
Cloudera Flow Management 4.11.0

Security
Date published: 2019-06-26
Date modified: 2025-10-08

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Flow Management | Contents | iii

Contents

Cluster-level security recommendations...5

Identity and policies in Apache NiFi.. 5

TLS/SSL configuration...6
Enabling Auto-TLS...6
Configuring TLS/SSL manually...6

TLS/SSL certificate requirements and recommendations..6
Configuring TLS/SSL encryption manually for NiFi and NiFi Registry.. 7
NiFi TLS/SSL properties..9
NiFi Registry TLS/SSL properties...10

Authentication... 11
Kerberos authentication.. 11

Customizing Kerberos principal...11
LDAP authentication.. 12
SAML authentication..14
OpenID Connect authentication... 15
Identity mapping properties..16

Hardening ZooKeeper Znodes for NiFi security...17
Preparations... 17
Reconfiguring NiFi... 19
Znode hardening... 19

Authorization...21
User group providers.. 21

LDAP integration..21
Pairing LDAP with a Composite Group Provider... 25

Access policies providers... 25
Ranger authorization...25
File-based authorization..44
Migrating file-based authorization to Ranger.. 45

Environment variables.. 45
Kerberos credentials..45
Local file system access... 46

Network..46
Default ports for NiFi and NiFi Registry.. 46

FIPS 140-2 compliance...47
Encrypting NiFi sensitive properties with FIPS 140-2 approved algorithm..48

Deploying Cloudera Flow Management on FIPS-enabled clusters... 48

Integrations..50
Integrating NiFi and Atlas..50

Manually integrating with Atlas when Auto-TLS is not enabled..50
Manually integrating with Atlas when Auto-TLS is enabled.. 51

Integrating NiFi and NiFi Registry with Knox..51

Customizing properties in Cloudera Manager.. 52

Cloudera Flow Management Cluster-level security recommendations

Cluster-level security recommendations

Flow management users are authenticated automatically when they log into Cloudera. Other aspects of security such
as enabling Auto-TLS, Kerberos, and managing access policies depend on the way the SDX and compute clusters are
created.

Cloudera recommends the following security options:

• Enable Auto-TLS.
• Enable Kerberos.
• Use Apache Atlas for dataset level lineage graphs.
• Use Apache Ranger to authorize NiFi and NiFi Registry users.
• Use Knox as a single entry point to securely access all NiFi and NiFi Registry nodes, and switch nodes if one

fails.

Important: Authorization through Apache Ranger is just one element of a secure production cluster:
Cloudera supports Ranger only when it runs on a cluster where Kerberos is enabled to authenticate users.

Identity and policies in Apache NiFi

When a user accesses NiFi, NiFi first determines the identity of the user, then the user group the user belongs to, and
then the access policies assigned to the user.

The following image explains the link between authentication and authorization:

When a user accesses NiFi, the following actions take place:

5

Cloudera Flow Management TLS/SSL configuration

1. NiFi determines the identity of the user:

• If the user configures a client certificate, the distinguished name associated to the client certificate will be the
identity of the user. NiFi nodes use this method to authenticate each other.

• If the user passes Kerberos credentials along with the access request, the Kerberos principal will be the identity
of the user.

• If the user accesses NiFi through Knox, the authentication (login/password) is done at the Knox level (against
the configured identity provider at Knox level) and if the user is allowed to access the NiFi service (Ranger
policies defined for Knox), then the user name that is passed to NiFi will be the identity of the user.

2. NiFi determines the group the user belongs to.
3. NiFi determines the policies assigned to the user.

TLS/SSL configuration

In order to enable user authentication on NiFi, you must first configure Transport Layer Security (TLS).

TLS is an industry standard set of cryptographic protocols for securing communications over a network.

When you configure authentication and authorization for your flow management cluster, Cloudera Flow Management
sends sensitive information over the network to cluster hosts, such as Kerberos keytabs and configuration files that
contain passwords. TLS encryption keeps these transfers secure.

Configuring TLS involves creating a private key and a public key for use by server and client processes to negotiate
an encrypted connection at runtime. In addition, TLS can use certificates to verify the trustworthiness of keys
presented during the negotiation to prevent spoofing and mitigate other potential security issues.

In Cloudera Flow Management, you can configure TLS in one of the following ways:

Enabling Auto-TLS
Auto-TLS greatly simplifies the process of enabling and managing TLS encryption on your cluster.

Auto-TLS automates the creation of an internal certificate authority (CA) and deployment of certificates across
all cluster hosts. It can also automate the distribution of existing certificates, such as those signed by a public CA.
Adding new cluster hosts or services to a cluster that is Auto-TLS enabled, automatically creates and deploys the
required certificates.

In Cloudera, Auto-TLS is enabled by default.

Note: Wildcard certificates are not supported. For example, if two nodes, node1.nifi.apache.org and node2.ni
fi.apache.org, are assigned the same certificate with a CN or SAN entry of *.nifi.apache.org, the certificates
will not be supported.

Ensure that you do not generate wildcard certificates for the NiFi nodes.

For more information about Auto-TLS, see Configuring TLS encryption for Cloudera Manager using Auto-TLS.

Related Information
Manually Configuring TLS Encryption for Cloudera Manager Using Auto-TLS

Configuring TLS/SSL manually
If you use your own enterprise-generated certificates, you would need to manually configure TLS.

TLS/SSL certificate requirements and recommendations
If you use your own enterprise-generated certificates, you would need to manually configure TLS.

Before you manually configure TLS, ensure that the certificate that you use meets the following requirements.

6

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/security-encrypting-data-in-transit/topics/cm-security-auto-tls.html

Cloudera Flow Management TLS/SSL configuration

Certificate requirements

Verify the following minimum requirements:

• The KeyStore must contain only one PrivateKeyEntry. Using multiple private keys in one KeyStore is not
supported.

• The KeyStore password and key/certificate password must be the same or no password should be set on the
certificate.

• The unique KeyStores used on each NiFi cluster node must use the same KeyStore password and key/certificate
password. Ambari and Cloudera Manager do not support defining unique passwords per NiFi host.

• The X509v3 ExtendedKeyUsages section of the certificate must have the following attributes:

• clientAuth - This attribute is for TLS web client authentication.
• serverAuth - This attribute is for TLS web server authentication.

• The signature algorithm used for the certificate must be sha256WithRSAEncryption (SHA-256).
• The certificates must not use wildcards. Each cluster node must have its own certificate. If NiFi or NiFi Registry

is behind Knox, do not use wildcard certificates for Knox.
• Subject Alternate Names (SANs) are mandatory and should at least include the FQDN of the host.
• Additional names for the certificate/host can be added to the certificate as SANs.

• Add the FQDN used for the CN as a DNS SAN entry.
• If you are planning to use a load balancer for the NiFi service, include the FQDN for the load balancer as a

DNS SAN entry.
• The X509v3 KeyUsage section of the certificate must include the following attributes:

• DigitalSignature
• Key_Encipherment

Cloudera recommendations

Cloudera recommends the following security protocols:

• Use certificates that are signed by a CA. Do not issue self-signed certificates.
• Generate a unique certificate per host.

Configuring TLS/SSL encryption manually for NiFi and NiFi Registry
If you do not want to enable Auto-TLS because for example, you need to use your own enterprise-generated
certificates, you can manually enable TLS for NiFi and NiFi Registry.

Before you begin

Ensure you have set up TLS for Cloudera Manager:

1. Review the requirements and recommendations for the certificates. For more information, see TLS certificate
requirements and recommendations.

2. Generate the TLS certificates and configure Cloudera Manager. For more information, see Manually configuring
TLS for Cloudera Manager.

7

Cloudera Flow Management TLS/SSL configuration

Procedure

1. From Cloudera Manager, click Cluster NiFi .

2. Click the Configuration tab.

3. Enter ssl in the Search field.

The TLS/SSL Security properties for NiFi appear.

4. Edit the TLS/SSL Security properties.

5. Click Save Changes.

6. Restart the NiFi service.

8

Cloudera Flow Management TLS/SSL configuration

7. Click Cluster NiFi Registry and repeat these steps to configure the TLS/SSL Security properties for NiFi
Registry.

If a property is not exposed in Cloudera Manager, use a safety valve to override the associated value.

Related Information
TLS/SSL certificate requirements and recommendations

Manually Configuring TLS Encryption for Cloudera Manager

NiFi TLS/SSL properties
To enable and configure TLS manually for NiFi, edit the security properties according to the cluster configuration.

The following table lists the TLS/SSL security properties for NiFi:

Property Description

NiFi Node TLS/SSL Server JKS Keystore File Location

nifi.security.keystore

The path to the TLS/SSL keystore file containing the server certificate
and private key used for TLS/SSL. Used when NiFi Node is acting as a
TLS/SSL server. The keystore must be in JKS format.

NiFi Node TLS/SSL Server JKS Keystore Type Passwordnifi.securit
y.keystoreType

The type of the NiFi Node JKS keystore. It must be PKCS12 or JKS
or BCFKS. JKS is the preferred type, BCFKS and PKCS12 files are
loaded with BouncyCastle provider.

NiFi Node TLS/SSL Server JKS Keystore File Password

nifi.security.keystorePasswd

The password for the NiFi Node JKS keystore file.

NiFi Node TLS/SSL Server JKS Keystore Key Password

nifi.security.keyPasswd

The password that protects the private key contained in the JKS
keystore used when NiFi Node is acting as a TLS/SSL server.

NiFi Node TLS/SSL Client Trust Store File

nifi.security.truststore

The location on disk of the trust store, in JKS format, used to confirm
the authenticity of TLS/SSL servers that NiFi Node might connect to.
This is used when NiFi Node is the client in a TLS/SSL connection.
This trust store must contain the certificate(s) used to sign the
service(s) connected to. If this parameter is not provided, the default
list of well-known certificate authorities is used instead.

9

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/security-encrypting-data-in-transit/topics/cm-security-how-to-configure-cm-tls.html

Cloudera Flow Management TLS/SSL configuration

Property Description

NiFi Node TLS/SSL Client Trust Store Type nifi.security.truststore
Type

The type of the NiFi Node TLS/SSL Certificate Trust Store. It must
be PKCS12 or JKS or BCFKS. JKS is the preferred type, BCFKS and
PKCS12 files are loaded with BouncyCastle provider.

NiFi Node TLS/SSL Client Trust Store Password

nifi.security.truststorePasswd

The password for the NiFi Node TLS/SSL Certificate Trust Store File.
This password is not required to access the trust store, the field can be
left blank. This password provides optional integrity checking of the
file. The contents of trust stores are certificates, and certificates are
public information.

Note: Make sure to fill in all properties or NiFi will not start.

NiFi Registry TLS/SSL properties
To enable and configure TLS manually for NiFi Registry, edit the security properties according to the cluster
configuration.

The following table lists the TLS/SSL security properties for NiFi Registry:

Property Description

NiFi Registry TLS/SSL Server JKS Keystore File Location

nifi.registry.security.keystore

The path to the TLS/SSL keystore file containing the server certificate
and private key used for TLS/SSL. Used when NiFi Registry is acting
as a TLS/SSL server. The keystore must be in JKS format.

NiFi Registry TLS/SSL Server JKS Keystore Type Password

nifi.registry.security.keystoreType

The type of the NiFi Registry JKS keystore. It must be PKCS12 or JKS
or BCFKS. JKS is the preferred type, BCFKS and PKCS12 files are
loaded with BouncyCastle provider.

NiFi Registry TLS/SSL Server JKS Keystore File Password

nifi.registry.security.keystorePasswd

The password for the NiFi Registry JKS keystore file.

NiFi Registry TLS/SSL Server JKS Keystore Key Password

nifi.registry.security.keyPasswd

The password that protects the private key contained in the JKS
keystore used when NiFi Registry is acting as a TLS/SSL server.

NiFi Registry TLS/SSL Client Trust Store File

nifi.registry.security.truststore

The location on disk of the trust store, in JKS format, used to confirm
the authenticity of TLS/SSL servers that NiFi Registry might connect
to. This is used when NiFi Registry is the client in a TLS/SSL
connection. This trust store must contain the certificate(s) used to
sign the service(s) connected to. If this parameter is not provided, the
default list of well-known certificate authorities is used instead.

NiFi Registry TLS/SSL Client Trust Store Type nifi.registry.security.t
ruststoreType

The type of the NiFi Registry TLS/SSL Certificate Trust Store. It must
be PKCS12 or JKS or BCFKS. JKS is the preferred type, BCFKS and
PKCS12 files are loaded with BouncyCastle provider.

NiFi Registry TLS/SSL Client Trust Store Password

nifi.registry.security.truststorePasswd

The password for the NiFi Registry TLS/SSL Certificate Trust Store
File. This password is not required to access the trust store; this field
can be left blank. This password provides optional integrity checking
of the file. The contents of trust stores are certificates, and certificates
are public information.

NiFi Registry TLS/SSL Client Authentication

nifi.registry.security.needClientAuth

This specifies that connecting clients must authenticate with a client
cert. The default value is true. Setting the property to false will specify
that connecting clients may optionally authenticate with a client cert,
but may also login with a username and password against a configured
identity provider.

Note: Make sure to fill in all properties or NiFi Registry will not start.

10

Cloudera Flow Management Authentication

Authentication

TLS/SSL must be enabled before NiFi can support any form of user authentication. The primary mechanisms of
authenticating to NiFi and NiFi Registry in a Cloudera Base on premises cluster are Kerberos and LDAP.

NiFi also supports user authentication through a Security Assertion Markup Language (SAML) and OpenID Connect
provider.

Kerberos authentication
Authenticate your cluster by enabling Kerberos.

Important: You must enable TLS/SSL for NiFi to support authentication.

When you add NiFi or NiFi Registry to a kerberized environment, Cloudera Manager provides the Enable Kerberos
Authentication option for the NiFi and NiFi Registry services.

The Enable Kerberos Authentication option is the UI label for the kerberos.auth.enabled parameter.

By default, the option is checked (parameter set to true) when you add NiFi or NiFi Registry and selecting a
dependent service that is kerberized.

The parameter enables the Kerberos Login Identity Provider which allows access to the NiFi/NiFi Registry UI using a
Kerberos principal and password.

When the option is enabled, NiFi and NiFi Registry use Kerberos to interact with external systems such as Ranger
and Atlas. If the option is not enabled in a kerberized environment, NiFi and NiFi Registry fail to authenticate to
external systems.

Alternatively, when Kerberos is enabled you may also authenticate to the KDC from the command line and then
configure your browser to forward your credentials to authenticate through SPNEGO.

Customizing Kerberos principal
The Kerberos principal for NiFi and NiFi Registry is configured by default to use the same service principal as
the default process user. However, you can change the default setting by providing a custom principal in Cloudera
Manager.

About this task

Important: configures services to use the default Kerberos principal names and default system users.
Cloudera recommends that you do not change the default Kerberos principal names. If it is unavoidable to do
so, contact Cloudera Professional Services because it requires extensive additional custom configuration.

11

Cloudera Flow Management Authentication

Procedure

1. Go to your cluster in Cloudera Manager.

2. Select NiFi or NiFi Registry from the list of services.

3. Select the Configuration tab.

4. Search for the Kerberos Principal by entering kerberos in the search field.

5. Enter a custom name in the Kerberos Principal field.

6. Click Save changes.

7. Click Action Restart next to the NiFi or NiFi Registry service name to restart the service.

LDAP authentication
After you install NiFi or NiFi Registry, you can enable LDAP authentication.

Important: You must enable TLS/SSL for NiFi to support authentication.

In a kerberized environment, enabling the LDAP Login Identity Provider takes precedence over the Kerberos Login
Identity Provider.

Set the following required LDAP parameters for NiFi:

LDAP Parameters for NiFi Sample Value

Enable TLS/SSL for NiFi Node Checked

LDAP Enabled Checked

Login Identity Provider: Default LDAP Provider Class org.apache.nifi.ldap.LdapProvider

Initial Admin Identity admin

Login Identity Provider ID ldap-provider

LDAP Authentication Strategy SIMPLE, LDAPS, or START_TLS

Note: If you select LDAPS or START_TLS, set the LDAP
TLS properties for the keystore and truststore.

LDAP Manager DN uid=admin,ou=people,dc=hadoop,dc=apache,dc=org

LDAP Manager Password admin-password

LDAP URL ldap://<ldap-hostname>:33389

LDAP User Search Base ou=people,dc=hadoop,dc=apache,dc=org

Login Identity Provider: Default LDAP User Search Filter uid={0}

Login Identity Provider: Default LDAP Identity Strategy USE_USERNAME

Login Identity Provider: Default LDAP TLS - Keystore /<path to>/keystore.jks

Login Identity Provider: Default LDAP TLS - Keystore Password Default LDAP TLS - Keystore Password

Login Identity Provider: Default LDAP TLS - Keystore Type JKS or PKCS12

Login Identity Provider: Default LDAP TLS - Truststore /<path to>/truststore.jks

Login Identity Provider: Default LDAP TLS - Truststore Password Default LDAP TLS - Truststore Password

Login Identity Provider: Default LDAP TLS - Truststore Type JKS or PKCS12

TLS - Client Auth Client authentication policy when connecting to LDAP using LDAPS
or START_TLS.

Possible values are REQUIRED, WANT, and NONE.

12

Cloudera Flow Management Authentication

LDAP Parameters for NiFi Sample Value

TLS - Protocol Protocol to use when connecting to LDAP using LDAPS or
START_TLS.

For example, TLS, TLSv1.1, TLSv1.2, etc.

TLS - Shutdown Gracefully Specifies whether the TLS should be shut down gracefully before the
target context is closed. Defaults to false.

Set the following required LDAP parameters for NiFi Registry:

LDAP Parameter for NiFi Registry Sample Value

Enable TLS/SSL for NiFi Registry Checked

LDAP Enabled Checked

Identity Provider: Default LDAP Provider Class org.apache.nifi.registry.security.ldap.LdapIdentityProvider

Initial Admin Identity admin

Identity Provider Identifier ldap-provider

LDAP Authentication Strategy SIMPLE, LDAPS, or START_TLS

Note: If you select LDAPS or START_TLS, set the LDAP
TLS properties for the keystore and truststore.

LDAP Manager DN uid=admin,ou=people,dc=hadoop,dc=apache,dc=org

LDAP Manager Password admin-password

LDAP URL ldap://<ldap-hostname>:33389

LDAP User Search Base ou=people,dc=hadoop,dc=apache,dc=org

Identity Provider: Default LDAP User Search Filter uid={0}

Identity Provider: Default LDAP Identity Strategy USE_USERNAME

Client Authentication Required Unchecked

Identity Provider: Default LDAP TLS - Keystore /<path to>/keystore.jks

Identity Provider: Default LDAP TLS - Keystore Password Default LDAP TLS - Keystore Password

Identity Provider: Default LDAP TLS - Keystore Type JKS or PKCS12

Identity Provider: Default LDAP TLS - Truststore /<path to>/truststore.jks

Identity Provider: Default LDAP TLS - Truststore Password Default LDAP TLS - Truststore Password

Identity Provider: Default LDAP TLS - Truststore Type JKS or PKCS12

TLS - Client Auth Client authentication policy when connecting to LDAP using LDAPS
or START_TLS.

Possible values are REQUIRED, WANT, and NONE.

TLS - Protocol Protocol to use when connecting to LDAP using LDAPS or
START_TLS.

For example, TLS, TLSv1.1, TLSv1.2, etc.

TLS - Shutdown Gracefully Specifies whether the TLS should be shut down gracefully before the
target context is closed. Defaults to false.

Note: If during the initial install of NiFi and NiFi Registry, you did not set Initial Admin Identity to the
correct LDAP admin user, then for each service select Actions Reset File-based Authorizer Users and
Policies . This will cause a new users.xml and authorizations.xml file to be generated at start up and archives
the previous users.xml and authorizations.xml files.

13

Cloudera Flow Management Authentication

SAML authentication
After you install NiFi, you can enable authentication through a Security Assertion Markup Language (SAML)
identity provider.

Important: You must enable TLS/SSL for NiFi to support authentication.

With SAML authentication, when a user attempts to access NiFi, NiFi redirects the user to the corresponding identity
provider to log in. After the user logs into the identity provider, the identity provider sends NiFi a response that
contains the user's credentials. With knowledge of the user's identity, NiFi can now authenticate the user.

To enable authentication through a SAML identity provider, set the following SAML related properties in the
nifi.properties file. Then, restart NiFi for the changes in the nifi.properties file to take effect. If NiFi is clustered,
configuration files must be the same on all nodes.

Property Description

nifi.security.user.saml.idp.metadata.url The URL for obtaining the identity provider’s metadata.

The metadata can be retrieved from the identity provider through http://
or https://, or a local file can be referenced using file://.

nifi.security.user.saml.sp.entity.id The entity ID of the service provider (i.e. NiFi).

This value will be used as the Issuer for SAML authentication requests
and should be a valid URI. In some cases the service provider entity ID
must be registered ahead of time with the identity provider.

nifi.security.user.saml.identity.attribute.name The name of a SAML assertion attribute containing the user's identity.

This property is optional and if not specified, or if the attribute is not
found, then the NameID of the Subject will be used.

nifi.security.user.saml.group.attribute.name The name of a SAML assertion attribute containing group names the
user belongs to.

This property is optional, but if populated the groups will be passed
along to the authorization process.

nifi.security.user.saml.metadata.signing.enabled Enables signing of the generated service provider metadata.

nifi.security.user.saml.request.signing.enabled Controls the value of AuthnRequestsSigned in the generated service
provider metadata from nifi-api/access/saml/metadata.

This indicates that the service provider (i.e. NiFi) should not sign
authentication requests sent to the identity provider, but the requests
may still need to be signed if the identity provider indicates WantAuth
nRequestSigned=true.

nifi.security.user.saml.want.assertions.signed Controls the value of WantAssertionsSigned in the generated service
provider metadata from nifi-api/access/saml/metadata.

This indicates that the identity provider should sign assertions, but
some identity providers may provide their own configuration for
controlling whether assertions are signed.

nifi.security.user.saml.signature.algorithm The algorithm to use when signing SAML messages. See the Open
SAML Signature Constants for a list of valid values.

If not specified, a default of SHA-256 will be used.

nifi.security.user.saml.signature.digest.algorithm The digest algorithm to use when signing SAML messages. See the
Open SAML Signature Constants for a list of valid values.

If not specified, a default of SHA-256 will be used.

nifi.security.user.saml.message.logging.enabled Enables logging of SAML messages for debugging purposes.

nifi.security.user.saml.authentication.expiration The expiration of the NiFi JWT that will be produced from a successful
SAML authentication response.

14

Cloudera Flow Management Authentication

Property Description

nifi.security.user.saml.single.logout.enabled Enables SAML SingleLogout which causes a logout from NiFi to
logout of the identity provider.

By default, a logout of NiFi will only remove the NiFi JWT.

nifi.security.user.saml.http.client.truststore.strategy The truststore strategy when the IDP metadata URL begins with https.

A value of JDK indicates to use the JDK’s default truststore.

A value of`NIFI`indicates to use the truststore specified by nifi.securit
y.truststore.

nifi.security.user.saml.http.client.connect.timeout The connection timeout when communicating with the SAML IDP.

nifi.security.user.saml.http.client.read.timeout The read timeout when communicating with the SAML IDP.

Related Information
Open SAML Signature Constants

OpenID Connect authentication
After you install NiFi, you can enable authentication through OpenID Connect.

Important: You must enable TLS/SSL for NiFi to support authentication.

With OpenID Connect authentication, when a user attempts to access NiFi, NiFi redirects the user to the
corresponding identity provider to log in. After the user logs into the identity provider, the identity provider sends
NiFi a response that contains the user's credentials. With knowledge of the user's identity, NiFi can now authenticate
the user.

To enable authentication through OpenID Connect, set the following OpenID Connect related properties in the
nifi.properties file. Then, restart NiFi for the changes in the nifi.properties file to take effect. If NiFi is clustered,
configuration files must be the same on all nodes.

Property Description

nifi.security.user.oidc.discovery.url The discovery URL for the desired OpenID Connect provider. See
OpenID Connect Discovery 1.0.

nifi.security.user.oidc.connect.timeout Connect timeout when communicating with the OpenID Connect
provider.

nifi.security.user.oidc.read.timeout Read timeout when communicating with the OpenID Connect provider.

nifi.security.user.oidc.client.id The client id for NiFi after registration with the OpenID Connect
provider.

nifi.security.user.oidc.client.secret The client secret for NiFi after registration with the OpenID Connect
provider.

nifi.security.user.oidc.preferred.jwsalgorithm The preferred algorithm for validating identity tokens.

If this value is blank, it will default to RS256 which is required
to be supported by the OpenID Connect provider according to the
specification.

If this value is HS256, HS384, or HS512, NiFi will attempt to validate
HMAC protected tokens using the specified client secret.

If this value is none, NiFi will attempt to validate unsecured/plain
tokens.

Other values for this algorithm will attempt to parse as an RSA or EC
algorithm to be used in conjunction with the JSON Web Key (JWK)
provided through the jwks_uri in the metadata found at the discovery
URL.

15

https://git.shibboleth.net/view/?p=java-xmltooling.git;a=blob;f=src/main/java/org/opensaml/xml/signature/SignatureConstants.java

Cloudera Flow Management Authentication

Property Description

nifi.security.user.oidc.additional.scopes Comma separated scopes that are sent to OpenID Connect provider in
addition to openid and email.

nifi.security.user.oidc.claim.identifying.user Claim that identifies the user to be logged in; default is email. May
need to be requested through nifi.security.user.oidc.additional.scopes
before usage.

nifi.security.user.oidc.fallback.claims.identifying.user Comma separated possible fallback claims used to identify the user in
case nifi.security.user.oidc.claim.identifying.user claim is not present
for the login user.

Related Information
OpenID Connect Discovery 1.0

Identity mapping properties
Identity mapping properties can be utilized to normalize user identities. When implemented, identities authenticated
by different identity providers (certificates, LDAP, Kerberos) are treated the same internally in NiFi. As a result,
duplicate users are avoided and user-specific configurations such as authorizations only need to be setup once per
user.

The following examples demonstrate normalizing DNs from certificates and principals from Kerberos:

nifi.security.identity.mapping.pattern.dn=^CN=(.*?), OU=(.*?), O=(.*?), L=(.
?), ST=(.?), C=(.*?)$
nifi.security.identity.mapping.value.dn=$1@$2
nifi.security.identity.mapping.transform.dn=NONE
nifi.security.identity.mapping.pattern.kerb=^(.*?)/instance@(.*?)$
nifi.security.identity.mapping.value.kerb=$1@$2
nifi.security.identity.mapping.transform.kerb=NONE

The last segment of each property is an identifier used to associate the pattern with the replacement value. When a
user makes a request to NiFi, their identity is checked to see if it matches each of those patterns in lexicographical
order. For the first one that matches, the replacement specified in the nifi.security.identity.mapping.value.xxxx
property is used. So a login with

CN=localhost, OU=Apache NiFi, O=Apache, L=Santa Monica, ST=CA,
 C=US

matches the DN mapping pattern above and the DN mapping value $1@$2 is applied. The user is normalized to loca
lhost@Apache NiFi.

In addition to mapping, a transform may be applied. The supported versions are NONE (no transform applied),
LOWER (identity lowercased), and UPPER (identity uppercased). If not specified, the default value is NONE.

Note: These mappings are also applied to the "Initial Admin Identity", "Cluster Node Identity", and any
legacy users in the authorizers.xml file as well as users imported from LDAP.

Group names can also be mapped. The following example will accept the existing group name but will lowercase it.
This may be helpful when used in conjunction with an external authorizer.

nifi.security.group.mapping.pattern.anygroup=^(.*)$
nifi.security.group.mapping.value.anygroup=$1
nifi.security.group.mapping.transform.anygroup=LOWER

Note: These mappings are applied to any legacy groups referenced in the authorizers.xml as well as groups
imported from LDAP.

16

https://openid.net/specs/openid-connect-discovery-1_0.html

Cloudera Flow Management Hardening ZooKeeper Znodes for NiFi security

Hardening ZooKeeper Znodes for NiFi security

By default, the ZooKeeper Znodes used by NiFi are not secured, which can expose sensitive data to unauthorized
access. This section provides instructions for identifying, validating, and hardening the ZooKeeper Znodes used by
NiFi. These steps are essential for securing NiFi’s interaction with ZooKeeper in a production environment.

Preparations
Run the following commands on one of your NiFi nodes.

Procedure

1. Identify the unhardened Znode.

By default, the Znode used by NiFi in Zookeeper is not secured. To identify the root Znode used by NiFi in your
Zookeeper cluster, follow these steps:

a) Identify the Znode used by NiFi.

grep "nifi.zookeeper.root.node" $(ps -aux | grep -Eo "[***/var/[^=]*nifi
\.properties***]")

This command checks the nifi.properties file for the nifi.zookeeper.root.node property and outputs the exact
Znode name. For example:

[root@ccycloud-4.quasar-nncuew.root.comops.site 215-nifi-NIFI_NODE]# gre
p "nifi.zookeeper.root.node" nifi.properties
nifi.zookeeper.root.node=/1

Use this Znode name in all subsequent steps to ensure you are modifying the correct configuration.
b) Verify the current Znode configuration.

Once you have determined your Znode, you can validate it and its subnodes in Zookeeper, using the following
commands. For demonstration, in the syntax Znode is referred to as /BASE. Replace it with your determined
Znode name.

1. List the contents of the Znode:

[zk: localhost:2181(CONNECTED) 2] ls /BASE
[leaders]

2. Check the access control list (ACL) of the Znode:

[zk: localhost:2181(CONNECTED) 3] getAcl /BASE
'world,'anyone
: cdrwa

3. Check the ACL of subnodes:

[zk: localhost:2181(CONNECTED) 4] getAcl /BASE/leaders
'world,'anyone
: cdrwa

17

Cloudera Flow Management Hardening ZooKeeper Znodes for NiFi security

2. Prepare the JAAS file.

a) Create a JAAS configuration file to Kerberize the NiFi ZooKeeper client.

Example configuration:

Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab="/hadoopfs/fs1/working-dir/nifi.keytab"
 storeKey=true
 useTicketCache=false
principal="nifi/zz-mwies-nifi-nifi1.zz-mwies.a465-9q4k.cloudera.site@ZZ-
MWIES.A465-9Q4K.CLOUDERA.SITE";
};

Keytab path

The keytab file path is typically located where nifi.working.directory is configured. For on-premises
deployments, the default path is /var/lib/nifi, unless otherwise specified.

Per-node configuration

If you have multiple nodes, remember that the principal name is unique to each node because it
includes the hostname. You will need to create a slightly modified JAAS configuration for each
node to reflect its specific principal.

Principal

To determine the exact principal:

1. Log in to the Cloudera Manager UI.
2. Go to Administration Security Kerberos Credentials .
3. Locate the principal for NiFi.

b) Save this file in a location accessible to NiFi, such as /etc/nifi-jaas/jaas.conf.

3. Validate the JAAS file.

To ensure the JAAS configuration file is valid, test it against Zookeeper to see if SASL authentication is
successful.

a) Export the JVM flags.

export CLIENT_JVMFLAGS="-Djava.security.auth.login.config=/etc/nifi-jaas
/jaas.conf"

b) Connect to ZooKeeper.

zookeeper-client -server $(hostname -f):2181

c) Confirm the output.

Connecting to zz-mwies-nifi-nifi1.zz-mwies.a465-9q4k.cloudera.site:2181
Welcome to ZooKeeper!
JLine support is enabled
[zk: zz-mwies-nifi-nifi1.zz-mwies.a465-9q4k.cloudera.site:2181(CONNEC
TING) 0]
WATCHER::
WatchedEvent state:SyncConnected type:None path:null
WATCHER::
WatchedEvent state:SaslAuthenticated type:None path:null

d) If you see state:SaslAuthenticated, the JAAS file has been created correctly. If there are any issues, use the
cat -vet command to identify and fix malformations in the file.

e) Distribute the JAAS files to each NiFi node and change the hostname accordingly.

18

Cloudera Flow Management Hardening ZooKeeper Znodes for NiFi security

Reconfiguring NiFi
This section guides you through reconfiguring NiFi for secure communication with ZooKeeper using Kerberos
authentication. The process involves updating several NiFi configuration files with advanced settings (safety valves)
to ensure proper integration and security.

About this task

Important:

Follow the instructions carefully to avoid misconfiguration. Do not start or restart NiFi unless explicitly
instructed to do so, as early restart may disrupt the cluster setup or lead to security vulnerabilities.

Procedure

1. For each safety valve, add the corresponding XML snippet.

NiFi Node Advanced Configuration Snippet (Safety Valve) for staging/bootstrap.conf.xml:

<property><name>java.arg.15</name><value>-Djava.security.auth.login.conf
ig=/etc/nifi-jaas/jaas.conf</value></property>

NiFi Node Advanced Configuration Snippet (Safety Valve) for staging/nifi.properties.xml:

<property><name>nifi.zookeeper.auth.type</name><value>sasl</value></prop
erty><property><name>nifi.zookeeper.kerberos.removeHostFromPrincipal</na
me><value>true</value></property><property><name>nifi.zookeeper.kerberos
.removeRealmFromPrincipal</name><value>true</value></property>

NiFi Node Advanced Configuration Snippet (Safety Valve) for staging/state-management.xml:

<property><name>xml.state-management.cluster-provider.zk-provider.proper
ty.Access Control</name><value>CreatorOnly</value><final>true</final></p
roperty>

2. Save all the changes made to the configuration files.

3. Stop NiFi.

Important:

Do not restart NiFi!

Znode hardening

Procedure

1. Back up Components Znode.

Before proceeding, in case there is a components Znode, ensure a backup of it is created.

/opt/cloudera/parcels/CFM-***[version]***/TOOLKIT/bin/zk-migrator.sh -r -z
 $(hostname -f):2181/BASE/components -k /etc/nifi-jaas/jaas.conf -f compon
ents-backup.json

This command saves the content of components Znode into a JSON file.

19

Cloudera Flow Management Hardening ZooKeeper Znodes for NiFi security

2. Recreate Components Znode.

a) Delete the existing components Znode in Zookeeper.

[zk: zz-mwies-nifi-nifi2.zz-mwies.a465-9q4k.cloudera.site:2181(CONNECTED
) 0] deleteall /BASE/components
[zk: zz-mwies-nifi-nifi2.zz-mwies.a465-9q4k.cloudera.site:2181(CONNECTED
) 1] ls /BASE
[]
[zk: zz-mwies-nifi-nifi2.zz-mwies.a465-9q4k.cloudera.site:2181(CONNECTE
D) 2] quit
WATCHER::
WatchedEvent state:Closed type:None path:null

b) Re-import the components Znode from the backup file.

[root@zz-mwies-nifi-nifi2 backup]# /opt/cloudera/parcels/CFM-***[version
]***/TOOLKIT/bin/zk-migrator.sh -s -z $(hostname -f):2181/BASE/component
s -k /etc/nifi-jaas/jaas.conf -f components-backup.json --ignore-source

c) After recreating the components Znode, verify that it has the correct permissions and content.

[zk: zz-mwies-nifi-nifi2.zz-mwies.a465-9q4k.cloudera.site:2181(CONNECTED
) 0] ls /BASE
[components]
[zk: zz-mwies-nifi-nifi2.zz-mwies.a465-9q4k.cloudera.site:2181(CONNEC
TED) 1] getAcl /BASE/components
'sasl,'nifi
: cdrwa
[zk: zz-mwies-nifi-nifi2.zz-mwies.a465-9q4k.cloudera.site:2181(CONNECTED
) 2] ls -R /BASE/components
/BASE/components
/BASE/components/0c2f3aaf-0188-1000-ffff-ffffa939f0e7
[zk: zz-mwies-nifi-nifi2.zz-mwies.a465-9q4k.cloudera.site:2181(CONNEC
TED) 3] getAcl /BASE/components/0c2f3aaf-0188-1000-ffff-ffffa939f0e7
'sasl,'nifi
: cdrwa
[zk: zz-mwies-nifi-nifi2.zz-mwies.a465-9q4k.cloudera.site:2181(CONNECTE
D) 4]

3. Set the permissions for BASE Znode.

To harden the BASE Znode, open Zookeeper and set the appropriate ACL using the following command.

[zk: zz-mwies-nifi-nifi2.zz-mwies.a465-9q4k.cloudera.site:2181(CONNECTED)
 5] setAcl /BASE sasl:nifi:cdrwa,world:anyone:r
[zk: zz-mwies-nifi-nifi2.zz-mwies.a465-9q4k.cloudera.site:2181(CONNECTED)
 6] getAcl /BASE
'sasl,'nifi
: cdrwa
'world,'anyone
: r

If you have a /BASE/leaders Znode, set its ACL recursively.

Similarly, set the ACL for /BASE/components with the same permissions:

setAcl /BASE/components sasl:nifi:cdrwa,world:anyone:r

4. Start NiFi.

Once all configurations are verified and updated, you can safely start the NiFi service.

20

Cloudera Flow Management Authorization

Authorization

Authorization can be managed using Apache Ranger or through the internal file-based authorizer provided by NiFi
and NiFi Registry.

User group providers
This section provides information on user group providers.

LDAP integration
After Ranger or file-based authorizations are implemented, the authorizations can be configured to integrate with
LDAP.

However, after installation, the authorization configuration can be re-configured to setup an
LDAPUserGroupProvider.

When you setup an LDAPUserGroupProvider, the FileUserGroupProvider is replaced with the
LDAPUserGroupProvider.

Note: The following is an important distinction between the FileUserGroupProvider and the
LDAPUserGroupProvider:

• When using the FileUserGroupProvider, the composite provider is the
CompositeConfigurableUserGroupProvider.

• When using the LDAPUserGroupProvider, the provider is the non-configurable
CompositeUserGroupProvider.

LDAP and Ranger policies
Learn how to configure the LDAP and Ranger integration in NiFi and NiFi Registry.

About this task

When using LDAP with Ranger policies, each authorizers.xml file produced in NiFi and NiFi Registry contain the
following components:

• CompositeUserGroupProvider

• LdapUserGroupProvider
• CMUserGroupProvider

• RangerAuthorizer

• Configured with CompositeUserGroupProvider

Note: Coordinate with your Active Directory/LDAP team to obtain the values you would need to set
the LDAP User Group Provider properties. For a list of the properties, see LDAP User Group Provider
Properties.

Procedure

1. In Cloudera Manager, select the NiFi or NiFi Registry service.

2. Click the Configuration tab.

3. Uncheck Authorizers: Enable File User Group Provider to disable the file-user-group-provider.

4. Uncheck Authorizers: Enable Composite Configurable User Group Provider to disable the composite-
configurable-user-group-provider.

21

Cloudera Flow Management Authorization

5. Check Authorizers: Enable Composite User Group Provider to enable composite-user-group-provider.

a) Enter ldap-user-group-provider for Authorizers: Composite User Group Provider Property - User Group
Provider 1.

b) Enter cm-user-group-provider for Authorizers: Composite User Group Provider Property - User Group
Provider 2.

6. Check LDAP Enabled to enable ldap-user-group-provider.

7. In the Search field, enter ldap-user-group-provider to see the list of the LDAP User Group Provider properties.

For a list of the properties, see LDAP User Group Provider properties.

8. Update the LDAP User Group Provider properties.

9. Update Authorizers: Ranger Authorizer Property - User Group Provider to use the composite-user-group-provider
instead of the configurable one.

10. Save the changes.

11. Locate the Login Identity Provider ID and verify that it is set to your authentication provider.

Either:

• kerberos-provider

or

• ldap-provider

Related Information
LDAP User Group Provider properties

LDAP and file-based policies
Learn how to configure LDAP and file-based integration in NiFi and NiFi Registry.

About this task

When LDAP is used with file-based policies, each authorizers.xml file produced in NiFi and NiFi Registry contains
the following components:

• CompositeUserGroupProvider

• LdapUserGroupProvider
• CMUserGroupProvider

• FileAccessPolicyProvider

• Configured with CompositeUserGroupProvider
• StandardManagedAuthorizer

• Configured with FileAccessPolicyProvider

Note: Coordinate with your Active Directory/LDAP team to obtain the values you would need to set
the LDAP User Group Provider properties. For a list of the properties, see LDAP User Group Provider
Properties.

Procedure

1. In Cloudera Manager, go to the NiFi or NiFi Registry service.

2. Click the Configuration tab.

3. Uncheck Authorizers: Enable File User Group Provider to disable the file-user-group-provider.

4. Uncheck Authorizers: Enable Composite Configurable User Group Provider to disable the composite-
configurable-user-group-provider.

22

Cloudera Flow Management Authorization

5. Check Authorizers: Enable Composite User Group Provider to enable composite-user-group-provider.

a) Enter ldap-user-group-provider for Authorizers: Composite User Group Provider Property - User Group
Provider 1.

b) Enter cm-user-group-provider for Authorizers: Composite User Group Provider Property - User Group
Provider 2.

6. Check LDAP Enabled to enable ldap-user-group-provider.

7. In the Search field, enter ldap-user-group-provider to see the list of the LDAP User Group Provider properties.

For a list of the properties, see LDAP User Group Provider properties.

8. Update the LDAP User Group Provider properties.

9. Update Authorizers: Default File Access Policy Property - User Group Provider to use the composite-user-group-
provider instead of the configurable one.

10. Save the changes.

11. Locate the Login Identity Provider ID and verify that it is set to your authentication provider.

Either:

• kerberos-provider

or

• ldap-provider

Related Information
LDAP User Group Provider properties

LDAP User Group Provider properties
After you enable authorization through Ranger or file-based policies, set the LDAP User Group Provider properties to
enable NiFi/NiFi Registry to sync users and user groups and determine the association between them.

Set the following LDAP User Group Provider properties (ldap-user-group-provider) in the Cloudera Manager
Configuration tab.

LDAP User Group Provider properties Description

Authorizers: LDAP Authentication Strategy How the connection to the LDAP server is authenticated. Possible
values are ANONYMOUS, SIMPLE, LDAPS, or START_TLS.

Authorizers: LDAP Manager DN The DN of the manager that is used to bind to the LDAP server to
search for users.

Authorizers: LDAP Manager Password The password of the manager that is used to bind to the LDAP server to
search for users.

Authorizers: LDAP TLS - Keystore Path to the Keystore that is used when connecting to LDAP using
LDAPS or START_TLS.

Authorizers: LDAP TLS - Keystore Password Password for the Keystore that is used when connecting to LDAP using
LDAPS or START_TLS.

Authorizers: LDAP TLS - Keystore Type Type of the Keystore that is used when connecting to LDAP using
LDAPS or START_TLS (i.e. JKS or PKCS12).

Authorizers: LDAP TLS - Truststore Path to the Truststore that is used when connecting to LDAP using
LDAPS or START_TLS.

Authorizers: LDAP TLS - Truststore Password Password for the Truststore that is used when connecting to LDAP
using LDAPS or START_TLS.

Authorizers: LDAP TLS - Truststore Type Type of the Truststore that is used when connecting to LDAP using
LDAPS or START_TLS (i.e. JKS or PKCS12).

Authorizers: LDAP TLS - Client Auth Client authentication policy when connecting to LDAP using LDAPS
or START_TLS. Possible values are REQUIRED, WANT, NONE.

Authorizers: LDAP TLS - Protocol Protocol to use when connecting to LDAP using LDAPS or
START_TLS. (i.e. TLS, TLSv1.1, TLSv1.2, etc).

23

Cloudera Flow Management Authorization

LDAP User Group Provider properties Description

Authorizers: LDAP TLS - Shutdown Gracefully Specifies whether the TLS should be shut down gracefully before the
target context is closed. Defaults to false.

Authorizers: LDAP Referral Strategy Strategy for handling referrals. Possible values are FOLLOW, IGNO
RE, THROW.

Authorizers: LDAP Connect Timeout Duration of connect timeout. (i.e. 10 secs).

Authorizers: LDAP Read Timeout Duration of read timeout. (i.e. 10 secs).

Authorizers: LDAP Url Space-separated list of URLs of the LDAP servers (i.e. ldap://<host
name>:<port>).

Authorizers: LDAP Page Size Sets the page size when retrieving users and groups. If not specified, no
paging is performed.

Authorizers: LDAP Group Membership - Enforce Case Sensitivity Sets whether group membership decisions are case sensitive. When
a user or group is inferred (by not specifying or user or group search
base or user identity attribute or group name attribute) case sensitivity
is enforced since the value to use for the user identity or group name
would be ambiguous. Defaults to false.

Authorizers: LDAP Sync Interval Duration of time between syncing users and groups. (i.e. 30 mins).
Minimum allowable value is 10 secs.

Authorizers: LDAP User Search Base Base DN for searching for users (i.e. ou=users,o=nifi). Required to
search users.

Authorizers: LDAP User Object Class Object class for identifying users (i.e. person). Required if searching
users.

Authorizers: LDAP User Search Scope Search scope for searching users (ONE_LEVEL, OBJECT, or SUBT
REE). Required if searching users.

Authorizers: LDAP User Search Filter Filter for searching for users against the User Search Base (i.e. (mem
berof=cn=team1,ou=groups,o=nifi)). Optional.

Authorizers: LDAP User Identity Attribute Attribute to use to extract user identity (i.e. cn). Optional. If not set, the
entire DN is used.

Authorizers: LDAP User Group Name Attribute Attribute to use to define group membership (i.e. memberof). Optional.
If not set group membership will not be calculated through the users.
Will rely on group membership being defined through Group Member
Attribute if set. The value of this property is the name of the attribute in
the user ldap entry that associates them with a group. The value of that
user attribute could be a dn or group name for instance. What value is
expected is configured in the User Group Name Attribute - Referenced
Group Attribute.

Authorizers: LDAP User Group Name Attribute - Referenced Group
Attribute

If blank, the value of the attribute defined in User Group Name Attr
ibute is expected to be the full dn of the group. If not blank, this
property will define the attribute of the group ldap entry that the value
of the attribute defined in User Group Name Attribute is referencing
(i.e. name). Use of this property requires that Group Search Base is
also configured.

Authorizers: LDAP Group Search Base Base DN for searching for groups (i.e. ou=groups,o=nifi). Required to
search groups.

Authorizers: LDAP Group Object Class Object class for identifying groups (i.e. groupOfNames). Required if
searching groups.

Authorizers: LDAP Group Search Scope Search scope for searching groups (ONE_LEVEL, OBJECT, or SUBT
REE). Required if searching groups.

Authorizers: LDAP Group Search Filter Filter for searching for groups against the Group Search Base.
Optional.

Authorizers: LDAP Group Name Attribute Attribute to use to extract group name (i.e. cn). Optional. If not set, the
entire DN is used.

24

Cloudera Flow Management Authorization

LDAP User Group Provider properties Description

Authorizers: LDAP Group Member Attribute Attribute to use to define group membership (i.e. member). Optional.
If not set group membership will not be calculated through the groups.
Will rely on group membership being defined through User Group
Name Attribute if set. The value of this property is the name of the
attribute in the group ldap entry that associates them with a user. The
value of that group attribute could be a dn or memberUid for instance.
What value is expected is configured in the Group Member Attribute -
Referenced User Attribute. (i.e. member: cn=User 1,ou=users,o=nifi
vs. memberUid: user1)

Authorizers: LDAP Group Member Attribute - Referenced User
Attribute

If blank, the value of the attribute defined in Group Member Attribute
is expected to be the full dn of the user. If not blank, this property will
define the attribute of the user ldap entry that the value of the attribute
defined in Group Member Attribute is referencing (i.e. uid). Use of this
property requires that User Search Base is also configured. (i.e. memb
er: cn=User 1,ou=users,o=nifi vs. memberUid: user1)

Pairing LDAP with a Composite Group Provider
If you need to combine multiple user/group provider mechanisms into a composite provider, you can do so using the
Cloudera Manager safety valves for the authorizers.xml file.

This example shows how file-based users/group provider can be paired with an LDAP user group provider using a
CompositeConfigurableUserGroupProvider.

Property Name Property Value (Default)

xml.authorizers.userGroupProvider.composite-user-group-
provider.property.User Group Provider 1

ldap-user-group-provider

xml.authorizers.userGroupProvider.composite-configurable-user-
group-provider.property.User Group Provider 2

ldap-user-group-provider

Access policies providers
This section provides information on access policies providers.

Ranger authorization
Leverage Apache Ranger access policies to administer permissions for groups or individual users.

A Ranger access policy for flow management contains one or more access rights to NiFi or NiFi Registry resources
in a cluster. You can add users and groups to a predefined policy or you can create a custom policy to add users and
groups to.

Note: The Ranger predefined policies are only available if you selected Ranger as your authorization option
when you deployed Cloudera Flow Management.

Understanding the Ranger authorization process for CFM
When you select Ranger during the installation of Cloudera Flow Management (CFM), it will be used in the
authorization mechanism for both NiFi and NiFi Registry. A set of predefined access policies at the controller and
component levels are automatically created for assignment to users.

How Ranger is set up during installation

he Ranger predefined policies are only available if you selected Ranger during the installation process. If Ranger is
selected, the NiFi and NiFi Registry CSD scripts perform the following steps:

25

Cloudera Flow Management Authorization

• Create a new Ranger repository/service to store policies for the given NiFi or NiFi Registry instance.

Each instance appears on the Ranger UI with a unique name in the following format: <CM cluster name>_nifi or
<CM cluster name>_nifiregistry.

Example: myCFMcluster_nifi
• Create policies for the following Initial Admin Identity and Initial Admin Groups:

• For NiFi: nifi.initial.admin.identity and nifi.initial.admin.groups
• For NiFi Registry: nifi.registry.initial.admin.identity and nifi.registry.initial.admin.groups

• Create policies for proxies specified by nifi.proxy.group or nifi.registry.proxy.group.

Components in the authorizers configuration

Each NiFi and NiFi Registry authorizers.xml file contains the following logical configuration when using Ranger:

• CompositeConfigurableUserGroupProvider

• FileUserGroupProvider
• CMUserGroupProvider

• RangerAuthorizer

• Configured with CompositeConfigurableUserGroupProvider

Role of CMUserGroupProvider

The CMUserGroupProvider is used to:

• Retrieve NiFi node identities (and Knox identity, if present) from Cloudera Manager
• Associate these NiFi node identities with a group
• Provide the group identity for use in Ranger policies (specifically for /proxy)

Note: Group based authorization policies configured in Ranger only function if NiFi is also configured with
a NiFi user-group-provider that returns the same group along with its associated users. The default file-user-
group-provider requires manual user/group setup. For more information, see User group providers.

Identity mapping and hostname handling

If NiFi is configured to apply identity mapping transforms to node identities (for example using UPPER, LOWER),
you must add the same transform for CMUserGroupProvider using the Hostname Identity Transform property in auth
orizers.xml to ensure correct identity matching.

Note: The CMUserGroupProvider is only aware of hostnames. By default, NiFi applies an identity mapping
that extracts the Common Name (CN) from a configured Distinguished Name (DN). If identity mapping is
disabled, CMUserGroupProvider will not function properly because it relies on resolving CN values from
DNs.

Ranger-based NiFi policy descriptions
You can review how NiFi policies defined in Ranger align with NiFi's default file-based authorizer accessible through
the NiFi user interface. The focus is on both controller-level policies and component-level policies, showing what
access is granted to entities (users and servers) associated with them.

In Apache NiFi, policies are used to control access to various aspects of the system. You can define access policies
at the controller or the component level. The combination of the two types of policies allows for a flexible access
control mechanism.

Controller-level policies

Controller level policies provide a higher-level governance framework, overseeing global aspects of NiFi
configuration and management. They are not tied to any specific component UUID. In Ranger, these policies are
outlined as base policies and they show as /<policy name>.

26

https://docs.cloudera.com/cfm/4.11.0/cfm-security/topics/cfm-security-user-group-providers.html

Cloudera Flow Management Authorization

Ranger policy (base policy) NiFi policy Ranger permission description

/resources1 N/A Allows Ranger to retrieve a list of NiFi policies. The server/user from the keystore used by
Ranger must be granted read privileges to this resource.

/flow2 View user interface Read/View: allows users to open and view the NiFi UI.

Ensure that all users are granted read privileges to this policy, otherwise they will not be
able to open the NiFi UI. If you run a NiFi cluster and/or access NiFi through a proxy, you
need to grant read access to all nodes and any proxies involved.

Write/Modify: N/A

/system View system diagnostics Read/View: provides access to system diagnostics, essential for users and nodes in a NiFi
cluster to display system diagnostic stats returned by other nodes.

Write/Modify: N/A

/controller Access controller Read/View: grants users and/or NiFi cluster nodes access to view:

• Controller thread pool configuration
• Cluster management page
• Controller-level reporting tasks
• Controller-level controller services

Write/Modify: enables users and/or NiFi cluster nodes to create/modify:

• Controller thread pool configuration
• Cluster management page
• Controller-level reporting tasks
• Controller-level controller services

/counters Access counters Read/View: enables users to view counters.

Write/Modify: enables users to modify counters.

/provenance Query provenance Read/View: allows users to run provenance queries or access provenance lineage graphs.

Write/Modify: N/A

/restricted-components3 Access restricted components Read/View: N/A

Write/Modify: gives granted users ability to add components to the canvas that are tagged
as 'restricted'.

/proxy4 Proxy user requests Read/View: allows proxy servers to send request on behalf of other users.

Write/Modify: required

/site-to-site Retrieve site-to-site details Read/View: allows other NiFi nodes to retrieve site-to-site details about the current NiFi.

/policies 5 Access all policies Read/View: allows users to view existing policies.

Write/Modify: allows users to create new policies and modify existing policies.

/tenants 5 Access users/user groups Read/View: allows users to view currently authorized users and user groups.

Write/Modify: allows users to add, delete, and modify existing users and user groups.

/parameter-contexts Access parameter contexts Read/View: allows users to view and use existing parameter contexts.

Write/Modify: allows users to create, modify, and delete parameter contexts.

1 No policies are available until this policy is manually added.
2 All users must at a minimum be assigned to the /flow policy to be able to view the NiFi UI.
3 See NiFi Restricted Components Policy Descriptions for more information.
4 All nodes in your NiFi cluster must be assigned to the /proxy policy.
5 In the context of Ranger, using this policy is unnecessary and serves no functional purpose.

27

https://community.cloudera.com/t5/Community-Articles/NiFi-Restricted-Components-Policy-Descriptions/ta-p/249157

Cloudera Flow Management Authorization

Component-level policies

Component level policies offer more granular access control, allowing administrators to regulate actions at the level
of individual components within the NiFi data flow. These policies are based on assigned UUIDs, enforcing the
access policies for specific components within NiFi, such as processors, input/output ports, or process groups.

Ranger component-based
policies

NiFi
component-
based
policies:
component

Equivalent NiFi file based
authorizer policy: policy

Ranger permissions description

/data-transfer/input-ports/<uuid>

Each
NiFi
remote
input
port
is
assigned
a
unique
<uuid>

Receive data through site-to-
site

Both read and write are required and should be granted to the source NIFi
servers sending data to this NiFi through this input port.

/data-transfer/output-ports/<uuid>

Each
NiFi
remote
output
port
is
assigned
a
unique
<uuid>

Send data through site-to-site Both read and write are required and should be granted to the source NIFi
servers pulling data from this NiFi through this output port.

View component Read: allows users to view process group details only.

/process-groups/<uuid>

Each
NiFi
process
group
is
assigned
a
unique
<uuid>

Modify component Write: allows users to start, stop or delete process group. Users are able to added
components inside process group and add controller services to process group.

View data Read: allows users to view data was processed by components in this process
group and list queues.

/data/process-groups/<uuid>

Each
NiFi
process
group
is
assigned
a
unique
<uuid>

Modify data Write: allows users to empty queues/purge data from queues within process
group.

View policies Read: N/A in Ranger

/policies/process-groups/<uuid>6

Each
NiFi
process
group
is
assigned
a
unique
<uuid>

Modify policies Write: N/A in Ranger

6 Not needed when using Ranger.

28

Cloudera Flow Management Authorization

Ranger component-based
policies

NiFi
component-
based
policies:
component

Equivalent NiFi file based
authorizer policy: policy

Ranger permissions description

View component Read: allows users to view processor configuration only.

/processors/<uuid>

Each
NiFi
processor
is
assigned
a
unique
<uuid>

Modify component Write: allows users to start, stop, configure and delete processor.

View data Read: allows users to view data processed by this processor and list queues on
this processor's outbound connections.

/data/processors/<uuid>

Each
NiFi
processor
is
assigned
a
unique
<uuid>

Modify data Write: allows users to empty queues/purge data from this processor's outbound
connections.

View policies Read: N/A in Ranger

/policies/processors/<uuid>6

Each
NiFi
processor
is
assigned
a
unique
<uuid>

Modify policies Write: N/A in Ranger

View component Read: allows users to view controller service configuration.

/controller-services/<uuid>

Each
NiFi
controller
services
is
assigned
a
unique
<uuid>

Modify component Write: allows users to enable, disable, configure and delete controller services.

/provenance-data/<component-
type>/<component-UUID>

Each
NiFi
component
is
assigned
a
unique
<uuid>

View provenance Read: allows users to view provenance events generated by this component.

Write: N/A in Ranger

/operation/<component-type>/
<component-UUID>

Each
NiFi
component
is
assigned
a
unique
<uuid>

Operate component Read: N/A in Ranger

Write: allows users to operate components by changing component run status
(start/stop/enable/disable), remote port transmission status, or by terminating
processor threads.

Each component is assigned a unique UUID, resulting in a distinct policy for each specific component. Component-
level authorizations are inherited from the parent process group when no explicit processor or sub-process group
component-level policy is defined. Ranger facilitates policy assignment using the '*' wildcard, providing a versatile
approach to policy configuration.

In a NiFi cluster, all nodes must be granted the ability to view and modify component data in order for users to list
or empty queues in processor component outbound connections. With Ranger, you can accomplish this by using a
wildcard to grant all the NiFi nodes read and write permissions to the /data/* NiFi resource.

29

Cloudera Flow Management Authorization

Predefined Ranger access policies for Apache NiFi
You can review the predefined Ranger policies for NiFi to determine the appropriate policy to assign to a user.

The following table lists the predefined Ranger access policies for NiFi. If you create a custom policy, refer to the
Resource Descriptor column in this table to enter the value in the NiFi Resource Identifier field on the New Policy
page.

Important:

Do not rename the default policies as some cluster operations rely on these policy names.

Do not select the Delegate Admin checkbox.

Note: The NiFi and Knox nodes have permission to the following Ranger policies:

• Proxies; /proxy
• Root Group Data; /data/process-groups

Ranger Policy Description Resource Descriptor

Controller Allows users to view and modify the controller
including Reporting Tasks, Controller
Services, Parameter Contexts and Nodes in the
Cluster.

/controller

Flow Allows users to view the NiFi UI. /flow

Policies Allows users to view the policies for all
components.

/policies

Provenance Allows users to submit a Provenance Search
and request Event Lineage.

/provenance

Proxies Allows NiFi and Knox hosts to proxy user
requests. Does not apply to users or user
groups.

/proxy

Restricted Components Allows users to create/modify restricted
components assuming other permissions are
sufficient.

The restricted components may indicate the
specific permissions that are required.

Permissions can be granted for specific
restrictions or be granted regardless of
restrictions. If permission is granted regardless
of restrictions, the user can create/modify all
restricted components.

Some examples of restricted components are
ExecuteScript, List/FetchHDFS, and TailFile.

/restricted-components

See the NiFi Restricted Components topic for
information on the sub-policies.

Root Group Data Allows users and the nifi group to view and
delete data from the root group and down the
hierarchy unless there is a more specific policy
on a component.

Note: The nifi group is a
dynamically managed list of Knox
and NiFi node identities. The
group exists on all Data Hub Flow
Management hosts.

/data/process-groups/<uuid>

Root Group Provenance Data Allows users to view provenance data. /provenance-data/process-groups/

Root Process Group Allows users to view and modify the root
process group including adding/removing
processors to the canvas.

This policy is inherited down the hierarchy
unless there is a more specific policy on a
component.

/process-groups/<uuid>

30

Cloudera Flow Management Authorization

Ranger Policy Description Resource Descriptor

Tenants Allows users to view and modify user
accounts and user groups.

/tenants

Related Information
Apache NiFi restricted components

Predefined Ranger access policies for Apache NiFi Registry
You can review the predefined Ranger policies for NiFi Registry to determine the appropriate policy to assign to a
user.

The following table lists the pre-defined Ranger access policies for NiFi Registry. If you create a custom policy, refer
to the Resource Descriptor column in this table to enter the value in the NiFi Registry Resource Identifier field on the
New Policy page.

Important:

Do not rename the default policies as some cluster operations rely on these policy names.

Do not select the Delegate Admin checkbox.

Note: The NiFi Registry and Knox nodes have permission to the Proxies (/proxy) Ranger policy.

Ranger Policy Description Resource Descriptor

Actuator Allows users to access the Spring Boot
Actuator end-points.

/actuator

Buckets Allows users to view and modify all buckets. /buckets

Policies Allows users to view the policies for all
components.

/policies

Proxies Allows NiFi Registry and Knox hosts to proxy
user requests. Does not apply to users or user
groups.

/proxy

Swagger Allows users to access the self-hosted
Swagger UI.

/swagger

Tenants Allows users to view and modify user
accounts and user groups.

/tenants

Predefined component-level policies for Apache NiFi
The component-level granular policies are based on the UUID of each component. For connections, the policies are
enforced based upon the processor component that the connection originates from.

Note the following:

• There is a unique policy for every component based on the specific components assigned UUID.
• Component level authorizations are inherited from the parent process group when no specific processor or sub

process group component level policy is set.
• Ranger supports the " * " wildcard when assigning policies.
• In a NiFi cluster, all nodes must be granted the ability to view and modify component data in order for user to list

or empty queues in processor component outbound connections. With Ranger this can be accomplished by using
the a wildcard to grant all the NiFi nodes read and write to the /data/* NiFi resource.

31

Cloudera Flow Management Authorization

Ranger component-level policies NiFi component-based policy:
Component

Equivalent NiFi file-based
authorizer policy: Policy

Ranger permissions

/data-transfer/input-ports/<UUID> Each NiFi remote input port is
assigned a unique <UUID>

Send data through site-to-site. Both read and write is required
and should be granted to the
source NIFi servers sending data
to this NiFi through this input
port.

/data-transfer/output-ports/
<UUID>

Each NiFi remote output port is
assigned a unique <UUID>

Retrieve data through site-to-site. Both read and write is required
and should be granted to the
source NIFi servers pulling data
from this NiFi via this output port.

/process-groups/<UUID> Each NiFi process group is
assigned a unique <UUID>

View or modify the component. Read - (allows user to view
process group details only)Write -
(allows user to start, stop or delete
process group. Users are able to
added components inside process
group and add controller services
to process group)

/data/process-groups/<UUID> Each NiFi process group is
assigned a unique <UUID>

View or modify the data. Read - (allows user to view data
was processed by components
in this process group and list
queues)Write - (allows users to
empty queues/purge data from
queues within process group)

/policies/process-groups/<UUID>

Note: Not needed
when using Ranger

Each NiFi process group is
assigned a unique <UUID>

View or modify the policies. Read - N/A in RangerWrite - N/A
in Ranger

/processors/<UUID> Each NiFi processor is assigned a
unique <UUID>

View or modify the component. Read - (Allows user to view
processor configuration
only)Write - (Allows user to
start, stop, configure and delete
processor)

/data/processors/<UUID> Each NiFi processor is assigned a
unique <UUID>

View or modify the data. Read - (allows user to view data
processed this processor and
list queues on this processors
outbound connections)Write -
(allows users to empty queues/
purge data from this processors
outbound connections)

/policies/processors/<UUID>

Note: Not needed
when using Ranger

Each NiFi processor is assigned a
unique <UUID>

View or modify the policies. Read - N/A in RangerWrite - N/A
in Ranger

/controller-services/<UUID> Each NiFi controller services is
assigned a unique <UUID>

View or modify the component. Read - (Allows user to view
controller service configuration
only)Write - (Allows user to
enable, disable, configure and
delete controller services)

/provenance-data/<component-
type>/<component-UUID>

Each NiFi component is assigned
a unique <UUID>

View provenance. Read - Allows users to view
provenance events generated by
this componentWrite - N/A in
Ranger

/operation/<component-type>/
<component-UUID>

Each NiFi component is assigned
a unique <UUID>

Operate the component. Read - N/A in RangerWrite
- Allows users to operate
components by changing
component run status (start/stop/
enable/disable), remote port
transmission status, or terminating
processor threads

32

Cloudera Flow Management Authorization

Apache NiFi restricted components
As the administrator, you should be aware of the capabilities of NiFi restricted components and explicitly enable them
for trusted users.

Restricted components are the processors, controller services, or reporting tasks that have the ability to run user-
defined code or access/alter localhost filesystem data using the NiFi OS credentials. An authorized NiFi user can
use these components to go beyond the intended use of the application, escalate privilege, or expose data about the
internals of the NiFi process or the host system. For this reason, you must grant the user or user group the specific
permission they require to the specific restricted component.

The restricted-components policy allows you to fine-tune the permission for each component and also makes a
distinction between processors that access the local filesystem where NiFi is running and the processors that access a
distributed file system like the Hadoop related processors.

The following list describes the available Ranger restricted-components policies you can use to control access to a
restricted component:

/restricted-components/access-keytab

Allows users to access the keytab for the restricted component.

/restricted-components/execute-code

Allows users to run code for the restricted component.

/restricted-components/export-nifi-details

Allows users to export NiFi details accessed by the restricted component.

/restricted-components/read-filesystem

Allows users to use processors that require read access to the local filesystem.

/restricted-components/read-distributed-filesystem

Allows users to use processors that require read access to the distributed filesystem.

/restricted-components/write-filesystem

Allows users to use processors that require write access to the local filesystem.

/restricted-components/write-distributed-filesystem

Allows users to use processors that require write access to the distributed filesystem.

The following tables list the restricted components that you can set the /restricted-components/<permission level> for.

Note: Some components may be found under multiple restricted-component sub policies. In order for a user
to utilize that component, you must be grant the user access to every sub policy required by that component.

Table 1: Access-keytab

NiFi component Component type Access provisions

KeytabCredentialsService Controller Service Allows user to define a Keytab and principal
that can then be used by other components.

Table 2: Execute-code

NiFi component Component type Access provisions

ScriptedReportingTask Reporting Task Provides operator the ability to run arbitrary
code assuming all permissions that NiFi has.

ScriptedLookupService Controller Service Provides operator the ability to run arbitrary
code assuming all permissions that NiFi has.

ScriptedReader Controller Service Provides operator the ability to run arbitrary
code assuming all permissions that NiFi has.

33

Cloudera Flow Management Authorization

NiFi component Component type Access provisions

ScriptedRecordSetWriter Controller Service Provides operator the ability to run arbitrary
code assuming all permissions that NiFi has.

ExecuteFlumeSink Processor Provides operator the ability to run
arbitrary Flume configurations assuming all
permissions that NiFi has.

ExecuteFlumeSource Processor Provides operator the ability to run
arbitrary Flume configurations assuming all
permissions that NiFi has.

ExecuteGroovyScript Processor Provides operator the ability to run arbitrary
code assuming all permissions that NiFi has.

ExecuteProcess Processor Provides operator the ability to run arbitrary
code assuming all permissions that NiFi has.

ExecuteScript Processor Provides operator the ability to run arbitrary
code assuming all permissions that NiFi has.

ExecuteStreamCommand Processor Provides operator the ability to run arbitrary
code assuming all permissions that NiFi has.

invokeScriptedProcessor Processor Provides operator the ability to run arbitrary
code assuming all permissions that NiFi has.

Table 3: Export-nifi-details

NiFi component Component type Access provisions

SiteToSiteBulletinReportingTask Reporting Task Provides operator the ability to send sensitive
details contained in bulletin events to any
external system.

SiteToSiteProvenanceReportingTask Reporting Task Provides operator the ability to send sensitive
details contained in Provenance events to any
external system.

Table 4: Read-filesystem

NiFi component Component type Access provisions

FetchFile Processor Provides operator the ability to read from any
file that NiFi has access to.

GetFile Processor Provides operator the ability to read from any
file that NiFi has access to.

TailFile Processor Provides operator the ability to read from any
file that NiFi has access to.

Table 5: Read-distributed-filesystem

NiFi component Component type Access provisions

FetchHDFS Processor Provides operator the ability to retrieve any
file that NiFi has access to in HDFS or the
local filesystem.

FetchParquet Processor Provides operator the ability to retrieve any
file that NiFi has access to in HDFS or the
local filesystem.

GetHDFS Processor Provides operator the ability to retrieve any
file that NiFi has access to in HDFS or the
local filesystem.

34

Cloudera Flow Management Authorization

NiFi component Component type Access provisions

GetHDFSSequenceFile Processor Provides operator the ability to retrieve any
file that NiFi has access to in HDFS or the
local filesystem.

MoveHDFS Processor Provides operator the ability to retrieve any
file that NiFi has access to in HDFS or the
local filesystem.

Table 6: Write-filesystem

NiFi component Component type Access provisions

FetchFile Processor Provides operator the ability to delete any file
that NiFi has access to.

GetFile Processor Provides operator the ability to delete any file
that NiFi has access to.

PutFile Processor Provides operator the ability to write to any
file that NiFi has access to.

Table 7: Write-distributed-filesystem

NiFi component Component type Access provisions

DeleteHDFS Processor Provides operator the ability to delete any file
that NiFi has access to in HDFS or the local
filesystem.

GetHDFS Processor Provides operator the ability to delete any file
that NiFi has access to in HDFS or the local
filesystem.

GetHDFSSequenceFile Processor Provides operator the ability to delete any file
that NiFi has access to in HDFS or the local
filesystem.

MoveHDFS Processor Provides operator the ability to delete any file
that NiFi has access to in HDFS or the local
filesystem.

PutHDFS Processor Provides operator the ability to delete any file
that NiFi has access to in HDFS or the local
filesystem.

PutParquet Processor Provides operator the ability to write any file
that NiFi has access to in HDFS or the local
filesystem.

Adding user to a pre-defined Ranger access policy
When a user attempts to view or modify a NiFi or NiFi Registry resource, the system checks whether this user
has privileges to perform that action. These privileges are determined by the Ranger access policies that a user is
associated with.

About this task

You can determine what the user can command, control, and observe in a NiFi dataflow or in NiFi Registry and
accordingly add the user or a group of users to the appropriate pre-defined Ranger access policies.

Each pre-defined Ranger access policy confers specific rights to NiFi or NiFi Registry resources.

For more information, see:

• Pre-defined Ranger access policies for NiFi resources
• Pre-defined Ranger access policies for NiFi Registry resources

35

Cloudera Flow Management Authorization

Before you begin

Ensure that you meet the following prerequisites:

• You have installed NiFi and NiFi Registry.
• You have determined the permission level for each user.

Procedure

1. From the Base cluster, select Ranger from the list of services. Click Ranger Admin Web UI and log into Ranger.

The Ranger Service Manager page displays.

Each cluster in the environment is listed under its respective service. For example, the NiFi clusters in the
environment are listed under NiFi.

2. Select a cluster from either the NiFi or NiFi Registry section.

The List of Policies page appears.

36

Cloudera Flow Management Authorization

3. Click the ID for a policy.

The Edit Policy page appears.

4. In the Allow Conditions section, add the user or the user group to the Select User field.

5. Click Save.

Results
The user now has the NiFi and NiFi Registry rights according to the policies you added the user or user group to.
These rights are inherited down the hierarchy unless there is a more specific policy on a component.

Creating a custom Ranger access policy
A user might need access to specific NiFi or NiFi Registry resources such as a process group or bucket. If the user
cannot access the component through an inherited Ranger access policy, then you must create a custom Ranger access
policy for the specific component and add the user to this policy. If all the users in a group require the same access,
you can add the user group to the Ranger access policy.

About this task

Each custom Ranger access policy provides access to a specific component.

First determine which NiFi or NiFi Registry components a user needs access to, then you can create a new policy for
each component and add the user or user group to the new policy. When you create a new policy, you must specify
the ID of the component that the user requires access to.

37

Cloudera Flow Management Authorization

Note:

If a user requires permission to view or modify data for a specific component, you must create a custom data
access policy and add the user and the nifi group to that policy.

The nifi group is a dynamically-managed group that exists on all Flow Management hosts and contains the
identities of NiFi and Knox nodes. When you add the nifi group to the data policy for a specific component,
you authorize the nodes to access data on behalf of the user.

Procedure

1. From the NiFi canvas, copy the ID of the process group, SSL Context Service, or controller service for reporting
tasks that the user needs access to.

2. To locate the ID for a process group:

a) Click the process group.

The ID appears in the Operate pane.

b) Copy the ID.

38

Cloudera Flow Management Authorization

3. To locate the ID of the SSL Context Service:

a) Click the settings icon on the process group.

The NiFi Flow Configuration appears.
b) Click the Controller Services tab.
c) Click the Settings icon for the Default NiFi SSL Context Service.

The Controller Service Details window appears.
d) From the Settings tab, copy the ID from the Id field.

39

Cloudera Flow Management Authorization

4. To locate the ID of a controller service for reporting tasks:

a) Click the process group.
b) Click the menu on the top right of the UI and select Controller Settings.

The NiFi Settings page appears.
c) Click the Reporting Tasks Controller Services tab.
d) Click the Settings icon for the controller service.

The Controller Service Details page appears.
e) From the Settings tab, copy the ID from the Id field.

40

Cloudera Flow Management Authorization

5. Go back to the Ranger List of Policies page.

6. Click Add New Policy.

The Create Policy page appears.

7. Enter a unique name for the policy.

8. Optionally, enter a keyword in the Policy Label field to aid in searching for a policy.

9. Enter the resource descriptor and the resource ID in the NiFi Resource Identifier or NiFi Registry Resource
Identifier field in the following format: <resource descriptor>/<resource ID>

To determine a NiFi resource descriptor, see Pre-defined Ranger access policies for Apache NiFi.

To determine a NiFi Registry resource descriptor, see Pre-defined Ranger access policies for Apache NiFI
Registry.

10. Enter a description.

41

Cloudera Flow Management Authorization

11. Add a user or a group.

Note: If a user requires permission to view or modify the data for a specific component, you must create
a data policy with /data/<component-type>/<component-UUID> as the resource identifier. Then add the
user and the nifi group to the policy to authorize the NiFi and Knox nodes to access data on behalf of the
user.

12. Set the permission level for the user or group.

13. Click Add.

Results
The user or group of users can now access the component specified in the custom policy.

Authorization example
You can review this example to understand how you can enable a flow-management user to perform specific tasks
like setting up version control for a flow, by assigning the appropriate Ranger policies.

User A must be able to do the following tasks:

• Access the NiFi UI.
• Export a flow.
• View data queued in connections.
• View data flowing through.
• Use a NiFi SSLContextService to connect to SSL-enabled systems.
• Set up version control for a flow.

Complete the following steps to enable User A to perform the required tasks:

1. Add User A to the predefined Ranger access policy for NiFi, Flow. Set the permissions to Read.

The Flow policy gives the user the right to view the NiFi UI.
2. Create a Ranger access policy for NiFi with:

• Resource descriptor: /data/process-groups/<ID of process-group>
• Permission: Read and Write

Add User A to this custom policy. The policy gives the user the right to export the data, view the data that is
queued and flowing through the connections.

3. Create a Ranger access policy for NiFi with:

• Resource descriptor: /controller-service/<ID of SSL Context Service>
• Permission: Read

Add User A to this custom policy. The policy gives the user the right to use the specified SSLContextService in
their flows to connect to SSL-enabled systems.

4. Create a Ranger access policy for NiFi Registry with:

• Resource descriptor: /buckets/<ID of bucket>
• Permission: Read, Write, and Delete

Add User A to this custom policy. The policy gives the user the right to set up version control for a flow.

Enabling access to Knox and NiFi
When NiFi is set up behind Knox, you need to define a Ranger policy that allows users to access NiFi through Knox.

Before you begin

You are a system administrator.

42

Cloudera Flow Management Authorization

Procedure

1. From the Base cluster, select Ranger from the list of services. Click Ranger Admin Web UI and log into Ranger.

The Ranger Service Manager page displays.

Each cluster in the environment is listed under its respective service.

2. From the Knox folder, select the cluster that you need to provide access to.

The List of Policies page appears.

3. Click Add New Policy.

The Create Policy page appears.

4. Enter a unique name for the policy.

5. Enter a keyword in the Policy Label field to aid in searching for a policy.

6. Enter the Knox topology in the Knox Topology field.

7. Enter nifi in the Knox Service field.

8. Optionally, enter a description.

9. Add a user or a group.

Note: If a user requires permission to view or modify the data for a specific component, you must create
a data policy with /data/<component-type>/<component-UUID> as the resource identifier. Then add the
user and the nifi group to the policy to authorize the NiFi and Knox nodes to access data on behalf of the
user.

43

Cloudera Flow Management Authorization

10. Set the Permissions field to Allow.

11. Click Add to save the new policy.

Results
The user or group of users can now access NiFi through Knox based on what you defined in the Knox Topology field.

File-based authorization
When Ranger is not selected as a dependency during installation, NiFi or NiFi Registry’s internal file-based
authorizer will be used for authorization.

When Ranger is not selected, the NiFi and NiFi Registry CSD scripts will perform the following steps:

• By default, during start-up, NiFi and NiFi Registry will create the following files in /var/lib/nifi and /var/lib/
nifiregistry:

• users.xml
• authorizations.xml

These files will include the users and policies for the Initial Admin Identity, Initial Admin Groups, and proxy
group.

• Create policies for the following Initial Admin Identity and Initial Admin Groups:

• For NiFi: nifi.initial.admin.identity and nifi.initial.admin.groups
• For NiFi Registry: nifi.registry.initial.admin.identity and nifi.registry.initial.admin.groups

• Create policies for proxies specified by nifi.proxy.group or nifi.registry.proxy.group.

Each authorizers.xml file produced in NiFi and NiFi Registry when using file-based authorization contains the
following logical configuration:

• CompositeConfigurableUserGroupProvider

• FileUserGroupProvider
• CMUserGroupProvider

• FileAccessPolicyProvider

• Configured with the CompositeConfigurableUserGroupProvider
• StandardManagedAuthorizer

• Configured with FileAccessPolicyProvider

44

Cloudera Flow Management Authorization

Migrating file-based authorization to Ranger
Both NiFi and NiFi Registry services have the option to convert existing file-based provider policies to Ranger
provider policies.

Migrating NiFi file-based authorization to Ranger
You can convert existing file-based provider NiFi policies to Ranger provider policies.

Before you begin

The following steps assume that the Ranger service is installed in the Cloudera Base on premises cluster.

Procedure

1. Create any users and groups from the NiFi users.xml that do not already exist in Ranger.

2. Select Ranger as a dependency from NiFi configuration.

3. Restart NiFi.

4. Select Migrate File-based Authorizations to Ranger from the Actions drop-down and confirm the action.

5. After a successful migration, verify that the policies are available in the NiFi Ranger service.

Migrating NiFi Registry file-based authorization to Ranger
You can convert existing file-based provider NiFi Registry policies to Ranger provider policies.

Before you begin

The following steps assume that the Ranger service is installed in the Cloudera Base on premises cluster.

Procedure

1. Create any users and groups from the NiFi Registry users.xml that do not already exist in Ranger.

2. Select Ranger as a dependency from NiFi Registry configuration.

3. Restart NiFi Registry.

4. Select Migrate File-based Authorizations to Ranger from the Actions drop-down. Confirm the action.

5. After a successful migration, verify that the policies are available in the NiFi Registry Ranger service.

Environment variables
This section provides information on environment variables.

Kerberos credentials
Learn how to provide the Kerberos credentials by defining the Keytab Credentials Controller Service.

In most processors there are two ways to provide the Kerberos credentials: either via properties directly available in
processor's configuration (this is the legacy way) or via the definition of a Keytab Credentials Controller Service. The
controller service is the recommended way in multi tenant environments where access to keytab configuration should
be managed independently between different teams.

An environment variable is available to manage which option is used. In order to prevent the use of the old free-
form keytab properties that were left around for backwards compatibility, it is possible to configure an environment
variable in nifi-env.sh:

export NIFI_ALLOW_EXPLICIT_KEYTAB=true

Setting this value to false will produce a validation error in any component where the free-form keytab property is
entered, which means the component cannot be started unless it uses a Keytab Controller service.

45

Cloudera Flow Management Network

This environment variable set to false in combination with the /restricted-components/access-keytab policy is the
recommended way to have the finest grained control over keytabs.

Local file system access
Learn how to prevent access to the local file system.

The Hadoop processors such as the HDFS and Hive processors, (processors where some core-site, hdfs-site, XML
configuration files are required) could theoretically be used, with very specifically tailored configurations, to access
the local file system where NiFi is running.

In order to prevent access to the local file system, set the following environment variable in the nifi-env.sh file:

export NIFI_HDFS_DENY_LOCAL_FILE_SYSTEM_ACCESS=false

By default, this variable is set to false. Setting this value to true forces the Hadoop processors to evaluate the file
system being accessed during scheduling and deny access in case it tries to access the local file system.

Network

This section provides network information for NiFi and NiFi Registry.

Default ports for NiFi and NiFi Registry
Reference for the NiFi and NiFi Registry default ports.

NiFi

The following table lists the default ports used by NiFi and the corresponding property in the nifi.properties file. You
can change these values as required.

Note:

• The default values are set by Cloudera Manager.
• If you install NiFi-only binaries not managed by Cloudera Manager, the defaults will be different and can

be found in the nifi.properties file.

Function Property Default Value set by Cloudera Manager

HTTP Port nifi.web.http.port 8080

HTTPS Port nifi.web.https.port 8443

Remote Input Socket Port nifi.remote.input.socket.port none

Cluster Node Protocol Port nifi.cluster.node.protocol.port 9088

Cluster Node Load Balancing Port nifi.cluster.node.load.balance.port 6342

Web HTTP Forwarding Port nifi.web.http.port.forwarding none

NiFi Registry

The following table lists the default ports used by NiFi Registry and the corresponding property in the nifi-
registry.properties file. You can change these values as required.

46

Cloudera Flow Management FIPS 140-2 compliance

Note:

If you install NiFi-only binaries not managed by Cloudera Manager, then:

• When enabling HTTPS, unset the nifi.registry.web.http.port property.
• The default values will be different and can be found in the nifi-registry.properties file.

Function Property Default Value set by Cloudera Manager

HTTP Port nifi.registry.web.http.port 18080

HTTPS Port nifi.registry.web.https.port 18433

FIPS 140-2 compliance

Federal Information Processing Standards (FIPS) are publicly announced standards developed by the National
Institute of Standards and Technology for use in computer systems by non-military American government agencies
and government contractors. You can configure Cloudera Base on premises to use FIPS-compliant cryptography.

To install and configure a Cloudera cluster that is FIPS-compliant, see Installing and configuring Cloudera with
FIPS. In combination with AutoTLS, the cluster will use BouncyCastle FIPS Keystore (BCFKS) across all the
components.

Note the following points about FIPS compliance in Cloudera Flow Management:

• Cloudera Flow Management is compatible with a FIPS 140-2 compliant environment.
• Cloudera Flow Management can run on an OS with FIPS turned on and can use FIPS-compliant crypto libraries.
• By default, the KeyStore and TrustStore are in Java KeyStore (JKS) format. This format is not FIPS compliant.
• By default, NiFi dataflows are not FIPS compliant. You must specifically design a dataflow to be FIPS compliant.
• You can encrypt NiFi sensitive properties, such as the password for a database connection pool service, with a

secret key generated by the FIPS 140-2 approved PBKDF2 algorithm. For information on how to do this, see
Encrypting NiFi sensitive properties with FIPS 140-2 approved algorithm.

For the National Institute of Standards and Technology publication, see FIPS 140-2 Security Requirements for
Cryptographic Modules.

Note:

The Bouncy Castle TLS library bctls-safelogic.jar includes an implementation of the TLS protocol that
takes precedence over the standard Java implementation when configuring the BouncyCastleJsseProvider
as a provider in java.security. The default configuration of the BCTLS library does not enable GCM-based
ciphers, which results in TLS server components attempting to negotiate weak cipher suites based on AES-
CBC. Modern web browsers such as Google Chrome and Mozilla Firefox disable weak cipher suites,
resulting in cipher mismatch errors when attempting to connect to a FIPS-enabled deployment of Cloudera
Flow Management.

Setting the following Java System property enables support for GCM-based ciphers using the Bouncy Castle
TLS library: org.bouncycastle.jsse.fips.allowGCMCiphers=true

This setting must be specified in the bootstrap.conf configuration using the following setting: java.arg.all
owgcm=-Dorg.bouncycastle.jsse.fips.allowGCMCiphers=true

Enabling GCM-based ciphers allows clients to negotiate modern TLS cipher suites, avoiding connection
issues related to weak algorithms.

Related Information
FIPS 140-2 Security Requirements for Cryptographic Modules

Installing and configuring Cloudera with FIPS

47

https://csrc.nist.gov/publications/detail/fips/140/2/final
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/cdp-private-cloud-base-installation/topics/cdpdc-fips-install-configure.html

Cloudera Flow Management FIPS 140-2 compliance

Encrypting NiFi sensitive properties with FIPS 140-2 approved algorithm
You can encrypt NiFi sensitive properties, such as the password for a database connection pool service, with a secret
key generated by the FIPS 140-2 approved PBKDF2 algorithm.

About this task

The PBKDF2 algorithm uses 160,000 hashing iterations with the SHA-512 digest function. The generated secret
key is then used to encrypt properties with AES Galois/Counter Mode (GCM), which provides both encryption and
integrity protection.

To generate secret keys using the PBKDF2 algorithm, you must specify the algorithm in the nifi.sensitive.props.alg
orithm field and specify a password in the nifi.sensitive.props.key field.

Before you begin

See Installing and configuring Cloudera with FIPS.

Procedure

1. Open the nifi.properties file.

2. Set the nifi.sensitive.props.algorithm property to one of the following PBKDF2 options:

• NIFI_PBKDF2_AES_GCM_128 to specify a 128-bit key length
• NIFI_PBKDF2_AES_GCM_256 to specify a 256-bit key length

3. Set the nifi.sensitive.props.key property with a password that is at least 12 characters long.

The encryption key is derived from this password.

4. Save the nifi.properties file.

5. If you are installing Cloudera Flow Management, start NiFi. If you are upgrading to a newer Cloudera Flow
Management version, see the Supported upgrade paths for Cloudera Flow Management documentation.

Related Information
Supported upgrade paths for Cloudera Flow Management

Deploying Cloudera Flow Management on FIPS-enabled clusters
FIPS 140-2 compliance is mandatory for many government and regulated industry environments. Cloudera Flow
Management is compatible with FIPS-enabled operating systems and cryptographic libraries but requires specific
configuration changes to ensure successful deployment and runtime operation.

About this task

This guide provides the required steps and configurations to successfully deploy Cloudera Flow Management on
clusters running in FIPS 140-2 mode.

Before you begin

• Cloudera Base on premises installed with FIPS mode enabled
• Java 11 (FIPS-compliant build)
• Cloudera Flow Management 2.x (for example: 2.1.7)
• AutoTLS configured (recommended)
• Access to required cryptographic JARs from SafeLogic/Bouncy Castle

48

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/cdp-private-cloud-base-installation/topics/cdpdc-fips-install-configure.html
https://docs.cloudera.com/cfm/4.11.0/upgrading-cfm/topics/cfm-upgrade-paths.html

Cloudera Flow Management FIPS 140-2 compliance

Procedure

1. Install the required cryptographic JARs by copying the following files into the Cloudera Flow Management
parcel's toolkit directory.

cp -a /path/to/ccj/jars/bctls.jar \
 /path/to/ccj/jars/ccj-3.0.2.1.jar \
 /opt/cloudera/parcels/CFM-[***VERSION***]/TOOLKIT/lib/

Replace [***VERSION***] with the appropriate Cloudera Flow Management version string.

2. Configure GCM Cipher support and NiFi Bootstrap settings.

Modern web browsers like Chrome or Firefox reject weak TLS cipher suites. By default, Bouncy Castle’s FIPS
TLS library does not enable GCM ciphers, which are required for compatibility with secure browsers. This
configuration enables modern GCM-based TLS ciphers through Bouncy Castle, avoiding connection issues
caused by legacy AES-CBC suites, especially in FIPS environments.

To enable GCM cipher support and configure bootstrap settings:

a) Navigate to Cloudera Manager NiFi Configuration Advanced NiFi Node Advanced Configuration Snippet
(Safety Valve) for staging/bootstrap.conf.xml .

b) Add the following properties in XML view.

<property>
 <name>java.arg.modulepath</name>
 <value>--module-path=/tmp/jars</value>
</property>
<property>
 <name>java.arg.allowgcm</name>
 <value>-Dorg.bouncycastle.jsse.fips.allowGCMCiphers=true</value>
</property>
<property>
 <name>java.arg.truststoretype</name>
 <value>-Djavax.net.ssl.trustStoreType=bcfks</value>
</property>
<property>
 <name>java.arg.truststorepath</name>
 <value>-Djavax.net.ssl.trustStore=/var/lib/cloudera-scm-agent/agent-ce
rt/cm-auto-global_truststore.jks</value>
</property>
<property>
 <name>java.arg.truststorepassword</name>
 <value>-Djavax.net.ssl.trustStorePassword=REPLACE_ME</value>
</property>

c) If using AutoTLS Use Case 3, you can retrieve the truststore password.

sudo -u postgres psql
\c scm
SELECT * FROM CONFIGS WHERE attr LIKE 'truststore_password';

3. Encrypt NiFi sensitive properties with FIPS algorithm, by editing the nifi.properties file.

nifi.sensitive.props.algorithm=NIFI_PBKDF2_AES_GCM_256
nifi.sensitive.props.key=your_secure_password_here

• Use either NIFI_PBKDF2_AES_GCM_128 or 256.
• The password must be at least 12 characters.

4. Restart Cloudera SCM agent to start and validate the Cloudera Flow Management deployment.

sudo systemctl stop cloudera-scm-supervisord.service

49

Cloudera Flow Management Integrations

sudo systemctl restart cloudera-scm-agent

5. Start the NiFi service through Cloudera Manager.

6. Confirm that NiFi stays running and that no cipher mismatch or keyStore errors are present in the logs.

Integrations

This section provides information on integrating NiFi and NiFi Registry with other components.

Integrating NiFi and Atlas
You can integrate NiFi with Apache Atlas to take advantage of robust dataset and application lineage support.

Manually integrating with Atlas when Auto-TLS is not enabled
If Cloudera Flow Management or the Cloudera Base on premises cluster does not have Auto-TLS enabled and you
want to Atlas, then you must manually integrate with Atlas by creating the ReportLineageToAtlas reporting
task.

About this task

Perform this task if:

• Cloudera Flow Management does not have TLS enabled; AND
• The Cloudera Base on premises cluster does not have auto-TLS enabled; AND
• You do not want to enable auto-TLS; AND
• You want Atlas as part of Cloudera Flow Management on your Cloudera Base on premises deployment.

Procedure

1. From the Global Menu located in NiFi’s upper right corner, select Controller Services and click the Reporting
Tasks tab.

2. Click the Add (+) icon to launch the Add Reporting Task dialog.

3. Select ReportLineageToAtlas and click Add.

50

Cloudera Flow Management Integrations

4. Click the Edit icon to launch the Configure Reporting Task dialog. The following properties are required:

• Atlas URLs – a comma-separated list of Atlas Server URLs. Once you have started reporting, you cannot
modify an existing Reporting Task to add a new Atlas Server. When you need to add a new Atlas Server, you
must create a new reporting task.

• Atlas Configuration Directory - This specifies where the atlas-applications.properties is created.

The directory must:

• Be located and accessible/writable by the user running the NiFi process.
• Be available on each NiFi node.
• Pre-exist. It will not be created by the reporting task.
• Not be in the /tmp directory.

• Create Atlas Configuration File – Set to True. When set to True, the atlas-application-properties file and the
Atlas Configuration Directory are automatically created when the Reporting Task starts.

• Lineage Strategy – Specifies the level of granularity for your NiFi dataflow reporting to Atlas. Once you have
started reporting, you should not switch between simple and complete lineage reporting strategies.

• Provenance Record Start Position – Specifies where in the Provenance Events stream the Reporting Task
should start.

• Provenance Record Batch Size – Specifies how many records you want to send in a single batch
• NiFi URL for Atlas – Specifies the NiFi cluster URL.
• Atlas Authentication Method – Specifies how to authenticate the Reporting Task to the Atlas Server. Basic

authentication is the default.
• Kafka Security Protocol – Specifies the protocol used to communicate with Kafka brokers to send Atlas hook

notification messages. This value should match Kafka's security.protocol property value.

Manually integrating with Atlas when Auto-TLS is enabled
You must perform some manual steps to integrate with Atlas when auto-TLS is enabled on your Cloudera Base on
premises cluster.

About this task

You must perform these steps if:

• You want CFM to integrate with Atlas; AND
• The Cloudera Base on premises cluster has auto-TLS enabled

Procedure

1. Select the Atlas integration checkbox.

2. Restart NiFi.

3. Click Create required NiFi object in the Cloudera Manager Actions menu.

Integrating NiFi and NiFi Registry with Knox
Integrate NiFi and NiFi Registry with Knox to securely access NiFi and NiFi Registry nodes.

Apache Knox Gateway (Knox) provides the following benefits:

• Centralized access to all services in the cluster.
• Authentication with single sign-on.
• Service-level authorization to the cluster.
• Does not expose the service endpoints such as URLs, ports, IP addresses.

When you integrate NiFi and NiFi Registry with Knox, you can use the Knox URL as a single entry point to securely
access all NiFi nodes and switch nodes if one fails.

51

Cloudera Flow Management Customizing properties in Cloudera Manager

For information more information on Knox, see Apache Knox Overview.

For information on how to select Knox during the NiFi and NiFi Registry installation, see Cloudera Flow
Management Deployment.

Related Information
Apache Knox Overview

Cloudera Flow Management Deployment

Customizing properties in Cloudera Manager

You can customize NiFi and NiFi Registry beyond what the customization page in Cloudera Manager allows. To
make any changes, use the dot notation to represent the actual schema for a given property file.

About this task

The following steps show how to enhance or overwrite xml based properties in Cloudera Manager using dot notation.

Procedure

Use the following structure:

xml.<properties-type>.<entity>.<identifier>.class
xml.<properties-type>.<entity>.<identifier>.property.<property-value>

Where:

• <properties-type> for NiFi can be authorizers and loginIdentityProviders
• <properties-type> for NiFi Registry can be authorizers and identityProviders.

The following property key/value example creates a user group provider entry into the authorizers file for NiFi:

Name: xml.authorizers.userGroupProvider.file-user-group-provider.class
Value: org.apache.nifi.authorization.FileUserGroupProvider

Name: xml.authorizers.userGroupProvider.file-user-group-provider.property
.Initial User Identity 2
Value: CN=localhost, OU=NIFI

This translates to the following entry in the generated authorizers.xml file:

<authorizers>
…...
 <userGroupProvider>
 <identifier>file-user-group-provider</identifier>
 <class>org.apache.nifi.authorization.FileUserGroupProvider</class>
 <property name="Initial User Identity 2">CN=localhost, OU=NIFI</prop
erty>
 </userGroupProvider>
…
...
</authorizers>

Properties names that have spaces are supported and do not need to be escaped.

Example

For an example, see Pairing LDAP with a Composite Group Provider.

52

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/knox-authentication/topics/security-knox-overview.html
https://docs.cloudera.com/cfm/4.11.0/deployment/topics/cfm-deployment-overview.html

Cloudera Flow Management Customizing properties in Cloudera Manager

Related Information
Pairing LDAP with a Composite Group Provider

53

	Contents
	Cluster-level security recommendations
	Identity and policies in Apache NiFi
	TLS/SSL configuration
	Enabling Auto-TLS
	Configuring TLS/SSL manually
	TLS/SSL certificate requirements and recommendations
	Configuring TLS/SSL encryption manually for NiFi and NiFi Registry
	NiFi TLS/SSL properties
	NiFi Registry TLS/SSL properties

	Authentication
	Kerberos authentication
	Customizing Kerberos principal

	LDAP authentication
	SAML authentication
	OpenID Connect authentication
	Identity mapping properties

	Hardening ZooKeeper Znodes for NiFi security
	Preparations
	Reconfiguring NiFi
	Znode hardening

	Authorization
	User group providers
	LDAP integration
	LDAP and Ranger policies
	LDAP and file-based policies
	LDAP User Group Provider properties

	Pairing LDAP with a Composite Group Provider

	Access policies providers
	Ranger authorization
	Understanding the Ranger authorization process for CFM
	Ranger-based NiFi policy descriptions
	Predefined Ranger access policies for Apache NiFi
	Predefined Ranger access policies for Apache NiFi Registry
	Predefined component-level policies for Apache NiFi
	Apache NiFi restricted components
	Adding user to a pre-defined Ranger access policy
	Creating a custom Ranger access policy
	Authorization example
	Enabling access to Knox and NiFi

	File-based authorization
	Migrating file-based authorization to Ranger
	Migrating NiFi file-based authorization to Ranger
	Migrating NiFi Registry file-based authorization to Ranger

	Environment variables
	Kerberos credentials
	Local file system access

	Network
	Default ports for NiFi and NiFi Registry

	FIPS 140-2 compliance
	Encrypting NiFi sensitive properties with FIPS 140-2 approved algorithm
	Deploying Cloudera Flow Management on FIPS-enabled clusters

	Integrations
	Integrating NiFi and Atlas
	Manually integrating with Atlas when Auto-TLS is not enabled
	Manually integrating with Atlas when Auto-TLS is enabled

	Integrating NiFi and NiFi Registry with Knox

	Customizing properties in Cloudera Manager

