Cloudera Flow Management 4.11.0

Cloudera Flow Management Migration Tool

Date published: 2019-06-26
Date modified: 2025-10-08

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Flow Management | Contents | iii

Cloudera Flow Management Migration Tool Release NOtes............cccceeecveeenen, 5
LAY S P PPSS 5
SUPPOTE IVTBEIIX ..ttt ettt ettt b bt £ s bt bbb e b e b e b e b bbbt b et b et et et b e et e 5
(011 g [T I o= o o PSS 6

Cloudera Flow Management Migration Tool OVerView..........cccceeceeveeccieesensnnen, 6
L=V (== 1= S 6
R lo Tz oo 1= T L= 7= o] 7
Manual MIGration tASKS........ccviiieiiseie s esee st e e et re e s testeseese et e teseeneeseeseesseseesessessesteseesrententesenns 7

Recommended migration WOrKFlOW..........ccoovviiiin i 8

Migration DESE PraCliCES.......eiiieiieiie et e st et e s e s e sneesnne s 9

I o OSSR 11
Preparing fOr MIQration.........c.viiviie i sesies et e ettt st te s ee e e ee s e e e e s e e e e eseeseeneeseesesaesnesteseesneneensenen 11
Setting UP YOUF ENVIFONMENL.cueiuiitesiesteseesieseeseeeeseseeessessessessessessessessessessessessessessessesessessessessessessenses 11
Configuring the Migration TOOL..........c.ccceieieieiereceee e et sre e e srenen 13
Migrating a flow using flOW.JSON @S INPUL.........cveiiiieiirieie sttt s ae e se e e e e e e eneeneas 15
Migrating templates using flIOW.JSON @S INPUL........c..ccurieeirirerire e 15
Migrating variables using flOW.JSON @S INPUL.......cc.coueieirieeeeire e nnens 20
Migrating components using flOW.jSON @S INPUL.........cceveiierieieeiecese s 26

Using migrate-all with flow.jSON @S iNPUL.........cccceiiieiereccee e 36
Migrating a flow using flIOW.jSON.QZ @S INPUL..........cceieiiiieiererecces et re e sre e 37
Migrating templates using floW.JSON.QZ S INPUL.........ccceieiiiiriere e e 38
Migrating variables using flow.jSON.gZ @S INPUL..........cccceiiiieiiiinie e 42
Migrating components using flOW.jSON.gZ @S INPUL..........cccuveeiireieiese e seese e e 48

Using migrate-all with floOW.jSON.gZ @S INPUL.........coveieieieire e 57
Migrating a flow using flow definition JSON @S INPUL.........cceieieeiieiriresese s enens 58
Migrating templates using flow definition JISON @S iNPUL.........ccccvviviiiiennresese e 59
Migrating variables using flow definition JSON @S iNPUL........cccoeiieeriinieeese e 59
Migrating components using flow definition JSON 8S INPUL.........ccccueierieeiinienenese e 63

Using migrate-all with flow definition JISON @S iNPUL.........ccccvieiiieie s 68
Migrating a flow using a directory with flow definition JSON fileS @S inPUL.......ccccvvevrenierievesese e 70
Migrating variables using a directory with flow definition JSON files asinput........ccccocvevvivnieieiennen. 70
Migrating components using a directory with flow definition JSON filesasinput..........cccccccvvevrvnnenee. 77

Using migrate-all using a directory with flow definition JSON files asinput........cccccecvvevveeeencernnennn. 86
Migrating a flow using templateXml @S INPUL...........cceieierieirieeecec e e e eseesesneenens 87
Migrating templates using template.Xml @S iINPUL.......c..covriririirrise e e 87
Migrating variables using template.Xml @S INPUL.........ccceveirierienere e 92
Migrating components using a template with variables.............ccccvi v 96
Migrating components using a template without variabl€es............cccoeveieecienceccsc e 101

Using migrate-all with template.Xml @S INPUL.........ccevieiieieirecese e e 105

Migrating a flow using a directory with templatexml filesS as inPuUL..........ccccooevievireniesesecce e 106

Migrating templates using a directory with templatexml files asinput...........ccocevrerininine e 106

Migrating variables using a directory with template.xml files as input...........cocoeeeeieieinininienenne 115
Migrating components using a directory with template files as input...........ccooeveiereieneieinicnene 122

Using migrate-all using a directory with templatexml files asinput...........ccocevrrinininnene e 131
Handling file formats missing Sensitive Property VAIUES............coceeieirereeeee e 131
Cloudera Flow Management Migration Tool Reference...........cccooovvvvecieennnnn 133
(600 0710 172 00 OSSO TSROSO 133
Ml GrAEETEMPIBLEES. ...ttt bt bbb bbbttt b et bt b et b et e 133
MEGIAIE-VAITAIDIES.......ceeecee bbbt et bbbttt b e e b e 135

Il GFAEE-COMPONENES......cueetiaeetereetetetere ettt sttt bt e et b st s et e b e e e b e e e bt b bt b et bt b et b et et e e b e es 136
MEGIAIE-BIL......eeeeeeee bbb bbb bbbt bbbt bbbt 138

0= o TSSOSO P RO U TP 138
ACHVITY LOQ: .t tuerteeetereetertet sttt h ekttt bbb £ bt b st bbb et b et b e e bt s bt e bbb 138

Cloudera Flow Management Cloudera Flow Management Migration Tool Release Notes

Learn about the new features, known and fixed issues, limitations, and unsupported features in the latest release of the
Cloudera Flow Management Migration Tool.

The Cloudera Flow Management Migration Tool helps you transition to NiFi 2 more efficiently. It smplifies
and accelerates the migration of flows from Cloudera Flow Management 2.x powered by NiFi 1 to Cloudera
Flow Management 4.x powered by NiFi 2. The tool automates complex and repetitive tasks in updating flow
configurations, reducing manual effort and ensuring compatibility with NiFi 2 features.

Y ou can use this command-line tool to transform templates, variables, and components to align with NiFi 2 features.

Cloudera Flow Management Migration Tool 5.0.0 supports on-premises environments and facilitates migrations
from Cloudera Flow Management 2.1.7.2000 to Cloudera Flow Management 4.11.0, in compliance with the NiFi
1.28-t0-2.4 General Availability (GA) ruleset.

L atest enhancements:

¢ Redundant controller servicesin a process group are now merged. If multiple services would have been created
during migration, the tool now creates a single service and reusesiit.

» Each component creation now generates its own entry in the Activity Log, making it easier to track changes
during migration.

» Issuesthat could previously prevent migration of Remote Process Groups have been resolved.

« Migration of flow definitions now preserves external controller services morereliably.

Before using the Cloudera Flow Management Migration Tool, review the following compatibility and system
reguirements to ensure your system aligns with these specifications and to avoid migration issues.

Cloudera Flow Management Migration Tool 5.0.0 supports on-premises usage only. A given Migration Tool version
always supports exactly one pair of Cloudera Flow Management versions. Using different versions than those
specified may lead to incorrect migration results or failure of the process.

Operating system Linux
Javaversion Java 21l
Cloudera Flow Management 2.1.7.2000
Source version
Apache NiFi 1281
Cloudera Flow Management 4.11.0
Target version
Apache NiFi 24.0
Disk space At least 25 GB for NiFi distributions and working directories

i Important:

Ensure that you use the specified Cloudera Flow Management Migration Tool versions and meet the other
system requirements as well for a successful migration.

Cloudera Flow Management Cloudera Flow Management Migration Tool overview

The Cloudera Flow Management Migration Tool software artifacts can be downloaded from the Cloudera Archive.
To access the artifacts, you must have:

* An active Cloudera subscription agreement
e Alicensekey file
« Therequired authentication credentials (username and password).

Download the Migration Tool from the Cloudera Flow Management Migration Tool Repository.

The Cloudera Flow Management Migration Tool enables the semi-automatic migration of flows from Cloudera
Flow Management 2.1.7.2000 powered by NiFi 1 to Cloudera Flow Management 4.11.0 powered by NiFi 2, using
predefined transformation rules and logic. It supports a clear, step-by-step approach for migrating your data flows.

When using the Cloudera Flow Management Migration Tool, you can issue various commands that enable partial

or complete migration of the incoming data flow. These commands are customizable through specific arguments

to run either individual steps or the full migration process. The Migration Tool stops running after the command is
completed and can be run again with the same or different commands, as needed. This modular design allows you to
customize the migration workflow according to your needs.

Running Migration Tool commands does not modify the source data flow or the associated NiFi instances. Repeating
the same command provides identical results, ensuring predictability. Exceptions are the generation of unique IDs,
which may vary across runs, and potential differencesin component order within the serialized flow.json file. While
file-based comparisons may show variations, the functional outcome remains identical.

Different Migration Tool commands apply specific transformation logic to the input data flow. Each command
must be configured appropriately to achieve the desired outcome. For comprehensive details on each command’s
functionality, as well as the arguments and parameters available for configuration, see the Cloudera Flow
Management Migration Tool Command Reference .

The Migration Tool works with flow.json as the input source. From this source, the tool can perform the following
actions:

» Transforming variablesto parameter contexts: It trandates variablesinto parameter contexts for improved
organization and compatibility with NiFi 2.

e Converting templates: It extracts and converts templates into separate flow_definition.json files.

e Updating components: It updates components to align with NiFi 2 requirements wherever possible, potentially
applying broader modifications when needed.

The Migration Tool generates various output files. These output artifacts are saved in the directory specified by the --
outputDirectory argument. Results are organized into subdirectories (sourceVersion for Stage 1 and targetVersion for
Stage 2).

Cloudera Flow Management Migration Tool Command Reference

The Cloudera Flow Management Migration Tool provides severa features to support the migration of flowsin

smaller, manageable chunks, enhancing control and validation.
Reusability

https://archive.cloudera.com/p/cfm-migrator-tool/3.0.3/redhat8/yum/tars/nifi-migration-tool/
https://docs.cloudera.com/cfm/4.11.0/cfm-migration-tool/topics/cfm-mt-reference.html

Cloudera Flow Management

Since the Migration Tool does not modify the input files and produces deterministic results (except
for unique identifiers of newly generated components), you can rerun the migration on the same
input multiple times. This can be useful if adjustments are needed before or after migration and the
results need to be compared.

Activity log

The Activity Log is an important tool for supervising changes in the flow. It lists every modification
and provides the reasoning (change-info) behind them.

Stages

The Migration Tool allows you to handle manual migration steps while continuing to use the source
NiFi version for most of the migration process. This approach allows you to apply a high number of
expected changes without encountering version-related differences, making validation and tracking
modifications easier.

Separable commands

Flow migration steps such as template migration can be run separately, alowing you to work on
smaller, more manageable parts of the flow.

Process groups

Migration can be scoped to specific process groups by setting the Process Group 1D argument.
This limits transformations to the specified group and its children, enabling targeted migrations.

Iterative migration (L oopback)

The main output of the Migration Tool, typically aflow.json file, can be used as input for
subsequent migrations. This iterative approach helps identify and address additional issues after
manual adjustments.

This section highlights key considerations to ensure a successful migration and effective post-migration validation.
Businesslogic validation

The Cloudera Flow Management Migration Tool ensures that the migration follows the predefined
ruleset, but since the NiFi 2 feature set differs from NiFi 1, some business behaviors may change
and require human validation. This post-migration validation is essential to ensure the final flow
meets your business requirements.

Generating an initial report

Although the Migration Tool lacks an explicit "preview" feature, performing afull migration
generates artifacts that can provide an initial overview of compatibility issues. Review the Activity
Log entries for an early assessment. The number of change entriesin the Activity Logs, in relation
to the flow size, aswell as the count of manual-change-requests, serves as areliable indicator of the
expected number of changes.

Some aspects of the migration are not handled automatically by the Migration Tool and require manual intervention.
Deprecated components

Certain deprecated component types lack replacements in the target NiFi version or cannot be
algorithmically replaced. These components are not migrated automatically when using the
Migration Tool and need to be updated manually. In most cases, the Migration Tool provides
information on the expected manual changes.

Custom components

Cloudera Flow Management Migration Tool overview

Cloudera Flow Management Recommended migration workflow

Custom components, such as processors not included in the Cloudera Flow Management version
in use, are not supported. The definitions of such components, including attributes and bundle
versions, are preserved without modification. Y ou must manually update these components.

E Note:
AsNiFi 1 and NiFi 2 component APIs are incompatible, custom implementations also
need to be replaced.

Ghost componentsin templates

Components saved as ghost components within templates are not migrated during the template
migration process.

Variables, dynamic properties, and flow file attributes

Overlapping names among variables, dynamic properties, and flow file attributes are not migrated
automatically. Y ou must manually resolve these conflicts and update the elements to ensure
compatibility.

Cloudera recommends performing the migration in two sequential stages (Stage 1 and Stage 2) to ensure a structured
transition from source to target compatibility.

A complete migration workflow consists of a Stage 1 migration of the incoming flow followed by a Stage 2 migration
of the Stage 1 migration output. The final output of Stage 2 isafully migrated and NiFi 2 compatible flow.

Stage 1: Sour ce compatibility

It processes the incoming NiFi flow (input flow.json) to create a partially updated flow as the
output, compatible with NiFi 1.

Note: Thisintermediate stateis intended only for manual adjustmentsin preparation
E for Stage 2. Do not use a partially migrated flow in production or business operations.

* Running Stage 1 commands for atemplate, variable, component, or using the aggregate
command produces transformations compatible with the original version.

* Generates alist of manual changes needed for further adjustments.
* Requiresiterative execution after applying manual changes until the flow reaches stability (no
further modifications are required).

Stage 2: Target compatibility
It takes Stage 1 output asinput to produce a flow compatible with NiFi 2.

* + Appliestransformations beyond the source NiFi version's capabilities to meet NiFi 2
standards.
» Ensuresthat the final output isafully migrated and compliant data flow.

Both migration stages consist of multiple steps that can be run individually or as awhole. Clouderarecommends
completing al steps within a stage before proceeding to the next stage to ensure consistency and avoid potential
issues.

Component migration is present in both stages but involve different transformations and serve different purposes:

* In Stage 1, component migration applies changes compatible with the source version.
« In Stage 2, component migration applies changes required by the target version.

Cloudera Flow Management Migration best practices

1. Template migration

a. Migrate templatesfor Stage 1.

b. Vaidatetheresults.

¢. Address any issues and manual change requests.
2. Variable migration

a. Migrate variablesto parameter contexts for Stage 1.
b. Validatetheresults.
¢. Address any issues and manua change requests.

3. Component migration

a. Migrate componentsin smaller batches by specifying Process Group IDs for Stage 1.
b. Validate the results for each batch.
c. Address any issues and manual change requests.
d. Repest iteratively until no further changes are required.
4. Management-level component migration

a. Perform component migration without specifying a Process Group |D to ensure management-level
components such as Controller Services are migrated.
b. Validate the changes.
¢. Address any issues and manual change requests.
5. Fina validation

a. When dl Stage 1 steps are complete, validate the entire flow in aNiFi 1 instance for final validation.
b. After this point, the flow will no longer be compatible with the source version.

* Run the migration commands without specifying the Stage argument to process both stages in sequence and
address any remaining compatibility issues with NiFi 2.

Note:

E Thisruns both Stage 1 and Stage 2, but if previous recommendations were followed, Stage 1 has no
impact on the flow. While Stage 1 commands should no longer modify the flow, some Stage 2 commands
depend on Stage 1 outputs as input (for example for template migration).

« Follow the same steps asin Stage 1: Migrate templates # Migrate variables # Migrate components, while
validating the results and addressing manual adjustment needs.

e Stage 2 migration is not iterative in a sense that the output of Stage 2 cannot be reintroduced into the migration
process. To ensure a seamless workflow, fully complete Stage 1 before starting Stage 2, and run Stage 2 only
once. The final output will reflect al transformations applied by the Migration Tool. Resolving manual change
requests will not trigger further migration events. Any modifications beyond this point are considered business
logic adjustments and fall outside the tool’ s scope.

For detailed instructions and examples of the end-to-end migration process, see Migrating a data flow.

Migrating a data flow

Migrating complex data flows requires careful planning, validation, and following a structured strategy to ensure
success. While the Cloudera Flow Management Migration Tool automates many aspects of the process, manual

https://docs.cloudera.com/cfm/4.11.0/cfm-migration-tool/topics/cfm-mt-migrating-dataflow.html

Cloudera Flow Management Migration best practices

oversight and adjustments in the migration process are essential for achieving accurate results. Additionally, some
expectations from NiFi 2 cannot be fully addressed through automation alone.

To achieve a successful migration, Cloudera recommends a systematic approach combining the tool’ s features with
manual intervention and careful validation.

Follow an iterative refinement processin Stage 1!

Stage 1 migration automatically converts the flow, applying transformations while maintaining
compatibility with NiFi 1, and alist of manual changesis generated. Y ou have to manually edit
your flow to fix the requested changes. After making these manual edits, the updated flow should be
used asinput for the next iteration of Stage 1. Repeat this process on the modified flow iteratively
until the flow reaches stability, meaning that no automatic changes are introduced during conversion
(there are no change entries in the Activity Log) and there are no manual change requestsin the
Activity Log that would require attention in Stage 1.

i Important:

If amanual change request can be resolved using NiFi 1 features, it is best to address
it during Stage 1 migration iterations. However, if the resolution requires a NiFi

2 capability, you may defer it until Stage 2. While migration can proceed with
unresolved manual change requests, Cloudera recommends resolving them as early as
possible. Only postpone fixesif aNiFi 2 featureis required.

At this point, Stage 1 can be considered fully completed with all issues resolved, allowing you to
proceed to Stage 2.

E Note:
If you make any manual adjustments to your flow after finishing Stage 1 migration,
rerun Stage 1 before proceeding to Stage 2.

Partition the migration processfor better control!

Migrating complex data flows requires a more structured approach. Cloudera advises not to migrate
the entire flow in asingle Stage 1 migration. Instead, partition the migration and focus on one part
of the flow at atime to simplify troubleshooting and applying manual changes. Y ou can use the
following methods:

* Runthe migration in smaller steps, starting with templates, followed by variables, and then
components.

* Runthe migration by process group.

Both approaches allow you to focus on smaller, more manageable sections of the flow. For larger
flows, you can also combine these two methods. The migration logic you choose should be tailored
to your specific needs and flow structure. Keep in mind that multiple levels of partitioning may
require additional coordination, so it isimportant to select alevel of granularity that provides more
benefit than added compl exity.

Validate after every iteration!

Load the modified flow into a NiFi instance matching the version of the stage you are on. Confirm
functionality and resolve any manual validation requests from the Activity Log.

Alwaysreview the Activity L og!

Y ou can use the Activity log to understand the rational e behind changes and identify what manual
adjustments are needed in the flow.

Run a full migration after each stage to confirm completeness!

As part of your final validation, run afull migration after each stage. This ensures that no part of the
flow was overlooked during partitioning.

10

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

» Attheend of Stage 1, perform afull migration only using the Stage 1 restriction to verify
completeness.

» Attheend of Stage 2, run afinal full migration without restrictions to ensure the entire flow
migration is complete.

The migration workflow consists of two main parts: preparation and migration. The Preparing for migration section
walks you through the preparation steps you should take before starting any migrations, and the Migrating a flow
section provides examples demonstrating how you can run different types of migrations using different input files.

While the Cloudera Flow Management Migration Tool does not require NiFi to be running, certain NiFi-related steps
are needed to prepare for a successful migration.

Learn about the necessary setup steps, including installing Java, configuring directories, preparing the source NiFi
instance, and acquiring sensitive properties.

* Migrating flowsto Cloudera Flow Management 4.11.0 requires upgrading to Cloudera Flow Management
2.1.7.2000 before moving to 4.11.0.

» Download the Cloudera Flow Management Migration Tool from the Cloudera Flow Management Migration Tool
Repository.

1. Install and set up Java.

a) Install Java 21 on the machine where you are performing the migration.
b) Add Java 21 tothe PATH environment variable.

2. Download and unpack the Cloudera Flow Management Migration Tool on the machine where the migration will
run.

For example: /etc/nifi-migration-tool-bin

11

https://archive.cloudera.com/p/cfm-migrator-tool/3.0.0/redhat8/yum/tars/nifi-migration-tool/
https://archive.cloudera.com/p/cfm-migrator-tool/3.0.0/redhat8/yum/tars/nifi-migration-tool/

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

3. Configure the following directories to support the Migration Tool and its dependencies.
a) NiFi 1and 2 library folders:
» Provideread-only accessto the NiFi 1 lib folder or equivalent directory containing al necessary NAR
artifacts.
For example: /etc/nifil/lib

» Provide read-only accessto the NiFi 2 lib folder or equivalent directory containing all necessary NAR
artifacts.

For example: /etc/nifi2/lib
b) Work directories:

« Createtwo, initially empty directories for the Migration Tool to unpack NiFi 1 and NiFi 2's dependency
NAR files.

For example: /etc/nifi-1-work and /etc/nifi-2-work
» Ensurethe Migration Tool has write access to these directories that will serve as NiFi 1 and 2 working
aress.
e Avoid using these directories for other purposes.
¢) Output directory:

« Create an empty directory to store migration artifacts generated by the Migration Tool.

For example: /etc/migration-tool -output

* Multiple runs of the Migration Tool using the same output directory will overwrite existing files. For
example, if atemplate migration is run before a component migration, template migration files may remain
intact, while other files, such as the Activity Log, are overwritten during the second run.

4. Prepare the source NiFi Instance.
a) Ensureall components arein avalid state, as invalid components may not be migrated correctly.
b) Stop and offload all processors.
¢) Stop the NiFi instance and ensure all FlowFiles have been processed.

5. Export the flow.json.gz file from the source NiFi 1 instance to the machine performing the migration.

For example: /etc/flow.json.gz

f Important:
Do not forget to disable all components in the source NiFi instance before exporting the flow.json file for
migration purposes.

a) Unzip flow.json.gz file to product flow.json.
b) Ensure that the Migration Tool has access to thisfile.

12

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

6. Acquire the Sensitive Properties Key and Algorithm.
a) Obtain the nifi.sensitive.props.key and nifi.sensitive.props.algorithm from the source NiFi 1 instance.

Y ou will need these when updating the migration.tool.properties configuration file.

Note:
B Y ou will need to use the same key and algorithm later to load the migrated flow into the NiFi 2
instance.

b) For deploymentsin Cloudera on premises or Cloudera on cloud, follow these steps to acquire the sensitive
key:
1. Configure Cloudera Manager to allow API callsto return sensitive values. For more information, see
Disabling Redaction of sensitive information when using the Cloudera Manager API.
2. Runthefollowing API call:

https://[***HOST***] . root.conops. site: 7183/ api / v54/ cl usters/[***CLUS
TER_NAVE***]/ servi ces/ [*** SERVI CE_NAME* **] ?vi ew=EXPORT

Replace [***HOST***], [*** CLUSTER_NAME***], and [***SERVICE_NAME***] with the
appropriate values for your cluster.

3. Locate the random.nifi.sensitive.props.key value, which serves as the nifi.sensitive.props.key property.
4. Revert Cloudera Manager to its original state to disable sensitive value return.

7. If the source and target instances use different sensitive properties, update the nifi.sensitive.props.key and nifi.sen
sitive.props.algorithm properties using a copy of the original nifi.propertiesfile.

For more information, see the NiFi System Administrator’s Guide.

Disabling redaction of sensitive information when using the Cloudera Manager API
NiFi System Administrator’s Guide

Learn how to set up and customize the Migration Tool's properties file to ensure the proper operation of the Cloudera
Flow Management Migration Tool.

1. Locate migration.tool.properties configuration file in the conf directory of the Migration Tool root.

13

https://docs.cloudera.com/cloudera-manager/7.13.1/configuring-clusters/topics/cm-api-disable-redaction.html
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

2. Configure the directory paths by updating the following mandatory properties in the configuration file.
embedded.nifi.vl.nar.directory

» Specify the read-only directory containing the NAR files associated with the source NiFi
version.

e |t canbealib folder of an actual NiFi instance with amatching version or a different directory
containing al NAR artifacts from a given Cloudera distribution. For example: /etc/nifil/lib

» Although the Migration Tool does not need a running NiFi instance and does not modify the
contents of this directory, it requires read access to thesefiles.

embedded.nifi.v1.working.directory

» Designate an empty workspace for the Migration Tool when it is working with the source NiFi
version.

» It should be initially empty and the Migration Tool must have write access to it, allowing the
Migration Tool to perform all necessary operations.

* |t must be separate from the source NiFi instance’ s working directory and should not be used for
any other purposes to avoid potential conflicts.

« After the migration is complete, it can be cleaned up if needed.

embedded.nifi.v2.nar.directory

» Specify the read-only directory containing the NAR files associated with the target NiFi version.

* Itcanbealib folder of an actua NiFi instance with a matching version or a different directory
containing the required NAR artifacts.

» Although the Migration Tool does not need arunning NiFi instance and does not modify the
contents of this directory, it requires read access to these files.

embedded.nifi.v2.working.directory

» Designate an empty workspace for the Migration Tool when it is working with the target NiFi
version.

» |t should be initially empty and the Migration Tool must have write access to it, allowing the
Migration Tool to perform all necessary operations.

e It must be separate from the target NiFi instance’' s working directory and should not be used for
any other purposes to avoid potential conflicts.

« After the migration is complete, it can be cleaned up if needed.

14

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

3. To configure the sensitive properties, update the following mandatory propertiesin the configuration file.
embedded.nifi.sensitive.props.key

» Provide the nifi.sensitive.props.key from the source NiFi instance for handling sensitive
properties.

» Thiskey isused to decrypt sensitive values during migration and re-encrypt them for the target
NiFi instance.

» During migration, the target NiFi must use the same nifi.sensitive.props.key as the source, as
configured in the Migration Tool properties.

» |If thetarget NiFi requires a different sensitive properties key than the source NiFi, update the
value only after completing the migration.

embedded.nifi.sensitive.props.algorithm

» Provide the nifi.sensitive.props.algorithm from the source NiFi instance required for handling
sensitive properties.

» Thisagorithm is used to decrypt sensitive values during migration and re-encrypt them for the
target NiFi instance.

e During migration, the target NiFi must use the same nifi.sensitive.props.algorithm as the source,
as configured in the Migration Tool properties.

» |f thetarget NiFi requires a different sensitive properties algorithm than the source NiFi, update
the value only after completing the migration.

4. Save the modifications of the migration.tool.propertiesfile.

This section provides step-by-step examples of how to run different migrations with the Cloudera Flow Management
Migration Tool using aflow.json file as input.

Learn how to use the Cloudera Flow Management Migration Tool to extract and transform templates for
compatibility with NiFi 2 using aflow.json file asinput. NiFi 2 does not support templates, so this step is required to
ensure compatibility with the target version.

Y ou have aflow that has atemplate named elastic_template, which was created from a process group called elastic.
This process group contains the following simple flow:

15

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

B G rataFpeFle
| r
a
Foad Wi 0 byies /0 bipies
ohi n
Taxaw Time 0 OEDEDZ.0I0
L F SUELEES
u} i
[
~ g FusElasticaannch. son
= k
In O |1 brplea
Read™¥rrie 0 bries i O byses
sk 0 |1 brries
T
,/-"’/f! / \

Hame sussens Hame reiry Hame failars Mame TR

mzid O (11 brgies Cheued 0

'“‘-u\,____ﬂ

Clueued 0

apknToma 0§ 06306000000

= Log&itribiuia

| =
000 Bylis)
Baard & riie 0 hylex 0 brries
T o iex)
TazzeTune 07 0003030

The process group has avariable, Elasticsear ch Index, referenced in the Index property of the PutElasticsearchJson
processor.

16

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

Configure Processor | PutElasticsearch.Json 1:26.0.2.1.7.1000-45

£k Invalid
SETTINGS SEHEDULNG | FROPERTIES | HELATIGNRSIRS COMMENTS
Reguired field & -+
Property Valua

Iderdifier Attribute LE]

Index Dperation o index

Index @ SlElasticsearch Index’}
Type o

Seript (7]

Seripted Upser @ false
Dynamic Templales w

Batch Sire @ 0
Character Sel @ UTF-g&
Cliant Service 8 Novalus et
Lag Errer Respanges @ lalze
Cuitput Error Respanses @ false

CAMCEL APFLY

Y our goal isto migrate this template to NiFi 2 used in Cloudera Flow Management 4.11.0.

Before you begin

1. Stop al processors and disable al controller servicesin NiFi.

2. Stop NiFi.

3. Copy the flow.json.gz file from NiFi’ s conf directory to the Migration Tool’ sinput folder (/etc/migration-tool-
input).

4. Unzip thefileto obtain flow.json.

Procedure

1. Run Stage 1 template migration using the following command.

bin/mgration.sh nifi mgrate-tenplates \
-i /etc/mgration-tool-input/flowjson \
-od /etc/mgration-tool -output/tenplates \
-sco

This generates a sourceVersion folder that contains the output files of the migration.

t enpl at es

sour ceVersion
N Fi _Fl ow_ad3a86a6- 0194- 1000- 78d9- 6374298d9a0c
elastic_tenplate.json
elastic_tenplate. xm

17

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

activity_l og.json

The folder name NiFi_Flow_ad3a86a6-0194-1000-78d9-6374298d9a0c indicates that the exported template
belongs to the root process group, which is named NiFi Flow in NiFi. The unique ID for thisgroup is
ad3a86a6-0194-1000-78d9-6374298d9a0c.

elastic_template.json

» Flow definition containing the contents of the original template
» Equivaent to manually converting atemplate to aflow definitionin NiFi 1 by:

a. Instantiating the template on the canvas.

b. Right-clicking the process group.

c. Selecting Download flow definition without external services.
* Modified by the Migration Tool to ensure compatibility:

* Variables (not supported in NiFi 2) converted into parameters
» Parameter context created to hold the new parameters
» Processors updated to reference parameters instead of variables

* Thisisdtill aNiFi 1 flow definition, so do not load thisfile directly into NiFi 2. Use an empty
NiFi 1 instance to review the modification made by the tool. The flow will appear unchanged,
but variables will be replaced with parameters of the same name, which are now referenced by
the processor instead.

» Changesin the syntax: Variables were previously referenced using ${}, whereas parameters are
now referenced using #{}.

* NiFi 1variables: ¥ variable_name}
* NiFi 2 parameters. #{ parameter_name}

elastic_templatexml

» Original template exported from NiFi 1

e |dentical to downloading it from the Templates menu in NiFi 1

» Compatible only with NiFi 1 as NiFi 2 does not support templates and cannot parse XML
template files

activity log.json
» Log of al actions performed during this stage of the migration
* Thefollowing were changes made during the template migration:

* A new parameter context was created with a new parameter in it.

» The parameter context was assigned to the process group.

» The PutElasticsearchJson processor was updated to reference the new parameter.
» Components are referenced by a unique 1D, not by name.

18

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

2. Vadlidate the Stage 1 template migration outpuit.
a) Check the new flow definition in aNiFi 1 instance to verify that the flow matches your expectations.

1. Start your NiFi 1 instance.

2. Create anew process group.

3. Load elastic_template.json to NiFi 1.

4. Confirm that variables were correctly converted to parameters.
b) Review activity log.json and address any manual-change-requests or manual -validation-reguests.
¢) If there are manual-change-requests or manual-validation-requests to handle, follow these steps:

1. Start aNiFi 1instance.

2. Load the sourceVersion/<template_name>.json flow definition by creating a new process group and
uploading the JSON file.

3. Make the modifications on the NiFi canvas, indicated by the manual-change-requests or manual-validation-
requestsin the sourceVersion/activity _log.json.

Stop the NiFi instance.

Fetch the flow.json.gz file from the NiFi conf directory.

Unzip it to produce aflow.json file.

Perform variable migration and then component migration on this flow.json file. For instructions, see the
example scenario for variable and component migration.

d) If no additional changes are required, proceed to Stage 2.

3. Run full template migration (Stage 1 and 2) using the following command.

N o o s

bin/nmigration.sh nifi mgrate-tenplates \
-i /etc/mgration-tool-input/flowjson \
-od /etc/mgration-tool -output/tenpl ates

The contents of the previously generated sourceVersion folder will be overwritten, but thisis not a concern as
the tool generates the same sourceVersion output as before. Additionally, atargetVersion directory is created,
containing the output files of the Stage 2 part of the migration.

t ar get Ver si on
N Fi _Fl ow_ad3a86a6- 0194- 1000- 78d9- 6374298d9a0c
elastic_tenplate.json
activity_l og.json
elastic_template.json

* NiFi 2-compatible flow definition
» It contains the contents of the original template converted into an exported process group.
e Thisversionis compatible with NiFi 2, but no longer supports NiFi 1.

E Note:
An dastic_templatexml is not generated as NiFi 2 does not support XML templates.
activity_log.json

» List of al actions performed during this stage of the migration.

19

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

4. Validate the Stage 2 template migration output.
a) Check the new flow definition in aNiFi 2 instance to verify that the flow matches your expectations.

1. Start your NiFi 2 instance.
2. Create anew process group.
3. Load elastic_template.json into a NiFi 2 instance.

The new process group will be called elastic_template and will contain another process group named
elastic, matching the name of the process group that was converted into atemplate in NiFi 1 before you
started the migration.
4. Verify parameter replacements and processor updates.
b) Review activity log.json and address any manual-change-requests or manual-validation-reguests.

In this case, you can see the following manual-change-request:

{
"sequence" : 4,
"type" : "manual - change-request",
"subject" : "al468d69-3f 30- 3f 83-a7cl-91dad09890f 7",
"message" : "New relationship [original] has been added, it has to be
connected to a downstream processor or terminated.",
"context" :
"rule" : "6501a693-b524-4dla-blle-69747c2651e8"
}

1. OpenthetargetVersion/elastic_template.json file and search for the "subject” 1D, a1468d69-3f30-3f83-
arc1-91dad09890f7. ThisID refers to the PutElasticsearchJson processor.

2. Gotothe NiFi 2 canvas and check the processor. Y ou will find that it has an unbound “original”
relationship that needs to be connected to a downstream component.

3. Make the required change manually on the canvas.

4. Once done, export the process group. This exported process group is now afully NiFi 2-compatible version
of the original template.

5. Savethefile.

Y ou have finished the template migration process.

Learn how to use the Cloudera Flow Management Migration Tool to convert variables to parameters and parameter
contexts using a flow.json file asinput.

The following NiFi flow is used to demonstrate both variable and component migration. It illustrates how variables
are used within process groups and how they are referenced by individual componentsin the NiFi flow.

The flow consists of two process groups.

« TCP Listener (ID: b41940d7-0194-1000-42f c-458834630567)
« Elastic (ID: b42881c7-0194-1000-3cdf-1bd453a0ed0f)

At theroot level, the flow is structured as follows:

20

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management

Migration Tool

TGP Listanar Elasiic

D &0 +0 M1 A0 5 000 M1 AT R
Croesedd D {0 bes) e 00 e
In D40 Eytes) — 0 5 In 1010 Ergtinnd — 0 I
Raad Write 0 byt | O bylas Bagd/Wrlic 0 beptes § D Byies IT
Cral 0 = 0 [} brygtes) m Tl 0 —= 0 [0 higtag)

a o 0 D ?*D 1] 1] 0 I]

TCP Listener Process Group

This process group contains the following simple flow:

~ m listenTCPRecord
L ListenTCPRecora 1.26.0.2.1.7.1000-46

LA i-!|ZIF:.lZZ|"IE-" nifi = nifi-standard-nar

In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5 min
Ot 0 (0 bytes) 5 min
Tasks/Time 0/ 00:00:00.000 5 min

Name success
Queued 0 (0 bytes)

!

= % LogAttribute
Y LogAttribute 1.26.0.2.1.7.1000-46

org.apache.nifi - nifi-standard-nar

In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5 min
Out 0 (0 bytes) 5 min
Tasks/Time 0/00:00:00.000 5 min

The process group defines avariable called TCP Listener Port, which is referenced by the ListenTCPRecord
processor.

21

Cloudera Flow Management

Migrating a data flow using the Cloudera Flow Management

Migration Tool

Configure Processor | ListenTCPRecord 126.0.21.7.1000-46

B Sopped
SETTINGS SEHERULIRG | FROPERTIES RELATIEMSHIPS
Required field

COMBMERTS

@ +

Property Walue

Lezal Matwoek Intarlacs (7] value gt

Part 0 E[TCP Listener Port}

Maz Size of Secket Rulfer o 1mE

Max Mumber of TCP Connections [7]

Read Timeout @ 10 seconds

Record Readar @ JeonTresReadsr -
Record ‘Wriber B AvroRecordSetWriter —
Read Eves Sategy B Tranaler

Record Batch Size @ 00d

551 Condoxt Sarvice [7] g i 5i

Client Al o MOKE

Elastic Process Group

This process group also contains a simple flow:

CANCEL

APPLY

22

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

GenerateFlowFile
GenerateFlowFile 1.26.0.2.1.7.1000-46
org.apache.nifi - nifi-standard-nar

In 0 (0 bytes) 5 min
Read/Write 0 bytes / 0 bytes 5min
Out 0 (0 bytes) 5 min

Tasks/Time 0/00:00:00.000 5min

Name success
Queued 0 (0 bytes)

|

(~) PutElasticsearchJson
i ~ PutElasticsearchJson 1.26.0.2.1.7.1000-46

org.apache.nifi - nifi-elasticsearch-restapi-nar
In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5 min
Out 0 (0 bytes) 5 min
Tasks/Time 0/ 00:00:00.000 5 min
Name success 4%){ Name f> \ors
Queued 0 (0 bytes) Queued 0 (0 bytes) Queued 0 (0 bytes) Queued 0 (0 bytes)
(~] LogAttribute /
I; LogAttribute 1.26.0.2.1.7.1000-46
org.apache.nifi - nifi-standard-nar
In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5 min
Out 0 (0 bytes) 5 min
Tasks/Time 0/ 00:00:00.000 5min

The process group defines a variable called Elasticsear ch Index. Thisvariable is referenced in the
PutElasticsearchJson processor’ s Index property.

23

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management

Migration Tool
Configure Processor | putElasticsearchJson 1.26.0.2.1.7.1000-46
A nvalid
SETTINGS SCHEDULING PROPERTIES RELATIONSHIPS COMMENTS

Required field ® +
Property Value

Identifier Attribute ©® | Novalue set

Index Operation © index

Index © ${Elasticsearch Index'}

Type © | No value set

Script ©® | Novalue set

Scripted Upsert © false

Dynamic Templates © | Novalue set

Batch Size © 100

Character Set © UTF-8

Client Service © | No value set

Log Error Responses @ false

Output Error Responses © false

CANCEL APPLY

Y our goal isto migrate the variables used in Cloudera Flow Management 2.1.7.2000 powered by NiFi 1 to parameters
used in Cloudera Flow Management 4.11.0 powered by NiFi 2.

Note: NiFi 2 supports only parameters, not variables, so variable migration is required to ensure
E compatibility with the target version.

The example guides you through variable migration one process group at atime, simplifying the process and
maintaining a clear activity log. While this example flow is simple, the step-by-step approach shows how this method
improves clarity for more complex migrations. In real-world scenarios, you have to define amigration strategy based
on your flow’s structure, individual process group migration may not always be necessary. Migrating a parent process
group automatically applies the changes recursively to its descendants.

Before you begin

1. Stop all processors and disable al controller servicesin NiFi.

2. Stop NiFi.

3. Copy the flow.json.gz file from NiFi’s conf directory to the Migration Tool’sinput folder (/etc/migration-tool-
input).

4. Unzip thefile to obtain flow.json.

Procedure
1. Run Stage 1 variable migration on the TCP Listener process group using the following command.
bin/mgration.sh nifi mgrate-variables \

-i /etc/mgration-tool-input/flow json \
-od /etc/mgration-tool -output/variables \

24

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

-pgi d <process_group_id> \
--sour ceConpati bl eQut put

This generates a sourceVersion folder that contains the output files of the Stage 1 migration.

vari abl es

sour ceVer si on
activity_l og.json
mgrated fl ow json

activity log.json

» Log of al actions performed during this stage of the migration
* Thefollowing were changes made during the template migration:

* A new parameter context was created with anew parameter called TCP Listener Port,
which replaces the corresponding variable.
e TheTCP Listener Port variable was removed.

migrated_flow.json

* A modified NiFi 1 flow, which is not compatible with NiFi 2 yet.
|t contains everything the original flow did, except the TCP Listener process group how
references a parameter instead of the removed variable.
2. Vadlidate the Stage 1 variable migration output for the TCP Listener process group.
a) Load the migrated flow.jsoninto aNiFi 1 instance and check the flow.

1. Ensure NiFi isnot running.

Go to NiFi's conf directory and back up the flow.json.gz and flow.xml.gz files.

Delete the original flow.json.gz and flow.xml.gz files.

Rename the migrated_flow.json to flow.json and compressit using gzip to create flow.json.gz.
Copy the newly created flow.json.gz file to NiFi's conf directory.

. Start NiFi and check the flow.

b) Review the activity log.json file and check for any manual -change-requests or manual-validation-requests. If
none are present, proceed to step 3 to run Stage 1 variable migration on the Elastic process group.

o oA ®WN

1. If manual changes are necessary, load the migrated flow.json to NiFi, update and vaidate it.
2. Oncetheflow isvalidated and meets expectations, continue with the next step using the new flow.json.gz
file (unzipped to produce flow.json).
3. Run Stage 1 variable migration on the Elastic process group.
a) Movemigrated flow.json from Step 2 into the input folder (/etc/migration-tool-input) and rename it to
flow.json for clarity.
b) Make abackup of the output folder (/etc/migration-tool-output/variables) before running the next migration
step.
Note: Thisstepiscrucia because the same output folder is used asin the previous migration, and its
IE contents will be overwritten. To retain arecord of changes made at each stage, it is better to create a
backup.
¢) Run Stage 1 variable migration on the Elastic process group using the following command.

bin/nmigration.sh nifi mgrate-variables \

-i /etc/mgration-tool-input/flowjson \

-od /etc/mgration-tool -output/variables \
-pgi d b42881c7-0194- 1000- 3cdf - 1bd453a0edOf \

25

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

--sour ceConpati bl eQut put

This generates a sourceVersion folder that contains the two output files of the Stage 1 migration.
activity_log.json

* Log of al actions performed during this stage of the migration

» Thefollowing were changes made during the template migration:

* A new parameter context was created with anew parameter called Elasticsear ch Index,
which replaces the corresponding variable of the same name.

e The new parameter is referenced from the PutElasticsearchJson processor.
» TheElasticsearch Index variable was removed.

migrated_flow.json

* A modified NiFi 1 flow, which isnot compatible with NiFi 2 yet.

* It contains everything the original flow did, but the Elastic process group now references a
parameter instead of the removed variable.

4. Vadlidate the Stage 1 variable migration output for the Elastic process group.

a) Load the migrated flow.json into aNiFi 1 instance and check the flow.

b) Review the activity_log.json file and check for any manual-change-requests or manual-validation-reque
sts. If none are present, proceed to the next step.

¢) If manua changes are necessary, update the migrated flow.json on the NiFi canvas after loading it. Once the
flow is validated and meets expectations, continue with the next step.

At this stage, both process groups no longer contain variables and use parameters instead. If the flow meets your
expectations, you can either run afull variable migration to validate your flow in NiFi 2 or proceed with migrating
the components.

5. Run full variable migration (Stage 1 and 2) using the following command.

bin/nigration.sh nifi mgrate-variables \
-i /etc/mgration-tool-input/flowjson \
-od /etc/mgration-tool -output/variabl es

The contents of the previously generated sourceVersion folder will be overwritten, but thisis not a concern asthe
tool generates the same sourceVersion output as before.

Additionally, atargetVersion directory is created, containing the output files of the Stage 2 part of the migration.
migrated_flow.json

e NiFi 2-compatible flow in terms of variables
e Youcanloaditinto NiFi 2 and validate it

activity log.json
» List of all actions performed during this stage of the migration.

Stage 2 migration allows you to validate the result of the variable migration processin NiFi 2. However,
component migration should not be performed on the targetVersion/migrated_flow.json because the input of
component migration must be aNiFi 1 flow.

6. Proceed with component migration using the migrated_flow.json output from step 3.

Learn how to use the Cloudera Flow Management Migration Tool to migrate components to parameters and
parameter contexts using a flow.json file asinput.

Thefollowing NiFi flow is used to demonstrate both variable and component migration.

26

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

It consists of two process groups:

e TCP Listener (ID: b41940d7-0194-1000-42fc-458834630567)
» Elastic (ID: b42881c7-0194-1000-3cdf-1bd453a0edOf)

At theroot level, the flow is structured as follows:

TP Listamar Elasgiiz
o 0 a 1 1] 1 o 0 a 1
peed 1] } 1]
In o -0 It 1] 7 1]
R ad Write 0 Brgtas ¢ 10 Bytas T Faad/Wrie 0 biytes /0 byies
Sl 0 — 0 [bgtes] | 0—o
a u] 0 [D i}] U o7

TCP Listener Process Group

This process group contains the following simple flow:

27

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

- m listenTCPRecord
L ListenTCPRecord 1.26.0.2.1.7.1000-46&

Larg i-!|:IF=.l:Z|"|i-" fifi - rifi-standard-nar

In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5 min
Cut 0 (0 bytes) 5 min
Tasks/Time 0/ 00:00:00.000 5 min

MName success
Queued 0 (0 bytes)

!

~] % LogAttribute
L - LogAttribute 1.26.0.2.1.7.1000-46

org.apache.nifi - nifi-standard-nar

In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5 min
Out 0 (0 bytes) 5 min
Tasks/Time 0/ 00:00:00.000 5 min

The process group defines avariable called TCP Listener Port, which is referenced by the ListenTCPRecord
processor.

28

Cloudera Flow Management

Migrating a data flow using the Cloudera Flow Management

Migration Tool

Configure Processor | ListenTCPRecord 126.0.21.7.1000-46

B Sopped
SETTINGS SEHERULIRG | FROPERTIES RELATIEMSHIPS
Required field

COMBMERTS

@ +

Property Walue

Lezal Matwoek Intarlacs (7] value gt

Part 0 E[TCP Listener Port}

Maz Size of Secket Rulfer o 1mE

Max Mumber of TCP Connections [7]

Read Timeout @ 10 seconds

Record Readar @ JeonTresReadsr -
Record ‘Wriber B AvroRecordSetWriter —
Read Eves Sategy B Tranaler

Record Batch Size @ 00d

551 Condoxt Sarvice [7] g i 5i

Client Al o MOKE

Elastic Process Group

This process group also contains a simple flow:

CANCEL

APPLY

29

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

;‘ =~ ‘ GenerateFlowFile

~ GenerateFlowFile 1.26.0.2.1.7.1000-46
org.apache.nifi - nifi-standard-nar
In 0 (0 bytes) 5 min
Read/Write 0 bytes / 0 bytes 5min
Out 0 (0 bytes) 5 min
Tasks/Time 0/00:00:00.000 5 min

Name success
Queued 0 (0 bytes)

|

~) PutElasticsearchJson

{
i ~ PutElasticsearchJson 1.26.0.2.1.7.1000-46
org.apache.nifi - nifi-elasticsearch-restapi-nar
In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5 min
Out 0 (0 bytes) 5 min
Tasks/Time 0/ 00:00:00.000 5 min
Name success 4%){ Name f> \ors
Queued 0 (0 bytes) Queued 0 (0 bytes) Queued 0 (0 bytes) Queued 0 (0 bytes)
‘ ~ LogAttribute /
h LogAttribute 1.26.0.2.1.7.1000-46
org.apache.nifi - nifi-standard-nar
In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5 min
Out 0 (0 bytes) 5 min
Tasks/Time 0/00:00:00.000 5min

The process group defines a variable called Elasticsear ch Index. Thisvariable is referenced in the
PutElasticsearchJson processor’ s Index property.

30

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management

Migration Tool
Configure Processor | putElasticsearchJson 1.26.0.2.1.7.1000-46
A nvalid
SETTINGS SCHEDULING PROPERTIES RELATIONSHIPS COMMENTS

Required field ® +
Property Value

Identifier Attribute @ | Novalue set

Index Operation © index

Index © ${Elasticsearch Index'}

Type © | No value set

Script © | Novalue set

Scripted Upsert © false

Dynamic Templates © | No value set

Batch Size © 100

Character Set © UTF-8

Client Service © | Novalue set

Log Error Responses @ false

Output Error Responses © false

CANCEL APPLY

Your goal isto migrate the components used in Cloudera Flow Management 2.1.7.2000 powered by NiFi 1 to NiFi 2-
compatible components used in Cloudera Flow Management 4.11.0 powered by NiFi 2.

The example guides you through component migration one process group at atime, simplifying the process and
maintaining a clear activity log. While this example flow is simple, the step-by-step approach shows how this method
improves clarity for more complex migrations. In real-world scenarios, you have to define a migration strategy based
on your flow’s structure, individual process group migration may not always be necessary. Migrating a parent process
group automatically applies the changes recursively to its descendants.

Procedure

1. Movethe migrated flow.json file, the output of variable migration from Step 3, into the input folder (/etc/
migration-tool-input) and rename it to flow.json for clarity.

ThisisaNiFi-1 compatible flow that no longer contains variables.
2. Run Stage 1 component migration on the TCP Listener process group using the following command.

bi n/m gration.sh nifi mgrate-conponents \

-i /etc/mgration-tool-input/flowjson \

-od /etc/mgration-tool -output/conponents \
-pgi d b41940d7-0194- 1000- 42f c- 458834630567 \
--sour ceConpati bl eQut put

This generates a sourceVersion folder that contains the output files of the Stage 1 migration.

conponent s
sour ceVer si on
activity | og.json

31

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

mgrated_fl ow json

activity_log.json
» Thelog describes all the actions that were performed for this stage of the process group
migration.
» Log of al actions performed during this stage of the process group migration.

migrated_flow.json

* A modified NiFi 1 flow, which is not compatible with NiFi 2 yet.

|t contains everything the original flow did, except the TCP Listener process group was
modified as described in the activity log.

3. Vadlidate the Stage 1 component migration output for the TCP Listener process group.

a) Load the migrated flow.jsoninto aNiFi 1 instance and check the flow.

b) Review the activity log.json file and check for any manual-change-requests or manual-validation-reque
sts. If none are present, proceed to the next step.

In this example, you can see the following information in the activity log:

{

"sequence" : 2,

"type" : "change-info",

"subject" : "b41966ad-0194- 1000- a08d- a92489457356",

"message" : "Conponent [org.apache.nifi.processors. standard. Li stenTCPR
ecord] has been deprecated (N FI-13509)",

"context" : {

"rule" : "36227b60- 75f 0- 40dc- 8caf - a2ec577aab54c"

}

Search for the value of the “subject” element in NiFi’s search box.

Y ou are directed to the ListenTCPRecord processor. No manual modifications are needed at this stage.
However, it isimportant to note that the ListenTCPRecord processor is deprecated and is not available in NiFi
2. Once the full component migration (Stage 1 and Stage 2) is complete, instructions will be provided on how
to handle this deprecation.

¢) If manua changes are necessary, update the migrated_flow.json on the NiFi canvas after loading it. Once the
flow is validated and meets expectations, continue with the next step.

4. Run Stage 1 component migration on the Elastic process group.
a) Movemigrated flow.json from Step 2 into the input folder (/etc/migration-tool-input) and renameit to
flow.json for clarity.
b) Make abackup of the output folder (/etc/migration-tool-output/components) before running the next migration
step.

B Note:
Thisstep is crucia because the same output folder is used as in the previous migration, and its contents
will be overwritten. To retain arecord of changes made at each stage, it is better to create a backup.

¢) Run Stage 1 component migration on the Elastic process group using the following command.

bi n/m gration.sh nifi mgrate-conponents \
-i /etc/mgration-tool-input/flow json \

-od /etc/mgration-tool -output/conmponents \
-pgi d b42881c7-0194- 1000- 3cdf - 1bd453a0edOf \

32

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

- - sour ceConpat i bl eCut put

This generates a sourceV ersion folder that contains the two output files of the Stage 1 migration.
activity_log.json

* Log of all actions performed during this stage of the migration.
migrated_flow.json

* A modified NiFi 1 flow, which is not compatible with NiFi 2 yet.
» It contains everything the original flow did, except the Elastic process group was modified with
the actions described in the activity log.

5. Validate the Stage 1 component migration output for the Elastic process group.
a) Loadthe migrated flow.jsoninto aNiFi 1 instance and check the flow.
b) Review the activity log.json file.

It contains a change-info entry that informs you of changesto a NiFi 2 processor, identified by the subject ID.

{

"sequence" : 2,

"type" : "change-info",

"subject" : "b428aad6-0194-1000- d73d- 9f 2332a59f 04",

"message" : "Property [Max JSON Field String Length] has been added (N

| FI -12343); Property [put-es-json-not_found-is-error] has been renaned t
0 [put-es-not_found-is-error] (N FI-12255); Property [put-es-json-error-
docunent s] has been renoved (N Fl-12255); Rel ationships [success] has be
en renaned to [original]; Relationship [successful] has been added (N FI

-12255); ",
"context" :
"rule" : "6501a693-b524-4dla-blle-69747c2651e8"
}
To identify the processor affected by these changes, search for the value of the “subject” element in NiFi’s
search box.

Y ou are directed to the PutElasticsearchJson processor. No manual modifications are needed at this stage.
However, it isimportant to note that changes will be applied to the PutElasticsearchJson processor during
Stage 2 of the migration. Once the full component migration (Stage 1 and Stage 2) is complete, instructions
will be provided on how to handle this change.

At this stage, you have completed Stage 1 of both variable and component migration for the process groupsin

your flow. After reviewing the logs, you confirmed that no manual changes were needed. Y ou can proceed with a

full component migration using the migrated flow.json from Step 4.

6. Run full component migration (Stage 1 and 2).

a) Move migrated flow.json from Step 4 into the input folder (/etc/migration-tool-input) and rename it to
flow.json for clarity.

b) Make abackup of the output folder (/etc/migration-tool-output/components) before running the next migration
step.

B Note:
Thisstep is crucia because the same output folder is used as in the previous migration, and its contents
will be overwritten. To retain arecord of changes made at each stage, it is better to create a backup.
¢) Run the full component migration using the following command.

bi n/m gration.sh nifi mgrate-conponents \
-i /etc/mgration-tool-input/flowjson \

33

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

-od /etc/ mgration-tool -output/conponents
This generates the following output:

conponent s
sour ceVersi on
activity |l og.json
mgrated_fl ow json
t ar get Ver si on
activity_l og.json
mgrated fl ow json

The contents of the previously generated sourceVersion folder will be overwritten. The contents represent the
NiFi 1-compatible version of the migrated flow. Since the root process group only contained the two process
groups on which you aready performed Stage 1 component migration, the activity log will only include the
same entries asthose in Steps 2 and 4.

Additionally, atargetVersion directory is created, containing the output files of the Stage 2 part of the
migration:
migrated_flow.json
* NiFi 2-compatible flow in terms of variables
* Youcanloaditinto NiFi 2 and validate it
activity log.json

« List of all actions performed during this stage of the migration, and any manual steps that you
need to perform.
7. Validate the Stage 2 component migration output.
a) Load thetargetVersion/migrated flow.json into a NiFi 2 instance and check the flow.
b) Review the targetVersion/activity log.json file.

In this example, you can see the following manual -change-request entry.

{
"sequence" : 3,
"type" : "manual - change-request",
"subject" : "b428aad6-0194- 1000- d73d- 9f 2332a59f 04",
"message" : "New relationship [original] has been added, it has to be
connected to a downstream processor or termnated.",
"context" :
"rule" : "6501a693- b524-4dla-blle- 69747c2651e8"
}

To identify the processor affected by these changes, search for the value of the “ subject” element in NiFi’s
search box. It refers to the PutElasticsearchJson processor. Y ou will find an unbound "original” relationship
that needs to be connected to a downstream processor or terminated. M ake the necessary modifications
manually. Once completed, this change request is resolved.

Y ou can see another manual-change-request entry in the Activity Log.

"sequence" : 6,

"type" : "manual - change-request™”,

"subject" : "b41966ad- 0194- 1000- a08d- a92489457356" ,

"message" : "The conponent has been deprecated. It is suggested to r

eplace it with a conbination of [org.apache.nifi.processors. standard. Lis
tenTCP] and [org. apache. nifi.processors. standard. Convert Record] processo
rs",
"context" :
"rule" : "36227b60- 75f 0- 40dc- 8caf - a2ec577aa54c"

34

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

}

To identify the processor affected by these changes, search for the value of the “subject” element in NiFi’s
search box. It refersto the ListenTCPRecord processor. Open the TCP Listener process group. Y ou can see
that the processor is marked with dashed borders and its version number still showsthat of the NiFi 1 instance.
It meansthat it isa"ghost processor”, not available in NiFi 2. The log message suggests replacing it with a
combination of ListenTCP and ConvertRecord processors.

[. R N N P T TN NN T TN

—~| 4 ListenTCPRecord
w»| ListenTCPRecord 1.26.0.2.1.71000-46

E org.apache.nifi - nifi-standard-nar :
v In 0 (0 bytes) 5 min E
E Read/Write 0 bytes / 0 bytes 5min
' Out 0 (0 bytes) 5min
i Tasks/Time 0/ 00:00:00.000 S min E

NMame success
Queued 0 (0 bytes)

~] % LogAttribute

-~ LogAttribute 2.0.0.4.0.0.0-383

o org.apache.nifi - nifi-standard-nar
In 0 (0 bytes) 5 min
Read/Write O bytes / 0 bytes 5 min
Out 0 (0 bytes) 5 min
Tasks/Time 0/ 00:00:00.000 S min

Instantiate and configure the ListenTCP and ConvertRecord processors, connect them appropriately, and then
remove the ghost processor.

Besides these changes there are no further manual-change-requests or manual-validation-requests in the
activity log.
8. Wrap up the migration.

a) Review the completed flow to ensure it meets your use cases and that all necessary changes have been made.
b) Enable the controller services associated with the flow in the NiFi 2 instance.
¢) Oncethe controller services are enabled, start the processors in your migrated NiFi 2 flow.

35

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

Learn how to use the migrate-all command to migrate templates, variables, and componentsin a single operation
using aflow.json file as input.

This command combines the functionality of the migrate-templates, migrate-variables, and migrate-components
commands for ease and convenience. While migrate-all simplifies the migration process, for larger flows, it is usually
better to run the three migration commands separately. Y ou may also want to migrate process groups individually to
ensure activity logs and manual validation remain manageable.

The migrate-all command can be useful in the following scenarios:

* Theflow you want to migrate is simple and of manageable size.

« Theflow islarge and complex, and you need an initial high-level overview of the migration outcome before
performing a step-by-step migration. Running migrate-all provides a preview of the final migrated flow. The
Activity Log shows you the actions taken during migration and hel ps assess the required manual intervention by
listing manual -change-requests and manual-validation-requests.

Offload all flowfiles from NiFi.

Stop all processors and disable all controller servicesin NiFi.

Stop NiFi.

Copy the flow.json.gz file from NiFi’s conf directory to the Migration Tool’ s input folder (/etc/migration-tool-
input).

5. Unzip thefile to obtain flow.json.

dAwbdeE

1. Run thefollowing command to migrate the flow.

bin/mgration.sh nifi migrate-all \
-i /etc/mgration-tool-input/flowjson \
-od /etc/m gration-tool - out put

This generates the following output:

sour ceVer si on

N Fi _Fl ow_b4175f 57-0194- 1000- 8470- 9251a24519b4
elastic_tenplate.json

el astic_tenplate.xn

activity | og.json

mgrated fl ow json

t ar get Ver si on

N Fi _Fl ow_b4175f 57- 0194- 1000- 8470- 9251a24519b4
elastic_tenplate.json

activity | og.json

mgrated fl ow json

2. Review the migration output.

« The sourceVersion directory contains the NiFi 1-compatible version of the flow, including the exported
template and its process group counterpart, aong with the Activity Log.

e ThetargetVersion directory contains the NiFi 2-compatible version of the flow and its corresponding Activity
Log.

36

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

3. Addressissuesin NiFi 1 (if needed).
If sourceVersion/activity_log.json contains manual-change-requests, follow these steps:

a) Load sourceVersion/migrated flow.json into your NiFi 1 instance.
b) Apply the required manual changes.
¢) Runthe migrate-all command again using the manually modified flow.
4. Validate the migrated flow.
a) RenametargetVersion/migrated flow.json to flow.json.
b) Compressit into flow.json.gz.
¢) Load flow.json.gz into your NiFi 2 instance to inspect the migrated flow.
d) Open targetVersion/activity log.json and review any manual-change-requests and manual-validation-requests.
€) Apply the required manual modifications to the flow.

For complex flows, you can migrate one process group and on one stage at atime. See below for an example
workflow.

1. Migrate the TCP Listener process group using the following command.

bin/mgration.sh nifi mgrate-all \

-i /etc/mgration-tool-input/flow json \

-od /etc/mgration-tool -output -pgid b41940d7-0194- 1000- 42f c- 458834630567
\

--sour ceConpati bl eQut put

2. Usethe output sourceVersion/migrated flow.json (the result of the previous command moved to the input folder)
astheinput for migrating the Elastic process group.

bin/mgration.sh nifi migrate-all \

-i /etc/mgration-tool-input/flowjson \

-od /etc/mgration-tool -output -pgid b42881c7-0194- 1000- 3cdf - 1bd453a0edOf
\

--sour ceConpati bl eQut put

3. Usethe output sourceVersion/migrated flow.json (the result of the previous command moved to the input folder)
astheinput for migrating the root process group and completing the Stage 2 migration.

bin/mgration.sh nifi mgrate-all \
-i /etc/mgration-tool-input/flowjson \
-od /etc/m gration-tool - out put

This produces a NiFi 2-compatible version of the flow.

i Important:
Always ensure that the input for amigration command isaNiFi 1 flow and not a NiFi 2 flow.

This section provides step-by-step examples of how to run different migrations with the Cloudera Flow Management
Migration Tool using aflow.json.gz file asinput.

37

Cloudera Flow Management

Migrating a data flow using the Cloudera Flow Management
Migration Tool

Learn how to use the Cloudera Flow Management Migration Tool to extract and transform templates for
compatibility with NiFi 2 using aflow.json.gz file asinput. NiFi 2 does not support templates, so this step isrequired

to ensure compatibility with the target version.

Y ou have aflow that has atemplate named elastic_template, which was created from a process group called elastic.

This process group contains the following simple flow:

GrnnrateFlusFls

1]
dWrie 0 by O e
n

TaxaxTime 0 OEDX02.0I0

2 0 bynes

di"&riie 0 hgles (O brries
1]

ez Dime U BEDDS. D20

e Taikere

The process group has avariable, Elasticsear ch Index, referenced in the index property of the PutElasticsearchJson

processor.

38

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

Configure Processor | PutElasticsearch.Json 1:26.0.2.1.7.1000-45

£k Invalid
SETTINGS SEHEDULNG | FROPERTIES | HELATIGNRSIRS COMMENTS
Reguired field & -+
Property Valua

Iderdifier Attribute LE]

Index Dperation o index

Index @ SlElasticsearch Index’}
Type o

Seript (7]

Seripted Upser @ false
Dynamic Templales w

Batch Sire @ 0
Character Sel @ UTF-g&
Cliant Service 8 Novalus et
Lag Errer Respanges @ lalze
Cuitput Error Respanses @ false

CAMCEL APFLY

Y our goal isto migrate this template to NiFi 2 used in Cloudera Flow Management 4.11.0.

Before you begin

1. Stop al processors and disable al controller servicesin NiFi.

2. Stop NiFi.

3. Copy the flow.json.gz file from NiFi’ s conf directory to the Migration Tool’ sinput folder (/etc/migration-tool-
input).

Procedure

1. Run Stage 1 template migration using the following command.

bin/mgration.sh nifi mgrate-tenplates \
-i /etc/mgration-tool-input/flowjson.gz \
-od /etc/mgration-tool -output/tenplates \
-sco

This generates a sourceVersion folder that contains the output files of the migration.

t enpl at es

sourceVersion
N Fi _Fl ow_ad3a86a6- 0194- 1000- 78d9- 6374298d9a0lc
elastic_tenplate.json
elastic_tenplate. xm

39

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

activity_l og.json

The folder name NiFi_Flow_ad3a86a6-0194-1000-78d9-6374298d9a0c indicates that the exported template
belongs to the root process group, which is named NiFi Flow in NiFi. The unique ID for thisgroup is
ad3a86a6-0194-1000-78d9-6374298d9a0c.

elastic_template.json

» Flow definition containing the contents of the original template
» Equivaent to manually converting atemplate to aflow definitionin NiFi 1 by:

a. Instantiating the template on the canvas.

b. Right-clicking the process group.

c. Selecting Download flow definition without external services.
* Modified by the Migration Tool to ensure compatibility:

* Variables (not supported in NiFi 2) converted into parameters
» Parameter context created to hold the new parameters
» Processors updated to reference parameters instead of variables

* Thisisdtill aNiFi 1 flow definition, so do not load thisfile directly into NiFi 2. Use an empty
NiFi 1 instance to review the modification made by the tool. The flow will appear unchanged,
but variables will be replaced with parameters of the same name, which are now referenced by
the processor instead.

* Changesin syntax:
Variables were previously referenced using ${}, whereas parameters are now referenced using
#H}.
* NiFi 1variables: ¥ variable_name}
* NiFi 2 parameters. #{ parameter_name}
elastic_templatexml

» Original template exported from NiFi 1

e |dentical to downloading it from the Templates menu in NiFi 1

» Compatible only with NiFi 1 as NiFi 2 does not support templates and cannot parse XML
template files

activity log.json
» Log of al actions performed during this stage of the migration.
* Thefollowing were changes made during the template migration:

* A new parameter context was created with a new parameter in it.

» The parameter context was assigned to the process group.

» The PutElasticsearchJson processor was updated to reference the new parameter.
» Components are referenced by a unique 1D, not by name.

40

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

2. Vadlidate the Stage 1 template migration outpuit.
a) Check the new flow definition in aNiFi 1 instance to verify that the flow matches your expectations.

1. Start your NiFi 1 instance.

2. Create anew process group.

3. Load elastic_template.json to NiFi 1.

4. Confirm that variables were correctly converted to parameters.
b) Review activity log.json and address any manual-change-requests or manual -validation-reguests.
¢) If there are manual-change-requests or manual-validation-requests to handle, follow these steps:

1. Start aNiFi 1instance.

2. Load the sourceVersion/<template_name>.json flow definition by creating a new process group and
uploading the JSON file.

3. Make the modifications on the NiFi canvas, indicated by the manual-change-requests or manual-validation-
requestsin the sourceVersion/activity _log.json.

4. Stopthe NiFi instance.

5. Fetch the flow.json.gz file from the NiFi conf directory.

6. Perform variable migration and then component migration on this flow.json.gz file. For instructions, see
the example scenario for variable and component migration.

d) If no additional changes are required, proceed to Stage 2.
3. Run full template migration (Stage 1 and 2), using the following command.

bin/mgration.sh nifi mgrate-tenplates \
-i /etc/mgration-tool-input/flow json.gz \
-od /etc/mgration-tool -output/tenpl ates

The contents of the previously generated sourceVersion folder will be overwritten, but thisis not a concern as
the tool generates the same sourceVersion output as before. Additionally, atargetVersion directory is created,
containing the output files of the Stage 2 part of the migration.

t ar get Ver si on

N Fi _Fl ow_ad3a86a6- 0194- 1000- 78d9- 6374298d9a0c
elastic_tenplate.json

activity_l og.json

elastic_template.json

* NiFi 2-compatible flow definition
» Contains the contents of the original template converted into an exported process group.
» Thisversion iscompatible with NiFi 2, but no longer supports NiFi 1.

@ Note:
An elastic_template.xml is not generated as NiFi 2 does not support XML templates.
activity_log.json

» List of all actions performed during this stage of the migration.

41

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

4. Validate the Stage 2 template migration output.
a) Check the new flow definition in aNiFi 2 instance to verify that the flow matches your expectations.

1. Start your NiFi 2 instance.
2. Create anew process group.
3. Load elastic_template.json into a NiFi 2 instance.

The new process group will be called elastic_template and will contain another process group named
elastic, matching the name of the process group that was converted into atemplate in NiFi 1 before you
started the migration.
4. Verify parameter replacements and processor updates.
b) Review activity log.json and address any manual-change-requests or manual-validation-reguests.

In this case, you can see the following manual-change-request:

{
"sequence" : 4,
"type" : "manual - change-request",
"subject" : "al468d69-3f 30- 3f 83-a7cl-91dad09890f 7",
"message" : "New relationship [original] has been added, it has to be
connected to a downstream processor or terminated.",
"context" :
"rule" : "6501a693-b524-4dla-blle-69747c2651e8"
}

1. OpenthetargetVersion/elastic_template.json file and search for the "subject” 1D, a1468d69-3f30-3f83-
arc1-91dad09890f7. ThisID refers to the PutElasticsearchJson processor.

2. Gotothe NiFi 2 canvas and check the processor. Y ou will find that it has an unbound “original”
relationship that needs to be connected to a downstream component.

3. Make the required change manually on the canvas.

4. Once done, export the process group. This exported process group is now afully NiFi 2-compatible version
of the original template.

5. Savethefile.

Y ou have finished the template migration process.

Learn how to use the Cloudera Flow Management Migration Tool to convert variables to parameters and parameter
contexts using a flow.json.gz file asinput.

The following NiFi flow is used to demonstrate both variable and component migration. It illustrates how variables
are used within process groups and how they are referenced by individual componentsin the NiFi flow.

The flow consists of two process groups.

« TCP Listener (ID: b41940d7-0194-1000-42f c-458834630567)
« Elastic (ID: b42881c7-0194-1000-3cdf-1bd453a0ed0f)

At theroot level, the flow is structured as follows:

42

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management

Migration Tool

TGP Listanar Elasiic

D &0 +0 M1 A0 5 000 M1 AT R
Croesedd D {0 bes) e 00 e
In D40 Eytes) — 0 5 In 1010 Ergtinnd — 0 I
Raad Write 0 byt | O bylas Bagd/Wrlic 0 beptes § D Byies IT
Cral 0 = 0 [} brygtes) m Tl 0 —= 0 [0 higtag)

a o 0 D ?*D 1] 1] 0 I]

TCP Listener Process Group

This process group contains the following simple flow:

~ m listenTCPRecord
L ListenTCPRecora 1.26.0.2.1.7.1000-46

LA i-!|ZIF:.lZZ|"IE-" nifi = nifi-standard-nar

In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5 min
Ot 0 (0 bytes) 5 min
Tasks/Time 0/ 00:00:00.000 5 min

Name success
Queued 0 (0 bytes)

!

= % LogAttribute
Y LogAttribute 1.26.0.2.1.7.1000-46

org.apache.nifi - nifi-standard-nar

In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5 min
Out 0 (0 bytes) 5 min
Tasks/Time 0/00:00:00.000 5 min

The process group defines avariable called TCP Listener Port, which is referenced by the ListenTCPRecord
processor.

43

Cloudera Flow Management

Migrating a data flow using the Cloudera Flow Management

Migration Tool

Configure Processor | ListenTCPRecord 126.0.21.7.1000-46

B Sopped

SETTINGS SEHERULIRG | FROPERTIES RELATIEMSHIPS COMBMERTS

Required field

@ +

Property Walue

Lezal Matwoek Intarlacs (7] value gt

Part 0 E[TCP Listener Port}

Maz Size of Secket Rulfer o 1mE

Max Mumber of TCP Connections [7]

Read Timeout @ 10 seconds

Record Readar @ JeonTresReadsr -
Record ‘Wriber B AvroRecordSetWriter —
Read Eves Sategy B Tranaler

Record Batch Size @ 00d

551 Condoxt Sarvice [7] g i 5i

Client Al o MOKE

Elastic Process Group

This process group also contains a simple flow:

CANCEL

APPLY

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

;‘ =~ ‘ GenerateFlowFile

~ GenerateFlowFile 1.26.0.2.1.7.1000-46
org.apache.nifi - nifi-standard-nar
In 0 (0 bytes) 5 min
Read/Write 0 bytes / 0 bytes 5min
Out 0 (0 bytes) 5 min
Tasks/Time 0/00:00:00.000 5 min

Name success
Queued 0 (0 bytes)

|

~) PutElasticsearchJson

{
i ~ PutElasticsearchJson 1.26.0.2.1.7.1000-46
org.apache.nifi - nifi-elasticsearch-restapi-nar
In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5 min
Out 0 (0 bytes) 5 min
Tasks/Time 0/ 00:00:00.000 5 min
Name success 4%){ Name f> \ors
Queued 0 (0 bytes) Queued 0 (0 bytes) Queued 0 (0 bytes) Queued 0 (0 bytes)
‘ ~ LogAttribute /
h LogAttribute 1.26.0.2.1.7.1000-46
org.apache.nifi - nifi-standard-nar
In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5 min
Out 0 (0 bytes) 5 min
Tasks/Time 0/00:00:00.000 5min

The process group defines a variable called Elasticsear ch Index. Thisvariable is referenced in the
PutElasticsearchJson processor’s "Index" property.

45

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management

Migration Tool
Configure Processor | putElasticsearchJson 1.26.0.2.1.7.1000-46
A nvalid
SETTINGS SCHEDULING PROPERTIES RELATIONSHIPS COMMENTS

Required field ® +
Property Value

Identifier Attribute ©® | Novalue set

Index Operation © index

Index © ${Elasticsearch Index'}

Type © | No value set

Script ©® | Novalue set

Scripted Upsert © false

Dynamic Templates © | Novalue set

Batch Size © 100

Character Set © UTF-8

Client Service © | No value set

Log Error Responses @ false

Output Error Responses © false

CANCEL APPLY

Y our goal isto migrate the variables used in Cloudera Flow Management 2.1.7.2000 powered by NiFi 1 to parameters
used in Cloudera Flow Management 4.11.0 powered by NiFi 2.

Note: NiFi 2 supports only parameters, not variables, so variable migration is required to ensure
E compatibility with the target version.

The example guides you through variable migration one process group at atime, simplifying the process and
maintaining a clear activity log. While this example flow is simple, the step-by-step approach shows how this method
improves clarity for more complex migrations. In real-world scenarios, you have to define amigration strategy based
on your flow’s structure, individual process group migration may not always be necessary. Migrating a parent process
group automatically applies the changes recursively to its descendants.

Before you begin

1. Stop all processors and disable al controller servicesin NiFi.

2. Stop NiFi.

3. Copy the flow.json.gz file from NiFi’s conf directory to the Migration Tool’sinput folder (/etc/migration-tool-
input).

Procedure

1. Run Stage 1 variable migration on the TCP Listener process group, using the following command.

bin/mgration.sh nifi mgrate-variables \
-i /etc/mgration-tool-input/flowjson.gz \
-od /etc/mgration-tool -output/variables \
-pgi d <process_group_id> \

46

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

- - sour ceConpat i bl eCut put
This generates a sourceVersion folder that contains the output files of the Stage 1 migration.

vari abl es

sour ceVersion
activity | og.json
mgrated_fl ow. json. gz

activity log.json

e Logof al actions performed during this stage of the migration.
» Thefollowing were changes made during the template migration:

* A new parameter context was created with a new parameter called TCP Listener Port,
which replaces the corresponding variable.
* TheTCP Listener Port variable was removed.

migrated_flow.json.gz

* A modified NiFi 1 flow, which is not compatible with NiFi 2 yet.
|t contains everything the original flow did, except the TCP Listener process group how
references a parameter instead of the removed variable.
2. Validate the Stage 1 variable migration output for the TCP Listener process group.

a) Load the migrated flow.json.gz into a NiFi 1 instance and check the flow.

1. Ensure NiFi isnot running.

Go to NiFi's conf directory and back up the flow.json.gz and flow.xml.gz files.
Delete the original flow.json.gz and flow.xml.gz files.

Rename the migrated_flow.json.gz to flow.json.gz.

. Start NiFi and check the flow.

b) Review the activity log.json file and check for any manual-change-requests or manual-validation-requests. If
none are present, proceed to running Stage 1 variable migration on the Elastic process group.

ardwbd

1. If manua changes are necessary, load the migrated flow.json.gz to NiFi, update and validate it.
2. Oncethe flow isvalidated and meets expectations, continue with the next step using the new flow.json.gz
file
3. Run Stage 1 variable migration on the Elastic process group.
a) Move migrated_flow.json.gz from Step 2 into the input folder (/etc/migration-tool-input) and rename it to
flow.json.gz for clarity.
b) Make abackup of the output folder (/etc/migration-tool-output/variables) before running the next migration
step.
Note: Thisstepiscrucia because the same output folder is used asin the previous migration, and its
Ij contents will be overwritten. To retain arecord of changes made at each stage, it is better to create a
backup.
¢) Run Stage 1 variable migration on the Elastic process group using the following command.

bin/mgration.sh nifi mgrate-variables \

-i /etc/mgration-tool-input/flowjson.gz \
-od /etc/ mgration-tool -output/variables \
-pgi d b42881c7-0194- 1000- 3cdf - 1bd453a0edOf \
--sour ceConpati bl eQut put

This generates a sourceVersion folder that contains the two output files of the Stage 1 migration.
activity log.json

* Log of al actions performed during this stage of the migration.

47

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

» Thefollowing were changes made during the template migration:
* A new parameter context was created with a new parameter called Elasticsear ch I ndex,
which replaces the corresponding variable of the same name.
» The new parameter is referenced from the PutElasticsearchJson processor.
* TheElasticsear ch I ndex variable was removed.

migrated_flow.json.gz

* A modified NiFi 1 flow, which is not compatible with NiFi 2 yet.

« |t contains everything the original flow did, but the Elastic process group now references a
parameter instead of the removed variable.

4. Vdidate the Stage 1 variable migration output for the Elastic process group.
a) Load the migrated flow.json.gz into a NiFi 1 instance and check the flow.
b) Review the activity log.json file and check for any manual -change-requests or manual-validation-requests. If
none are present, proceed to the next step.

¢) If manua changes are necessary, update the migrated_flow.json.gz on the NiFi canvas after loading it. Once
the flow is validated and meets expectations, continue with the next step.

At this stage, both process groups no longer contain variables and use parameters instead. If the flow meets your
expectations, you can either run afull variable migration to validate your flow in NiFi 2 or proceed with migrating
the components.

5. Run full variable migration (Stage 1 and 2) by using the following command.

bin/mgration.sh nifi mgrate-variables \
-i /etc/mgration-tool-input/flow json.gz \
-od /etc/mgration-tool -output/variabl es

The contents of the previously generated sourceVersion folder will be overwritten, but thisis not a concern asthe
tool generates the same sourceV ersion output as before.

Additionally, atargetVersion directory is created, containing the output files of the Stage 2 part of the migration.
migrated_flow.json.gz

* NiFi 2-compatible flow in terms of variables
* Youcanloaditinto NiFi 2 and validate it

activity log.json
« List of all actions performed during this stage of the migration.

Stage 2 migration allows you to validate the result of the variable migration processin NiFi 2. However,
component migration should not be performed on the targetV ersion/migrated_flow.json.gz because the input of
component migration must be aNiFi 1 flow.

6. Proceed with component migration using the migrated_flow.json.gz output from step 3.

Learn how to use the Cloudera Flow Management Migration Tool to migrate components to parameters and
parameter contexts using a flow.json.gz file as input.

Thefollowing NiFi flow is used to demonstrate both variable and component migration.
It consists of two process groups.

e TCP Listener (ID: b41940d7-0194-1000-42fc-458834630567)
» Elastic (ID: b42881c7-0194-1000-3cdf-1bd453a0edOf)

At theroot level, the flow is structured as follows:

48

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management

Migration Tool

TGP Listanar Elasiic

D &0 +0 M1 A0 5 000 M1 AT R
Croesedd D {0 bes) e 00 e
In D40 Eytes) — 0 5 In 1010 Ergtinnd — 0 I
Raad Write 0 byt | O bylas Bagd/Wrlic 0 beptes § D Byies IT
Cral 0 = 0 [} brygtes) m Tl 0 —= 0 [0 higtag)

a o 0 D ?*D 1] 1] 0 I]

TCP Listener Process Group

This process group contains the following simple flow:

~ m listenTCPRecord
L ListenTCPRecora 1.26.0.2.1.7.1000-46

LA i-!|ZIF:.lZZ|"IE-" nifi = nifi-standard-nar

In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5 min
Ot 0 (0 bytes) 5 min
Tasks/Time 0/ 00:00:00.000 5 min

Name success
Queued 0 (0 bytes)

!

= % LogAttribute
Y LogAttribute 1.26.0.2.1.7.1000-46

org.apache.nifi - nifi-standard-nar

In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5 min
Out 0 (0 bytes) 5 min
Tasks/Time 0/00:00:00.000 5 min

The process group defines avariable called TCP Listener Port, which is referenced by the ListenTCPRecord
processor.

49

Cloudera Flow Management

Migrating a data flow using the Cloudera Flow Management

Migration Tool

Configure Processor | ListenTCPRecord 126.0.21.7.1000-46

B Sopped

SETTINGS SEHERULIRG | FROPERTIES RELATIEMSHIPS COMBMERTS

Required field

@ +

Property Walue

Lezal Matwoek Intarlacs (7] value gt

Part 0 E[TCP Listener Port}

Maz Size of Secket Rulfer o 1mE

Max Mumber of TCP Connections [7]

Read Timeout @ 10 seconds

Record Readar @ JeonTresReadsr -
Record ‘Wriber B AvroRecordSetWriter —
Read Eves Sategy B Tranaler

Record Batch Size @ 00d

551 Condoxt Sarvice [7] g i 5i

Client Al o MOKE

Elastic Process Group

This process group also contains a simple flow:

CANCEL

APPLY

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

;‘ =~ ‘ GenerateFlowFile

~ GenerateFlowFile 1.26.0.2.1.7.1000-46
org.apache.nifi - nifi-standard-nar
In 0 (0 bytes) 5 min
Read/Write 0 bytes / 0 bytes 5min
Out 0 (0 bytes) 5 min
Tasks/Time 0/00:00:00.000 5 min

Name success
Queued 0 (0 bytes)

|

~) PutElasticsearchJson

{
i ~ PutElasticsearchJson 1.26.0.2.1.7.1000-46
org.apache.nifi - nifi-elasticsearch-restapi-nar
In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5 min
Out 0 (0 bytes) 5 min
Tasks/Time 0/ 00:00:00.000 5 min
Name success 4%){ Name f> \ors
Queued 0 (0 bytes) Queued 0 (0 bytes) Queued 0 (0 bytes) Queued 0 (0 bytes)
‘ ~ LogAttribute /
h LogAttribute 1.26.0.2.1.7.1000-46
org.apache.nifi - nifi-standard-nar
In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5 min
Out 0 (0 bytes) 5 min
Tasks/Time 0/00:00:00.000 5min

The process group defines a variable called Elasticsear ch Index. Thisvariable is referenced in the
PutElasticsearchJson processor’s "Index" property.

51

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management

Migration Tool
Configure Processor | putElasticsearchJson 1.26.0.2.1.7.1000-46
A nvalid
SETTINGS SCHEDULING PROPERTIES RELATIONSHIPS COMMENTS

Required field ® +
Property Value

Identifier Attribute @ | Novalue set

Index Operation © index

Index © ${Elasticsearch Index'}

Type © | No value set

Script © | Novalue set

Scripted Upsert © false

Dynamic Templates © | No value set

Batch Size © 100

Character Set © UTF-8

Client Service © | Novalue set

Log Error Responses @ false

Output Error Responses © false

CANCEL APPLY

Your goal isto migrate the components used in Cloudera Flow Management 2.1.7.2000 powered by NiFi 1 to NiFi 2-
compatible components used in Cloudera Flow Management 4.11.0 powered by NiFi 2.

The example guides you through component migration one process group at atime, simplifying the process and
maintaining a clear activity log. While this example flow is simple, the step-by-step approach shows how this method
improves clarity for more complex migrations. In real-world scenarios, you have to define a migration strategy based
on your flow’s structure, individual process group migration may not always be necessary. Migrating a parent process
group automatically applies the changes recursively to its descendants.

Procedure

1. Movethe migrated flow.json.gz file, the output of variable migration from Step 3, into the input folder (/etc/
migration-tool-input) and rename it to flow.json.gz for clarity.

ThisisaNiFi-1 compatible flow that no longer contains variables.
2. Run Stage 1 component migration on the TCP Listener process group using the following command.

bi n/m gration.sh nifi mgrate-conponents \

-i /etc/mgration-tool-input/flow.json.gz \
-od /etc/mgration-tool -output/conponents \
-pgi d b41940d7-0194- 1000- 42f c- 458834630567 \
--sour ceConpati bl eQut put

This generates a sourceVersion folder that contains the output files of the Stage 1 migration.

conponent s
sour ceVer si on
activity | og.json

52

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

mgrated_fl ow json. gz

activity_log.json
» Thelog describes all the actions that were performed for this stage of the process group
migration.
» Log of al actions performed during this stage of the process group migration.

migrated_flow.json.gz

* A modified NiFi 1 flow, which is not compatible with NiFi 2 yet.

|t contains everything the original flow did, except the TCP Listener process group was
modified as described in the activity log.

3. Vadlidate the Stage 1 component migration output for the TCP Listener process group.

a) Load the migrated flow.json.gz into aNiFi 1 instance and check the flow.

b) Review the activity log.json file and check for any manual-change-requests or manual-validation-reque
sts. If none are present, proceed to the next step.

In this example, you can see the following information in the activity log:

{

"sequence" : 2,

"type" : "change-info",

"subject" : "b41966ad-0194- 1000- a08d- a92489457356",

"message" : "Conponent [org.apache.nifi.processors. standard. Li stenTCPR
ecord] has been deprecated (N FI-13509)",

"context" : {

"rule" : "36227b60- 75f 0- 40dc- 8caf - a2ec577aab54c"

}

Search for the value of the “subject” element in NiFi’s search box.

Y ou are directed to the ListenTCPRecord processor. No manual modifications are needed at this stage.
However, it isimportant to note that the ListenTCPRecord processor is deprecated and is not available in NiFi
2. Once the full component migration (Stage 1 and Stage 2) is complete, instructions will be provided on how
to handle this deprecation.

¢) If manua changes are necessary, update the migrated_flow.json.gz on the NiFi canvas after loading it. Once
the flow is validated and meets expectations, continue with the next step.

4. Run Stage 1 component migration on the Elastic process group.
a) Movemigrated flow.json.gz from Step 2 into the input folder (/etc/migration-tool-input) and rename it to
flow.json.gz for clarity.
b) Make abackup of the output folder (/etc/migration-tool-output/components) before running the next migration
step.

B Note:
Thisstep is crucia because the same output folder is used as in the previous migration, and its contents
will be overwritten. To retain arecord of changes made at each stage, it is better to create a backup.

¢) Run Stage 1 component migration on the Elastic process group using the following command.

bi n/m gration.sh nifi mgrate-conponents \
-i /etc/mgration-tool-input/flowjson.gz \
-od /etc/mgration-tool -output/conmponents \
-pgi d b42881c7-0194- 1000- 3cdf - 1bd453a0edOf \

53

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

- - sour ceConpat i bl eCut put

This generates a sourceV ersion folder that contains the two output files of the Stage 1 migration.
activity_log.json

* Log of all actions performed during this stage of the migration.
migrated_flow.json.gz

* A modified NiFi 1 flow, which is not compatible with NiFi 2 yet.
» It contains everything the original flow did, except the Elastic process group was modified with
the actions described in the activity log.

5. Validate the Stage 1 component migration output for the Elastic process group.
a) Load the migrated flow.json.gz into aNiFi 1 instance and check the flow.
b) Review the activity log.json file.

It contains a change-info entry that informs you of changesto a NiFi 2 processor, identified by the subject ID.

{

"sequence" : 2,

"type" : "change-info",

"subject" : "b428aad6-0194-1000- d73d- 9f 2332a59f 04",

"message" : "Property [Max JSON Field String Length] has been added (N

| FI -12343); Property [put-es-json-not_found-is-error] has been renaned t
0 [put-es-not_found-is-error] (N FI-12255); Property [put-es-json-error-
docunent s] has been renoved (N Fl-12255); Rel ationships [success] has be
en renaned to [original]; Relationship [successful] has been added (N FI

-12255); ",
"context" :
"rule" : "6501a693-b524-4dla-blle-69747c2651e8"
}
To identify the processor affected by these changes, search for the value of the “subject” element in NiFi’s
search box.

Y ou are directed to the PutElasticsearchJson processor. No manual modifications are needed at this stage.
However, it isimportant to note that changes will be applied to the PutElasticsearchJson processor during
Stage 2 of the migration. Once the full component migration (Stage 1 and Stage 2) is complete, instructions
will be provided on how to handle this change.

At this stage, you have completed Stage 1 of both variable and component migration for the process groupsin

your flow. After reviewing the logs, you confirmed that no manual changes were needed. Y ou can proceed with a

full component migration using the migrated flow.json.gz from Step 4.

6. Run full component migration (Stage 1 and 2).

a) Move migrated flow.json.gz from Step 4 into the input folder (/etc/migration-tool-input) and rename it to
flow.json.gz for clarity.

b) Make abackup of the output folder (/etc/migration-tool-output/components) before running the next migration
step.

B Note:
Thisstep is crucia because the same output folder is used as in the previous migration, and its contents
will be overwritten. To retain arecord of changes made at each stage, it is better to create a backup.
¢) Run the full component migration using the following command.

bi n/m gration.sh nifi mgrate-conponents \
-i /etc/mgration-tool-input/flow.json.gz \

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

-od /etc/ mgration-tool -output/conponents
This generates the following output:

conponent s
sour ceVersion
activity |l og.json
mgrated_flow json.gz
t ar get Ver si on
activity_l og.json
mgrated_fl ow json. gz

The contents of the previously generated sourceVersion folder will be overwritten. The contents represent the
NiFi 1-compatible version of the migrated flow. Since the root process group only contained the two process
groups on which you aready performed Stage 1 component migration, the activity log will only include the
same entries asthose in Steps 2 and 4.

Additionally, atargetVersion directory is created, containing the output files of the Stage 2 part of the
migration:
migrated_flow.json.gz
* NiFi 2-compatible flow in terms of variables
* Youcanloaditinto NiFi 2 and validate it
activity log.json

« List of all actions performed during this stage of the migration, and any manual steps that you
need to perform.
7. Validate the Stage 2 component migration output.
a) Load thetargetVersion/migrated flow.json.gz into aNiFi 2 instance and check the flow.
b) Review the targetVersion/activity log.json file.

In this example, you can see the following manual -change-request entry.

{
"sequence" : 3,
"type" : "manual - change-request",
"subject" : "b428aad6-0194- 1000- d73d- 9f 2332a59f 04",
"message" : "New relationship [original] has been added, it has to be
connected to a downstream processor or termnated.",
"context" :
"rule" : "6501a693- b524-4dla-blle- 69747c2651e8"
}

To identify the processor affected by these changes, search for the value of the “ subject” element in NiFi’s
search box. It refers to the PutElasticsearchJson processor. Y ou will find an unbound "original” relationship
that needs to be connected to a downstream processor or terminated. M ake the necessary modifications
manually. Once completed, this change request is resolved.

Y ou can see another manual-change-request entry in the Activity Log.

"sequence" : 6,

"type" : "manual - change-request™”,

"subject" : "b41966ad- 0194- 1000- a08d- a92489457356" ,

"message" : "The conponent has been deprecated. It is suggested to r

eplace it with a conbination of [org.apache.nifi.processors. standard. Lis
tenTCP] and [org. apache. nifi.processors. standard. Convert Record] processo
rs",
"context" :
"rule" : "36227b60- 75f 0- 40dc- 8caf - a2ec577aa54c"

55

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

}

To identify the processor affected by these changes, search for the value of the “subject” element in NiFi’s
search box. It refersto the ListenTCPRecord processor. Open the TCP Listener process group. Y ou can see
that the processor is marked with dashed borders and its version number still showsthat of the NiFi 1 instance.
It meansthat it isa"ghost processor”, not available in NiFi 2. The log message suggests replacing it with a
combination of ListenTCP and ConvertRecord processors.

[. R N N P T TN NN T TN

—~| 4 ListenTCPRecord
w»| ListenTCPRecord 1.26.0.2.1.71000-46

E org.apache.nifi - nifi-standard-nar :
v In 0 (0 bytes) 5 min E
E Read/Write 0 bytes / 0 bytes 5min
' Out 0 (0 bytes) 5min
i Tasks/Time 0/ 00:00:00.000 S min E

NMame success
Queued 0 (0 bytes)

~] % LogAttribute

-~ LogAttribute 2.0.0.4.0.0.0-383

o org.apache.nifi - nifi-standard-nar
In 0 (0 bytes) 5 min
Read/Write O bytes / 0 bytes 5 min
Out 0 (0 bytes) 5 min
Tasks/Time 0/ 00:00:00.000 S min

Instantiate and configure the ListenTCP and ConvertRecord processors, connect them appropriately, and then
remove the ghost processor.

Besides these changes there are no further manual-change-requests or manual-validation-requests in the
activity log.
8. Wrap up the migration.

a) Review the completed flow to ensure it meets your use cases and that all necessary changes have been made.
b) Enable the controller services associated with the flow in the NiFi 2 instance.
¢) Oncethe controller services are enabled, start the processors in your migrated NiFi 2 flow.

56

Cloudera Flow Management

Learn how to use the migrate-all command to migrate templates, variables, and componentsin a single operation
using aflow.json.gz file as input.

This command combines the functionality of the migrate-templates, migrate-variables, and migrate-components
commands for ease and convenience. While migrate-all simplifies the migration process, for larger flows, it is usually
better to run the three migration commands separately. Y ou may also want to migrate process groups individually to
ensure activity logs and manual validation remain manageable.

The migrate-all command can be useful in the following scenarios:

dAwbdeE

2.

The flow you want to migrate is simple and of manageable size.

Theflow islarge and complex, and you need an initial high-level overview of the migration outcome before
performing a step-by-step migration. Running migrate-all provides a preview of the final migrated flow. The
Activity Log shows you the actions taken during migration and hel ps assess the required manual intervention by
listing manual -change-requests and manual-validation-requests.

Offload all flowfiles from NiFi.

Stop all processors and disable all controller servicesin NiFi.

Stop NiFi.

Copy the flow.json.gz file from NiFi’s conf directory to the Migration Tool’ sinput folder (/etc/migration-tool-
input).

Run the following command to migrate the flow.

bin/mgration.sh nifi migrate-all \
-i /etc/mgration-tool-input/flowjson.gz \
-od /etc/m gration-tool - out put

This generates the following output:

sour ceVer si on

N Fi _Fl ow_b4175f 57- 0194- 1000- 8470- 9251a24519h4
elastic_tenplate.json

elastic_tenpl ate. xm

activity_l og.json

mgrated flow. json. gz

t ar get Ver si on

N Fi _Fl ow_b4175f 57- 0194- 1000- 8470- 9251a24519h4
elastic_tenplate.json

activity_l og.json

mgrated_fl ow json. gz

Review the migration output.

e The sourceVersion directory contains the NiFi 1-compatible version of the flow, including the exported
template and its process group counterpart, along with the Activity Log.

* ThetargetVersion directory contains the NiFi 2-compatible version of the flow and its corresponding Activity
Log.

57

Migrating a data flow using the Cloudera Flow Management
Migration Tool

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

3. Addressissuesin NiFi 1 (if needed).
If sourceVersion/activity_log.json contains manual-change-requests, follow these steps:

a) Load sourceVersion/migrated flow.json.gz into your NiFi 1 instance.
b) Apply the required manual changes.
¢) Run the migrate-all command again using the manually modified flow.
4. Validate the migrated flow.
a) RenametargetVersion/migrated flow.json.gz to flow.json.gz.
b) Load flow.json.gz into your NiFi 2 instance to inspect the migrated flow.
c) Open targetVersion/activity log.json and review any manual-change-regquests and manual-validation-requests.
d) Apply the required manual modifications to the flow.

For complex flows, you can migrate one process group and on one stage at atime. See below for an example
workflow.

1. Migrate the TCP Listener process group using the following command.

bin/mgration.sh nifi mgrate-all \

-i /etc/mgration-tool-input/flow.json.gz \

-od /etc/mgration-tool -output -pgid b41940d7-0194- 1000- 42f c- 458834630567
\

--sour ceConpati bl eQut put

2. Usethe output sourceVersion/migrated flow.json.gz (the result of the previous command moved to the input
folder) asthe input for migrating the Elastic process group.

bin/mgration.sh nifi mgrate-all \

-i /etc/mgration-tool-input/flow json.gz \

-od /etc/mgration-tool -output -pgid b42881c7-0194- 1000- 3cdf - 1bd453a0edOf
\

--sour ceConpati bl eQut put

3. Usethe output sourceVersion/migrated flow.json.gz (the result of the previous command moved to the input
folder) asthe input for migrating the root process group and completing the Stage 2 migration.

bin/nmgration.sh nifi mgrate-all \
-i /etc/mgration-tool-input/flow.json.gz \
-od /etc/m gration-tool - out put

This produces a NiFi 2-compatible version of the flow.

i Important:

Always ensure that the input for a migration command isa NiFi 1 flow, not aNiFi 2 flow.

This section provides step-by-step examples of how to run different migrations with the Cloudera Flow Management
Migration Tool using aflow definition JSON file asinput.

The flow definition JSON file can be generated by right-clicking a process group in NiFi and selecting Download
definition.

58

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

Learn how to use the Cloudera Flow Management Migration Tool to extract and transform templates for
compatibility with NiFi 2 using aflow.json file asinput. NiFi 2 does not support templates, so this step is required to
ensure compatibility with the target version.

Flow definition JSON files do not contain any templates so this step can be skipped. However, if you run the template
migration command using a flow definition JSON file, it will produce the following output:

sour ceVer si on
activity | og.json
t ar get Ver si on
activity_l og.json

The generated activity |log.json file will contain only minimal information, such as the start and end timestamps of
the migration process. No actual templates will be listed, as they are not present in the input.

Learn how to use the Cloudera Flow Management Migration Tool to convert variables to parameters and parameter
contexts from flow definition JSON files.

Thefollowing NiFi flow demonstrates both variable and component migration. It shows how variables are used
within process groups and how they are referenced by individual components.

Flow definition file:
e TCP_Listener_flow_definition.json

Thisfile contains the TCP Listener process group (1D: b41940d7-0194-1000-42fc-458834630567)
TCP Listener Process Group

This process group contains the following simple flow:

59

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

- m listenTCPRecord
L ListenTCPRecord 1.26.0.2.1.7.1000-46&

Larg i-!|:IF=.l:Z|"|i-" fifi - rifi-standard-nar

In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5 min
Cut 0 (0 bytes) 5 min
Tasks/Time 0/ 00:00:00.000 5 min

MName success
Queued 0 (0 bytes)

!

~] % LogAttribute
L - LogAttribute 1.26.0.2.1.7.1000-46

org.apache.nifi - nifi-standard-nar

In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5 min
Out 0 (0 bytes) 5 min
Tasks/Time 0/ 00:00:00.000 5 min

The process group defines avariable called TCP Listener Port, which is referenced by the ListenTCPRecord
processor.

60

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

Configure Processor | ListenTCPRecord 126.0.21.7.1000-46

B Zwpped
SETTINGS SEHERUILING | FRAFEETIES HELATIGMSHIES COMMENTS
Bequired field = 4+
Praperty Value
Lizal Metwixk Interlacs [7]
Paort @ ETCP Listener Port)
Maz Size of Sockel Bulfer 2 1KE
héax Mumber of TCP Connections @ z
Read Timeout @ 10 seconds
Record Readar @ JeonTreeReader w—
Record ‘Wriber B AvroRecordSetWriter —
Riad Erres Strategy 0 Transfer
Record Batch Size @ 00d
EZL Comtext Sorvos [7]
Client Al o MOKE

CAHCEL hEPLY

Note: Apache NiFi 2 supports only parameters, not variables, so variable migration is required to ensure
compatibility with the target version.

The example guides you through the variable migration process and shows how to maintain a clear activity log.
Although the example uses a simple flow, the step-by-step approach can be applied to more complex scenarios. In
real-world scenarios, Cloudera recommends defining a migration strategy based on the structure of each flow. In
some cases, individual flow definition migration may not be necessary.

Before you begin

Copy the TCP_Listener_flow_definition.json file to the Migration Tool’ s input folder (/etc/migration-tool-input).

Procedure

1. Run Stage 1 variable migration on TCP_Listener_flow_definition.json, using the following command.

bin/mgration.sh nifi mgrate-variables \

-i /etc/mgration-tool-input/ TCP_Listener_flow definition.json \
-od /etc/mgration-tool -output/variables \

--sour ceConpati bl eQut put

This generates a sourceVersion folder that contains the output files of the Stage 1 migration.

vari abl es

sour ceVer sion
activity | og.json
m grat ed_out put

61

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

mgrated _TCP_Li stener.json

activity_log.json

* Log of al actions performed during this stage of the migration.
» Thefollowing changes were made during the variable migration:

* A new parameter context was created with a new parameter called TCP Listener Port, which
replaces the corresponding variable.
e TheTCP Listener Port variable was removed.

migrated TCP_Listener.json

« A modified flow definition, which is not compatible with NiFi 2 yet.

» |t contains everything the original flow definition did, except the TCP Listener process group
now references a parameter instead of the removed variable.

* Thisistill aNiFi 1 flow definition, so do not load thisfile directly into NiFi 2. Use an empty
NiFi 1 instance to review the modification made by the tool. The flow definition will appear
unchanged, but variables will be replaced with parameters of the same name, which are now
referenced by the processor instead.

» Changesin the syntax: Variables were previously referenced using ${}, whereas parameters are
now referenced using #{}.

« NiFi 1variables: ${ variable name}
e NiFi 2 parameters. #{ parameter_name}

Note:
E The file name is composed of the migrated prefix and the name of the top-level
process group and not the original file name.
2. Vadlidate the Stage 1 variable migration output for the TCP_Listener flow_definition.json.

a) Check the new flow definition in aNiFi 1 instance to verify that the flow matches your expectations.

Start your NiFi instance.

Create anew process group.

Load sourceVersion/migrated_output/migrated_TCP_Listener.jsonto NiFi 1.

Removethe ‘migrated * prefix from the process group name.

Confirm that variables were correctly converted to parameters.

b) Rewevv the activity_log.json file and check for any manual-change-requests or manual-validation-requests.
¢) If there are manual-change-requests or manual-validation-requests to handle, follow these steps:

o rwbdhe

1. Make the modifications on the NiFi canvas, indicated by the manual-change-requests or manual-validation-
requests in the sourceVersion/activity_log.json.

2. Right-click on the TCPListener process group.
3. Select Download flow definition without external services.

Save thefileas migrated TCP_Listener.json and overwrite the one in the sourceVersion/migrated output
folder.

d) If no requests are present in the log, proceed to the next step.

At this stage, the flow definition no longer contains variables and uses parameters instead. If the flow meets your
expectations, you can either run afull variable migration to validate your flow in NiFi 2 or proceed with migrating
the components.

62

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

3. Run full variable migration (Stage 1 and 2) on TCP_Listener_flow_definition.json.

a) Movemigrated TCP_Listener.json from Step 2 into the input folder (/etc/migration-tool-input) and rename it
to TCP_Listener_flow_definition.json for clarity.

b) Make abackup of the output folder (/etc/migration-tool-output/variables) before running the next migration
step.

E Note:
Thisstep is crucia because the same output folder is used as in the previous migration, and its contents
will be overwritten. To retain arecord of changes made at each stage, it is better to create a backup.

bin/mgration.sh nifi mgrate-variables \
-i /etc/mgration-tool-input/ TCP_Listener_flow definition.json \
-od /etc/mgration-tool -output/variabl es

The contents of the previously generated sourceVersion folder will be overwritten, but thisis not a concern asthe
tool generates the same sourceV ersion output as before.

Additionally, atargetVersion directory is created, containing the output files of the Stage 2 part of the migration.
migrated TCP_Listener.json

* NiFi 2-compatible flow definition in terms of variables
* Youcanloaditinto NiFi 2 and validate it

activity log.json
« List of all actions performed during this stage of the migration
4. Proceed with component migration using the input folder from step 3.

Learn how to use the Cloudera Flow Management Migration Tool to migrate components from flow definition JSON
files.

Thefollowing NiFi flow demonstrates both variable and component migration.
Flow definition file:
e TCP_Listener_flow_definition.json
Thisfile contains the TCP Listener process group (1D: b41940d7-0194-1000-42fc-458834630567)
TCP Listener Process Group

This process group contains the following simple flow:

63

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

- m listenTCPRecord
L ListenTCPRecord 1.26.0.2.1.7.1000-46&

Larg i-!|:IF=.l:Z|"|i-" fifi - rifi-standard-nar

In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5 min
Cut 0 (0 bytes) 5 min
Tasks/Time 0/ 00:00:00.000 5 min

MName success
Queued 0 (0 bytes)

!

~] % LogAttribute
L - LogAttribute 1.26.0.2.1.7.1000-46

org.apache.nifi - nifi-standard-nar

In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5 min
Out 0 (0 bytes) 5 min
Tasks/Time 0/ 00:00:00.000 5 min

The process group defines avariable called TCP Listener Port, which is referenced by the ListenTCPRecord
processor.

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

Configure Processor | ListenTCPRecord 126.0.21.7.1000-46

B Zwpped
SETTINGS SEHERUILING | FRAFEETIES HELATIGMSHIES COMMENTS
Bequired field = 4+
Praperty Value
Lizal Metwixk Interlacs [7]
Paort @ ETCP Listener Port)
Maz Size of Sockel Bulfer 2 1KE
héax Mumber of TCP Connections @ z
Read Timeout @ 10 seconds
Record Readar @ JeonTreeReader w—
Record ‘Wriber B AvroRecordSetWriter —
Riad Erres Strategy 0 Transfer
Record Batch Size @ 00d
EZL Comtext Sorvos [7]
Client Al o MOKE

CAHCEL hEPLY

The example guides you through the variable migration process and shows how to maintain a clear activity log.
Although the exampl e uses a simple flow, the step-by-step approach can be applied to more complex scenarios. In
real-world scenarios, Cloudera recommends defining amigration strategy based on the structure of each flow.

Procedure
1. Usethe flow definition files in the /etc/migration-tool -input from step 3.

ThisisaNiFi-1 compatible flow that no longer contains variables.
2. Run Stage 1 component migration on TCP_Listener_flow_definition.json using the following command.

bin/m gration.sh nifi mgrate-conmponents \

-i /etc/mgration-tool-input/ TCP_Listener _flow definition.json \
-od /etc/mgration-tool -out put/conponents \

--sour ceConpati bl eQut put

This generates a sourceVersion folder that contains the output files of the Stage 1 migration.

conmponent s
sour ceVer si on
activity_|l og.json
m gr at ed_out put
m grated_TCP_Li stener.json

activity_log.json

» Thelog describes all the actions that were performed for this stage of the process group
migration.

65

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

» Log of al actions performed during this stage of the process group migration.
migrated TCP_L istener.json

* A modified NiFi 1 flow, which isnot compatible with NiFi 2 yet.

* It contains everything the original flow did, except the TCP Listener process group was
modified as described in the activity log.

3. Validate the Stage 1 component migration output for TCP_Listener_flow_definition.json.
a) Loadthe migrated TCP_Listener.json into aNiFi 1 instance and check the flow.

b) Review the activity log.json file and check for any manual -change-requests or manual-validation-requests. If
none are present, proceed to the next step.

In this example, you can see the following information in the activity log:

{

"sequence" : 2,

"type" : "change-info",

"subj ect" : "b41966ad-0194- 1000- a08d- a92489457356",

"message” : "Conponent [org.apache.nifi.processors.standard. ListenTCPR
ecord] has been deprecated (N FI-13509)",

"context" :

"rule" : "36227b60- 75f 0- 40dc- 8caf - a2ec577aab54c"

}

1. OpenthetargetVersion/migrated TCP_Listener.json file and search for the "subject” ID,
b41966ad-0194-1000-a08d-a92489457356. This ID refersto the ListenTCPRecord processor.
2. Search for the value of the identifier as “subject” element in NiFi’s search box.

You are directed to the ListenTCPRecord processor. No manual modifications are needed at this stage.
However, it isimportant to note that the ListenTCPRecord processor is deprecated and is not available in
NiFi 2. Once the full component migration (Stage 1 and Stage 2) is complete, instructions will be provided
on how to handle this deprecation.
¢) If manual changes are necessary, update the migrated_TCP_Listener.json on the NiFi canvas after loading it.
Once the flow is validated and meets expectations, continue with the next step.

At this stage, you have completed Stage 1 of both variable and component migration for your flow definition
file. After reviewing the logs, you confirmed that no manual changes were needed. Y ou can proceed with afull
component migration using the /etc/migration-tool-input from Step 3.

4. Run full component migration (Stage 1 and 2) for TCP_Listener_flow_definition.json.
a) Make abackup of the output folder (/etc/migration-tool -output/components) before running the next migration
step.

E Note:
Thisstep is crucia because the same output folder is used as in the previous migration, and its contents
will be overwritten. To retain arecord of changes made at each stage, it is better to create a backup.

b) Run the full component migration using the following command.

bi n/m gration.sh nifi mgrate-conponents \
-i /etc/mgration-tool-input/ TCP_Listener flow definition.json \
-od /etc/mgration-tool - out put/conponents

This generates the following output:

conponent s

sour ceVersion

activity |l og.json

m grated_out put

mgrated TCP_Li stener.json
t ar get Versi on

66

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

activity_l og.json
m grat ed_out put
m grated TCP_Li stener.json

The contents of the previously generated sourceVersion folder will be overwritten. The contents represent the
NiFi 1 compatible version of the migrated flow definition. Since you already performed Stage 1 component
migration, the activity log will only include the same entries as those in Steps 2 and 4.

Additionally, atargetVersion directory is created, containing the output files of the Stage 2 part of the
migration:
migrated TCP_Listener.json
* NiFi 2-compatible flow definition
e Youcanloaditinto NiFi 2 and validate it
activity_log.json
e List of all actions performed during this stage of the migration, and any manual steps that you
need to perform.
5. Vadlidate the Stage 2 component migration output for TCP_Listener_flow_definition.json.

a) Load thetargetVersion/migrated output/migrated TCP_Listener.jsoninto aNiFi 2 instance and check the
flow.

b) Review thetargetVersion/activity |log.json file.

In this example, you can see the following manual -change-request entry.

"sequence" : 6,

"type" : "manual - change-request",

"subj ect" : "b41966ad-0194- 1000- a08d- a92489457356",

"message” : "The conponent has been deprecated. It is suggested to r

eplace it with a conbination of [org.apache.nifi.processors. standard.Lis
tenTCP] and [org. apache. nifi.processors. standard. ConvertRecord] processo
rs",
"context" :
“"rule" : "36227b60- 75f 0- 40dc- 8caf - a2ec577aab4c"
}

1. Open thetargetVersion/migrated TCP_Listener.json file and search for the "subject" 1D,
b41966ad-0194-1000-a08d-a92489457356. This ID refersto the ListenTCPRecord processor.

2. Toidentify the processor affected by these changes, search for the identifier value of the “subject” element
in NiFi’ s search box. It refersto the ListenTCPRecord processor. Open the TCP Listener process group.
Y ou can see that the processor is marked with dashed borders and its version number still shows that of the

67

Cloudera Flow Management

Migrating a data flow using the Cloudera Flow Management

Migration Tool

NiFi 1instance. It meansthat it isa"ghost processor”, not available in NiFi 2. The log message suggests

replacing it with a combination of ListenTCP and ConvertRecord processors.

R e

'~ 4 ListenTCPRecord
~ :

org.apache.nifi - nifi-standard-nar

In 0 (0 bytes)
Read/Write 0 bytes [/ O bytes
Qut 0 (0 bytes)

Tasks/Time 0/ 00:00:00.000

Name success
Queued 0 (0 bytes)

~| % LogAttribute

-~ LogAttribute 2.0.0.4.0.0.0-383

o org.apache.nifi - nifi-standard-nar
In 0 (0 bytes)
Read/Write 0 bytes [/ O bytes
Out 0 (0 bytes)

Tasks/Time 0/ 00:00:00.000

" ListenTCPRecord 1.26.0.2.1.71000-46

5 min
5 min
a9 min
5 min

Instantiate and configure the ListenTCP and ConvertRecord processors, connect them appropriately, and
then remove the ghost processor.

Besides these changes there are no further manual-change-requests or manual-validation-requests in the
activity log.

Download the flow definition and you have the fully NiFi 2 compatible

TCP_Listener_flow_definition.json.

Learn how to use the migrate-all command to migrate variables and components in a single operation using a flow
definition JSON file as input.

This command combines the functionality of the migrate-variables and migrate-components commands for ease and
convenience.

K

Note:

Template migration is not applicable for this input type.

68

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

While migrate-all simplifiesthe migration process, for larger flows, it is usually better to run the individual migration
commands separately. Y ou may also want to migrate process groups individually to ensure activity logs and manual
validation remain manageable.

The migrate-all command can be useful in the following scenarios:

* Theflow you want to migrate is simple and of manageable size.

* Theflow islarge and complex, and you need an initial high-level overview of the migration outcome before
performing a step-by-step migration. Running migrate-all provides a preview of the final migrated flow. The
Activity Log shows you the actions taken during migration and hel ps assess the required manual intervention by
listing manual -change-requests and manual -validation-requests.

Offload all flowfiles from NiFi.

Stop all processors and disable all controller servicesin NiFi.

Stop NiFi.

Copy the flow.json.gz file from NiFi’ s conf directory to the Migration Tool’ sinput folder (/etc/migration-tool-
input).

P wbdhpE

1. Run the following command to migrate the flow.

bin/mgration.sh nifi mgrate-all \
-i /etc/mgration-tool-input/flowjson.gz \
-od /etc/mgration-tool -out put

This generates the following output:

sour ceVer si on

N Fi _Fl ow_b4175f 57- 0194- 1000- 8470- 9251a24519b4
elastic_tenplate.json

el astic_tenplate.xnl

activity_l og.json

mgrated_fl ow json. gz

t ar get Ver si on

N Fi _Fl ow_b4175f 57- 0194- 1000- 8470- 9251a24519b4
elastic_tenplate.json

activity_l og.json

mgrated flow. json. gz

2. Review the migration output.

e The sourceVersion directory contains the NiFi 1-compatible version of the flow, including the exported
template and its process group counterpart, along with the Activity Log.
e ThetargetVersion directory contains the NiFi 2-compatible version of the flow and its corresponding Activity
Log.
3. Addressissuesin NiFi 1 (if needed).

If sourceVersion/activity_log.json contains manual-change-requests, follow these steps:

a) Load sourceVersion/migrated flow.json.gz into your NiFi 1 instance.
b) Apply the required manual changes.
¢) Runthe migrate-all command again using the manually modified flow.

69

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

4. Validate the migrated flow.
a) RenametargetVersion/migrated flow.json.gz to flow.json.gz.
b) Load flow.json.gz into your NiFi 2 instance to inspect the migrated flow.
c) Open targetVersion/activity log.json and review any manual-change-regquests and manual-validation-requests.
d) Apply the required manual modifications to the flow.

This example demonstrates how to migrate both variables and components with the Cloudera Flow Management
Migration Tool using adirectory that contains multiple flow definition JSON files as input. It shows how variables
are used within process groups and referenced by individual components.

Learn how to use the Cloudera Flow Management Migration Tool to convert variables to parameters and parameter
contexts from adirectory of flow definition JSON files.

Theinput directory contains the following flow definition files:
e TCP_Listener_flow_definition.json

Thisfile contains the TCP Listener process group (I1D: b41940d7-0194-1000-42fc-458834630567)
« Elagtic_flow_definition.json

Thisfile contains process group Elastic (ID: b42881c7-0194-1000-3cdf-1bd453a0ed0f)

TGP Listanar Elastic
o) a 1 1] 1 o i 1] 1
4 o il
T o o [n / 1}
Rl Wrine 0 Brgtas ¢ 10 Byt Faad/Wrie 0 biytes /0 byies
] 0 — G (1 brgl Tt 0—o
a 1] 0 0o o 1] 1} 0 0 7

TCP Listener Process Group

This process group contains the following simple flow:

70

Cloudera Flow Management

Migrating a data flow using the Cloudera Flow Management
Migration Tool

ListenTCPRecord

®

ListenTCPRecord 1.26.0.2.1.7.1000-46&

Larg i-![:IFiIZZI"Ii-" fifi - rifi-standard-nar

In 0 (0 bytes)
Read/Write 0 bytes /0 bytes
Cut 0 (0 bytes)

Tasks/Time 0/00:00:00.000

MName success
Queued 0 (0 bytes)

!

+ LogAttribute

]

LogAttribute 1.26.0.2.1.7.1000-46

org.apache.nifi - nifi-standard-nar

In 0 (0 bytes)
Read/Write 0 bytes /0 bytes
Out 0 (0 bytes)

Tasks/Time 0/ 00:00:00.000

The process group defines avariable called TCP Listener Port, which is referenced by the ListenTCPRecord

processor.

71

Cloudera Flow Management

Migrating a data flow using the Cloudera Flow Management

Migration Tool

Configure Processor | ListenTCPRecord 126.0.21.7.1000-46

B Sopped
SETTINGS SEHERULIRG | FROPERTIES RELATIEMSHIPS
Required field

COMBMERTS

@ +

Property Walue

Lezal Matwoek Intarlacs (7] value gt

Part 0 E[TCP Listener Port}

Maz Size of Secket Rulfer o 1mE

Max Mumber of TCP Connections [7]

Read Timeout @ 10 seconds

Record Readar @ JeonTresReadsr -
Record ‘Wriber B AvroRecordSetWriter —
Read Eves Sategy B Tranaler

Record Batch Size @ 00d

551 Condoxt Sarvice [7] g i 5i

Client Al o MOKE

Elastic Process Group

This process group also contains a simple flow:

CANCEL

APPLY

72

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

B GaniarateFlaeFle

|~

Ir a
Foad Wi 0 byies /0 bipies
ohi n
Taxaw Time 0 OEDEDZ.0I0

Hame sussens Hame reiry Hame failars Mame TR

mzid O (11 brgies Cheued 0 Cheusd O

\
\
AN
¥
/

LogAttribite

L]

Baard & riie 0 hylex 0 brries
T o iex)

TazzeTune 07 0003030

The process group defines a variable called Elasticsear ch Index, which is referenced in the PutEl asticsearchJson
processor’s Index property.

73

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

Configure Processor | PutElasticsearch.Json 1:26.0.2.1.7.1000-45

Lk Iavalid

HET TG SUHLRUILRSG | “HOPLRTICS: | HELATICNEES COMMIENTS

Reguired field =2 +

Idertifier &stribute o

Index Dperation o index

Imidex @ 5{Elasticsearch Index'}
Type o

Seript (7]

Seripted Upser @ false
Dynamic Templales w

Batch Sire @ 0
Character Set @ UTE-g
Clant Sarvice & Mowval ot
Lag Errer Respanges @ lalze

Cuitput Error Respanses @ false

CAMCEL APFLY

Your goal isto migrate the variables used in Cloudera Flow Management 2.1.7.2000 powered by NiFi 1 to parameters
used in Cloudera Flow Management 4.11.0 powered by NiFi 2.

Note: Apache NiFi 2 supports only parameters, not variables, so variable migration is required to ensure
E compatibility with the target version.

About this task

The example guides you through the variable migration process and shows how to maintain a clear activity log.
Although the exampl e uses simple flow definitions, the step-by-step approach can be applied to more complex
scenarios. In real-world scenarios, Cloudera recommends defining a migration strategy based on your flow’s
structure.

Before you begin

Copy the TCP_Listener_flow_definition.json and Elastic_flow_definition.json filesto the Migration Tool’ s input
folder (/etc/migration-tool-input).

Procedure
1. Run Stage 1 variable migration on the MigrationTool input directory (/etc/migration-tool-input) using the

following command.

bin/mgration.sh nifi mgrate-variables \
-i /etc/mgration-tool-input \
-od /etc/mgration-tool -out put/variabl es \

74

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

- - sour ceConpat i bl eCut put
This generates a sourceVersion folder that contains the output files of the Stage 1 migration.

vari abl es
sour ceVersi on
activity | og.json
m gr at ed_out put
mgrated El astic.json
mgrated TCP_Li stener.json

activity_log.json

* Log of all actions performed during this stage of the migration.
» Thefollowing changes were made during the variable migration:

* A new parameter context was created with anew parameter called TCP Listener Port, which
replaces the corresponding variable.
» TheTCP Listener Port variable was removed.

* A new parameter context was created with a new parameter called Elasticsearch Index,
which replaces the corresponding variable of the same name.

* Thenew parameter is referenced from the PutElasti csearchJson processor.
* TheElasticsearch Index variable was removed.

@ Note:
One activity log fileis created for the entire migration, even if the input is adirectory
containing multiple flow definition JSON files.

migrated TCP_Listener.json

* A modified flow definition, which is not compatible with NiFi 2 yet.

|t contains everything the original flow definition did, except the TCP Listener process group
now references a parameter instead of the removed variable.

* Thisisdtill aNiFi 1 flow definition, so do not load thisfile directly into NiFi 2. Use an empty
NiFi 1 instance to review the modification made by the tool. The flow definition will appear
unchanged, but variables will be replaced with parameters of the same name, which are now
referenced by the processor instead.

» Changesin the syntax: Variables were previously referenced using ${}, whereas parameters are
now referenced using #{}.

* NiFi 1variables: ¥ variable_name}
* NiFi 2 parameters. #{ parameter_name}
migrated_Elastic.json
« A modified NiFi 1 flow definition, which is not compatible with NiFi 2 yet.

|t contains everything the original flow definition did, but the Elastic process group now
references a parameter instead of the removed variable.

Note:
E Thefile name is composed of the migrated prefix and the name of the top-level process group and not the
origina file name.

75

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

2. Vadlidate the Stage 1 variable migration output for TCP_Listener_flow_definition.json.
a) Check the new flow definition in aNiFi 1 instance to verify that the flow matches your expectations.

1. Start your NiFi instance.

Create anew process group.

Load sourceVersion/migrated_output/migrated_TCP_Listener.jsonto NiF 1.

Remove the ‘migrated * prefix from the process group name.

Confirm that variables were correctly converted to parameters.

b) Ranew the activity_log.json file and check for any manual-change-requests or manual-validation-requests.
¢) If there are manual-change-requests or manual-validation-requests to handle, follow these steps:

S IF RN

1. Make the modifications on the NiFi canvas, indicated by the manual-change-requests or manual-validation-
reguests in the sourceVersion/activity _log.json.

2. Right-click on the TCPListener process group.
3. Select Download flow definition without external services.

4. Savethefile asmigrated TCP_Listener.json and overwrite the one in the sourceVersion/migrated_output
folder.

d) If norequests are present in the log,

1. Make abackup of the original TCP_Listener_flow_definition.json file.
2. Right-click on the TCPListener process group.

3. Select Download flow definition without external services.

4

. Savethefile asmigrated TCP_Listener.json and overwrite the one in the sourceVersion/migrated_output
folder.

€) Proceed to running Stage 1 variable migration on Elastic_flow_definition.json.
3. Vdidate the Stage 1 variable migration output for Elastic_flow_definition.json.
a) Check the new flow definition in aNiFi 1 instance to verify that the flow matches your expectations.

1. Start your NiFi instance.

Create a new process group.

Load sourceVersion/migrated_output/migrated Elastic.json to NiFi 1.

Removethe ‘migrated * prefix from the process group name.

Confirm that variables were correctly converted to parameters.

b) REVIEW the activity_log.json file and check for any manual-change-requests or manual -validation-requests.
¢) If there are manual-change-requests or manual-validation-requests to handle, follow these steps:

oA wN

1. Make the modifications on the NiFi canvas, indicated by the manual-change-requests or manual-validation-
requests in the sourceV ersion/activity _log.json.
2. Right-click on the Elastic process group.
3. Select Download flow definition without external services.
4. Savethefile as migrated Elastic.json and overwrite the one in the sourceVersion/migrated_output folder.
d) If norequests are present in the log,

1. Right-click on the Elastic process group.
2. Select Download flow definition without external services.
3. Savethefile asmigrated Elastic.json and overwrite the one in the sourceVersion/migrated_output folder.

At this point, both flow definitions have been updated to replace variables with parameters. If the result aligns
with your expectations, you can either perform afull variable migration to validate the flow in NiFi 2 or continue
with migrating the components.

4. Run full variable migration (Stage 1 and 2) using the following command.

bin/mgration.sh nifi mgrate-variables \
-i /etc/mgration-tool-input \

76

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

-od /etc/mgration-tool -output/variabl es

The contents of the previously generated sourceVersion folder will be overwritten, but thisis not a concern asthe
tool generates the same sourceV ersion output as before.

Additionally, atargetVersion directory is created, containing the output files of the Stage 2 part of the migration.

vari abl es
sour ceVersi on
activity | og.json
m gr at ed_out put
mgrated El astic.json
mgrated TCP_Li stener.json
###t ar get Ver si on
activity | og.json
m gr at ed_out put
mgrated_El astic.json
m grated_TCP_Li stener.json

migrated_Elastic.json

* NiFi 2-compatible flow definition in terms of variables
* Youcanloaditinto NiFi 2 and validate it

migrated TCP_Listener.json

* NiFi 2-compatible flow definition in terms of variables
* Youcanloaditinto NiFi 2 and validate it

activity log.json

« List of all actions performed during this stage of the migration

B Note:
One activity log file is created for the whole migration command.
5. Proceed with component migration using the input folder from step 3.

Learn how to use the Cloudera Flow Management Migration Tool to migrate components from flow definition JSON
files.

Theinput directory contains the following flow definition files:
e« TCP_Listener_flow_definition.json

Thisfile contains the TCP Listener process group (I1D: b41940d7-0194-1000-42fc-458834630567)
« Elastic flow_definition.json

Thisfile contains process group Elastic (1D: b42881c7-0194-1000-3cdf-1bd453a0edOf)

TP Listanar Elastic
o 1 a 1 o % o 0 a 1 1
4 o il
I o 1] I L] ¥ 1l
R Weins 0 brytas | O byl BeadWnie 0 brybes /O byies
Cral n I frgte | 1] L
a a) D *D a 1] U 0 7L

77

Cloudera Flow Management

Migrating a data flow using the Cloudera Flow Management

Migration Tool

TCP Listener Process Group

This process group contains the following simple flow:

The process group defines avariable called TCP Listener Port, which is referenced by the ListenTCPRecord

processor.

- m listenTCPRecord
- ListenTCPRecord 1.26.0.2.1.7.1000-46

Larg i-!|:I.’El:Z|"|i-" fifi - rifi-standard-nar

In 0 (0 bytes) 5 mi
Read/Write 0 bytes / 0 bytes 5 mir
Ot 0 (0 bytes) 5 mi
Tasks/Time 0/ 00:00:00.000 S mir

MName success
Queued 0 (0 bytes)

!

~] % LogAttribute
- LogAttribute 1.26.0.2.1.7.71000-46

org.apache.nifi - nifi-standard-nar

In 0 (0 bytes) 5 mi
Read/Write 0 bytes /0 bytes 5 mi
Out 0 (0 bytes) 5 mir
Tasks/Time 0/ 00:00:00.000 5 mir

78

Cloudera Flow Management

Migrating a data flow using the Cloudera Flow Management

Migration Tool

Configure Processor | ListenTCPRecord 126.0.21.7.1000-46

B Sopped
SETTINGS SEHERULIRG | FROPERTIES RELATIEMSHIPS
Required field

COMBMERTS

@ +

Property Walue

Lezal Matwoek Intarlacs (7] value gt

Part 0 E[TCP Listener Port}

Maz Size of Secket Rulfer o 1mE

Max Mumber of TCP Connections [7]

Read Timeout @ 10 seconds

Record Readar @ JeonTresReadsr -
Record ‘Wriber B AvroRecordSetWriter —
Read Eves Sategy B Tranaler

Record Batch Size @ 00d

551 Condoxt Sarvice [7] g i 5i

Client Al o MOKE

Elastic Process Group

This process group also contains a simple flow:

CANCEL

APPLY

79

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

B GaniarateFlaeFle

|~

Ir a
Foad Wi 0 byies /0 bipies
ohi n
Taxaw Time 0 OEDEDZ.0I0

Hame sussens Hame reiry Hame failars Mame TR

mzid O (11 brgies Cheued 0 Cheusd O

\
\
AN
¥
/

LogAttribite

L]

Baard & riie 0 hylex 0 brries
T o iex)

TazzeTune 07 0003030

The process group defines a variable called Elasticsear ch Index, which is referenced in the PutEl asticsearchJson
processor’s Index property.

80

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

Configure Processor | PutElasticsearch.Json 1:26.0.2.1.7.1000-45

Lk Iavalid

HET TG SUHLRUILRSG | “HOPLKETILY | HELATICNEES COMMIENTS

Reguired field =2 +

Iderdifier &stnbte [¥]

Index Dperation o index

Imidex @ 5{Elasticsearch Index'}
Type o

Seript (7]

Seripted Upser @ false
Dynamic Templales w

Batch Size @ oa
Character Set @ UTE-g
Clant Sarvice [+ I ilse st
Lag Errer Respanges & lalzs

Cuitput Error Respanses @ falss

CAMCEL APFLY

Y our goal isto migrate the components used in Cloudera Flow Management 2.1.7.2000 powered by NiFi 1 to
parameters used in Cloudera Flow Management 4.11.0 powered by NiFi 2.

Note: Apache NiFi 2 supports only parameters, not variables, so variable migration is required to ensure
E compatibility with the target version.

About this task

The example guides you through component migration one flow definition at atime, simplifying the process and
maintaining a clear activity log. Although the example uses simple flow definitions, the step-by-step approach can
be applied to more complex scenarios. In real-world scenarios, Cloudera recommends defining a migration strategy
based on your flow’s structure.

Procedure

1. Make abackup of the output folder (/etc/migration-tool-output/components) before running the next migration
step.

Note:
E This step is crucial because the same output folder is used as in the previous migration, and its contents
will be overwritten. To retain arecord of changes made at each stage, it is better to create a backup.
2. Copy themigrated TCP_L.istener.json and migrated Elastic.json filesto the Migration Tool’ s input folder (/etc/
migration-tool-input).
3. Renamethefile, overwriting the existing ones, to TCP_Listener_flow_definition.json and
Elastic_flow_definition.json for clarity.

81

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

4. Run Stage 1 component migration using the following command.

bi n/ m gration.sh nifi mgrate-conponents \
-i /etc/mgration-tool-input \

-od /etc/mgration-tool - out put/conponents \
--sour ceConpati bl eQut put

This generates a sourceVersion folder that contains the output files of the Stage 1 migration.

conponent s
###sour ceVer si on
activity_l og.json
m gr at ed_out put
mgrated El astic.json
m grated TCP_Li stener.json

activity log.json
« Thelog describes all the actions that were performed for this stage of the process group
migration.
* Log of al actions performed during this stage of the process group migration.

E Note:
One activity log file will be created for the entire command.
migrated TCP_Listener.json

« A modified NiFi 1 flow, which is not compatible with NiFi 2 yet.
e It contains everything the original flow did, except the TCP Listener process group was
modified as described in the Activity Log.
migrated_Elastic.json

« A modified NiFi 1 flow definition which is not compatible with NiFi 2 yet.

* |t contains everything the original flow definition did, except the Elastic process group was
modified with the actions described in the Activity Log.

5. Validate the Stage 1 component migration output for TCP_Listener_flow_definition.json.

a) Loadthemigrated TCP_Listener.json into aNiFi 1 instance and check the flow.

b) Review the activity log.json file and check for any manual -change-requests or manual-validation-requests. If
none are present, proceed to the next step.

In this example, you can see the following information in the Activity Log:

{

"sequence" : 2,

"type" : "change-info",

"subject" : "b41966ad-0194- 1000- a08d- a92489457356",

"message" : "Conponent [org.apache.nifi.processors. standard. Li stenTCPR
ecord] has been deprecated (N FI-13509)",

"context" :

"rule" : "36227b60- 75f 0- 40dc- 8caf - a2ec577aab54c"

}

1. OpenthetargetVersion/migrated TCP_Listener.json file and search for the "subject” ID,
b41966ad-0194-1000-a08d-a92489457356. This ID refersto the ListenTCPRecord processor.

2. Search for the value of the identifier as “subject” element in NiFi’s search box.

You are directed to the ListenTCPRecord processor. No manual modifications are needed at this stage.
However, it isimportant to note that the ListenTCPRecord processor is deprecated and is not available in
NiFi 2. Once the full component migration (Stage 1 and Stage 2) is complete, instructions will be provided
on how to handle this deprecation.

82

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

¢) If manual changes are necessary, update the migrated_TCP_Listener.json on the NiFi canvas after loading it.
Once the flow is validated and meets expectations, continue with the next step.
6. Vdidate the Stage 1 component migration output for Elastic_flow_definition.json.
a) Load the migrated Elastic.jsoninto aNiFi 1 instance and check the flow.

b) Review the activity log.json file. It contains a change-info entry that informs you of changesto aNiFi 2
processor, identified by the subject ID.

"sequence" : 2,

"type" : "change-info",

"subj ect" : "b428aad6-0194-1000- d73d- 9f 2332a59f 04",

"message" : "Property [Max JSON Field String Length] has been added (N

| FI -12343); Property [put-es-json-not_found-is-error] has been renaned t
0 [put-es-not_found-is-error] (N FI-12255); Property [put-es-json-error-
docunent s] has been renobved (N Fl-12255); Rel ationshi ps [success] has be
en renaned to [original]; Relationship [successful] has been added (N FI
-12255); ",

"context" :

"rule" : "6501a693- b524-4dla-blle- 69747c2651e8"

}

1. OpenthetargetVersion/migrated output/migrated Elastic.json file and search for the "subject” ID,
b428aad6-0194-1000-d73d-9f2332859f04. This ID refers to the PutElasticsearchJson processor.

2. Toidentify the processor affected by these changes, search for the identifier value of the “ subject”
element in NiFi's search box.Y ou are directed to the PutElasti csearchJson processor. No manual
maodifications are needed at this stage. However, it isimportant to note that changes will be applied to the
PutElasticsearchJson processor during Stage 2 of the migration. Once the full component migration (Stage
1 and Stage 2) is complete, instructions will be provided on how to handle this change.

At this stage, you have completed Stage 1 of both variable and component migration for your flow definition
files. After reviewing the logs, you confirmed that no manual changes were needed. Y ou can proceed with a full
component migration using the /etc/migration-tool-input from Step 5.

7. Run full component migration (Stage 1 and 2).
a) Make abackup of the output folder (/etc/migration-tool -output/components) before running the next migration
step.

E Note:
Thisstep is crucia because the same output folder is used as in the previous migration, and its contents
will be overwritten. To retain arecord of changes made at each stage, it is better to create a backup.

b) Run the full component migration using the following command.

bin/mgration.sh nifi mgrate-conmponents \
-i /etc/mgration-tool-input \
-od /etc/mgration-tool - out put/conponents

This generates the following output:

conponent s
###sour ceVer si on
activity_l og.json
m gr at ed_out put
mgrated El astic.json
m grated_TCP_Li stener.json
###sour ceVer si on

activity | og.json

m gr at ed_out put

mgrated _El astic.json

83

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

mgrated _TCP_Li stener.json

The contents of the previously generated sourceVersion folder will be overwritten. The contents represent the
NiFi 1 compatible version of the migrated flow definition. Since you already performed Stage 1 component
migration, the activity log will only include the same entries as those in Steps 2 and 4.

Additionally, atargetVersion directory is created, containing the output files of the Stage 2 part of the
migration:

migrated TCP_Listener.json
* NiFi 2-compatible flow definition
e Youcanloaditinto NiFi 2 and validate it

migrated_Elastic.json
* NiFi 2-compatible flow definition
* Youcanloaditinto NiFi 2 and validate it

activity log.json
e List of all actions performed during this stage of the migration, and any manual steps that you

need to perform.
8. Validate the Stage 2 component migration output for TCP_Listener_flow_definition.json.

a) Load thetargetVersion/migrated output/migrated TCP_Listener.jsoninto aNiFi 2 instance and check the
flow.

b) Review thetargetVersion/activity |log.json file.

In this example, you can see the following manual -change-request entry.

"sequence" : 6,

"type" : "manual - change-request",

"subject" : "b41966ad-0194- 1000- a08d- a92489457356",

"message" : "The conponent has been deprecated. It is suggested to r

eplace it with a conbination of [org.apache.nifi.processors. standard.Lis
tenTCP] and [org. apache. nifi.processors. standard. ConvertRecord] processo
I'S",
"context" :
"rule" : "36227b60- 75f 0- 40dc- 8caf - a2ec577aab4c"
}

1. OpenthetargetVersion/migrated TCP_Listener.json file and search for the "subject" 1D
b41966ad-0194-1000-a08d-a92489457356. This ID refers to the ListenT CPRecord processor.

2. Toidentify the processor affected by these changes, search for the identifier value of the “subject” element
in NiFi’ s search box. It refersto the ListenTCPRecord processor. Open the TCP Listener process group.
Y ou can see that the processor is marked with dashed borders and its version number still shows that of the

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

NiFi 1instance. It meansthat it isa"ghost processor”, not available in NiFi 2. The log message suggests
replacing it with a combination of ListenTCP and ConvertRecord processors.

R e

~| 4 ListenTCPRecord
| ListenTCPRecord 1.26.0.2.1.71000-46

E org.apache.nifi - nifi-standard-nar i
yIn 0 (0 bytes) 5 min E
E Read/Write 0 bytes / 0 bytes 5min
' Qut 0 (0 bytes) 5min
i Tasks/Time 0 /00:00:00.000 5 min E

Name success
Queued 0 (0 bytes)

~| % LogAttribute

-~ LogAttribute 2.0.0.4.0.0.0-383

o org.apache.nifi - nifi-standard-nar
In 0 (0 bytes) 5 min
Read/Write 0 bytes [/ O bytes 5 min
Out 0 (0 bytes) 5 min
Tasks/Time 0/ 00:00:00.000 5 min

Instantiate and configure the ListenTCP and ConvertRecord processors, connect them appropriately, and
then remove the ghost processor.

Besides these changes there are no further manual-change-requests or manual-validation-requests in the
Activity Log.
¢) Download the flow definition and you have the fully NiFi 2 compatible TCP_Listener_flow_definition.json.
9. Validate the Stage 2 component migration output for Elastic_definition.json.
a) Load thetargetVersion/migrated output/migrated Elastic.json into aNiFi 2 instance and check the flow.
b) Review thetargetVersion/activity log.json file.

In this example, you can see the following manual -change-request entry.

{
"sequence" : 3,
"type" : "manual - change-request",
"subject" : "b428aad6-0194-1000- d73d- 9f 2332a59f 04",
"message" : "New relationship [original] has been added, it has to be

connected to a downstream processor or termnated.",

85

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

"context" :
"rule" : "6501a693-b524-4dla-blle-69747c2651e8"
}

1. OpenthetargetVersion/migrated Elastic.json file and search for the "subject” |D b428aad6-0194-1000-
d73d-9f2332a59f04. This ID refers to the PutElasticsearchJson processor.

2. Toidentify the processor affected by these changes, search for the identifier value of the “subject” element
in NiFi’s search box. It refers to the PutElasticsearchJson processor. Y ou will find an unbound "original"
relationship that needs to be connected to a downstream processor or terminated. Make the necessary
maodifications manually. Once completed, this change request is resolved.

¢) Download the flow definition and you have the fully NiFi 2 compatible Elastic_flow_definition.json.

Learn how to use the migrate-all command to migrate templates, variables, and componentsin a single operation
using adirectory with flow definition JSON files asinput.

This command combines the functionality of the migrate-variables and migrate-components commands for ease and
convenience.

E Note:
Template migration is not applicable for this input type.

While migrate-all simplifiesthe migration process, for larger flows, it is usually better to run the individual migration
commands separately. Y ou may also want to migrate process groups individually to ensure activity logs and manual
validation remain manageable.

The migrate-all command can be useful in the following scenarios:

e Theflow you want to migrate is simple and of manageable size.

« Theflow islarge and complex, and you need an initial high-level overview of the migration outcome before
performing a step-by-step migration. Running migrate-all provides a preview of the final migrated flow. The
Activity Log shows you the actions taken during migration and hel ps assess the required manual intervention by
listing manual -change-requests and manual-validation-requests.

Copy the TCP_L.istener_flow_definition.json and Elastic_flow_definition.json to the Migration Tool’ sinput folder (/
etc/migration-tool -input).

1. Run the following command to migrate the flow.

bin/mgration.sh nifi mgrate-all \
-i /etc/mgration-tool-input/ \
-od /etc/m gration-tool - out put

This generates the following output:

sour ceVer si on
activity | og.json
m gr at ed_out put
mgrated _El astic.json
m grated _TCP_Li stener.json

t ar get Ver si on
activity | og.json

86

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

m gr at ed_out put
mgrated El astic.json
m grated TCP_Li stener.json

2. Review the migration output.

* The sourceVersion directory containsthe NiFi 1-compatible version of the flow definition and the Activity
Log.
* ThetargetVersion directory contains the NiFi 2-compatible version of the flow definition and its
corresponding Activity Log.
3. Addressissuesin NiFi 1 (if needed).
If sourceVersion/activity |log.json contains manual-change-requests, follow these steps:

a. Load sourceVersion/migrated output/<flow_definition.json> into your NiFi 1 instance.
b. Apply the required manual changes.
¢. Run the migrate-all command again using the manually modified flow.

4. Vadlidate the migrated flow.

a. Load targetVersion/migrated output/<flow_definition.json> into your NiFi 2 instance to inspect the migrated
flow.

b. Open targetVersion/activity _log.json and review any manual -change-requests and manual -validation-requests.

c. Apply the required manual modifications to the flow.

This section provides step-by-step examples of how to run different migrations with the Cloudera Flow Management
Migration Tool using atemplate.xml file as input.

Learn how to use the Cloudera Flow Management Migration Tool to migrate a downloaded template.xml file and
transform templates for compatibility with NiFi 2. NiFi 2 does not support templates, so this step is required to ensure
compatibility with the target version. This command combines the functionality of the migrate-variables and migr
ate-components commands so for templatesit is equivalent with migrate-all. While the migrate-templates command
simplifies the migration process, for larger flows, it isusually better to run the two migration commands separately.

Y ou may also want to migrate process groups individually to ensure activity logs and manual validation remain
managesble.

Y ou have atemplate.xml file called Elastic_template.xml, which was created from a process group called elastic.
This process group contains the following simple flow:

87

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

B G rataFpeFle
| r
a
Foad Wi 0 byies /0 bipies
ohi n
Taxaw Time 0 OEDEDZ.0I0
L F SUELEES
u} i
[
~ g FusElasticaannch. son
= k
In O |1 brplea
Read™¥rrie 0 bries i O byses
sk 0 |1 brries
T
,/-"’/f! / \

Hame sussens Hame reiry Hame failars Mame TR

mzid O (11 brgies Cheued 0

'“‘-u\,____ﬂ

Clueued 0

apknToma 0§ 06306000000

= Log&itribiuia

| =
000 Bylis)
Baard & riie 0 hylex 0 brries
T o iex)
TazzeTune 07 0003030

The process group has avariable, Elasticsear ch Index, referenced in the index property of the PutElasticsearchJson
processor.

88

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

Configure Processor | PutElasticsearch.Json 1:26.0.2.1.7.1000-45

£k Invalid
SETTINGS SEHEDULNG | FROPERTIES | HELATIGNRSIRS COMMENTS
Reguired field & -+
Property Valua

Ideritifier Attrbte o
Index Dperation o index
Index @ SlElasticsearch Index’}
Type [T
Seript (7]
Scripted Upsar o falss
Dynamic Templales w
Rateh Size @ 0
Character Sel @ UTF-g&
Cliant Service 8 Novalus et
Lag Errer Respanges @ lalze

@ false

Cuitput Error Respanses

CAMCEL APFLY

Y our goal isto migrate this template to NiFi 2 used in Cloudera Flow Management 4.11.0.

Before you begin

Copy the elastic_template.xml file to the Migration Tool’ sinput folder (/etc/migration-tool-input).

Procedure

1. Run Stage 1 template migration using the following command.

bin/mgration.sh nifi migrate-tenplates \

-i /etc/mgration-tool-input/elastic_tenplate.xm \
-od /etc/mgration-tool -output/tenplates \

-Sco

This generates a sourceVersion folder that contains the output files of the migration.

tenpl at es

sour ceVersi on
El astic_tenpl at e_b4175f 57- 0194- 1000- 8470- 9251a24519b4
Elastic_tenplate.json

89

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

activity_l og.json

The folder name Elastic_template _b4175f57-0194-1000-8470-9251a24519b is a temporary process group
which was created during the migration process and used to separate the components in the template from other
components that may be present during the migration.

Elastic_templatejson

» Flow definition containing the contents of the original template
» Equivaent to manually converting atemplate to aflow definitionin NiFi 1 by:

a. Instantiating the template on the canvas.

b. Right-clicking the process group.

c. Selecting Download flow definition without external services.
* Modified by the Migration Tool to ensure compatibility:

* Variables (not supported in NiFi 2) converted into parameters
» Parameter context created to hold the new parameters
» Processors updated to reference parameters instead of variables

* Thisisdtill aNiFi 1 flow definition, so do not load thisfile directly into NiFi 2. Use an empty
NiFi 1 instance to review the modification made by the tool. The flow will appear unchanged,
but variables will be replaced with parameters of the same name, which are now referenced by
the processor instead.

» Changesin the syntax: Variables were previously referenced using ${}, whereas parameters are
now referenced using #{}.

* NiFi 1variables: ¥ variable_name}
* NiFi 2 parameters. #{ parameter_name}

activity log.json

* Log of al actions performed during this stage of the migration.
« Thefollowing were changes made during the template migration:

« A new parameter context was created with a new parameter in it.
» The parameter context was assigned to the process group.
» The PutElasticsearchJson processor was updated to reference the new parameter.
» Components are referenced by a unique 1D, not by name.
2. Validate the Stage 1 template migration outpuit.
a) Check the new flow definition in aNiFi 1 instance to verify that the flow matches your expectations.

1. Start your NiFi 1 instance.

2. Create anew process group.

3. Load elastic_template.json to NiFi 1.

4. Confirm that variables were correctly converted to parameters.
b) Review activity log.json and address any manual-validati on-requests or manual-validation-requests.
¢) If there are manual-change-requests or manual-validation-requests to handle, follow these steps:

1. Makethe modifications on the NiFi canvas, indicated by the manual-change-requests or manual-validation-
reguests in the sourceVersion/activity _log.json.
Fetch the flow.json.gz file from the NiFi conf directory.
Right-click on the Elastic process group.
Select Download flow definition without external services.
5. SavethefileasElastic_Listener.json and overwrite the one in the sourceV ersion/<process _group>folder.
d) If no requests are present in the log, proceed to the next step.

3. Run full template migration (Stage 1 and 2), using the following command.

> w

bin/mgration.sh nifi migrate-tenplates \

90

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

-i /etc/migration-tool-input/Elastic_tenplate.xm \
-od /etc/mgration-tool -output/tenpl ates

The contents of the previously generated sourceVersion folder will be overwritten, but thisis not a concern as
the tool generates the same sourceVersion output as before. Additionally, atargetVersion directory is created,
containing the output files of the Stage 2 part of the migration.

t ar get Ver si on

El astic_tenpl ate_b4175f57-0194- 1000- 8470- 9251a24519b4
El astic_tenpl ate.json

activity_l og.json

Elastic_template.json

* NiFi 2-compatible flow definition
» Contains the contents of the original template converted into an exported process group.
» Thisversion is compatible with NiFi 2, but no longer supports NiFi 1.

Note:
B An elastic_template.xml is not generated as NiFi 2 does not support XML templates.
activity_log.json
» List of al actions performed during this stage of the migration.
4. Validate the Stage 2 template migration output.
a) Check the new flow definition in aNiFi 2 instance to verify that the flow matches your expectations.
1. Start your NiFi 2 instance.

2. Creste a new process group.
3. Load elastic_template.,json into a NiFi 2 instance.

The new process group will be called elastic_template and will contain another process group named
elastic, matching the name of the process group that was converted into atemplate in NiFi 1 before you
started the migration.
4. Verify parameter replacements and processor updates.
b) Review activity log.json and address any manual-change-requests or manual-validation-requests.

In this case, you can see the following manual-change-request:

{
"sequence" : 4,
"type" : "manual - change-request",
"subject" : "al468d69- 3f 30- 3f 83-a7cl- 91dad09890f 7",
"message" : "New relationship [original] has been added, it has to be
connected to a downstream processor or terminated.",
"context" :
"rule" : "6501a693-b524-4dla-blle-69747c2651e8"
}

1. OpenthetargetVersion/Elastic_template.json file and search for the "subject" 1D, al468d69-3f30-3f83-
arc1-91dad09890f7. This ID refers to the PutElasticsearchJson processor.

2. Gotothe NiFi 2 canvas and check the processor. Y ou will find that it has an unbound “original”
relationship that needs to be connected to a downstream component.

3. Make the required change manually on the canvas.

4. Once done, export the process group. This exported process group is now afully NiFi 2-compatible version
of the original template.

5. Savethefile.

91

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

Y ou have finished the template migration process.

Learn how to use the Cloudera Flow Management Migration Tool to convert variables to parameters and parameter
contexts for template files.

Thefollowing NiFi flow is used to demonstrate both variable and component migration. It shows how variables are
used within process groups and how they are referenced by individual components.

Flow definition file:
e TCP_Listener_templatexml

Thefile consists of process group TCP Listener (I1D: b41940d7-0194-1000-42fc-458834630567).
TCP Listener Process Group

This process group contains the following simple flow:

92

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

- m listenTCPRecord
L ListenTCPRecord 1.26.0.2.1.7.1000-46&

Larg i-!|:IF=.l:Z|"|i-" fifi - rifi-standard-nar

In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5 min
Cut 0 (0 bytes) 5 min
Tasks/Time 0/ 00:00:00.000 5 min

MName success
Queued 0 (0 bytes)

!

~] % LogAttribute
L - LogAttribute 1.26.0.2.1.7.1000-46

org.apache.nifi - nifi-standard-nar

In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5 min
Out 0 (0 bytes) 5 min
Tasks/Time 0/ 00:00:00.000 5 min

The process group defines avariable called TCP Listener Port, which is referenced by the ListenTCPRecord
processor.

93

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

Configure Processor | ListenTCPRecord 126.0.21.7.1000-46

B Zwpped
SETTINGS SEHERUILING | FRAFEETIES HELATIGMSHIES COMMENTS
Bequired field = 4+
Praperty Value
Lizal Metwixk Interlacs [7]
Paort @ ETCP Listener Port)
Maz Size of Sockel Bulfer 2 1KE
héax Mumber of TCP Connections @ z
Read Timeout @ 10 seconds
Record Readar @ JeonTreeReader w—
Record ‘Wriber B AvroRecordSetWriter —
Riad Erres Strategy 0 Transfer
Record Batch Size @ 00d
EZL Comtext Sorvos [7]
Client Al o MOKE

CAHCEL hEPLY

Note: NiFi 2 supportsonly parameters, not variables, so variable migration is required to ensure
compatibility with the target version.

The example guides you through variable migration and maintaining a clear activity log. While this example template
issimple, the step-by-step approach shows how this method improves clarity for more complex migrations. In real-
world scenarios, you have to define a migration strategy based on your flow’ s structure. Individual template migration
may not always be necessary.

Before you begin

Copy the TCP_Listener_template.xml file to the Migration Tool’ s input folder (/etc/migration-tool-input).

Procedure

1. Run Stage 1 variable migration on the TCP_Listener_template.xml file, using the following command.

bin/mgration.sh nifi mgrate-variables \

-i /etc/mgration-tool-input/ TCP_Listener_tenplate. xm \
-od /etc/mgration-tool -output/variables \

--sour ceConpati bl eQut put

This generates a sourceVersion folder that contains the output files of the Stage 1 migration.

vari abl es

sour ceVer sion
activity | og.json
m grat ed_out put

94

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management

Migration Tool

mgrated TCP_Li stener _tenpl ate.json

activity_log.json

* Log of al actions performed during this stage of the migration.
» Thefollowing were changes made during the template migration:

* A new parameter context was created with anew parameter called TCP Listener Port,
which replaces the corresponding variable.
e TheTCP Listener Port variable was removed.

migrated TCP_Listener_template,json

e A modified NiFi 1 flow, which is not compatible with NiFi 2 yet.

* |t contains everything the original flow did, except the TCP Listener process group now
references a parameter instead of the removed variable.

* Thisistill aNiFi 1 flow definition, so do not load thisfile directly into NiFi 2. Use an empty
NiFi 1 instance to review the modification made by the tool. The flow definition will appear
unchanged, but variables will be replaced with parameters of the same name, which are now
referenced by the processor instead.

» Changesin syntax: Variables were previously referenced using ${}, whereas parameters are now
referenced using #{}.
« NiFi 1variables: ${ variable name}
e NiFi 2 parameters. #{ parameter_name}

Note
E The file name is composed of the migrated prefix and the name of the top-level
process group and not the original file name.

2. Vdidate the Stage 1 variable migration output for the migrated TCP_Listener_template.json file.
a) Check the new flow definition in aNiFi 1 instance to verify that the flow matches your expectations.

o rwbdhe

Start your NiFi 1 instance.

Create a new process group.

L oad sourceVersion/migrated_output/migrated_TCP_Listener_template.,json to NiFi 1.
Removethe ‘migrated * prefix from the process group name.

Confirm that variables were correctly converted to parameters.

b) Rewevv the activity_log.json file and check for any manual-change-requests or manual-validation-requests.
¢) If there are manual-change-requests or manual-validation-requests to handle, follow these steps:

1

2.
3.
4,

Make the modifications on the NiFi canvas, indicated by the manual-change-requests or manual-validation-
requests in the sourceVersion/activity_log.json.

Right-click on the TCPListener process group
Select Download flow definition without external services.

Savethefileas migrated TCP_Listener_template.json and overwrite the one in the sourceVersion/
migrated_output folder.

d) If no requests are present in the log, proceed to the next step.

At this stage, the flow definition no longer contains variables and uses parameters instead. If the flow meets your
expectations, you can either run afull variable migration to validate your flow in NiFi 2 or proceed with migrating
the components.

95

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

3. Run full variable migration (Stage 1 and 2) on the TCP_Listener_template.

a) Copy themigrated TCP_Listener_template.json file from Step 2 into the input folder (/etc/migration-tool-
input) and rename it to TCP_Listener_template.json for clarity.

b) Make abackup of the output folder (/etc/migration-tool-output/variables) before running the next migration
step.

Note: Thisstepiscrucia because the same output folder is used asin the previous migration, and its
IE contents will be overwritten. To retain arecord of changes made at each stage, it is better to create a
backup.
¢) Run thefollowing command.

bin/migration.sh nifi mgrate-variables \
-i /etc/mgration-tool-input/ TCP_Listener_tenplate.json \
-od /etc/mgration-tool -output/variabl es

The contents of the previously generated sourceVersion folder will be overwritten, but thisis not a concern asthe
tool generates the same sourceV ersion output as before.

Additionally, atargetVersion directory is created, containing the output files of the Stage 2 part of the migration.
migrated TCP_Listener_template,json

* NiFi 2-compatible flow in terms of variables
* Youcanloaditinto NiFi 2 and validate it

activity_log.json
e List of all actions performed during this stage of the migration.
4. Proceed with component migration using the input folder from step 3.

Learn how to use the Cloudera Flow Management Migration Tool to migrate components from flow definition JSON
files. Astemplates may not contain some parameter contexts and parameters defined at the parent process group level,
you have to use the flow definitions generated in the previous steps.

The following NiFi flow is used to demonstrate both variable and component migration.
Thereis one flow definition file from the variable migration step:
e« TCP_Listener_template.json
The file consists of the process group TCP Listener (ID: b41940d7-0194-1000-42fc-458834630567).
TCP Listener Process Group

This process group contains the following simple flow:

96

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

- m listenTCPRecord
L ListenTCPRecord 1.26.0.2.1.7.1000-46&

Larg i-!|:IF=.l:Z|"|i-" fifi - rifi-standard-nar

In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5 min
Cut 0 (0 bytes) 5 min
Tasks/Time 0/ 00:00:00.000 5 min

MName success
Queued 0 (0 bytes)

!

~] % LogAttribute
L - LogAttribute 1.26.0.2.1.7.1000-46

org.apache.nifi - nifi-standard-nar

In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5 min
Out 0 (0 bytes) 5 min
Tasks/Time 0/ 00:00:00.000 5 min

The process group defines avariable called TCP Listener Port, which is referenced by the ListenTCPRecord
processor.

97

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

Configure Processor | ListenTCPRecord 126.0.21.7.1000-46

B Zwpped
SETTINGS SEHERUILING | FRAFEETIES HELATIGMSHIES COMMENTS
Bequired field = 4+
Praperty Value
Lizal Metwixk Interlacs [7]
Paort @ ETCP Listener Port)
Maz Size of Sockel Bulfer 2 1KE
héax Mumber of TCP Connections @ z
Read Timeout @ 10 seconds
Record Readar @ JeonTreeReader w—
Record ‘Wriber B AvroRecordSetWriter —
Riad Erres Strategy 0 Transfer
Record Batch Size @ 00d
EZL Comtext Sorvos [7]
Client Al o MOKE

CAHCEL hEPLY

The example guides you through component migration and maintaining a clear activity log. While this example flow
definition is simple, the step-by-step approach shows how this method improves clarity for more complex migrations.
In real-world scenarios, you have to define amigration strategy based on your flow’s structure.

Procedure
1. Usethe flow definition file in the /etc/migration-tool-input from step 3.

ThisisaNiFi-1 compatible flow definition that no longer contains variables.

2. Run Stage 1 component migration on the TCP_Listener_template.json process group using the following
command.

bin/m gration.sh nifi mgrate-conmponents \

-i /etc/mgration-tool -input/ TCP_Li stener_tenplate.json \
-od /etc/mgration-tool -out put/conponents \

--sour ceConpati bl eQut put

This generates a sourceVersion folder that contains the output files of the Stage 1 migration.

conponent s
sourceVersion
activity_|l og.json
m gr at ed_out put
mgrated _TCP_Li stener_tenpl ate.json

activity_log.json

» Thelog describes all the actions that were performed for this stage of the process group
migration.

98

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

» Log of al actions performed during this stage of the process group migration.
migrated TCP_Listener_template,json

* A modified NiFi 1 flow, which isnot compatible with NiFi 2 yet.

* It contains everything the original flow did, except the TCP Listener process group was
modified as described in the Activity Log.

3. Validate the Stage 1 component migration output for migrated_TCP_Listener_template.json.
a) Loadthe migrated TCP_Listener_template.jsoninto aNiFi 1 instance and check the flow.

b) Review the activity_log.json file and check for any manual-change-requests or manual-validation-reque
sts. If none are present, proceed to the next step.

In this example, you can see the following information in the activity log:

{

"sequence" : 2,

"type" : "change-info",

"subj ect" : "b41966ad-0194- 1000- a08d- a92489457356",

"message” : "Conponent [org.apache.nifi.processors.standard. ListenTCPR
ecord] has been deprecated (N FI-13509)",

"context" :

"rule" : "36227b60- 75f 0- 40dc- 8caf - a2ec577aab54c"

}

1. a. OpenthetargetVersion/migrated TCP_Listener template.,json file and search for the "subject" 1D,
b41966ad-0194-1000-a08d-a92489457356. This ID refersto the ListenTCPRecord processor.

b. Search for the value of the identifier as “subject” element in NiFi’s search box.

You are directed to the ListenTCPRecord processor. No manual modifications are needed at this stage.
However, it isimportant to note that the ListenTCPRecord processor is deprecated and is not available
in NiFi 2. Once the full component migration (Stage 1 and Stage 2) is complete, instructions will be
provided on how to handle this deprecation.
¢) If manua changes are necessary, update the migrated TCP_Listener_template.,json on the NiFi canvas after
loading it. Once the flow is validated and meets expectations, continue with the next step.

At this stage, you have completed Stage 1 of both variable and component migration for your flow definition
file. After reviewing the logs, you confirmed that no manual changes were needed. Y ou can proceed with afull
component migration using the /etc/migration-tool-input from Step 3.

4. Run full component migration (Stage 1 and 2) for TCP_Listener_template.json.
a) Make abackup of the output folder (/etc/migration-tool -output/components) before running the next migration
step.

E Note:
Thisstep is crucia because the same output folder is used as in the previous migration, and its contents
will be overwritten. To retain arecord of changes made at each stage, it is better to create a backup.

b) Run the full component migration using the following command.

bi n/m gration.sh nifi mgrate-conponents \
-i /etc/mgration-tool-input/ TCP_Listener_tenplate.json \
-od /etc/mgration-tool - out put/conponents

This generates the following output:

conponent s

sour ceVersion

activity |l og.json

m grated_out put

mgrated TCP_Listener_tenpl ate.json
t ar get Versi on

99

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

activity_l og.json
m grat ed_out put
mgrated TCP_Li stener tenpl ate.json

The contents of the previously generated sourceVersion folder will be overwritten. The contents represent the
NiFi 1-compatible version of the migrated flow. Since the root process group only contained the two process
groups on which you aready performed Stage 1 component migration, the activity log will only include the
same entries as those in Steps 2 and 4.

Additionally, atargetVersion directory is created, containing the output files of the Stage 2 part of the
migration:
migrated TCP_Listener_template.json
* NiFi 2-compatible flow in terms of variables
e Youcanloaditinto NiFi 2 and validate it
activity_log.json
e List of all actions performed during this stage of the migration, and any manual steps that you
need to perform.
5. Vadlidate the Stage 2 component migration output for migrated_TCP_Listener_template.json.

a) Load thetargetVersion/migrated output/migrated TCP_Listener_template.json into aNiFi 2 instance and
check the flow.

b) Review thetargetVersion/activity |log.json file.

In this example, you can see the following manual -change-request entry.

{

"sequence" : 6,

"type" : "manual - change-request",

"subj ect" : "b41966ad-0194- 1000- a08d- a92489457356",

"message” : "The conponent has been deprecated. It is suggested to r

eplace it with a conbination of [org.apache.nifi.processors. standard.Lis
tenTCP] and [org. apache. nifi.processors. standard. ConvertRecord] processo
rs",
"context" :
“"rule" : "36227b60- 75f 0- 40dc- 8caf - a2ec577aab4c"

1. Open thetargetVersion/migrated TCP_Listener_template.json file and search for the "subject” 1D,
b41966ad-0194-1000-a08d-a92489457356. This ID refersto the ListenTCPRecord processor.

2. Toidentify the processor affected by these changes, search for the identifier value of the “subject” element
in NiFi’ s search box. It refersto the ListenTCPRecord processor.

3. Open the TCP Listener process group. Y ou can see that the processor is marked with dashed borders
and its version number still showsthat of the NiFi 1 instance. It meansthat it isa"ghost processor”,

100

Cloudera Flow Management

Migrating a data flow using the Cloudera Flow Management

Migration Tool

4,

¢) Download the flow definition and you have the fully NiFi 2 compatible TCP_Listener_template.json.

not available in NiFi 2. The log message suggests replacing it with a combination of ListenTCP and

ConvertRecord processors.

R e

'~ 4 ListenTCPRecord
~ :

org.apache.nifi - nifi-standard-nar

In 0 (0 bytes)
Read/Write 0 bytes [/ O bytes
Qut 0 (0 bytes)

Tasks/Time 0/ 00:00:00.000

Name success
Queued 0 (0 bytes)

~| % LogAttribute
-~ LogAttribute 2.0.0.4.0.0.0-383

org.apache.nifi - nifi-standard-nar

In 0 (0 bytes)
Read/Write 0 bytes [/ O bytes
Out 0 (0 bytes)

Tasks/Time 0/ 00:00:00.000

" ListenTCPRecord 1.26.0.2.1.71000-46

5 min
5 min
S5 min
5 min

Instantiate and configure the ListenTCP and ConvertRecord processors, connect them appropriately, and
then remove the ghost processor.

Besides these changes there are no further manual-change-requests or manual-validation-requests in the
activity log.

Learn how to use the Cloudera Flow Management Migration Tool to migrate components from template.xml files that
do not contain variables. Component migration with template.xml input can only be used if the flow does not contain

any variables. If the template contains variables, follow the Migrate components using template with variables

section.

The following NiFi flow is used to demonstrate both variable and component migration.

There is one templatexml file:

101

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

« TCP_Listener_template.xml
Thefile consists of the process group TCP Listener (ID: b41940d7-0194-1000-42fc-458834630567).
TCP Listener Process Group

This process group contains the following simple flow:

[ListenTCPRecord

ListenTCPRecord 1.26.0.2.1.7.1000-46
org.apache.nifi - nifi-standard-har
In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5 min
Ot 0 (0 bytes) 5 min
Tasks/Time 0/ 00:00:00.000 5 min

MName success
Queued 0 (0 bytes)

"~ = LogAttribute

LogAttribute 1.26.0.2.71.7.1000-46

org.apache.nifi - nifi-standard-nar
In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5 min
Out 0 (0 bytes) 5 min
Tasks/Time 0/00:00:00.000 5 min

The ListenTCPRecord processor does not reference any variables.

The example guides you through component migration and maintaining a clear activity log. While this example
template is simple, the step-by-step approach shows how this method improves clarity for more complex migrations.
In real-world scenarios, you have to define a migration strategy based on your flow’s structure.

1. Copy the TCP_Listener_template.xml file to the /etc/migration-tool-input folder.

Thisis atemplate without any variables.

102

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

2. Run Stage 1 component migration on the TCP_Listener_template.xml file using the following command.

bi n/ m gration.sh nifi mgrate-conponents \

-i /etc/mgration-tool-input/ TCP_Listener_tenplate.xm \
-od /etc/mgration-tool - out put/conponents \

--sour ceConpati bl eQut put

This generates a sourceVersion folder that contains the output files of the Stage 1 migration.

conponent s
sour ceVersion
activity_l og.json
m gr at ed_out put
m grated TCP_Li stener tenplate.json

activity log.json
» Thelog describes all the actions that were performed for this stage of the process group
migration.
e Log of al actions performed during this stage of the process group migration.

migrated_TCP_Listener_template.json

e A modified NiFi 1 flow, which is not compatible with NiFi 2 yet.

* It contains everything the original flow did, except the TCP Listener process group was
modified as described in the Activity Log.

3. Vdidate the Stage 1 component migration output for TCP_Listener_flow_definition.json.
a) Loadthemigrated TCP_Listener_template.json into aNiFi 1 instance and check the flow.

b) Review the activity log.json file and check for any manual -change-requests or manual-validation-requests. If
none are present, proceed to the next step.

In this example, you can see the following information in the Activity Log:

{

"sequence" : 2,

"type" : "change-info",

"subject" : "b41966ad-0194- 1000- a08d- a92489457356",

"message" : "Conponent [org.apache.nifi.processors. standard. Li stenTCPR
ecord] has been deprecated (N FI-13509)",

"context" :

"rule" : "36227b60- 75f 0- 40dc- 8caf - a2ec577aab4c"

}

Search for the value of the “subject” element using the NiFi search box.

Thiswill locate the ListenTCPRecord processor. No manual modifications are needed at this point. However,
note that the ListenTCPRecord processor is deprecated and not availablein NiFi 2. After completing both
stages of the component migration process, follow-up instructions outline how to address this deprecation.

¢) If manua changes are necessary, update the migrated TCP_Listener_template.,json on the NiFi canvas after
loading it. Once the flow is validated and meets expectations, continue with the next step.

103

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

4. Run full component migration (Stage 1 and 2) for TCP_L istener_template.json.

a) Copy themigrated TCP_Listener_template.json file and rename migrated TCP_Listener_template.json to
TCP_Listener_template.json for clarity.

b) Make abackup of the output folder (/etc/migration-tool-output/components) before running the next migration
step.

Note: stepiscrucia because the same output folder is used asin the previous migration, and its
IE contents will be overwritten. To retain arecord of changes made at each stage, it is better to create a
backup.

¢) Run the full component migration using the following command.

bin/migration.sh nifi mgrate-conmponents \
-i /etc/mgration-tool-input/ TCP_Listener_tenplate.json \
-od /etc/mgration-tool - out put/conponents

This generates the following output:

conponent s
sour ceVersion
activity_log.json
mi grat ed_out put
mgrated TCP_Li stener_tenpl ate.json
t ar get Versi on
activity | og.json
m gr at ed_out put
mgrated TCP_Li stener _tenpl ate.json

The contents of the previously generated sourceVersion folder will be overwritten. The contents represent the
NiFi 1-compatible version of the migrated flow. Since the root process group only contained the two process
groups on which you already performed Stage 1 component migration, the activity log will only include the
same entries as those in Steps 2 and 4.

Additionally, atargetVersion directory is created, containing the output files of the Stage 2 part of the
migration:
migrated TCP_Listener_templatejson
* NiFi 2-compatible flow in terms of variables
* Youcanloaditinto NiFi 2 and validate it
activity_log.json
» List of all actions performed during this stage of the migration, and any manual steps that you
need to perform.
5. Validate the Stage 2 component migration output for TCP_Listener_flow_definition.json.

a) Load thetargetVersion/migrated output/migrated TCP_Listener_template.json into aNiFi 2 instance and
check the flow.

b) Review thetargetVersion/activity log.json file.

In this example, you can see the following manual-change-request entry.

"sequence" : 6,

"type" : "manual - change-request",

"subject" : "b41966ad-0194- 1000- a08d- a92489457356",

"message" : "The conponent has been deprecated. It is suggested to r

eplace it with a conbination of [org.apache.nifi.processors. standard.Lis
tenTCP] and [org. apache. nifi.processors. standard. Convert Record] processo
rs",
"context" :
"rule" : "36227b60- 75f 0- 40dc- 8caf - a2ec577aab4c"

104

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

}

1. Toidentify the processor affected by these changes, search for the value of the “subject” element in NiFi’s
search box.
It refersto the ListenTCPRecord processor.

2. Open the TCP Listener process group.
Y ou can see that the processor is marked with dashed borders and its version number still shows that of the

NiFi 1instance. It meansthat it isa"ghost processor”, not available in NiFi 2. The log message suggests
replacing it with acombination of ListenTCP and ConvertRecord processors.

-

—~| o ListenTCPRecord
/| ListenTCPRecord 1.26.0.2.1.71000-46

E org.apache.nifi - nifi-standard-nar :
v In 0 (0 bytes) 5 min E
E Read/Write 0 bytes [/ 0 bytes 5min
' Qut 0 (0 bytes) 5min
| Tasks/Time 0 /00:00:00.000 5min |

Mame success
Queued 0 (0 bytes)

r. LogAttribute

: LogAttribute 2.0.0.4.0.0.0-383

S org.apache.nifi - nifi-standard-nar
In 0 (0 bytes) 5 min
Read/Write 0 bytes [/ O bytes 5 min
Out 0 (0 bytes) 5 min
Tasks/Time 0/ 00:00:00.000 5 min

3. Instantiate and configure the ListenTCP and ConvertRecord processors, connect them appropriately, and
then remove the ghost processor.

Besides these changes there are no further manual-change-requests or manual-validation-requests in the
Activity Log.
¢) Download the flow definition and you have the fully NiFi 2 compatible TCP_Listener_template.json.

Template migration is not applicable for thisinput type, use the migrate-templates command instead.

105

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

This example demonstrates how to migrate both variables and components with the Cloudera Flow Management
Migration Tool using adirectory that contains multipletemplate XML filesasinput.

Learn how to use the migrate-templates command to transform downloaded template.xml files for compatibility with
NiFi 2, which no longer supports templates. This step is required to ensure successful migration to the target version.
This command combines the functionality of migrate-variables and migrate-components, making it equivalent to
migrate-all for templates. While the migrate-templates command simplifies the migration process, for larger flows

it is often better to run the variable and component migration steps separately. Y ou may also choose to migrate
individual process groups to keep activity logs and validation efforts manageable.

This example uses two template files:
e TCP_Listener_template.xml

Thisfile contains process group TCP Listener (1D: b41940d7-0194-1000-42fc-458834630567)
« Elastic_template.xml

Thisfile contains process group Elastic (1D: b42881c7-0194-1000-3cdf-1bd453a0edOf)

TP Listanar Elasiiz
o 0 a 1 1] 1 o U 4 1
i] L
I o o 1 i} y n
R aasl e 0 Bt O bytlas ReadWnic 0 bytes /0 byles
gl 0~ 0 [bryte Dl 0
a o 0 [D i} 1] U 0 L

TCP Listener Process Group

This process group contains the following simple flow:

106

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

- m listenTCPRecord
L ListenTCPRecord 1.26.0.2.1.7.1000-46&

Larg i-!|:IF=.l:Z|"|i-" fifi - rifi-standard-nar

In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5 min
Cut 0 (0 bytes) 5 min
Tasks/Time 0/ 00:00:00.000 5 min

MName success
Queued 0 (0 bytes)

!

~] % LogAttribute
L - LogAttribute 1.26.0.2.1.7.1000-46

org.apache.nifi - nifi-standard-nar

In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5 min
Out 0 (0 bytes) 5 min
Tasks/Time 0/ 00:00:00.000 5 min

The process group defines avariable called TCP Listener Port, which is referenced by the ListenTCPRecord
processor.

107

Cloudera Flow Management

Migrating a data flow using the Cloudera Flow Management

Migration Tool

Configure Processor | ListenTCPRecord 126.0.21.7.1000-46

B Sopped
SETTINGS SEHERULIRG | FROPERTIES RELATIEMSHIPS
Required field

COMBMERTS

@ +

Property Walue

Lezal Matwoek Intarlacs (7] value gt

Part 0 E[TCP Listener Port}

Maz Size of Secket Rulfer o 1mE

Max Mumber of TCP Connections [7]

Read Timeout @ 10 seconds

Record Readar @ JeonTresReadsr -
Record ‘Wriber B AvroRecordSetWriter —
Read Eves Sategy B Tranaler

Record Batch Size @ 00d

551 Condoxt Sarvice [7] g i 5i

Client Al o MOKE

Elastic Process Group

This process group also contains a simple flow:

CANCEL

APPLY

108

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

B G rataFpeFle
| r
a
Foad Wi 0 byies /0 bipies
ohi n
Taxaw Time 0 OEDEDZ.0I0
L F SUELEES
u} i
[
~ g FusElasticaannch. son
= k
In O |1 brplea
Read™¥rrie 0 bries i O byses
sk 0 |1 brries
T
,/-"’/f! / \

Hame sussens Hame reiry Hame failars Mame TR

mzid O (11 brgies Cheued 0

'“‘-u\,____ﬂ

Clueued 0

apknToma 0§ 06306000000

= Log&itribiuia

| =
000 Bylis)
Baard & riie 0 hylex 0 brries
T o iex)
TazzeTune 07 0003030

The process group has avariable, Elasticsear ch Index, referenced in the Index property of the PutElasticsearchJson
processor.

109

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

Configure Processor | PutElasticsearch.Json 1:26.0.2.1.7.1000-45

Lk Iavalid

HET TG SUHLRUILRSG | “HOPLRTICS: | HELATICNEES COMMIENTS

Reguired field =2 +

Idertifier &stribute o

Index Dperation o index

Imidex @ 5{Elasticsearch Index'}
Type o

Seript (7]

Seripted Upser @ false
Dynamic Templales w

Batch Sire @ 0
Character Set @ UTE-g
Clant Sarvice & Mowval ot
Lag Errer Respanges @ lalze

Cuitput Error Respanses @ false

CAMCEL APFLY

Your goal isto migrate the templates used in Cloudera Flow Management 2.1.7.2000 powered by NiFi 1 to
parameters used in Cloudera Flow Management 4.11.0powered by NiFi 2.

Note: Apache NiFi 2 supports only parameters, not variables, so variable migration is required to ensure
E compatibility with the target version.

The example guides you through variable migration one process group at atime, simplifying the process and
maintaining a clear activity log. While these example templates are simple, the step-by-step approach shows how
this method improves clarity for more complex migrations. In real-world scenarios, you have to define a migration
strategy based on your flow’ s structure.

Before you begin
Copy the TCP_L.istener_templatexml and Elastic_template.xml files to the Migration Tool’ s input folder (/etc/
migration-tool-input).
Procedure
1. Run Stage 1 template migration using the following command.
bin/mgration.sh nifi mgrate-tenplates \

-i /etc/mgration-tool-input \
-od /etc/mgration-tool -output/tenplates \

110

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

-sco
This generates a sourceVersion folder that contains the output files of the migration.

tenpl at es
sour ceVersi on
El astic_tenpl ate_b4175f57-0194- 1000- 8470- 9251a24519b4
El astic_tenpl ate.json
TCP_Li stener_tenpl ate_b41940d7- 0194- 1000- 42f c- 458834630567
TCP_Li stener _tenplate.json
activity_l og.json

The folder name Elastic_template b4175f57-0194-1000-8470-9251a24519b4 and

TCP_Listener_template b41940d7-0194-1000-42fc-45883463056 are temporary process groups which were
created during the migration process and used to separate the components in the template from other components
that may be present during the migration.

Elastic_templatejson

» Flow definition containing the contents of the original template
» Equivaent to manually converting atemplate to aflow definitionin NiFi 1 by:

a. Instantiating the template on the canvas.

b. Right-clicking the process group.

c. Selecting Download flow definition without external services.
* Modified by the Migration Tool to ensure compatibility:

* Variables (not supported in NiFi 2) converted into parameters
e Parameter context created to hold the new parameters
» Processors updated to reference parametersinstead of variables

« Thisisdtill aNiFi 1 flow definition, so do not load thisfile directly into NiFi 2. Use an empty
NiFi 1 instance to review the modification made by the tool. The flow will appear unchanged,
but variables will be replaced with parameters of the same name, which are now referenced by
the processor instead.

» Changesin the syntax: Variables were previously referenced using ${}, whereas parameters are
now referenced using #{}.

* NiFi 1variables: ${ variable name}
* NiFi 2 parameters. #{ parameter_name}

TCP_Listener_template.json

» A modified flow definition, which is not compatible with NiFi 2 yet.

e It contains everything the original flow definition did, except the TCP Listener process group
now references a parameter instead of the removed variable.

« Thisisdtill aNiFi 1 flow definition, so do not load thisfile directly into NiFi 2. Use an empty
NiFi 1 instance to review the modification made by the tool. The flow definition will appear
unchanged, but variables will be replaced with parameters of the same name, which are now
referenced by the processor instead.

» Changesin syntax: Variables were previously referenced using ${}, whereas parameters are now
referenced using #{}.

* NiFi 1variables: ${ variable name}
* NiFi 2 parameters. #{ parameter_name}

activity log.json

» Log of al actions performed during this stage of the migration.

111

Cloudera Flow Management

Migrating a data flow using the Cloudera Flow Management

Migration Tool

» Thefollowing were changes made during the template migration:

* A new parameter context was created with a new parameter called TCP Listener Port, which
replaces the corresponding variable.

* TheTCP Listener Port variable was removed.

* A new parameter context was created with anew parameter called Elasticsearch Index,
which replaces the corresponding variable of the same hame.

» The new parameter is referenced from the PutEl asticsearchJson processor.

* TheElasticsearch Index variable was removed.

2. Validate the Stage 1 template migration output for Elastic_template.json.

a) Check the new flow definition in aNiFi 1 instance to verify that the flow matches your expectations.

1. Start your NiF 1 instance.

2. Create anew process group.

3. Load elastic_template.,json to NiFi 1.

4. Confirm that variables were correctly converted to parameters.
b) Review activity log.json and address any manual-validation-requests or manual-validation-requests.
¢) If there are manual-change-requests or manual-validation-requests to handle, follow these steps:

1. Makethe modifications on the NiFi canvas, indicated by the manual-change-requests or manual-validation-

requestsin the sourceVersion/activity _log.json.

Right-click on the Elastic process group.

Select Download flow definition without external services.

Savethefile as Elastic_template.json and overwrite the one in the sourceV ersion/<process_group> folder.
5. Proceed to running Stage 1 variable migration on the Elastic_flow_definition.json.

d) Proceed to running Stage 1 variable migration on the TCP_Listener_template.json.

. Validate the Stage 1 template migration output for TCP_Listener_template.json.

a) Check the new flow definition in aNiFi 1 instance to verify that the flow matches your expectations.

A wDd

1. Create anew process group.

2. Load TCP_Listener_template.json to NiFi 1.

3. Confirm that variables were correctly converted to parameters.
b) Review activity_log.json and address any manual-change-requests or manual -validation-regquests.
¢) If there are manual-change-requests or manual -inspection-requests to handle, follow these steps:

1. Make the modifications on the NiFi canvas, indicated by the manual-change-requests or manual-validation-
requests in the sourceV ersion/activity _log.json.
2. Right-click on the TCP Listener process group.
3. Select Download flow definition without external services.
4. Savefileas TCP_Listener_template.json and overwrite the one in the sourceV ersion/<process_group>
folder.
d) If none are present, proceed to the next step.

. Run full template migration (Stage 1 and 2), using the following command.

bin/mgration.sh nifi mgrate-tenplates \
-i /etc/mgration-tool-input \
-od /etc/mgration-tool -output/tenpl ates

The contents of the previously generated sourceV ersion folder will be overwritten, but thisis not a concern as
the tool generates the same sourceVersion output as before. Additionally, atargetVersion directory is created,
containing the output files of the Stage 2 part of the migration.

t ar get Ver si on
El astic_tenpl ate_b4175f57-0194- 1000- 8470- 9251a24519b4
El astic_tenplate.json

112

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

TCP_Li stener_tenpl ate_b41940d7- 0194- 1000- 42f c- 458834630567
TCP_Li stener _tenplate.json
activity | og.json

Elastic_templatejson

* NiFi 2-compatible flow definition
« Contains the contents of the original template converted into an exported process group.
» Thisversion is compatible with NiFi 2, but no longer supports NiFi 1.

activity log.json
e List of all actions performed during this stage of the migration.
E Note: One activity log file will be created for the entire command.

5. Vadlidate the Stage 2 template migration output.
a) Check the new flow definition in a NiFi 2 instance to verify that the flow matches your expectations.

1. Start your NiFi 2 instance.
2. Create anew process group.
3. Load elastic_template.json into aNiFi 2 instance.

The new process group will be called elastic_template and will contain another process group named
elastic, matching the name of the process group that was converted into atemplatein NiFi 1 before you
started the migration.
4. Verify parameter replacements and processor updates.
b) Review activity log.json and address any manual -change-requests or manual -validation-requests.

In this case, you can see the following manual-change-request:

{
"sequence" : 4,
"type" : "manual - change-request",
"subject" : "al468d69- 3f 30- 3f 83-a7cl- 91dad09890f 7",
"message" : "New relationship [original] has been added, it has to be
connected to a downstream processor or termnated.",
"context" :
"rule" : "6501a693-b524-4dla-blle-69747c2651e8"
}

1. OpenthetargetVersion/Elastic_template.json file and search for the "subject" 1D, a1468d69-3f30-3f83-
arcl-91dad09890f7. This ID refersto the PutElasticsearchJson processor.
2. Gotothe NiFi 2 canvas and check the processor. Y ou will find that it has an unbound “original”
relationship that needs to be connected to a downstream component.
3. Make the required change manually on the canvas.
4. Once done, export the process group. This exported process group is now afully NiFi 2-compatible version
of the original template.
5. Savethefile.
¢) Validate the Stage 2 component migration output for TCP_Listener_template.json.
d) Load thetargetVersion/TCP_Listener_template,json into a NiFi 2 instance and check the flow.
€) Review thetargetVersion/activity log.json file. In this example, you can see the following manual-change-re

quest entry.
{
"sequence" : 6,
"type" : "manual - change-request",
"subject" : "b41966ad- 0194- 1000- a08d- a92489457356" ,

113

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

"message" : "The conponent has been deprecated. It is suggested to r
eplace it with a conbination of [org.apache.nifi.processors. standard. Lis
tenTCP] and [org. apache. nifi.processors. standard. Convert Record] processo
rs",

"context" :

"rule" : "36227b60- 75f 0- 40dc- 8caf - a2ec577aa54c"
}

1. OpenthetargetVersion/TCP_Listener_template.json file and search for the "subject" 1D,
b41966ad-0194-1000-a08d-a92489457356. This ID refers to the ListenTCPRecord processor.

2. Toidentify the processor affected by these changes, search for the identifier value of the “ subject” element
in NiFi’s search box. It refersto the ListenTCPRecord processor. Open the TCP Listener process group.
Y ou can see that the processor is marked with dashed borders and its version number still shows that of the
NiFi 1instance. It meansthat it isa"ghost processor”, not available in NiFi 2. The log message suggests
replacing it with acombination of ListenTCP and ConvertRecord processors.

-

' [~] A ListenTCPRecord :
v |~/| ListenTCPRecord 1.26.0.2.1.7.1000-46 :
: org.apache.nifi = nifi-standard-nar i
v In 0 (0 bytes) 5min !
E Read/Write 0 bytes [/ 0 bytes 5min
' Qut 0 (0 bytes) 5min
i Tasks/Time 0 /00:00:00.000 5min |

Mame success
Queued 0 (0 bytes)

~] % LogAttribute

LogAttribute 2.0.0.4.0.0.0-383

S org.apache.nifi - nifi-standard-nar
In 0 (0 bytes) 5 min
Read/Write 0 bytes [/ O bytes 5 min
Out 0 (0 bytes) 5 min
Tasks/Time 0/ 00:00:00.000 5 min

Instantiate and configure the ListenTCP and ConvertRecord processors, connect them appropriately, and
then remove the ghost processor.

Besides these changes there are no further manual-change-requests or manual-validation-requests in the
Activity Log.

114

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

f) Download the flow definition and you have the fully NiFi 2 compatible TCP_Listener_flow_definition.json.

Y ou have finished the template migration process.

Learn how to use the Cloudera Flow Management Migration Tool to convert variables to parameters and parameter
contexts for template files.

The following NiFi flows are used to demonstrate both variable and component migration.
This example uses two template files:
e« TCP_Listener_templatexml

The file consists of process group TCP Listener (ID: b41940d7-0194-1000-42f c-458834630567).
e Elagtic flow_template.xml

Thisfile contains process group Elastic (1D: b42881c7-0194-1000-3cdf-1bd453a0edOf).

TP Listansr Elastic
o 1 a 1 o a 0 g |1 1
4 o il
In o 0 I n 7 i}
Read Weite 0 bytas | O bylas BeadWrie 0 brytes /0 Byles
Cral 0~ 0 [brgte S| 0 -1
1] 1]) oD *0 1] 1}) 0o w0

TCP Listener Process Group

This process group contains the following simple flow:

115

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

- m listenTCPRecord
L ListenTCPRecord 1.26.0.2.1.7.1000-46&

Larg i-!|:IF=.l:Z|"|i-" fifi - rifi-standard-nar

In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5 min
Cut 0 (0 bytes) 5 min
Tasks/Time 0/ 00:00:00.000 5 min

MName success
Queued 0 (0 bytes)

!

~] % LogAttribute
L - LogAttribute 1.26.0.2.1.7.1000-46

org.apache.nifi - nifi-standard-nar

In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5 min
Out 0 (0 bytes) 5 min
Tasks/Time 0/ 00:00:00.000 5 min

The process group defines avariable called TCP Listener Port, which is referenced by the ListenTCPRecord
processor.

116

Cloudera Flow Management

Migrating a data flow using the Cloudera Flow Management

Migration Tool

Configure Processor | ListenTCPRecord 126.0.21.7.1000-46

B Sopped
SETTINGS SEHERULIRG | FROPERTIES RELATIEMSHIPS
Required field

COMBMERTS

@ +

Property Walue

Lezal Matwoek Intarlacs (7] value gt

Part 0 E[TCP Listener Port}

Maz Size of Secket Rulfer o 1mE

Max Mumber of TCP Connections [7]

Read Timeout @ 10 seconds

Record Readar @ JeonTresReadsr -
Record ‘Wriber B AvroRecordSetWriter —
Read Eves Sategy B Tranaler

Record Batch Size @ 00d

551 Condoxt Sarvice [7] g i 5i

Client Al o MOKE

Elastic Process Group

This process group also contains a simple flow:

CANCEL

APPLY

117

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

B G rataFpeFle
| r
a
Foad Wi 0 byies /0 bipies
ohi n
Taxaw Time 0 OEDEDZ.0I0
L F SUELEES
u} i
[
~ g FusElasticaannch. son
= k
In O |1 brplea
Read™¥rrie 0 bries i O byses
sk 0 |1 brries
T
,/-"’/f! / \

Hame sussens Hame reiry Hame failars Mame TR

mzid O (11 brgies Cheued 0

'“‘-u\,____ﬂ

Clueued 0

apknToma 0§ 06306000000

= Log&itribiuia

| =
000 Bylis)
Baard & riie 0 hylex 0 brries
T o iex)
TazzeTune 07 0003030

The process group has avariable, Elasticsear ch Index, referenced in the Index property of the PutElasticsearchJson
processor.

118

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

Configure Processor | PutElasticsearch.Json 1:26.0.2.1.7.1000-45

Lk Iavalid

HET TG SUHLRUILRSG | “HOPLRTICS: | HELATICNEES COMMIENTS

Reguired field =2 +

Lag Errer Respanges [alga

Cuitput Error Respanses falss

Idertifier &stribute o
Index Dperation o index
Imidex @ 5{Elasticsearch Index'}
Type o
Seript (7]
Seripted Upser @ false
Dynamic Templales w
Batch Sire @ 0
Character Set @ UTE-g
Clant Sarvice & Mowval ot
L7
o

CAMCEL APFLY

Your goal isto migrate the templates used in Cloudera Flow Management 2.1.7.2000 powered by NiFi 1 to
parameters used in Cloudera Flow Management 4.11.0 powered by NiFi 2.

The example guides you through variable migration and maintaining a clear activity log. While this example template
issimple, the step-by-step approach shows how this method improves clarity for more complex migrations. In real-
world scenarios, you have to define a migration strategy based on your flow’ s structure. Individual template migration
may not always be necessary.

Before you begin

Copy the TCP_Listener_template.xml and Elastic_template.xml files to the Migration Tool’ s input folder (/etc/
migration-tool-input).

Procedure

1. Run Stage 1 variable migration using the following command.

bin/mgration.sh nifi mgrate-variables \
-i /etc/mgration-tool-input \

-od /etc/mgration-tool -output/variables \
- - sour ceConpat i bl eQut put

This generates a sourceVersion folder that contains the output files of the Stage 1 migration.

vari abl es

sour ceVersion
activity | og.json
m grat ed_out put

119

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

mgrated El astic_tenplate.json
mgrated TCP_Li stener _tenpl ate.json

activity_log.json

* A new parameter context was created with anew parameter called TCP Listener Port, which
replaces the corresponding variable.

* TheTCP Listener Port variable was removed.

* A new parameter context was created with a new parameter called Elasticsear ch I ndex, which
replaces the corresponding variable of the same name.

» The new parameter is referenced from the PutElasticsearchJson processor.

» TheElasticsear ch Index variable was removed.

migrated TCP_Listener_templatejson

* A modified NiFi 1 flow, which is not compatible with NiFi 2 yet.

|t contains everything the original flow did, except the TCP Listener process group how
references a parameter instead of the removed variable.

e Thisisstill aNiFi 1 flow definition, so do not load thisfile directly into NiFi 2. Use an empty
NiFi 1 instance to review the modification made by the tool. The flow definition will appear
unchanged, but variables will be replaced with parameters of the same name, which are now
referenced by the processor instead.

» Changesin the syntax: Variables were previously referenced using ${}, whereas parameters are
now referenced using #{}.
* NiFi 1variables: ${ variable_name}
* NiFi 2 parameters. #{ parameter_name}

migrated_Elastic_template.json

» A modified NiFi 1 flow definition, which is not compatible with NiFi 2 yet.

|t contains everything the original flow definition did, but the Elastic process group now
references a parameter instead of the removed variable.

Note:
E Thefile name is composed of the migrated prefix and the name of the top-level process group and not the
origina file name.

120

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management

Migration Tool

2. Validate the Stage 1 variable migration output for the migrated TCP_L.istener_template.json file.
a) Check the new flow definition in aNiFi 1 instance to verify that the flow matches your expectations.

1

S IF RN

Start your NiFi 1 instance.

Create anew process group.

Load sourceVersion/migrated_output/migrated_TCP_Listener_template.,json to NiFi 1.
Remove the ‘migrated * prefix from the process group name.

Confirm that variables were correctly converted to parameters.

b) Ranew the activity_log.json file and check for any manual-change-requests or manual-validation-requests.
¢) If there are manual-change-requests or manual-validation-requests to handle, follow these steps:

1

2.
3.
4,

Make the modifications on the NiFi canvas, indicated by the manual-change-requests or manual-validation-
reguests in the sourceVersion/activity _log.json.

Right-click on the TCPListener process group

Select Download flow definition without external services.

Save thefileasmigrated TCP_Listener_template.json and overwrite the one in the sourceVersion/
migrated _output folder.

d) If norequests are present in the log:

1

Make a backup of the original TCP_Listener_flow_definition.json.

2. Right-click on the TCPListener process group
3.
4, Savefileasmigrated TCP_Listener _template.json and overwrite the one in the sourceVersion/

Select Download flow definition without external services.

migrated _output folder.

€) Proceed to running Stage 1 variable migration on the Elastic_template.json.

At this stage, the flow definition no longer contains variables and uses parameters instead. If the flow meets your
expectations, you can either run afull variable migration to validate your flow in NiFi 2 or proceed with migrating
the components.

3. Vdidate the Stage 1 variable migration output for the Elastic_template.json.
a) Check the new flow definition in aNiFi 1 instance to verify that the flow matches your expectations.

1

oA wN

Start your NiFi 1 instance.

Create a new process group.

Load sourceVersion/migrated output/migrated Elastic_template.json to NiFi 1.
Remove the ‘migrated * prefix from the process group name.

Confirm that variables were correctly converted to parameters.

b) REVIEW the activity_log.json file and check for any manual-change-requests or manual -validation-requests.
¢) If there are manual-change-requests or manual-validation-requests to handle, follow these steps:

1

2.
3.
4,

Make the modifications on the NiFi canvas, indicated by the manual-change-requests or manual-validation-
requests in the sourceV ersion/activity _log.json.

Right-click on the Elastic process group

Select Download flow definition without external services.

Save the file as migrated Elastic_template.json and overwrite the one in the sourceVersion/
migrated_output folder.

d) If norequests are present in the log:

1
2.
3.

Right-click on the Elastic process group
Select Download flow definition without external services.

Savefile as migrated_Elastic_template.json and overwrite the one in the sourceVersion/migrated _output
folder.

At this stage, both flow definitions no longer contain variables and use parameters instead. If the flow meets your
expectations, you can either run afull variable migration to validate your flow in NiFi 2 or proceed with migrating
the components.

121

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

4. Run full variable migration (Stage 1 and 2) using the following command.

bin/migration.sh nifi mgrate-variables \
-i /etc/mgration-tool-input \
-od /etc/mgration-tool -output/variabl es

This generates a sourceVersion and targetVersion folders that contain the output files of the migration.

vari abl es
sour ceVersion
activity_l og.json
m gr at ed_out put
mgrated Elastic_tenplate.json
m grated TCP_Li stener tenplate.json
###t ar get Ver si on
activity_l og.json
m gr at ed_out put
mgrated Elastic_tenplate.json
mgrated TCP_Li stener _tenpl ate.json

The contents of the previously generated sourceVersion folder will be overwritten, but thisis not a concern asthe
tool generates the same sourceV ersion output as before.

Additionally, atargetVersion directory is created, containing the output files of the Stage 2 part of the migration.
migrated_Elastic_template.json

* NiFi 2-compatible flow in terms of variables
* Youcanloaditinto NiFi 2 and validate it

migrated TCP_Listener_template,json

» NiFi 2-compatible flow in terms of variables
* Youcanloaditinto NiFi 2 and validate it

activity log.json

e List of al actions performed during this stage of the migration.

E Note:
One activity log file will be created for the entire command.
5. Proceed with component migration using the input folder from step 3.

Learn how to use the Cloudera Flow Management Migration Tool to migrate components from flow definition JSON
files. Astemplates may not contain some parameter contexts and parameters defined at the parent process group level,
you have to use the flow definitions generated in the previous steps.

Thefollowing NiFi flows are used to demonstrate both variable and component migration.
This example uses two template files:
 migrated TCP_Listener_template,json

Thisfile contains process group TCP Listener (1D: b41940d7-0194-1000-42fc-458834630567)
e migrated_Elastic_template.json

Thisfile contains process group Elastic (1D: b42881c7-0194-1000-3cdf-1bd453a0edOf)

122

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management

Migration Tool

TGP Listanar Elasiic

D &0 +0 M1 A0 5 000 M1 AT R
Croesedd D {0 bes) e 00 e
In D40 Eytes) — 0 5 In 1010 Ergtinnd — 0 I
Raad Write 0 byt | O bylas Bagd/Wrlic 0 beptes § D Byies IT
Cral 0 = 0 [} brygtes) m Tl 0 —= 0 [0 higtag)

a o 0 D ?*D 1] 1] 0 I]

TCP Listener Process Group

This process group contains the following simple flow:

~ m listenTCPRecord
L ListenTCPRecora 1.26.0.2.1.7.1000-46

LA i-!|ZIF:.lZZ|"IE-" nifi = nifi-standard-nar

In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5 min
Ot 0 (0 bytes) 5 min
Tasks/Time 0/ 00:00:00.000 5 min

Name success
Queued 0 (0 bytes)

!

= % LogAttribute
Y LogAttribute 1.26.0.2.1.7.1000-46

org.apache.nifi - nifi-standard-nar

In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes 5 min
Out 0 (0 bytes) 5 min
Tasks/Time 0/00:00:00.000 5 min

The process group defines avariable called TCP Listener Port, which is referenced by the ListenTCPRecord
processor.

123

Cloudera Flow Management

Migrating a data flow using the Cloudera Flow Management

Migration Tool

Configure Processor | ListenTCPRecord 126.0.21.7.1000-46

B Sopped
SETTINGS SEHERULIRG | FROPERTIES RELATIEMSHIPS
Required field

COMBMERTS

@ +

Property Walue

Lezal Matwoek Intarlacs (7] value gt

Part 0 E[TCP Listener Port}

Maz Size of Secket Rulfer o 1mE

Max Mumber of TCP Connections [7]

Read Timeout @ 10 seconds

Record Readar @ JeonTresReadsr -
Record ‘Wriber B AvroRecordSetWriter —
Read Eves Sategy B Tranaler

Record Batch Size @ 00d

551 Condoxt Sarvice [7] g i 5i

Client Al o MOKE

Elastic Process Group

This process group also contains a simple flow:

CANCEL

APPLY

124

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

B GaniarateFlaeFle

|~

Ir a
Foad Wi 0 byies /0 bipies
ohi n
Taxaw Time 0 OEDEDZ.0I0

Hame sussens Hame reiry Hame failars Mame TR

mzid O (11 brgies Cheued 0 Cheusd O

\
\
AN
¥
/

LogAttribite

L]

Baard & riie 0 hylex 0 brries
T o iex)

TazzeTune 07 0003030

The process group defines a variable, Elasticsear ch Index, which is referenced in the Index property of the
PutEl asticsearchJson processor.

125

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

Configure Processor | PutElasticsearch.Json 1:26.0.2.1.7.1000-45

Lk Iavalid

HET TG SUHLRUILRSG | “HOPLKETILY | HELATICNEES COMMIENTS

Reguired field = -+

Lag Errer Respanges [alga

Cuitput Error Respanses falss

Iderdifier &stnbte [¥]
Index Dperation o index
Imidex @ 5{Elasticsearch Index'}
Type o
Seript (7]
Seripted Upser @ false
Dynamic Templales w
Batch Size @ oa
Character Set @ UTE-g
Clant Sarvice & Movalus set
7]
o

CAMCEL APFLY

Your goal isto migrate the components used in Cloudera Flow Management 2.1.7.2000 powered by NiFi 1 to NiFi-2
compatible components used in Cloudera Flow Management 4.11.0

The example guides you through component migration one flow definition at atime, simplifying the process and
maintaining a clear activity log. While these example flow definitions are simple, the step-by-step approach shows
how this method improves clarity for more complex migrations. In real-world scenarios, you have to define a
migration strategy based on your flow’s structure.

Procedure

1. Make abackup of the output folder (/etc/migration-tool-output/components) before running the next migration
step.

E Note:
This step is crucial because the same output folder is used as in the previous migration, and its contents
will be overwritten. To retain arecord of changes made at each stage, it is better to create a backup.

2. Copy themigrated TCP_Listener_template.json and migrated Elastic_template.json filesto the Migration Tool’s
input folder (/etc/migration-tool-input).

3. Rename them, overwriting the existing ones, to TCP_L istener_template.json and Elastic_template.json for clarity.
4. Remove dl other files from the Migration Tool’ sinput folder (/etc/migration-tool-input).
5. Run Stage 1 component migration using the following command.

bi n/m gration.sh nifi mgrate-conponents \
-i /etc/mgration-tool-input \
-od /etc/mgration-tool - out put/conponents \

126

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

- - sour ceConpat i bl eCut put
This generates a sourceVersion folder that contains the output files of the Stage 1 migration.

conponent s
###sour ceVer si on
activity | og.json
m gr at ed_out put
mgrated_El astic_tenpl ate.json
mgrated TCP_Li stener _tenpl ate.json

activity_log.json
» Thelog describes all the actions that were performed for this stage of the process group
migration.
» Log of al actions performed during this stage of the process group migration.

@ Note:
One activity log file will be created for the entire command.
migrated TCP_Listener_templatejson

* A modified NiFi 1 flow, which isnot compatible with NiFi 2 yet.
* |t contains everything the original flow did, except the TCP Listener process group was
modified as described in the Activity Log.
migrated_Elastic_template.json

» A modified NiFi 1 flow definition which is not compatible with NiFi 2 yet.

|t contains everything the original flow definition did, except the Elastic process group was
modified with the actions described in the activity log.

6. Vadlidate the Stage 1 component migration output for TCP_Listener_template.json.

a) Loadthe migrated TCP_Listener_template.json into aNiFi 1 instance and check the flow.

b) Review the activity log.json file and check for any manual-change-requests or manual -validation-reque
sts. If none are present, proceed to the next step.

In this example, you can see the following information in the Activity Log:

{

"sequence" : 2,

"type" : "change-info",

"subject" : "b41l966ad- 0194- 1000- a08d- a92489457356" ,

"message" : "Conponent [org.apache.nifi.processors. standard. Li stenTCPR
ecord] has been deprecated (N FI-13509)",

"context" : {

"rule" : "36227b60- 75f 0- 40dc- 8caf - a2ec577aab54c"

}

Search for the value of the “subject” element in NiFi’ s search box.Y ou are directed to the ListenT CPRecord
processor. No manual modifications are needed at this stage. However, it isimportant to note that the
ListenTCPRecord processor is deprecated and is not available in NiFi 2. Once the full component migration
(Stage 1 and Stage 2) is complete, instructions will be provided on how to handle this deprecation.

¢) If manua changes are necessary, update the migrated TCP_Listener_template.,json on the NiFi canvas after
loading it. Once the flow is validated and meets expectations, continue with the next step.

7. Validate the Stage 1 component migration output for Elastic_template.json.

a) Loadthe migrated Elastic_template.jsoninto aNiFi 1 instance and check the flow.

b) Review the activity log.json file. It contains a change-info entry that informs you of changesto aNiFi 2
processor, identified by the subject ID.

{

127

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management

Migration Tool
"sequence" : 2,
"type" : "change-info",
"subject" : "b428aad6-0194-1000- d73d- 9f 2332a59f 04",
"message" : "Property [Max JSON Field String Length] has been added (N

| FI -12343); Property [put-es-json-not_found-is-error] has been renaned t
0 [put-es-not_found-is-error] (N FI-12255); Property [put-es-json-error-
docunent s] has been renoved (N Fl-12255); Rel ationships [success] has be
en renaned to [original]; Relationship [successful] has been added (N FI

-12255); ",
"context" : {
"rule" : "6501a693- b524-4dla-blle- 69747c2651e8"
}
To identify the processor affected by these changes, search for the value of the “subject” element in NiFi’s
search box.

Y ou are directed to the PutEl asticsearchJson processor. No manual modifications are needed at this stage.
However, it isimportant to note that changes will be applied to the PutEl asticsearchJson processor during
Stage 2 of the migration. Once the full component migration (Stage 1 and Stage 2) is complete, instructions
will be provided on how to handle this change.

At this stage, you have completed Stage 1 of both variable and component migration for your flow definition
files. After reviewing the logs, you confirmed that no manual changes were needed. Y ou can proceed with afull
component migration using the /etc/migration-tool-input from Step 5.

8. Run full component migration (Stage 1 and 2).
a) Make abackup of the output folder (/etc/migration-tool -output/components) before running the next migration
step.

E Note:
Thisstep is crucia because the same output folder is used as in the previous migration, and its contents
will be overwritten. To retain arecord of changes made at each stage, it is better to create a backup.

b) Run the full component migration using the following command.

bin/m gration.sh nifi mgrate-conponents \
-i /etc/mgration-tool-input \
-od /etc/m gration-tool - out put/conponents

This generates the following output:

conponent s
###sour ceVer si on
activity | og.json
m gr at ed_out put
mgrated Elastic_tenplate.json
m grated TCP_Li stener tenpl ate.json
###sour ceVer si on
activity_l og.json
m grat ed_out put
mgrated Elastic _tenplate.json
m grated TCP_Li stener tenpl ate.json

The contents of the previously generated sourceVersion folder will be overwritten. The contents represent the
NiFi 1-compatible version of the migrated flow. Since the root process group only contained the two process

128

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

groups on which you already performed Stage 1 component migration, the activity log will only include the
same entries as those in Steps 2 and 4.

Additionally, atargetVersion directory is created, containing the output files of the Stage 2 part of the
migration.

migrated TCP_Listener_templatejson
* NiFi 2-compatible flow in terms of variables
* Youcanloaditinto NiFi 2 and validate it

migrated_Elastic_template.json
* NiFi 2-compatible flow in terms of variables
* Youcanloaditinto NiFi 2 and validate it

activity log.json
« List of all actions performed during this stage of the migration, and any manual steps that you

need to perform.
9. Validate the Stage 2 component migration output for TCP_Listener_template.json.

a) Load thetargetVersion/migrated output/migrated TCP_Listener_template.json into aNiFi 2 instance and
check the flow.

b) Review thetargetVersion/activity log.json file.

In this example, you can see the following manual -change-request entry.

{

"sequence" : 6,

"type" : "manual - change-request",

"subject" : "b41966ad-0194- 1000- a08d- a92489457356",

"message" : "The conponent has been deprecated. It is suggested to r

eplace it with a conbination of [org.apache.nifi.processors. standard. Lis
tenTCP] and [org. apache. nifi.processors. standard. Convert Record] processo
rs",
"context" :
"rule" : "36227b60- 75f 0- 40dc- 8caf - a2ec577aab4c"

1. Toidentify the processor affected by these changes, search for the identifier value of the “subject” element
in NiFi’s search box. It refersto the ListenTCPRecord processor.

2. Openthe TCP Listener process group. Y ou can see that the processor is marked with dashed borders
and its version number still shows that of the NiFi 1 instance. It meansthat it is a"ghost processor”,

129

Cloudera Flow Management

Migrating a data flow using the Cloudera Flow Management

Migration Tool

3.

not available in NiFi 2. The log message suggests replacing it with a combination of ListenTCP and
ConvertRecord processors.

R e

Out

I
I
I
1
]
i
]
v In
i
i
1
1
1
1
1

%
\ -

In

4 ListenTCPRecord
~ ListenTCPRecord 1.26.0.2.1.71000-46

org.apache.nifi - nifi-standard-nar

0 (0 bytes)

Read/Write 0 bytes [/ O bytes

0 (0 bytes)

Tasks/Time 0/ 00:00:00.000

Name success
Queued 0 (0 bytes)

3 LogAttribute
LogAttribute 2.0.0.4.0.0.0-383

org.apache.nifi - nifi-standard-nar

0 (0 bytes)

Read/Write 0 bytes [/ O bytes

Cut

0 (0 bytes)

Tasks/Time 0/ 00:00:00.000

5 min
5 min
S5 min
5 min

Instantiate and configure the ListenTCP and ConvertRecord processors, connect them appropriately, and
then remove the ghost processor.

Besides these changes there are no further manual-change-requests or manual-validation-requests in the

Activity Log.

¢) Download the flow definition and you have the fully NiFi 2 compatible TCP_Listener_template.json.
10. Validate the Stage 2 component migration output for Elastic_template.json.
a) Load thetargetVersion/migrated output/migrated Elastic template.,json into a NiFi 2 instance and check the

flow.
b) Review thetargetVersion/activity log.json file. In this example, you can see the following manual-change-re
quest entry.
{

"sequence" 3,
"type" : "manual - change-request",
"subj ect" " b428aad6- 0194- 1000- d73d- 9f 2332a59f 04",
"message” "New rel ationship [original] has been added, it has to be

connected to a downstream processor or termnated.",

130

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

"context" :
"rule" : "6501a693-b524-4dla-blle-69747c2651e8"

1. Toidentify the processor affected by these changes, search for the value of the “subject” element in
NiFi’'s search box. It refers to the PutElasticsearchJson processor. Y ou will find an unbound "original"
relationship that needs to be connected to a downstream processor or terminated.

2. Make the necessary madifications manually. Once completed, this change request is resolved.
¢) Download the flow definition and you have the fully NiFi 2 compatible Elastic_template.json.

Template migration is not applicable for thisinput type, use the migrate-templates command instead.

When migrating NiFi flows, the handling of sensitive properties depends on the file format being used.

» flow.json and flow.json.gz files contain all property values, including sensitive ones, in encrypted form.
» Other formats, such as flow definitions or templates, do not include sensitive property values.

The Migration Tool has limited capabilities when handling sensitive properties. It cannot determine whether sensitive
property values were originally set, and therefore cannot guarantee a complete migration of those values.

Important: Always review the migration results carefully when working with file formats that can contain
sensitive property values.
Example: GetHDFS pr ocessor

For the GetHDFS processor, if a controller serviceis not used to provide Kerberos credentials, credential
configuration in NiFi 1 requires defining:

» Kerberos Principa (not sensitive)
« Exactly one of Kerberos Keytab (not sensitive) or Kerberos Password (sensitive)

In NiFi 2, these properties are replaced by a controller service that manages Kerberos credentials.
Migration Tool behavior
* When working with aflow.json file:

» TheMigration Tool identifies which properties are populated and migrates them to the
appropriate controller service.

« |t also validates the configuration and generates a erts through Manua Change Requests or
Manual Validation Requestsif there are any errors or inconsistencies.

For example, it can detect the misconfiguration and alert you if all three properties are filled

or aKerberos Principal is set without a Kerberos Keytab or Kerberos Password.
Theseissues are listed as Manual Change Requests or Manual Validation Requestsin the
Activity Log.

131

Cloudera Flow Management Migrating a data flow using the Cloudera Flow Management
Migration Tool

* When working with aflow definition:

Because the sensitive Kerberos Password value is missing, the Migration Tool cannot determine
if Kerberos Password was originally populated or not. In this case, the original configuration is
inferred based on the values of the other properties. For example:

* |If both Kerberos Principal and Kerberos Keytab arefilled, the Migration Tool
assumes that Kerberos Password was empty, and it creates a KerberosK eytabUserService.
* If only Kerberos Principal is populated, the Migration Tool assumes that Kerberos

Password was originally filled, and it creates a K erberosPasswordUser Service with an
empty Kerberos Password property, as the Migration Tool does not know its actual value.

» If Kerberos Principa is empty, the Migration Tool assumes that K erberos Password was not
set as Kerberos Password is not valid without Kerberos Principal. This typically indicates
that either a controller service was already used for Kerberos credentials or Kerberos was not
involved at all.

Example: GetAzureQueueStor age processor

For the GetAzureQueueStorage processor, if a controller serviceis not used to provide Kerberos credentials,
credential configuration in NiFi requires defining:

« Storage Account Name (sensitive)
« Exactly one of Storage Account Key (sensitive) or SAS Token (sensitive)

Since all three properties are sensitive and their values are missing, the Migration Tool cannot determine which
properties were populated in the original configuration. In such cases, you must review and finalize these
configuration settings manually.

Post-migration requirements

The Migration Tool assumes that the original configuration isvalid. If the original configuration contains errors, the
tool may make incorrect assumptions, apply unintended changes, and may not be able to notify you about these. To
reduce noise in the Activity Log, the tool provides limited alerts for missing sensitive properties.

After migration, you should:

« Review and verify all sensitive property configurations, especially for file formats that do not include values.
» Ensurethat all required sensitive values are populated in NiFi after importing the migrated flows.

Sensitive parameters

Even in file types where sensitive property values are not available, parameter references are preserved, athough their
values may be empty. Similarly, in acomplete flow.json, parameter values can also be empty, no matter whether they
are sensitive or not.

This means that the presence of a parameter does not guarantee that it resolves to a non-empty value. NiFi evaluates
acomponent’s property configuration based solely on the value it resolves to, and not on the presence of a parameter
reference.

For example, in the GetAzureQueueStorage processor, it isvalid (although somewhat unusual) to configure all three
properties (Storage Account Name, Storage Account Key, and SAS ~ Token) using parameter references and
haveonly Storage ~ Account Name and exactly one of Storage Account Key and SAS Token resolve to a non-
empty value.

Asaresult, the Migration Tool generally does not distinguish between property values defined directly or through
parameters when making decisions and assumptions about sensitive properties.

The Migration Tool generally does not distinguish between property values defined directly or through parameters
when making decisions and assumptions about sensitive properties. The exception is when the Migration Tool cannot
make meaningful inferences from the configuration alone and needs to consider the presence or absence of parameter
references. For example:

» |If Storage Account Name and Storage Account Key, contain parameter references, but SAS Token is empty, the
Migration Tool can infer that the referenced parameters have values.

132

Cloudera Flow Management Cloudera Flow Management Migration Tool Reference

« If all three properties contain parameter references, or none of them do, the Migration Tool defers the resolution to
you.

The reference documentation provides a comprehensive guide to the Migration Tool commands, which support
partial or full migration of incoming data flows. Each command addresses a specific part of the migration process,
offering flexibility and control to meet avariety of migration needs. Use this reference to understand the function and
configuration of each command so that you can effectively tailor the migration process to your requirements.

Additionally, the reference documentation covers the Activity Log, which provides a detailed record of migration-
related events, changes, and manual interventions. The log helps you track modifications, review necessary actions,
and ensure a smooth transition during the migration process. Use this reference to gain insights into how your flows
were migrated, identify any manual steps required, and ensure that all necessary changes were applied correctly.

This section contains information about the commands you can use with the Migration Tool when migration your data
flows from NiFi 1 to NiFi 2.

The command list includes:

e Command descriptions: A detailed explanation of each command and its role within the migration workflow.

e Input arguments: A list of common arguments shared by all commands, aong with those specific to individual
commands or use Cases.

« Syntax and usage examples: Practical examples showcasing the correct syntax and usage for each command,
helping you implement them in your environment.

e Output artifacts: Information on the output generated by each command, ensuring traceability and transparency
throughout the migration process.

Migrates NiFi templates using the Cloudera Flow Management Migration Tool.

mgrate-tenplates --input {filePath} --outputDirectory {directoryPath} [--so
urceConpati bl eCut put] [--processGoupld {pgld}]

--input
» Short format: -i {filePath}
» Specifiesthe path to alocal file containing the flow in JISON format for processing.
» Thefile must be accessible to the Migration Tool, and reading privileges are required.
* Theorigina file remains unmodified.

--outputDirectory

» Short format: -od { directoryPath}

» Specifiesthe directory where migration results will be saved.

« Thedirectory must be accessible to the Migration Tool, and writing privileges are required.
« Existing content in the specified directory may be overwritten by subsegquent runs.

133

Cloudera Flow Management Cloudera Flow Management Migration Tool Reference

--sour ceCompatibleOutput

» Short format: -sco
» If specified, onlyStage 1 migration will be run.

» |f omitted, both Stage 1 and Stage 2 are processed sequentially, using Stage 1's output as input
for Stage 2.

--processGroupld

» Short format: -pgid { pgld}

» Definesthe starting point for migration, applying transformations to the specified group and its
child groups.
» |If omitted, the root group is processed.

--inputType

» Short format: -it {inputType}
» Thetype of input provided, case sensitive. Supported types. FLOW, FLOW_GZ,
FLOW_DEFINITION, TEMPLATE_ XML, REGISTRY_SNAPSHOT

« |f omitted, the tool triesto automatically identify the input type. Mixed inputs are not allowed.

Note:
B The input flow.json file must represent the entire flow, regardless of whether this argument is used.

Extracted templates
The resulting templates from the migration process.

activity_log.json
Itisalog file recording details of the migration process. For more information, see Activity Log.

@ Note:
One activity log file will be created for the entire command.

flow_definitions,json
It isaflow definition representation of their respective template.

1 Migrate templates processing Stage 1 and export templates

./mgration.sh nifi migrate-tenplates --input /etc/exported-flows/flow. json
\

--outputDirectory /etc/output/ --sourceConpati bl eQutput --processGoupld b
b81df 68- cd6a- 461a- b724- 384265875b53

Processes the process group specified by the ID bb81df68-cd6a-461a-b724-384265875b53 only in Stage 1. Reads the
input from /etc/exported-flows/flow.json, and saves the results in /etc/output/.

2 Migratetemplates processing all stages

./mgration.sh nifi mgrate-tenplates --input /etc/exported-flows/flow json
\
--outputDirectory /etc/output/

Processes both Stage 1 and Stage 2 sequentially, using the output of Stage 1 asinput for Stage 2.

134

Cloudera Flow Management Cloudera Flow Management Migration Tool Reference

Migrates variable configurations from NiFi 1 to NiFi 2 using the Cloudera Flow Management Migration Tool.

mgrate-tenplates --input {filePath} --outputDirectory {directoryPath} [--so
urceConpati bl eCut put] [--processGoupld {pgld}]

--input
e Short format: -i {filePath}
» Specifiesthe path to alocal file containing the flow in JSON format for processing.

» Thefile must be accessible to the Migration Tool.
* Theorigina file remains unmodified.

--outputDirectory

» Short format: -od { directoryPath}

» Specifiesthe directory where migration results will be saved.

» Thedirectory must be accessible to the Migration Tool.

» Existing content in the specified directory may be overwritten by subsequent runs.

--sour ceCompatibleOutput

« Short format: -sco { stageName}
» |If specified, only Stage 1 migration will be executed. Specifies the stage(s) to process.
» To processonly Stage 1 migration, use STAGE_1.

» |f omitted, both Stage 1 and Stage 2 are processed sequentially, using Stage 1's output as input
for Stage 2.

» Providing unsupported or custom stage names may result in invalid stage error.
--processGroupld

« Short format: -pgid { pgld}
» Definesthe starting point for migration, applying transformations to the specified group and its
child groups.
» |f omitted, the root group is processed.
--inputType

» Short format: -it {inputType}
» Thetype of input provided, case sensitive. Supported types. FLOW, FLOW_GZ,
FLOW_DEFINITION, TEMPLATE_XML, REGISTRY_SNAPSHOT

« |f omitted, the tool triesto automatically identify the input type. Mixed inputs are not allowed.

Note:
E Theinput flow.json file must represent the entire flow, regardless of whether this argument is used.

NiFi flow
For example: migrated_flow.json.
activity_log.json
A log file recording the details of the migration process. For more information, see Activity Log.

135

Cloudera Flow Management Cloudera Flow Management Migration Tool Reference

E Note:
One activity log file will be created for the entire command.

1 Migrate variables processing Stage 1

.Ibin/mgration.sh nifi mgrate-variables --input /etc/exported-flows/flow. j
son --outputDirectory /etc/output/ --sourceConpati bl eCut put

Processes the flow.json file only in Stage 1, located in /etc/exported-flows/. Saves the migrated variables and activity
log in /etc/output/.
2 Migrate variables processing all stages
./bin/mgration.sh nifi mgrate-variables --input /etc/exported-flows/flow j
son --outputDirectory /etc/output/
Processes the flow.json file in al stages and saves the results in /etc/output/.
3 Migratevariables using full customization with all arguments
./bin/mgration.sh nifi mgrate-variables --input /etc/exported-flows/flow j

son --outputDirectory /etc/output/ --sourceConpatibleQutput --processG oupld
bb81df 68- cd6a- 461a- b724- 384265875b53 -it FLOW

Runs Stage 1 of the migration, starting the processing from the process group 1D bb81df68-cd6a-461a-
b724-384265875b53. Saves the migrated flow and the Activity Log in /etc/output/.

Migrates components from NiFi 1 to NiFi 2 using the Cloudera Flow Management Migration Tool.

m gr at e-conponents --input {filePath} --outputDirectory {directoryPath} [--s
our ceConpati bl eQut put] [--processG oupld {pgld}]

--input

e Short format: -i {filePath}

» Specifiesthe path to alocal file containing the flow in JISON format for processing.
» Thefile must be accessible to the Migration Tooal.

e Theorigina file remains unmodified.

--outputDirectory

e Short format: -od { directoryPath}
» If specified, only Stage 1 migration will run. Specifies the stage(s) to process
» Toprocessonly Stage 1 migration, use STAGE 1.

» |f omitted, both Stage 1 and Stage 2 are processed sequentially, using Stage 1's output as input
for Stage 2.

» Providing unsupported or custom stage names may result in invalid stage error.

--sour ceCompatibleQutput

136

Cloudera Flow Management Cloudera Flow Management Migration Tool Reference

» Short format: -sco { stageName}
» To process Stage 1 migration, use STAGE 1

» |f omitted, both Stage 1 and Stage 2 are processed sequentially, using Stage 1's output as input
for Stage 2.

» Providing unsupported or custom stage names may result in invalid stage error.
--processGroupld

e Short format: -pgid { pgld}

» Definesthe starting point for migration, applying transformations to the specified group and its
child groups.

» |f omitted, the root group is processed.

» Management-level components, such as Controller Services, Parameter Providers, and Reporting
Tasks, are only included when this argument is not used.

--inputType

e Short format: -it {inputType}
e Thetype of input provided, case sensitive. Supported types. FLOW, FLOW_GZ,
FLOW_DEFINITION, TEMPLATE_XML, REGISTRY_SNAPSHOT

« |f omitted, the tool triesto automatically identify the input type. Mixed inputs are not allowed.

Note:
E Theinput flow.json file must represent the entire flow, regardless of whether this argument is used.

Flow file

activity log.json
A log file recording the details of the migration process. For more information, see Activity Log.

E Note:
One activity log file will be created for the entire command.

1 Migrate components processing Stage 1

./Ibin/mgration.sh nifi mgrate-conponents --input /etc/flow_ original.json -
-outputDirectory /etc/output/ --sourceConpati bl eCutput

Processes the flow_original.json file located in /etc/. Applies transformation rules from Stage 1 on all components.
Saves the migrated flow file and the Activity Log in /etc/output/.

2 Migrate componentsin a specific Process Group

./bin/mgration.sh nifi nigrate-conponents --input /etc/flow original.json -
-outputDirectory /etc/output/ --processGoupld 3f8d2cba-4d3b-4901- bdOb-4781f
f 5b5cof

Starts the migration at the process group identified by 3f8d2cba-4d3b-4901-bd0b-4781ff5b5c9f. Transforms
components within this group and its child groups. Outputs are saved in /etc/output/.

3 Migrate components using full customization with all arguments
./bin/mgration.sh nifi mgrate-conponents --input /etc/flow_ original.json -

-outputDirectory /etc/output/ --sourceConpatibleQutput --processG oupld 3f8d
2cba- 4d3b- 4901- bdOb- 4781f f 5b5c9f -it FLOW

137

Cloudera Flow Management Cloudera Flow Management Migration Tool Reference

Runs Stage 1 only and the migration begins at the specified process group. Management level components are not
migrated. Saves the migrated flow and the Activity Log in /etc/output/.

Aggregates the commands of all migration steps when using the Cloudera Flow Management Migration Tool.

¢ Combinesall migration stepsinto a single command.
» Outputs of each step are used as inputs for the next step.
e The order of the included stepsis the following:

« Stage 1. Migrate Templates # Migrate Variables # Migrate Components
e Stage 2: Migrate Templates # Migrate Variables # Migrate Components

Displays alist of available commands when using the Cloudera Flow Management Migration Tool.

» If you use it with a specific command ($[*** COMMAND_NAME***] help), it displays the available arguments
for it.
e Specify the full command, including its group: ./migration.sh nifi migrate-all help

This section contains information about activity_|log.json. Thislog file provides a comprehensive record of the
migration process, capturing detailed information about changes, events, and required interventions.

» Filename: activity log.json

» Servesabusiness-level record of changes and the context of the migration process.

« Providesadetailed log of the activities during migration in JSON format that follows a structured schema: it
begins with metadata and consists of alist of entries.

» Designed for human readability and automated filtering, but not for fully automatic processing.

IE Note: One activity log file will be created for the entire command.

* Provides context for understanding the log entries.
* Metadatafields:

 recordingStarts: (number) UNIX epoch timestamp indicating when logging began, the approximate start of the
stage run (not suitable for performance measurements)

« recordingEnds: (number) UNIX epoch timestamp indicating when logging concluded, the approximate end of
the stage run (not suitable for performance measurements)

« stage: (string) Identifies the stage that is run. Possible valuesare "STAGE_1" or "STAGE_2"

« TheAdctivity Log contains alist of entries, each representing a distinct event using different entry types.
» Each entry servesto provide insight into the actions performed during the migration process.

138

Cloudera Flow Management Cloudera Flow Management Migration Tool Reference

Entry properties

* seguence: A unique number within the log file, that represents the entry's sequence. It can be
used to order and reference entries.
» type: A string denoting the purpose of the entry. For more information, see Entry types below.

» subject: A string representing the entity involved in the entry, such as a component, group, or
other relevant entity.

Note: Inthe case of component migration, the entry’ s subject refersto the
@ triggering component. Thisisimportant when a component is replaced, as the log
will reference the origina component’s |D (which may have been deleted at this
point) rather than the new component's ID.
e message: A string containing the main content or description of the entry.

» context: A JSON object with additional key-value pairs, providing further details about the entry
(for example: applied rules, affected properties).

Entry types
* manual-change-request

» Subject: Usually the ID of a component requiring manual intervention

» Message: Describes changes that cannot be applied automatically and require human
intervention. For example, deprecated components without replacements or decisions
requiring domain expertise.

» Context: Not commonly used

e Example
{
"sequence": 5,
"type": "manual - change-request",
"subject": "69c4f 8f 3-549a-4103- b8f 6-f 8627b689e12",
"message": "The value [null] for property [assune-r

ol e-sts-region] is not supported any nore.",
"context": {

}
* manual-validation-request

e Subject: Typically the ID of a component under review.

» Message: Highlights changes that should be explicitly reviewed to ensure correctness. These
changes may or may not require adjustments.

e Context: May include arule key with aUUID for the applied migration rule, which helps
identify errors.

e change-info

» Subject: The component being migrated.

» Message: Describes version differences and provides context for changes, without indicating
any actual transformation.

» Context: Includes arule key with aUUID for the applied migration rule.

 Example
{
"sequence": 4,
"type": "change-info",
"subject": "69c4f 8f 3-549a-4103- b8f 6-f 8627b689e12"
"message": "Property [assune-rol e-sts-region] has bee

n changed as follows: [Allowed val ues have been changed. Val
ues renoved: [eu-isoe-west-1]]",
"context":
"rule": "6ca65082-09bd-4713-9f de- f 5beb0722d1c"

139

Cloudera Flow Management

Troubleshooting flow migration issues

e change

Subject: The entity (for example: a component or template) that has been modified during
migration.

Message: Records actual changes applied to the flow during migration. These entries provide
specifics on transformations in response to version differences.

Context: Includes arule key with a UUID and may contain additional transformation details.
While change-info describes general version differencesin NiFi (for example: Processor
ConsumeKafka 1 0 has been removed from NiFi), change entry details the specific
transformations applied to your flow to address those changes (For example: Deprecated
processor ea9178e3-ad81-4c6f-b23c-88a01e08ddac has been replaced with processor
d9730bae-4f88-430e-801d-8805f6069988).

o Example

{
"sequence": 39,
"type": "change",
"subj ect": "0a8d5eb6-6791- 1f aa- 2303- bOadcf 300df 1",
"message": "Property [Kerberos Principal] has been re

nmoved",
"context":

“"rule": "65d775f9-dc70-45c9-b4d4- el8a21f 8ccha"
}
}
« control

Subject: Unspecified, often a Process Group
Message: Marks the progression of migration activities, such as the start or completion of a
Process Group's migration.

Context: No widespread usage

Example:
{
"sequence": 4,
"type": "control",
"subject": "0a8d5a99-6791- 1f aa- 78ea- 9582a48a4113",
"message": "G oup mgration has started”,
"context": {
}

Some operation systems may encounter issues such as “too many open files’. To resolve this, adjustments must be
made at the operating system level.

140

	Contents
	Cloudera Flow Management Migration Tool Release Notes
	What's new
	Support Matrix
	Download location

	Cloudera Flow Management Migration Tool overview
	Key features
	Important considerations
	Manual migration tasks

	Recommended migration workflow
	Migration best practices
	Migrating a data flow using the Cloudera Flow Management Migration Tool
	Preparing for migration
	Setting up your environment
	Configuring the Migration Tool

	Migrating a flow using flow.json as input
	Migrating templates using flow.json as input
	Migrating variables using flow.json as input
	Migrating components using flow.json as input
	Using migr​ate-​all with flow.json as input
	Migrating templates, variables, and components together using migr​ate-​all with flow.json as input
	Migrating a process group using migr​ate-​all with flow.json as input

	Migrating a flow using flow.json.gz as input
	Migrating templates using flow.json.gz as input
	Migrating variables using flow.json.gz as input
	Migrating components using flow.json.gz as input
	Using migr​ate-​all with flow.json.gz as input
	Migrating templates, variables, and components together using migr​ate-​all with flow.json.gz as input
	Migrating a process group using migr​ate-​all with flow.json.gz as input

	Migrating a flow using flow definition JSON as input
	Migrating templates using flow definition JSON as input
	Migrating variables using flow definition JSON as input
	Migrating components using flow definition JSON as input
	Using migr​ate-​all with flow definition JSON as input
	Migrating variables and components together using migr​ate-​all with flow definition JSON as input

	Migrating a flow using a directory with flow definition JSON files as input
	Migrating variables using a directory with flow definition JSON files as input
	Migrating components using a directory with flow definition JSON files as input
	Using migr​ate-​all using a directory with flow definition JSON files as input

	Migrating a flow using template.xml as input
	Migrating templates using template.xml as input
	Migrating variables using template.xml as input
	Migrating components using a template with variables
	Migrating components using a template without variables
	Using migr​ate-​all with template.xml as input

	Migrating a flow using a directory with template.xml files as input
	Migrating templates using a directory with template.xml files as input
	Migrating variables using a directory with template.xml files as input
	Migrating components using a directory with template files as input
	Using migr​ate-​all using a directory with template.xml files as input

	Handling file formats missing sensitive property values

	Cloudera Flow Management Migration Tool Reference
	Commands
	migrate-templates
	migrate-variables
	migrate-components
	migrate-all
	help

	Activity Log

	Troubleshooting flow migration issues

