nifi.zookeeper.session.timeout How long to wait after losing a connection to ZooKeeper before the
session is expired. The default value is 3 secs.

nifi.zookeeper.root.node The root ZNode that should be used in ZooKeeper. ZooKeeper
provides a directory-like structure for storing data. Each 'directory' in
this structure is referred to as a ZNode. This denotes the root ZNode,
or 'directory', that should be used for storing data. The default value
is /root. This is important to set correctly, as which cluster the NiFi
instance attempts to join is determined by which ZooKeeper instance it
connects to and the ZooKeeper Root Node that is specified.

Kerberos Properties

Property Description

nifi.kerberos.krb5.file* The location of the krb5 file, if used. It is blank by default. At this time,
only a single krb5 file is allowed to be specified per NiFi instance,
so this property is configured here to support SPNEGO and service
principals rather than in individual Processors. If necessary the krb5
file can support multiple realms. Example: /etc/krb5.conf

nifi.kerberos.service.principal* The name of the NiFi Kerberos service principal, if used. It is blank
by default. Note that this property is for NiFi to authenticate as a client
other systems. Example: nifi/nifi.example.com or nifi/nifi.example.co
m@EXAMPLE.COM

nifi.kerberos.service.keytab.location* The file path of the NiFi Kerberos keytab, if used. It is blank by
default. Note that this property is for NiFi to authenticate as a client
other systems. Example: /etc/nifi.keytab

nifi.kerberos.spnego.principal* The name of the NiFi Kerberos service principal, if used. It is blank
by default. Note that this property is used to authenticate NiFi users.
Example: HTTP/nifi.example.com or HTTP/nifi.example.com@EX
AMPLE.COM

nifi.kerberos.spnego.keytab.location* The file path of the NiFi Kerberos keytab, if used. It is blank by
default. Note that this property is used to authenticate NiFi users.
Example: /etc/http-nifi.keytab

nifi.kerberos.spengo.authentication.expiration* The expiration duration of a successful Kerberos user authentication, if
used. The default value is 12 hours.

Analytics Properties

These properties determine the behavior of the internal NiFi predictive analytics capability, such as backpressure
prediction, and should be configured the same way on all nodes.

Property Description

nifi.analytics.predict.enabled This indicates whether prediction should be enabled for the cluster. The
default is false.

nifi.analytics.predict.interval The time interval for which analytical predictions (e.g. queue
saturation) should be made. The default value is 3 mins.

nifi.analytics.query.interval The time interval to query for past observations (e.g. the last 3 minutes
of snapshots). The default value is 5 mins. NOTE: This value should be
at least 3 times greater than nifi.components.status.snapshot.frequency
to ensure enough observations are retrieved for predictions.

120

Upgrading NiFi

Property Description

nifi.analytics.connection.model.implementation The implementation class for the status analytics model used to make
connection predictions. The default value is org.apache.nifi.controller.s
tatus.analytics.models.OrdinaryLeastSquares.

nifi.analytics.connection.model.score.name The name of the scoring type that should be used to evaluate the model.
The default value is rSquared.

nifi.analytics.connection.model.score.threshold The threshold for the scoring value (where model score should be
above given threshold). The default value is .90.

Custom Properties

To configure custom properties for use with NiFi's Expression Language:

• Create the custom property. Ensure that:

• Each custom property contains a distinct property value, so that it is not overridden by existing environment
properties, system properties, or FlowFile attributes.

• Each node in a clustered environment is configured with the same custom properties.
• Update nifi.variable.registry.properties with the location of the custom property file(s):

Property Description

nifi.variable.registry.properties This is a comma-separated list of file location paths for one or more
custom property files.

• Restart your NiFi instance(s) for the updates to be picked up.

Custom properties can also be configured in the NiFi UI.

Upgrading NiFi

The instructions below are general steps to follow when upgrading from a 1.x.0 release to another.

Prior to upgrade you should review the Release Notes carefully to ensure that you understand the changes made in the
new version and the impact they may have on your existing dataflows and/or environment. Additionally, check the
Migration Guidance page for items that you should be aware of when moving between specific NiFi versions.

Preserve Custom Processors

If you have any custom NARs, preserve them during upgrade by storing them in a centralized location as follows:

1. Create a second library directory called custom_lib.
2. Move your custom NARs to this new lib directory.
3. Add a new line to the nifi.properties file to specify this new lib directory:

nifi.nar.library.directory=./lib
nifi.nar.library.directory.custom=/opt/configuration_resources/custom_lib

Preserve Modified NARs

121

https://cwiki.apache.org/confluence/display/NIFI/Release+Notes
https://cwiki.apache.org/confluence/display/NIFI/Migration+Guidance

Upgrading NiFi

If you have modified any of the default NAR files, an upgrade will overwrite these changes. Preserve your
customizations as follows:

1. Identify and save the changes you made to the default NAR files.
2. Perform your NiFi upgrade.
3. Implement the same NAR file changes in your new NiFi instance.

Clear Activity and Shutdown Existing NiFi

On your existing NiFi installation:

1. Stop all the source processors to prevent the ingestion of new data.
2. Allow NiFi to run until there is no active data in any of the queues in the dataflow(s).
3. Shutdown your existing NiFi instance(s).

Install the new NiFi Version

Install the new NiFi into a directory parallel to the existing NiFi installation.

1. Download the https://nifi.apache.org/download.html of Apache NiFi.
2. Uncompress the NiFi .tar file (tar -xvzf file-name) into a directory parallel to your existing NiFi directory. For

example, if your existing NiFi installation is installed in /opt/nifi/existing-nifi/, install your new NiFi version in /
opt/nifi/new-nifi/.

3. If you are upgrading a NiFi cluster, repeat these steps on each node in the cluster.

Host Machine - Node 1
|--> opt/
 |--> existing-nifi
 |--> new-nifi

Host Machine - Node 2
|--> opt/
 |--> existing-nifi
 |--> new-nifi

Host Machine - Node 3
|--> opt/
 |--> existing-nifi
 |--> new-nifi

Note: Make sure that all file and directory ownerships for your new NiFi directories match what you set on
the existing directories.

Update the Configuration Files for Your New NiFi Installation

Use the configuration files from your existing NiFi installation to manually update the corresponding properties in
your new NiFi deployment.

Note: In general, do not copy configuration files from your existing NiFi version to the new NiFi version.
The newer configuration files may introduce new properties that would be lost if you copy and paste
configuration files.

Use the following table to guide the update of configuration files located in <installation-directory>/conf.

122

https://nifi.apache.org/download.html

Upgrading NiFi

Configuration file Necessary changes

authorizers.xml Copy the <authorizer>…</authorizer> configured in the existing
authorizers.xml to the new NiFi file.

If you are using the file-provider authorizer, ensure that you copy the
users.xml and authorizations.xml files from the existing to the new
NiFi.

Configuration best practices recommend creating a separate location
outside of the NiFi base directory for storing such configuration files,
for example: /opt/nifi/configuration-resources/. If you are storing these
files in a separate directory, you do not need to move them. Instead,
ensure that the new NiFi is pointing to the same files.

bootstrap-notification-services.xml Use the existing NiFi bootstrap-notification-services.xml file to update
properties in the new NiFi.

bootstrap.conf Use the existing NiFi bootstrap.conf file to update properties in the new
NiFi.

flow.xml.gz If you retained the default location for storing flows (<installation-di
rectory>/conf/), copy flow.xml.gz from the existing to the new NiFi
base install conf directory. If you stored flows to an external location
via nifi.properties, update the property nifi.flow.configuration.file to
point there.

If you are encrypting sensitive component properties in your dataflow
via the sensitive properties key in nifi.properties, make sure the same
key is used when copying over your flow.xml.gz. If you need to change
the key, see the Migrating a Flow with Sensitive Properties section
below.

Use the existing nifi.properties to populate the same properties in the
new NiFi file.

Note: This file contains the majority of NiFi configuration settings, so
ensure that you have copied the values correctly.

If you followed NiFi best practices, the following properties should
be pointing to external directories outside of the base NiFi installation
path.

If the below properties point to directories inside the NiFi base
installation path, you must copy the target directories to the new NiFi.
Stop your existing NiFi installation before you do this.

nifi.flow.configuration.file=

If you have retained the default value (./conf/flow.xml.gz), copy
flow.xml.gz from the existing to the new NiFi base install conf
directory.

If you stored flows to an external location, update the property value to
point there.

nifi.flow.configuration.archive.dir=

Same applies as above if you want to retain archived copies of the
flow.xml.gz.

nifi.database.directory=

Best practices recommends that you use an external location for each
repository. Point the new NiFi at the same external database repository
location.

nifi.properties

nifi.flowfile.repository.directory=

Best practices recommends that you use an external location for each
repository. Point the new NiFi at the same external flowfile repository
location.

Warning: You may experience data loss if flowfile repositories are not
accessible to the new NiFi.

123

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#sensitive_flow_migration

Upgrading NiFi

Configuration file Necessary changes

nifi.content.repository.directory.default=

Best practices recommends that you use an external location for each
repository. Point the new NiFi at the same external content repository
location.

Your existing NiFi may have multiple content repos defined.
Make sure the exact same property names are used and point to the
appropriate matching content repo locations. For example:

nifi.content.repository.directory.content1= nifi.content.repository.dire
ctory.content2=

Warning: You may experience data loss if content repositories are not
accessible to the new NiFi.

Warning: You may experience data loss if property names are wrong or
the property points to the wrong content repository.

nifi.provenance.repository.directory.default=

Best practices recommends that you use an external location for
each repository. Point the new NiFi at the same external provenance
repository location.

Your existing NiFi may have multiple content repos defined.
Make sure the exact same property names are used and point to the
appropriate matching provenance repo locations. For example:

nifi.provenance.repository.directory.provenance1= nifi.provenance.
repository.directory.provenance2=

Note: You may not be able to query old events if provenance repos are
not moved correctly or properties are not updated correctly.

For the local-provider state provider, verify the location of the local
directory.

If you have retained the default location (./state/local), copy the
complete directory tree to the new NiFi. The existing NiFi should be
stopped if you are copying this directory because it may be constantly
writing to this directory while running.

Configuration best practices recommend that you move the state to an
external directory like /opt/nifi/configuration-resources/ to facilitate
easier upgrading later.

For a NiFi cluster, the cluster-provider ZooKeeper “Connect String"
property should be set to the same external ZooKeeper as the existing
NiFi installation.

For a NiFi cluster, make sure the cluster-provider ZooKeeper "Root
Node" property matches exactly the value used in the existing NiFi.

state-management.xml

If you are also setting up a new external ZooKeeper, see the
ZooKeeper Migrator section for instructions on how to move
ZooKeeper information from one cluster to another and migrate
ZooKeeper node ownership.

Migrating a Flow with Sensitive Properties

When a value is set for nifi.sensitive.props.key in nifi.properties, the specified key is used to encrypt sensitive
properties in the flow (e.g. password fields in components). If the key needs to change, the Encrypt-Config tool in the
NiFi Toolkit can migrate the sensitive properties key and update the flow.xml.gz. Specifically, Encrypt-Config:

1. Reads the existing flow.xml.gz and decrypts the sensitive values using the current key.
2. Encrypts all the sensitive values with a specified new key.
3. Updates the nifi.properties and flow.xml.gz files or creates new versions of them.

As an example, assume version 1.9.2 is the existing NiFi instance and the sensitive properties key is set to password.
The goal is to move the 1.9.2 flow.xml.gz to a 1.10.0 instance with a new sensitive properties key: new_password.

124

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#zookeeper_migrator

Upgrading NiFi

Running the following Encrypt-Config command would read in the flow.xml.gz and nifi.properties files from 1.9.2
using the original sensitive properties key and write out new versions in 1.10.0 with the sensitive properties encrypted
with the new password:

 $./nifi-toolkit-1.10.0/bin/encrypt-config.sh -f /path/to/nifi/n
ifi-1.9.2/conf/flow.xml.gz -g /path/to/nifi/nifi-1.10.0/conf/flow.xml.gz -s
new_password -n /path/to/nifi/nifi-1.9.2/conf/nifi.properties -o /path/to/ni
fi/nifi-1.10.0/conf/nifi.properties -x

where:

• -f specifies the source flow.xml.gz (nifi-1.9.2)
• -g specifies the destination flow.xml.gz (nifi-1.10.0)
• -s specifies the new sensitive properties key (new_password)
• -n specifies the source nifi.properties (nifi-1.9.2)
• -o specifies the destination nifi.properties (nifi-1.10.0)
• -x tells Encrypt-Config to only process the sensitive properties

For more information see the Encrypt-Config Tool section in the NiFi Toolkit Guide.

Start New NiFi

In your new NiFi installation:

1. Start each of your new NiFi instances.
2. Verify that:

• All your dataflows have returned to a running state. Some processors may have new properties that need to be

configured, in which case they will be stopped and marked Invalid ().
• All your expected controller services and reporting tasks are running again. Address any controller services or

reporting tasks that are marked Invalid ().
3. After confirming your new NiFi instances are stable and working as expected, the old installation can be removed.

Note: If the original NiFi was setup to run as a service, update any symlinks or service scripts to point to the
new NiFi version executables.

125

https://nifi.apache.org/docs/nifi-docs/html/toolkit-guide.html#encrypt_config_tool

	Contents
	System Requirements
	How to install and start NiFi
	Port Configuration
	NiFi
	Embedded Zookeeper

	Configuration Best Practices
	Recommended Antivirus Exclusions
	Security Configuration
	TLS Generation Toolkit

	User Authentication
	Lightweight Directory Access Protocol (LDAP)
	Kerberos
	OpenId Connect
	Apache Knox

	Multi-Tenant Authorization
	Authorizer Configuration
	Authorizers.xml Setup
	FileUserGroupProvider
	LdapUserGroupProvider
	ShellUserGroupProvider
	Composite Implementations
	FileAccessPolicyProvider
	StandardManagedAuthorizer
	FileAuthorizer
	Initial Admin Identity (New NiFi Instance)
	File-based (LDAP Authentication)
	File-based (Kerberos Authentication)
	LDAP-based Users/Groups Referencing User DN
	LDAP-based Users/Groups Referencing User Attribute
	Composite - File and LDAP-based Users/Groups

	Legacy Authorized Users (NiFi Instance Upgrade)
	Global Access Policies
	Component Access Policies on the Root Process Group

	Cluster Node Identities

	Configuring Users & Access Policies
	Creating Users and Groups
	Access Policies
	Global Access Policies
	Component Level Access Policies
	Access Policy Inheritance

	Access Policy Configuration Examples
	Moving a Processor
	Editing a Processor
	Creating a Connection
	Editing a Connection

	Encryption Configuration
	Key Derivation Functions
	Additional Resources

	Salt and IV Encoding
	NiFi Legacy
	OpenSSL PKCS#5 v1.5 EVP_BytesToKey
	Bcrypt, Scrypt, PBKDF2

	Java Cryptography Extension (JCE) Limited Strength Jurisdiction Policies
	Allow Insecure Cryptographic Modes

	Encrypted Passwords in Configuration Files
	NiFi Toolkit Administrative Tools
	Clustering Configuration
	Zero-Master Clustering
	Why Cluster?
	Terminology
	Communication within the Cluster
	Managing Nodes
	Disconnect Nodes
	Offload Nodes
	Delete Nodes
	Decommission Nodes
	NiFi CLI Node Commands

	Flow Election
	Basic Cluster Setup
	Troubleshooting

	State Management
	Configuring State Providers
	Embedded ZooKeeper Server
	ZooKeeper Access Control
	Securing ZooKeeper
	Kerberizing Embedded ZooKeeper Server
	Kerberizing NiFi's ZooKeeper Client
	Troubleshooting Kerberos Configuration

	ZooKeeper Migrator

	Bootstrap Properties
	Notification Services
	Email Notification Service
	HTTP Notification Service

	Proxy Configuration
	Kerberos Service
	Notes

	Analytics Framework
	System Properties
	Upgrade Recommendations
	Core Properties
	State Management
	H2 Settings
	FlowFile Repository
	Write Ahead FlowFile Repository
	Encrypted Write Ahead FlowFile Repository Properties
	Volatile FlowFile Repository
	RocksDB FlowFile Repository
	Swap Management
	Content Repository
	File System Content Repository Properties
	Encrypted File System Content Repository Properties
	Volatile Content Repository Properties
	Provenance Repository
	Write Ahead Provenance Repository Properties
	Encrypted Write Ahead Provenance Repository Properties
	Persistent Provenance Repository Properties
	Volatile Provenance Repository Properties
	Component Status Repository
	Site to Site Properties
	Site to Site Routing Properties for Reverse Proxies
	Site to Site protocol sequence
	Reverse Proxy Configurations
	Site to Site and Reverse Proxy Examples
	Example 1: RAW - Server name to Node mapping
	Example 2: RAW - Port number to Node mapping
	Example 3: HTTP - Server name to Node mapping

	Web Properties
	Security Properties
	Identity Mapping Properties
	Cluster Common Properties
	Cluster Node Properties
	ZooKeeper Properties
	Kerberos Properties
	Analytics Properties
	Custom Properties

	Upgrading NiFi
	Preserve Custom Processors
	Preserve Modified NARs
	Clear Activity and Shutdown Existing NiFi
	Install the new NiFi Version
	Update the Configuration Files for Your New NiFi Installation
	Migrating a Flow with Sensitive Properties

	Start New NiFi

