
CDP Private Cloud Base 7.1.1

Cloudera Navigator Encrypt
Date published: 2020-11-30
Date modified: 2020-11-30

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

CDP Private Cloud Base | Contents | iii

Contents

Cloudera Navigator Encrypt Overview... 5
Process-Based Access Control List..5
Encryption Key Storage and Management.. 7

Registering Cloudera Navigator Encrypt with Key Trustee Server....................8
Prerequisites.. 8
Registering with Key Trustee Server...8

Preparing for Encryption Using Cloudera Navigator Encrypt..........................12
Navigator Encrypt Commands... 12
Preparing for Encryption.. 12
Block-Level Encryption with dm-crypt... 13

Block-Level Encryption with a Loop Device.. 14
Navigator Encrypt and Device UUIDs.. 15
Pass-through Mount Options for navencrypt-prepare..16

Encrypting and Decrypting Data Using Cloudera Navigator Encrypt..............16
Before You Begin...17
Encrypting Data.. 17
Decrypting Data.. 18

Converting from Device Names to UUIDs for Encrypted Devices.................... 19
Preparing for UUID Conversion.. 19
Converting a Single Device... 20
Converting All Available Devices... 20
Finalizing the Conversion...21
Rolling Back the UUID Conversion.. 22

Navigator Encrypt Access Control List... 22
Managing the Access Control List...22
ACL Profile Rules.. 26

Maintaining Cloudera Navigator Encrypt...27
Manually Backing Up Navigator Encrypt... 27
Validating Navigator Encrypt Configuration... 28
Restoring Mount Encryption Keys (MEKs) and Control File...28
Access Modes... 28
Changing and Verifying the Master Key...29
Listing Categories... 30
Updating ACL Fingerprints..30
Managing Mount Points... 30
Navigator Encrypt Kernel Module Setup...31
Navigator Encrypt Configuration Directory Structure...31

Collecting Navigator Encrypt Environment Information...32
Upgrading Navigator Encrypt Hosts.. 33

CDP Private Cloud Base Cloudera Navigator Encrypt Overview

Cloudera Navigator Encrypt Overview

Cloudera Navigator Encrypt transparently encrypts and secures data at rest without requiring changes to your
applications, and ensures minimal performance lag in the encryption or decryption process. Advanced key
management with Cloudera Navigator Key Trustee Server and process-based access controls in Navigator Encrypt
enable organizations to meet compliance regulations and prevent unauthorized parties or malicious actors from
gaining access to encrypted data.

Navigator Encrypt features include:

• Automatic key management: Encryption keys are stored in Key Trustee Server to separate the keys from the
encrypted data. If the encrypted data is compromised, it is useless without the encryption key.

• Transparent encryption and decryption: Protected data is encrypted and decrypted seamlessly, with minimal
performance impact and no modification to the software accessing the data.

• Process-based access controls: Processes are authorized individually to access encrypted data. If the process is
modified in any way, access is denied, preventing malicious users from using customized application binaries to
bypass the access control.

• Performance: Navigator Encrypt supports the Intel AES-NI cryptographic accelerator for enhanced performance
in the encryption and decryption process.

• Compliance: Navigator Encrypt enables you to comply with requirements for HIPAA-HITECH, PCI-DSS,
FISMA, EU Data Protection Directive, and other data security regulations.

• Multi-distribution support: Navigator Encrypt supports Debian, Ubuntu, RHEL, CentOS, and SLES.
• Simple installation: Navigator Encrypt is distributed as RPM and DEB packages, as well as SLES KMPs.
• Multiple mountpoints: You can separate data into different mountpoints, each with its own encryption key.

Navigator Encrypt can be used with many kinds of data, including (but not limited to):

• Databases
• Temporary files (YARN containers, spill files, and so on)
• Log files
• Data directories
• Configuration files

Navigator Encrypt uses dmcrypt for its underlying cryptographic operations. Navigator Encrypt uses several different
encryption keys:

• Master Key: The master key can be a single passphrase, dual passphrase, or RSA key file. The master key is
stored in Key Trustee Server and cached locally. This key is used when registering with a Key Trustee Server and
when performing administrative functions on Navigator Encrypt clients.

• Mount Encryption Key (MEK): This key is generated by Navigator Encrypt using openssl rand by default, but it
can alternatively use /dev/urandom. This key is generated when preparing a new mount point. Each mount point
has its own MEK. This key is uploaded to Key Trustee Server.

• dmcrypt Device Encryption Key (DEK): This key is not managed by Navigator Encrypt or Key Trustee Server. It
is managed locally by dmcrypt and stored in the header of the device.

Related Information
Installing Cloudera Navigator Encrypt

Process-Based Access Control List
The access control list (ACL) controls access to specified data. The ACL uses a process fingerprint, which is the
SHA256 hash of the process binary, for authentication. You can create rules to allow a process to access specific files
or directories. The ACL file is encrypted with the client master key and stored locally for quick access and updates.

5

https://docs.cloudera.com/cloudera-manager/7.1.1/security-key-trustee-server/index.html
https://docs.cloudera.com/cloudera-manager/7.1.1/installation/topics/cdpdc-installing-navigator-encrypt.html

CDP Private Cloud Base Cloudera Navigator Encrypt Overview

Here is an example rule:

"ALLOW @mydata * /usr/bin/myapp"

This rule allows the /usr/bin/myapp process to access any encrypted path (*) that was encrypted under the category
@mydata.

Note: You have the option of using wildcard characters when defining process-based ACLs. The following
example shows valid wildcard definitions:

"ALLOW @* * *"
"ALLOW @* path/* /path/to/process"

Navigator Encrypt uses a kernel module that intercepts any input/output (I/O) sent to an encrypted and managed path.
The Linux module file name is navencryptfs.ko and it resides in the kernel stack, injecting file system hooks. It also
authenticates and authorizes processes and caches authentication results for increased performance.

Because the kernel module intercepts and does not modify I/O, it supports any file system (ext3, ext4, xfs, and so on).

The following diagram shows /usr/bin/myapp sending an open() call that is intercepted by navencrypt-kernel-module
as an open hook:

The kernel module calculates the process fingerprint. If the authentication cache already has the fingerprint, the
process is allowed to access the data. If the fingerprint is not in the cache, the fingerprint is checked against the ACL.
If the ACL grants access, the fingerprint is added to the authentication cache, and the process is permitted to access
the data.

When you add an ACL rule, you are prompted for the master key. If the rule is accepted, the ACL rules file is updated
as well as the navencrypt-kernel-module ACL cache.

The next diagram illustrates different aspects of Navigator Encrypt:

6

CDP Private Cloud Base Cloudera Navigator Encrypt Overview

The user adds a rule to allow /usr/bin/myapp to access the encrypted data in the category @mylogs, and adds another
rule to allow /usr/bin/myapp to access encrypted data in the category @mydata. These two rules are loaded into the
navencrypt-kernel-module cache after restarting the kernel module.

The /mydata directory is encrypted under the @mydata category and /mylogs is encrypted under the @mylogs
category using dmcrypt (block device encryption).

When myapp tries to issue I/O to an encrypted directory, the kernel module calculates the fingerprint of the process (/
usr/bin/myapp) and compares it with the list of authorized fingerprints in the cache.

Encryption Key Storage and Management
The master key and mount encryption keys are securely deposited in Key Trustee Server. One MEK per mount point
is stored locally for offline recovery and rapid access. The locally-stored MEKs are encrypted with the master key.

The connection between Navigator Encrypt and Key Trustee Server is secured with TLS/SSL certificates.

The following diagram demonstrates the communication process between Navigator Encrypt and Key Trustee Server:

The master key is encrypted with a local GPG key. Before being stored in the Key Trustee Server database, it is
encrypted again with the Key Trustee Server GPG key. When the master key is needed to perform a Navigator
Encrypt operation, Key Trustee Server decrypts the stored key with its server GPG key and sends it back to the client
(in this case, Navigator Encrypt), which decrypts the deposit with the local GPG key.

All communication occurs over TLS-encrypted connections.

7

CDP Private Cloud Base Registering Cloudera Navigator Encrypt with Key Trustee Server

Registering Cloudera Navigator Encrypt with Key Trustee
Server

Prerequisites

Functioning Navigator Key Trustee Server

After installing Navigator Encrypt on a host, you must register the host with Navigator Key Trustee Server. If you
have not yet installed Navigator Key Trustee Server, see Installing Cloudera Navigator Key Trustee Server for
instructions.

Key Trustee Server Organization

To register with Key Trustee Server, you must have an existing organization. See Managing Key Trustee Server
Organizations for information about creating and viewing organizations in Key Trustee Server.

Master Password

The Master Key is the primary Navigator Encrypt administrator access code and is configured by the Navigator
Encrypt administrator during installation. The Master Key can take any one of three different forms:

• If you choose a passphrase (single), it must be between 15 and 32 characters long.
• If you choose passphrase (dual), both must be between 15 and 32 characters long.
• If you choose the RSA option, enter a path to the RSA key file, and if it has RSA passphrase, enter it for this

private key.

Warning: It is extremely important that you keep your master password secret and safe. In the event that
you lose your master password, you will never be able to recover it, leaving your encrypted data irretrievably
locked away.

Registering with Key Trustee Server
After installing Navigator Encrypt on a host, you must register the host with Navigator Key Trustee Server in order
to encrypt and decrypt data. The following section lists the command options for registering your Navigator Encrypt
client.

Note: Do not run Navigator Encrypt commands with the screen utility.

If the TLS certificate is signed by an internal CA that is not publicly recognized, then you must add the root
certificate to the host certificate truststore of each Navigator Encrypt client.

Example command:

sudo navencrypt register --server=https://keytrustee01.example.com:11371
 --passive-server=https://keytrustee02.example.com:11371 --o
rg=your_keytrustee_org --auth=org_auth_token

8

https://docs.cloudera.com/cloudera-manager/7.1.1/installation/topics/cdpdc-installing-key-trustee-server.html
https://docs.cloudera.com/cloudera-manager/7.1.1/security-key-trustee-server/topics/cm-security-key-trustee-orgtool.html
https://docs.cloudera.com/cloudera-manager/7.1.1/security-key-trustee-server/topics/cm-security-key-trustee-orgtool.html

CDP Private Cloud Base Registering Cloudera Navigator Encrypt with Key Trustee Server

Table 1: Registration Options

Command Option Explanation

--clientname=my_client_name User-defined unique name for this client to be used for administration
and reports. You can verify your client name in the /etc/navencrypt/
keytrustee/clientname file.

--server=https://keytrustee01.example.com:11371 Target Active Key Trustee Server for key storage. Replace
keytrustee01.example.com:11371 with the hostname and port of the
Active Key Trustee Server. The default port is 11371.

--passive-server=https://keytrustee02.example.com:11371 Target Passive Key Trustee Server for key storage. Replace
keytrustee02.example.com:11371 with the hostname and port of the
Passive Key Trustee Server. The default port is 11371.

--org=your_keytrustee_org Key Trustee organization name configured by the Key Trustee Server
administrator

--auth=org_auth_token Organization authorization token, a pre-shared secret by the Navigator
Key Trustee Server administrator

--skip-ssl-check Skip SSL certificate verification. Use with self-signed certificates on
the Navigator Key Trustee Server

--trustee Add trustees for retrieval of the master key

--votes Configure voting policy for trustees

--recoverable Master Key will be uploaded without encrypting it with your local
GPG Navigator Key Trustee

--scheme "<scheme>" Key Trustee Server scheme that Navigator Encrypt uses for public key
operations. Specify "http" or "https".

--port Key Trustee Server port that Navigator Encrypt uses for public key
operations.

Registering with Previous Versions of Key Trustee Server

By default, new installations of Navigator Key Trustee Server 5.4.0 use a single HTTPS port for key storage and
public key operations. Previous versions and upgrades use separate ports for key storage and public key operations.
For backward compatibility, Navigator Encrypt 3.7.0 introduces the --scheme and --port parameters for the navencry
pt register command.

For example, to register a version 3.7.0 Navigator Encrypt client with a version 3.8.0 Key Trustee Server using
HTTPS over port 443 for key storage and HTTP over port 80 for public key operations, run the following command:

sudo navencrypt register --server=https://keytrustee.example.com:443 --o
rg=key_trustee_org --auth=auth_token --scheme "http" --port 80

Navigator Encrypt versions lower than 3.7.0 do not support the --scheme and --port parameters. For these versions
of Navigator Encrypt, you must ensure that the Key Trustee Server is configured to use port 443 (HTTPS) for key
storage and port 80 (HTTP) for public key operations.

Navigator Encrypt versions lower than 3.8.0 do not support the --passive-server parameter.

Updating Key Trustee Server Ports

The navencrypt register command does not provide the ability to change the ports for existing registrations. If the Key
Trustee Server ports are changed, you must update /etc/navencrypt/keytrustee/ztrustee.conf with the new port and
scheme parameters (HKP_PORT and HKP_SCHEME, respectively).

For example, see the following ztrustee.conf excerpt from a registered client that has been upgraded to Navigator
Encrypt 3.7.0:

{

9

CDP Private Cloud Base Registering Cloudera Navigator Encrypt with Key Trustee Server

 "LOCAL_FINGERPRINT": "2048R/182AAA838DC300AC334258D8E7F299BFB68
A6F6F",
 "REMOTES": {
 "kts01.example.com": {
 "REMOTE_FINGERPRINT": "4096R/AF6400E12DC149799CA8
CE6BF1604C34D830DE20",
 "REMOTE_SERVER": "https://kts01.example.com",
 "DEFAULT": true,
 "SSL_INSECURE": false,
 "PROTOCOL": "json-encrypt"
 }
 }
}

In this example, the Key Trustee Server (keytrustee.example.com) is using the default configuration of port 443
(HTTPS) for key storage and port 80 (HTTP) for public key operations.

If the Key Trustee Server is then updated to use port 11371 (HTTPS) for both key storage and public key operations,
you must update ztrustee.conf as follows (changes in bold):

{
 "LOCAL_FINGERPRINT": "2048R/182AAA838DC300AC334258D8E7F299BFB68
A6F6F",
 "REMOTES": {
 "kts01.example.com": {
 "REMOTE_FINGERPRINT": "4096R/AF6400E12DC149799CA8
CE6BF1604C34D830DE20",
 "REMOTE_SERVER": "https://kts01.exampl
e.com:11371",
 "HKP_PORT": 11371,
 "HKP_SCHEME": "https",
 "DEFAULT": true,
 "SSL_INSECURE": false,
 "PROTOCOL": "json-encrypt"
 }
 }
}

Updating Navigator Encrypt for High Availability Key Trustee Server

If you registered a Navigator Encrypt client with a standalone Key Trustee Server, and then configured high
availability for Key Trustee Server, you can edit /etc/navencrypt/keytrustee/ztrustee.conf to enable the client to take
advantage of the high availability features. The following example shows the contents of ztrustee.conf after adding
the required REMOTE_SERVERS entry (changes in bold):

{
 "LOCAL_FINGERPRINT": "2048R/182AAA838DC300AC334258D8E7F299BFB68
A6F6F",
 "REMOTES": {
 "kts01.example.com": {
 "REMOTE_FINGERPRINT": "4096R/AF6400E12DC149799CA8
CE6BF1604C34D830DE20",
 "REMOTE_SERVER": "https://kts01.example.co
m:11371",
 "HKP_PORT": 11371,
 "HKP_SCHEME": "https",
 "DEFAULT": true,
 "REMOTE_SERVERS": ["https://
kts01.example.com:11371", "https://kts02.example.com:11371"],
 "SSL_INSECURE": true,
 "PROTOCOL": "json-encrypt"
 }

10

https://docs.cloudera.com/cloudera-manager/7.1.1/security-key-trustee-server/topics/cm-security-kts-ha-overview.html
https://docs.cloudera.com/cloudera-manager/7.1.1/security-key-trustee-server/topics/cm-security-kts-ha-overview.html

CDP Private Cloud Base Registering Cloudera Navigator Encrypt with Key Trustee Server

 }
}

Configuration Files

The installer creates the /etc/navencrypt directory. All configuration settings are saved in this directory. Do not delete
any file from /etc/navencrypt. These files provide the necessary information for the Navigator Encrypt application to
function properly.

Warning: Perform backups of encrypted data, mount-points, and Navigator Encrypt configuration
directories on a regular basis. To do this, ensure you have a backup of /etc/navencrypt. Failure to backup this
directory will make your backed up encrypted data unrecoverable in the event of data loss.

Change Master Key by UUID

It is possible to re-use a previously used Master Key by its UUID. For example, if you currently have a Master key
with a single passphrase, you can see the corresponding Navigator Key Trustee UUID in the /etc/navencrypt/control
file:

$ cat /etc/navencrypt/control
{
 "app": {
 "name": "navencrypt",
 "version": "3.5"
 },
 "keys": {
 "master": {
 "type": "single-passphrase",
 "uuid": "qMAKRMdk4HVbhfzR79cp9w92YBmNHJ5nSLhfd8ZVo6L"
 },
 "targets": []
 }
}

Note: If the control file is accidentally deleted, you can restore it using the navencrypt control --restore-con
trol-file command.

You can copy the UUID (qMAKRMdk4HVbhfzR79cp9w92YBmNHJ5nSLhfd8ZVo6L in this example) and run nave
ncrypt key --change with option --new-master-key-uuid to change a Master Key by using its UUID only:

$ sudo navencrypt key --change --new-master-key-uuid=qMAKRMdk4HVbhfzR79cp9w9
2YBmNHJ5nSLhfd8ZVo6L
>> Type your OLD Master key
Type MASTER passphrase 1:
Type MASTER passphrase 2:
Verifying Master Key against Navigator Key Trustee (wait a moment)...
OK
Changing Master key (wait a moment)...
 * Setting up EXISTING MASTER key...
 * Uploading CONTROL content...
 * Re-encrypting local keys...
Master key successfully changed.

Note: The navencrypt key command fails if no volumes are encrypted or the kernel module is not loaded.

11

CDP Private Cloud Base Preparing for Encryption Using Cloudera Navigator Encrypt

Preparing for Encryption Using Cloudera Navigator
Encrypt

Before you can encrypt data, you must prepare a storage repository to hold the encrypted data and a mount point
through which to access the encrypted data. The storage repository and mount point must exist before encrypting data
using the navencrypt-move command.

Data stored and retrieved from the repository is encrypted and decrypted transparently.

Cloudera Navigator Encrypt does not support:

• Encrypting a directory that contains or is contained within a mount point for another service (including Navigator
Encrypt and NFS). See Encrypting Data on page 17 for more information.

• Encrypting immutable files or directories containing immutable files.
• Installation or use in chroot environments, including creating chroot environments within an encrypted directory.
• Encrypting HDFS data files.

Navigator Encrypt Commands
Note: Do not run Navigator Encrypt commands with the screen utility.

The following table lists the commands used to encrypt data:

Table 2: Navigator Encrypt Commands

Command Description

navencrypt Manage, update, and verify your data.

navencrypt-prepare Prepare your system for encryption by creating mount-points and
specifying storage.

navencrypt-prepare --undo Remove a mountpoint that is no longer in use.

navencrypt-move Encrypt/decrypt your data to/from the encrypted file system.

navencrypt-profile Generate process profile information in JSON format.

navencrypt-module-setup Build or rebuild the Navigator Encrypt kernel module.

Preparing for Encryption
Note: When using an HSM with Key Trustee Server and Navigator Encrypt, encrypting many block devices
may exceed the capacity of the HSM. A key is created in the HSM for each encrypted block device, so be
sure that your HSM can support your encryption requirements.

To get an in-depth look at the details behind the navencrypt-prepare command, or to use a unique configuration, use
the interactive prompt by executing navencrypt-prepare with no options. This launches an interactive console that
guides you through the following operations:

• Creating internal encryption keys
• Registering internal keys in Navigator Key Trustee
• Registering mount point in /etc/navencrypt/ztab
• Mounting current mount point
• Establishing encryption method (dm-crypt for devices)

12

CDP Private Cloud Base Preparing for Encryption Using Cloudera Navigator Encrypt

Using the console, you can choose how you want your data stored and accessed. Navigator Encrypt offers block-level
encryption with dm-crypt, which protects your data by encrypting the entire device. This enables full disk encryption
and is optimized for some system configurations. You can use block-level encryption with logical devices such as a
loop device.

See Block-Level Encryption with dm-crypt on page 13 for more information.

To prepare for encryption, you must specify a location to store the encrypted data and a mount point through which to
access the data. The storage location and mount point must be created before encrypting data.

Note: If you are performing a file system check as part of your preparation work, then note that the crypto
device must be mapped and active. Also, be aware that if you execute fsck in force mode (-f) , there is a risk
of data loss. If the force operation fails, it could cause file system corruption at the device header.

Block-Level Encryption with dm-crypt
When choosing block-level encryption in the interactive console, you must specify two parameters:

1. The first parameter is the block device that you want to store the encrypted file system in. Because this device
stores all of the encrypted data, it must be as large as or larger than the target data. The device must exist and be
empty. Supported storage devices are:

• Physical block devices (for example, a disk device)
• Virtual block devices (for example, a block device created by LVM)
• Loop devices (see Block-Level Encryption with a Loop Device on page 14 for instructions on creating a

loop device)

Important: If the block device to be used for encryption was previously used by the host, entries for
it must be removed from the file /etc/fstab before running the navencrypt-prepare command.

2. The second parameter is the mount point for the encrypted file system. This is the location where you can access
the encrypted data stored in the first parameter. The mount point must already exist. It is not created by the nave
ncrypt-prepare command.

The entire device in the first parameter is used for encrypted data.

Note: Do not manually unmount the encryption mount point (for example, using umount). If you do so, you
must manually close the dm-crypt device using the following procedure:

1. Run dmsetup table to list the dm-crypt devices.
2. Run cryptsetup luksClose <device_name> to close the device for the unmounted mount point.

After specifying these two parameters and following the interactive console (discussed further in Preparing for
Encryption on page 12), you are ready to encrypt your data.

The syntax for the prepare command is as follows:

sudo navencrypt-prepare <device_name> <mount_point>

When specifying the mount point path, do not use a trailing / in the path names. The mount point directory must exist
prior to running the navencrypt-prepare command.

For RHEL 7, run the following command after the navencrypt-prepare command completes:

sudo systemctl start navencrypt-mount

The following example shows successful output from a navencrypt-prepare command using dm-crypt for block-level
encryption:

$ sudo /usr/sbin/navencrypt-prepare urandom /mnt/dm_encrypted
Type MASTER passphrase:
Encryption Type: dmCrypt (LUKS)

13

https://en.wikipedia.org/wiki/Logical_Volume_Manager_(Linux)

CDP Private Cloud Base Preparing for Encryption Using Cloudera Navigator Encrypt

Cipher: aes
Key Size: 256
Random Interface: /dev/urandom
Filesystem: ext4
Verifying MASTER key against Navigator Key Trustee (wait a moment) ... OK
Generation Encryption Keys with /dev/urandom ... OK
Preparing dmCrypt device (--use-urandom) ... OK
Creating ext4 filesystem ... OK
Registering Encryption Keys (wait a moment) ... OK
Mounting /dev/sda1 ... OK

After you have successfully prepared a client for encryption, you can encrypt and decrypt data using the commands
described in Encrypting and Decrypting Data Using Cloudera Navigator Encrypt on page 16.

Block-Level Encryption with a Loop Device

A block-level encrypted device can be a physical device or a storage space treated as a device.

To configure a loop device, use the dd command to create a storage space:

Warning: The space for the loop device is pre-allocated. After the loop device is created, the size cannot
be changed. Make sure you are allocating enough storage for the current encrypted data as well as any future
data.

If your disks are mounted individually with a file system on each disk, and your storage needs exceed the
capacity of a single disk, you can create a loop device on each disk for which you want to allocate space for
encrypted data. If you have consolidated storage (for example, using LVM), you can create a single loop
device or multiple devices.

sudo dd if=/dev/zero of=/dmcrypt/storage bs=1G count=500

The dd command above creates a 500 GB file. Modify the bs and count values to generate the required file size.

After generating the file, run losetup -f to view unused loop devices. Use the available loop device with the navencry
pt-prepare -d command, demonstrated below.

Specifically for loop devices, the -d parameter enables Navigator Encrypt to manage the loop device association.
You no longer need to use the losetup command to associate the file with the loop device, and the loop device is
automatically prepared at boot. For RHEL 7-compatible OS, you must run the following commands to ensure that a
loop device is available at boot:

sudo bash -c 'echo "loop" > /etc/modules-load.d/loop.conf'
sudo bash -c 'echo "options loop max_loop=8" > /etc/modprobe.d/loop_optio
ns.conf'

Warning: Loop devices are not created by Navigator Encrypt. Instead, Navigator Encrypt assigns a
datastore to a loop device when the navencrypt-prepare --datastore option is used. So, it is up to the system
administrator to create persistent /dev/loopX devices, which are required to prepare a virtual block device.
If the loop device being prepared is not persistent, then Navigator Encrypt will not mount the device upon a
reboot.

The data storage directory name (/dmcrypt/storage in the previous example) must contain only alphanumeric
characters, spaces, hyphens (-), or underscores (_). Other special characters are not supported.

The following example shows the output from a successful command:

$ losetup -f
/dev/loop0
$ sudo navencrypt-prepare -d /dmcrypt/storage /dev/loop0 /dmcrypt/mountpoint
Type MASTER passphrase:

Encryption Type: dmCrypt (LUKS)

14

CDP Private Cloud Base Preparing for Encryption Using Cloudera Navigator Encrypt

Cipher: aes
Key Size: 256
Random Interface: OpenSSL
Filesystem: ext4
Options:

Verifying MASTER key against KeyTrustee (wait a moment) ... OK
Generation Encryption Keys with OpenSSL ... OK
Assigning '/dev/loop0'->'/dmcrypt/storage' ... OK
Preparing dmCrypt device ... OK
Creating ext4 filesystem ... OK
Registering Encryption Keys (wait a moment) ... OK
Mounting /dev/loop0 ... OK

For upgraded Navigator Encrypt clients that already use loop devices, you can enable Navigator Encrypt to manage
the loop device file association (instead of configuring the system to run the losetup command at boot) by adding the
nav_datastore option to the entry in /etc/navencrypt/ztab. For example:

<target mount-dir> <source device> <type> <options>
/dmcrypt/mountpoint /dev/loop0 luks key=keytrustee,nav_datastor
e='/dmcrypt/storage'

Important: Use caution when editing the /etc/navencrypt/ztab file. Entries are tab-separated (not space-
separated). The ztab file must not contain empty lines.

After you have created the loop device, continue with the instructions in Block-Level Encryption with dm-crypt on
page 13.

Navigator Encrypt and Device UUIDs
Navigator Encrypt has always prepared and identified devices simply using a device name, such as /dev/sdb1 or /dev/
loop0. However, we know that using a device name or label could lead to a conflict and impact system operations.

Navigator Encrypt also supports preparing devices using a UUID, in addition to device name. This UUID is simply a
symbolic link to the actual device, and is created when preparing a device with Navigator Encrypt during a navencry
pt-prepare operation.

The advantage of using a device UUID is that if a device’s name changes, the UUID associated with that device
does not change. To ensure that Navigator Encrypt recognizes devices even when the device name changes, enter the
command:

navencrypt-prepare --use-uuid /dev/sda1 /mountpoint

To unprepare (ensure the device UUID is included), enter either of the following commands:

navencrypt-prepare --undo-force /dev/disk/by-uuid/3a602a15-11f7-46ac-ae98-0a
51e1b25cf9
navencrypt-prepare --undo /dev/disk/by-uuid/3a602a15-11f7-46ac-ae98-0a51e
1b25cf9

Note: While the device name is still used in the navencrypt-prepare statement, rest assured that Navigator
Encrypt handles the device by the UUID, which is calculated and used for mount during boot. The device
name is used for convenience so that you do not have to explicitly input the UUID in the command.
Ultimately, Navigator Encrypt handles the device via the device UUID rather than the device name.

Important: UUID device support does not include loop devices; rather, it only applies to physical devices.
When preparing loop devices with Navigator Encrypt, always use the device name.

15

CDP Private Cloud Base Encrypting and Decrypting Data Using Cloudera Navigator Encrypt

Pass-through Mount Options for navencrypt-prepare
Navigator Encrypt 3.5 and higher provides the ability to specify options to pass to the mount command that is
executed during /etc/init.d/navencrypt-mount start (systemctl start navencrypt-mount on RHEL 7). These options are
specified with the -o option when preparing a mountpoint with the navencrypt-prepare command.

The following shows an example navencrypt-prepare command output when passing mount options with the -o
option:

$ sudo navencrypt-prepare -o discard,resize /mnt/t2 /mnt/t2
Type MASTER passphrase:
Encryption Type: dmCrypt (LUKS)
Cipher: aes
Key Size: 256
Random Interface: OpenSSL
Filesystem: ext4
Options: discard,resize
Verifying MASTER key against Navigator Key Trustee(wait a moment) ... OK
Generation Encryption Keys with OpenSSL ... OK
Registering Encryption Keys (wait a moment) ... OK
Mounting /mnt/t2 ... OK

You can verify the results by viewing the /etc/navencrypt/ztab file:

$ cat /etc/navencrypt/ztab
/mnt/t2 /mnt/t2 dmcrypt key=keytrustee,cipher=aes,keysize=256,discard,resize

Options can be added or removed to existing mount points prepared with versions of Navigator Encrypt prior to 3.5
by editing the /etc/navencrypt/ztab file and adding the comma-separated options (no spaces) to the end of each line as
seen in the previous example above.

Important: Use caution when editing the /etc/navencrypt/ztab file. Entries are tab-separated (not space-
separated). The ztab file must not contain empty lines.

To see the mounted file systems and options, run mount:

$ mount
/mnt/t2 on /mnt/t2 type dmcrypt (rw,dmcrypt_sig=6de3db1e87077adb,ecryptfs_un
link_sigs,noauto,\
dmcrypt_cipher=aes,dmcrypt_key_bytes=32,discard,resize)

For a list of available mount options, see the man pages for cryptsetup and dmCrypt respectively.

Encrypting and Decrypting Data Using Cloudera
Navigator Encrypt

Warning: Before encrypting or decrypting any data, stop all processes (for example, MySQL, MongoDB,
PostgreSQL, and so on) that have access to the target data. Failure to do so could lead to data corruption.

After the encrypted file system is created and initialized, it is ready to hold data. All encryption and decryption
functionality is performed with a single command: navencrypt-move.

Do not manually create directories or files under a Cloudera Navigator Encrypt mount point; use only the navencrypt-
move command to encrypt and decrypt data. See Preparing for Encryption Using Cloudera Navigator Encrypt on page
12 for more information about mount points.

16

CDP Private Cloud Base Encrypting and Decrypting Data Using Cloudera Navigator Encrypt

After encrypting a file or directory, all data written and read through the mount point is transparently encrypted and
decrypted.

Before You Begin
Navigator Encrypt does not support encrypting data in certain environments, including the following:

• Do not attempt to encrypt a directory that contains or is contained within a mount point for another service
(including Navigator Encrypt and NFS). For example:

• If your encryption mount point is /var/lib/navencrypt/mount, do not attempt to encrypt /var, /var/lib, /var/lib/
navencrypt, /var/lib/navencrypt/mount, or anything under /var/lib/navencrypt/mount/.

• If you have mounted an NFS file system at /mnt/home, do not attempt to encrypt /mnt, /mnt/home, or anything
under /mnt/home.

• Do not attempt to encrypt immutable files or directories containing immutable files.
• Do not use Navigator Encrypt within a chroot environment, or create a chroot environment within an encrypted

directory.
• If your Key Trustee Server is managed by Cloudera Manager, do not encrypt the Cloudera Manager database with

Navigator Encrypt; doing so prevents Cloudera Manager from starting.

Encrypting Data
Do not manually create directories or files under a Navigator Encrypt mount point; use only the navencrypt-move
command to encrypt data.

Here is an example command to encrypt data, with an explanation for each option:

sudo navencrypt-move encrypt @<category> <directory_or_file_to_encrypt> <enc
rypted_mount_point>

Important: Do not run navencrypt-move commands simultaneously in multiple terminals. Doing so results
in failure to encrypt or decrypt all of the specified data. No data is lost, as the source data is not removed, but
you must re-run the failed operations sequentially.

Table 3: navencrypt-move Command Options

Command Option Explanation

navencrypt-move Main command interface for all actions that require moving data either
to or from the encrypted file system. For more information see the nave
ncrypt-move man page (man navencrypt-move).

encrypt Identifies the cryptographic operation, in this case, encrypting data.
The decrypt option is described later in Decrypting Data on page
18.

Note: By default, all Navigator Encrypt encryption
commands require free space equal to twice the size of
the encrypted data. If your environment does not have
enough free space, add --per-file to the end of the command.
This moves each file individually. Per-file encryption only
requires free space equal to twice the size of the largest
individual file, but is a slower operation.

17

CDP Private Cloud Base Encrypting and Decrypting Data Using Cloudera Navigator Encrypt

Command Option Explanation

@<category> The access category that is applied to the data being encrypted.
Encrypted data is protected by process-based access controls that
restrict access to only the processes that you allow. You can use any
naming convention you want (the @ symbol is required), but Cloudera
recommends keeping it simple and memorable. For example, you can
use a name referencing the data type being encrypted, such as @mysql
for a MySQL deployment. See Listing Categories on page 30 for
instructions on viewing existing categories.

<directory_or_file_to_encrypt> The data that you want to encrypt. This can be a single file or an entire
directory. Navigator Encrypt starts after the system boots, so do not
encrypt required system files and directories (such as the root partition,
/var, and so on). Some examples of recommended data directories to
encrypt are /var/lib/mysql/data, /db/data, and so on.

<encrypted_mount_point> Where you want to store the data. This is the path to the mount point
specified during the navencrypt-prepare command.

When a file is encrypted, a symbolic link (symlink) is created which points to a mount point @<category> directory.
The navencrypt-move command moves all specified data to the encrypted file system and replaces it with a symlink
to the mount point for that encrypted file system.

Encrypting a directory is similar to encrypting a file. The following command encrypts a directory:

sudo /usr/sbin/navencrypt-move encrypt @mycategory /path/to/directory_to_enc
rypt/ /path/to/mount

In this command, a directory is specified instead of a file name, and a symlink is created for that particular directory.
To see the effects of this command, run:

ls -l <directory_to_encrypt>
du -h <encrypted_storage_directory>

The output demonstrates the new file system layout. Everything that was in the target directory is now securely stored
in the encrypted file system.

Decrypting Data
The decryption command requires only the path to the original data, which is now a symbolic link, as an argument.
The following example demonstrates how to decrypt a file using the navencrypt-move command:

sudo /usr/sbin/navencrypt-move decrypt /path/to/encrypted/directory_or_file

Important: Do not run navencrypt-move commands simultaneously in multiple terminals. Doing so results
in failure to encrypt or decrypt all of the specified data. No data is lost, as the source data is not removed, but
you must re-run the failed operations sequentially.

As with encryption, you can specify a directory instead of a file:

sudo /usr/sbin/navencrypt-move decrypt /path/to/encrypted/directory

18

CDP Private Cloud Base Converting from Device Names to UUIDs for Encrypted Devices

Converting from Device Names to UUIDs for Encrypted
Devices

When configuring a Navigator Encrypt mount point, you can use either the device name (sample device name: /dev/
sdb1) or the UUID (sample UUID: 3a602a15-11f7-46ac-ae98-0a51e1b25cf9) to configure the mount point. For more
information, see Navigator Encrypt and Device UUIDs on page 15.

The UUID mount point configuration choice is preferable for Navigator Encrypt, because the device name can change
when the system is rebooted or new
disks are added, but the UUID never changes. You can only use the UUID (--use-uuid) configuration option during
the initial mount point configuration. You cannot use the UUID mount point configuration option on existing mount
points that were created in Navigator Encrypt 3.12.0 or earlier, or that were configured to use the device name instead
of the UUID.

For configurations where a device name was used, and you wish to convert to a UUID, you have the option to use
the UUID conversion utility (navencrypt-prepare --convert-uuid), which converts existing mount points from using
the device name to using the UUID. The UUID conversion utility updates the Navigator Encrypt configuration files
to use UUIDs, and then reloads the updated mount points. You can perform this conversion on mount points with
encrypted data without any impact on that data.

Important: Cloudera strongly recommends that Navigator Encrypt mount points that are currently using
the device name be converted to use the device UUID. This will prevent error situations when the Navigator
Encrypt mount points cannot be mounted, and the encrypted data cannot be accessed because the device name
changed.

Preparing for UUID Conversion
The UUID conversion utility runs as part of the navencrypt-prepare command:

navencrypt-prepare -h
...
--convert-uuid --all|--device=DEVICE
 Converts devices that are stored using the device name to instead use i
ts uuid.
 '--all' will attempt to convert all device names in the navencrypt ztab
 file.
 '--device=DEVICE' will convert a single device.
...

As shown, you have two options when running the UUID conversion utility:

• --device=DEVICE

Use this option to run the conversion against a single specified device.
• --all

Use this option to run the conversion against all mount points that are currently using the device name instead of
the UUID as defined in the /etc/navencrypt/ztab file.

The conversion utility first backs up all files in /etc/navencrypt to a timestamped directory under /tmp. Ensure that the
user running the navencrypt-prepare operation has permission to write to /tmp. If this backup directory is not created,
then the conversion script will exit without making any changes to the Navigator Encrypt configuration files.

19

CDP Private Cloud Base Converting from Device Names to UUIDs for Encrypted Devices

Note: Because the conversion utility backs up the Navigator Encrypt configuration files, it is not necessary
to back up the files separately. However, if you want the files backed up elsewhere (somewhere other than
the /tmp folder), then manually perform this backup by copying the /etc/navencrypt directory to the desired
location before running the conversion utility. Note that the conversion utility will still attempt to create its
own backup under /tmp, and will not run if this backup cannot be created.

Converting a Single Device
Use the UUID conversion utility --device=DEVICE option
to convert from a device name to UUID for a mount point on a single
device. It is recommended that you test the conversion against at least one device before running it
against all devices:

navencrypt-prepare --convert-uuid --device=/dev/xvdd

Backing up /etc/navencrypt to /tmp/navencrypt_bkup_20180917_135716 ...

Stopping navencrypt-mount...

Stopping navencrypt directories

Umounting /dev/xvdd ... [OK]
Umounting /dev/xvde ... [OK]
Umounting /dev/xvdf ... [OK]
* Unloading module ... [OK]

Running conversion on /dev/xvdd
...
..

You must approve and finalize the conversion before it is complete.

Converting All Available Devices
Use the UUID conversion utility --all option to convert from the device name to the device UUID on all available
devices. The conversion utility skips loop devices because they do not
have a dedicated UUID:

navencrypt-prepare --convert-uuid --all

Backing up /etc/navencrypt to /tmp/navencrypt_bkup_20180917_135731 ...

Stopping navencrypt-mount...
Stopping navencrypt directories
* Umounting /dev/xvdd ... [OK]
* Umounting /dev/xvde ... [OK]
* Umounting /dev/xvdf ... [OK]
* Unloading module ... [OK]

Running conversion on /dev/xvdd...

Running conversion on /dev/xvde...

Running conversion on /dev/xvdf...
...

You must approve and
finalize the conversion before it is complete.

20

CDP Private Cloud Base Converting from Device Names to UUIDs for Encrypted Devices

Finalizing the Conversion
Before the device name-to-UUID conversion is applied to the
configuration files, you must review and approve the differences between the
/etc/navencrypt/ztab and
/etc/navencrypt/control by either
accepting the changes ("y"), or rejecting them ("n").

navencrypt-prepare --convert-uuid --all
...
Running conversion on /dev/xvdd...
Running conversion on /dev/xvde...
Running conversion on /dev/xvdf...

Showing diff of ztab and control files

 ZTAB

2,4c2,4
< /navencrypt_mount/block1 /dev/xvdd luks key=keytrustee
< /navencrypt_mount/block2 /dev/xvde luks key=keytrustee
< /navencrypt_mount/block3 /dev/xvdf luks key=keytrustee

/navencrypt_mount/block1 /dev/disk/by-uuid/4206d6d5-6014-435a-b342-1d3
dad5559a2 luks key=keytrustee
> /navencrypt_mount/block2 /dev/disk/by-uuid/b84c4f38-bc74-40bc-87eb-2
e857a996933 luks key=keytrustee
> /navencrypt_mount/block3 /dev/disk/by-uuid/622312d0-0e6c-4e37-adeb-f60
66a1df07d luks key=keytrustee

 CONTROL

8c8
< "name": "/dev/xvdd",

> "name": "/dev/disk/by-uuid/4206d6d5-6014-435a-b342-1d3dad5559a2",
11c11
< "name": "/dev/xvde",

> "name": "/dev/disk/by-uuid/b84c4f38-bc74-40bc-87eb-2e857a996933",
14c14
< "name": "/dev/xvdf",

> "name": "/dev/disk/by-uuid/622312d0-0e6c-4e37-adeb-f6066a1df07d",

Accept changes? [y/N] y
Moving KeyTrustee deposit for /dev/xvdd...
Moving KeyTrustee deposit for /dev/xvde...
Moving KeyTrustee deposit for /dev/xvdf...
Operation complete
Overwriting old files...
Starting navencrypt-mount...
Starting navencrypt directories
 * Mounting '4206d6d5-6014-435a-b342-1d3dad5559a2' [OK]
 * Mounting 'b84c4f38-bc74-40bc-87eb-2e857a996933' [OK]
 * Mounting '622312d0-0e6c-4e37-adeb-f6066a1df07d' [OK]

If you reject the changes, the updated files are saved to /etc/navencrypt/ztab.new and /etc/navencrypt/control.new, and
the existing ztab and control files remain unchanged.

21

CDP Private Cloud Base Navigator Encrypt Access Control List

Warning: Do not manually copy the ztab.new and control.new files over the existing ztab and control files.
If upon review the new files are correct, then re-issue navencrypt-prepare --convert-uuid and select “y” to use
the updated files. If you modify the ztab and control files outside of the navencrypt-prepare script, then you
will encounter a conflict in the saved keytrustee deposits that will prevent the Navigator Encrypt mount points
from mounting.

navencrypt-prepare --convert-uuid --all
...
Accept changes? [y/N] n

Changes will not be applied. Proposed changes are saved to /etc/navencrypt/
ztab.new and /etc/navencrypt/control.new

Rolling Back the UUID Conversion
If you experience any problems with the device name-to-UUID conversion, you can restore the previous mount point
state by replacing the contents of the /etc/navencrypt/directory with the backup created by the conversion utility:

service navencrypt-mount stop
rm /etc/navencrypt/keytrustee/deposits/dev.disk.by-uuid.*
cp -rp /tmp/navencrypt_bkup_date_time/* /etc/navencrypt/
service navencrypt-mount start

Navigator Encrypt Access Control List

Managing the Access Control List
Cloudera Navigator Encrypt manages file system permissions with an access control list (ACL). This ACL is a
security access control created by Cloudera that enables a predefined Linux process to access a file or directory
managed by Navigator Encrypt.

The ACL uses rules to control process access to files. The rules specify whether a Linux process has access
permissions to read from or write to a specific Navigator Encrypt path.

A rule is defined in the following order:

TYPE @CATEGORY PATH PROCESS PARAMETERS

The following table defines the ACL rule components:

Table 4: ACL Rule Components

Component Description

TYPE Specifies whether to allow or deny a process. It can have either of the
following values: ALLOW or DENY.

@CATEGORY This is a user-defined shorthand, or container, for the encrypted dataset
that the process will have access to. For example, if you are encrypting
the directory /var/lib/mysql, you could use the category @mysql to
indicate that this rule is granting access to a process on the MySQL
data. See Listing Categories on page 30 for instructions on viewing
existing categories.

PATH Specifies the rights permissions of a specific path. For example: *,
www/*.htaccess. Omit the leading slash (/).

PROCESS Specifies the process or command name for the rule.

22

CDP Private Cloud Base Navigator Encrypt Access Control List

Component Description

PARAMETERS Tells the process the parent-child process to be executed:

--shell defines the script for Navigator Encrypt to allow for executable
process. Supported shells are /usr/bin/bash, /bin/bash, /usr/bin/dash,
and /bin/bash.

--children defines for Navigator Encrypt which child processes to allow
that are executed by a process/script.

Example: --shell=/bin/bash, --children=/bin/df,/bin/ls

All rules are stored in an encrypted policy file together with a set of process signatures that are used by Navigator
Encrypt to authenticate each Linux process. This file is encrypted with the Navigator Encrypt key you defined during
installation.

Cloudera recommends using permissive mode to assist with the initial ACL rule creation for your environment. In
permissive mode, Navigator Encrypt allows full access to the encrypted data by all processes, but logs them in dmesg
as action="denied" messages. Consult these messages to identify required ACL rules. To set Navigator Encrypt to
permissive mode, use the following command:

sudo /usr/sbin/navencrypt set --mode=permissive

To view the current mode, run navencrypt status -d. For more information on access modes, see Access Modes.

deny2allow

After you generate the action="denied" messages, use the navencrypt deny2allow command to show which ACL
rules are required, based on the action="denied" messages in dmesg. To show which ACL rules are required, perform
the following steps:

1. Save the dmesg content to a file:

sudo dmesg > /tmp/dmesg.txt

2. Use the dmesg.txt file content as input to the deny2allow command to analyze the action="denied" messages and
display a list of required ACL rules based on the action="denied" messages. Here is an example command and
output:

$ sudo /usr/sbin/navencrypt deny2allow /tmp/dmesg.txt
ALLOW @mysql employees/* /usr/sbin/mysqld
ALLOW @mysql * /bin/bash
ALLOW @mysql * /bin/ls

If you need to clear the dmesg log and start fresh, run dmesg -c.

If a rule is displayed in the output from the command, it does not automatically mean the ACL rule must be added.
You must determine which rules are actually needed. For example, the rule for ls would not typically be added as an
ACL rule.

After the initial ACL rules are created, disable permissive mode with the following command:

sudo /usr/sbin/navencrypt set --mode=enforcing

Adding ACL Rules

Rules can be added one at a time using the command line or by specifying a policy file containing multiple rules. The
following example shows how to add a single rule using the navencrypt acl --add command:

sudo /usr/sbin/navencrypt acl --add --rule="ALLOW @mysql * /usr/sbin/mysqld"

23

CDP Private Cloud Base Navigator Encrypt Access Control List

See Listing Categories on page 30 for instructions on viewing existing categories.

The following example shows how to add multiple rules using a policy file:

sudo /usr/sbin/navencrypt acl --add --file=/mnt/private/acl_rules

The contents of the policy file should contain one rule per line. For example:

ALLOW @mysql * /usr/sbin/mysqld
ALLOW @log * /usr/sbin/mysqld
ALLOW @apache * /usr/lib/apache2/mpm-prefork/apache2

Navigator Encrypt releases 3.10 and higher support comments in the policy file. Comments begin with the hash (#)
symbol. You can use comments to annotate the policy file, or to temporarily disable a rule for testing. For example:

Cloudera Navigator Encrypt policy file
Allow mysqld to access all database files
ALLOW @mysql * /usr/sbin/mysqld
Allow mysqld to write logs
ALLOW @log * /usr/sbin/mysqld
ALLOW @apache * /usr/lib/apache2/mpm-prefork/apache2

Using a policy file is the fastest way to add multiple rules because it only requires the security key one time.

It is also possible to overwrite the entire current rules set with the option --overwrite. When this command is
executed, all current rules are replaced by the ones specified in the file that contains the new set of rules. Cloudera
recommends to save a copy of your current set of rules by printing it with the option --print.

Here is an example command using the --overwrite option:

sudo /usr/sbin/navencrypt acl --overwrite --file=/mnt/private/acl_rules

Adding ACL Rules by Profile

If your environment requires more granular controls on the processes that can access the data, you can add extra
controls by using profiles. Profiles set requirements on a process other than just having the correct fingerprint. They
can include such things as process owner and group, required open files, and the current working directory. To see
more about adding rules by profile, see ACL Profile Rules on page 26. For details about fingerprints, see Process-
Based Access Control List on page 5.

Deleting ACL Rules

Rules can be deleted in one of two ways:

1. Manually specifying the rule to delete using the command line.
2. Specifying the line number of the rule to delete.

The following example shows how to delete a rule by passing it as a parameter:

sudo /usr/sbin/navencrypt acl --del --rule="ALLOW @mysql * /usr/sbin/mysqld
 "

If you remove a MySQL ALLOW rule, the MySQL cache must be cleaned by executing the FLUSH TABLES;
MySQL statement. Otherwise, it will still be possible to view data from encrypted table.

The following example shows how to delete a rule by specifying a line number:

sudo /usr/sbin/navencrypt acl --del --line 3

24

CDP Private Cloud Base Navigator Encrypt Access Control List

It is also possible to delete multiple ACL rules in a single command:

sudo /usr/sbin/navencrypt acl --del --line=1,3

See Printing ACL Rules on page 25 for information on determining line numbers.

Deleting ACL Rules by Profile

See ACL Profile Rules on page 26 for instructions on deleting rules by profile.

Printing ACL Rules

You can print the current Access Control List using the following command:

sudo /usr/sbin/navencrypt acl --print

Save the ACL to a file with the --file option:

sudo /usr/sbin/navencrypt acl --print --file=policy-backup

To display additional information about the organization of the policy file, use the --list option:

sudo /usr/sbin/navencrypt acl --list

Universal ACL Rules

Universal ACLs will allow or deny a process access to all files or directories encrypted with Navigator Encrypt.

The rule ALLOW @* * /process allows the designated process to access anything from all encrypted categories.

The rule ALLOW @data * * allows all processes access to any path under the @data category.

The rule ALLOW @* * * allows all processes access to all encrypted categories. Cloudera does not recommend using
this rule. Use it only in test environments.

Here is an example adding a universal ACL rule and then displaying it:

$ sudo /usr/sbin/navencrypt acl --add --rule="ALLOW @* * /usr/sbin/mysqld"
Type MASTER passphrase:
1 rule(s) were added
navencrypt acl --listType MASTER passphrase:
- Type Category Path Profile Process
1 ALLOW @* * /usr/sbin/m
ysqld

Enabling Shell Scripts to Be Detected by ACL

All of the previous rules work for binary files. There may be times a script, such as a shell script, must be allowed to
access the encrypted directory.

You can add the script as a rule by indicating the executable binary process of this script using the --shell option, for
example:

ALLOW @scripts * /root/script.sh --shell=/bin/bash

The --shell option identifies which executable process is used to execute the script. Supported shells are /usr/bin/bash,
/bin/bash, /usr/bin/dash, and /bin/bash

If the script is altered, it will no longer be trusted by the ACL because the fingerprint has changed. If you edit the
script you must invoke the update option to update the ACL with the new fingerprint.

25

CDP Private Cloud Base Navigator Encrypt Access Control List

In some cases, it may be necessary to grant permissions to sub-processes invoked by scripts. For example, it may
be necessary to grant permissions to /bin/bash that also allow running the /bin/df command to allow the system
administrator to check disk capacity through a script run using a crontab entry. By using the --children option, you
can specify these permissions. For example:

ALLOW @scripts * /root/script.sh --shell=/bin/bash --children=/bin/df

The --children option tells Navigator Encrypt to allow the /bin/df binary process if it is executed by /root/script.sh.

To allow more than one sub-process, identify them with the --children option as comma-separated values. For
example:

ALLOW @scripts * /root/script.sh --shell=/bin/bash --children=/bin/df,/bin/
ls

To add shell-children sub-processes, execute the navencrypt acl --add command, for example:

$ sudo /usr/sbin/navencrypt acl --add --rule="ALLOW @mysql * /usr/bin/mysqld
_safe \
--shell=/bin/bash --children=/bin/df,/bin/ls"

ACL Profile Rules
If your environment requires more granular controls on the processes that can access the data, you can add extra
controls by using profiles. Profiles set requirements on a process other than just having the correct fingerprint. They
can include such things as process owner and group, required open files, and the current working directory.

A profile is generated by using the following command:

usr/sbin/navencrypt-profile --pid=<pid>

The output, by default, will be displayed on the screen. You can redirect the output to a file using the > or >> redirect
operators. You can then edit the JSON output in the file to remove lines you do not want. By default, the profile
includes the UID, the short name of the binary or script (identified as comm), and the full command line of the
running process (including any parameters passed). You can generate information by using one of these flags:

• -c, --with-cwd

Output the current working directory
• -e, --with-egid

Output the egid
• -g, --with-gid

Output the gid
• -u, --with-euid

Output the euid

Example output from the navencrypt-profile command:

{
"uid":"0",
"comm":"NetworkManager",
"cmdline":"NetworkManager –pid-file=/var/run/NetwrkManager/NetworkManager.
pid",
"gid":"0"
"cwd":"/",
"fd0":"/dev/null",
"fd1":"/dev/null",

26

CDP Private Cloud Base Maintaining Cloudera Navigator Encrypt

"fd2":"/dev/null"
}

Some distributions do not support euid and guid. Make sure that your profile file is correct by executing the following
command to verify the expected IDs:

ps -p <pid_of_process> -o euid,egid

If cmdline parameters are variable, such as appending a process start timestamp to a file name, then the process
profile will not match on subsequent restarts of the process because the current profile will have an updated
timestamp and access will be denied by the ACL. You can mark those parameters as variable inside the profile file.
For example, if the cmdline of a process is something like this:

"cmdline":"NetworkManager –pid-file=/var/run/NetworkManager/NetworkManager.p
id \
-logfile=/var/log/NetworkManager/log-20130808152300.log"

Where log-20130505122300.log is a variable cmdline parameter, before adding the process profile to the ACL, edit
the process profile file and use ## to specify that a particular parameter is variable:

"cmdline":"NetworkManager –pid-file=/var/run/NetworkManager/NetworkManager.p
id -logfile=##"

With the above configuration, the ACL will allow any value for the -logfile cmdline parameter.

To enable a profile in the ACL, use the additional parameter --profile-file=<filename> when adding the rule to the
ACL:

$ sudo /usr/sbin/navencrypt acl --add --rule="ALLOW @mysql * /usr/sbin/mysql
d" \
–-profile-file=/path/to/profile/file

To display the profile portion of the rules, use the --all parameter with navencrypt acl --list:

$ sudo /usr/sbin/navencrypt acl --list --all
Type MASTER passphrase:
- Type Category Path Profile Process
1 ALLOW @mysql * YES /usr/sbin/mysqld
PROFILE:
{"uid":"120","comm":"mysqld","cmdline":"mysqld"}

Maintaining Cloudera Navigator Encrypt

Manually Backing Up Navigator Encrypt
It is recommended that you back up Navigator Encrypt configuration directory after installation, and again after any
configuration updates.

1. To manually back up the Navigator Encrypt configuration directory (/etc/navencrypt):

zip -r --encrypt nav-encrypt-conf.zip /etc/navencrypt

The --encrypt option prompts you to create a password used to encrypt the zip file. This password is also required
to decrypt the file. Ensure that you protect the password by storing it in a secure location.

2. Move the backup file (nav-encrypt-conf.zip) to a secure location.

27

CDP Private Cloud Base Maintaining Cloudera Navigator Encrypt

Warning: Failure to back up the configuration directory makes your backed-up encrypted data
unrecoverable in the event of data loss.

Validating Navigator Encrypt Configuration
To validate the Navigator Encrypt deployment, run the following command:

sudo navencrypt status --integrity

This command verifies that:

• The mount encryption key (MEK) exists for each mount point.
• Each mount point in /etc/navencrypt/ztab has a corresponding entry in the control file (/etc/navencrypt/control).
• Each mount point directory exists.
• For loop devices, the file used for encrypted storage exists.

The output is similar to the following:

$ sudo navencrypt status --integrity
Checking MEKs integrity

 Mountpoint: /dev/loop0
 MEK file exist: [YES]
 Mountpoint: /dev/loop1
 MEK file exist: [YES]

Checking Ztab Mountpoints integrity

 Mountpoint: /dev/loop0
 ztab vs control correspondence: [YES]
 Mountpoint directory exists: [YES]
 Mountpoint: /dev/loop1
 ztab vs control correspondence: [YES]
 Mountpoint directory exists: [YES]
Checking Datastore backend files

 Datastore: '/root/my_storage_test'
 Backend file exist: [YES]

Restoring Mount Encryption Keys (MEKs) and Control File
Navigator Encrypt deposits its mount encryption keys (MEKs) and control file (/etc/navencrypt/control) in Cloudera
Navigator Key Trustee Server. If these files are accidentally deleted, they can be restored from Key Trustee Server
using the following commands:

• To restore MEKs:

sudo navencrypt key --restore-keys

• To restore the control file:

sudo navencrypt control --restore-control-file

Access Modes
Navigator Encrypt provides three different access modes:

28

CDP Private Cloud Base Maintaining Cloudera Navigator Encrypt

• Enforcing is the default mode in which Navigator Encrypt validates access from all processes against the ACL. To
protect your data, enforcing mode must be enabled.

• Permissive mode causes action="denied" messages to be logged in dmesg. It does not prevent access to the
encrypted data. This mode is a dry-run feature to run and build ACL rules.

• Admin mode, as well as permissive mode, does not prevent access to the encrypted data. It allows any process to
access the information because the ACL rules are not validated against the process. Admin mode does not cause
action="denied" messages to be logged in dmesg.

To view the current access mode, run the following command:

sudo /usr/sbin/navencrypt status -d

Note: The navencrypt status command reports that the navencrypt module is not running if no volumes are
encrypted or the kernel module is not loaded.

To change the access mode, use the following command:

sudo /usr/sbin/navencrypt set --mode={enforcing|permissive|admin}

You cannot change the Navigator Encrypt access mode unless the Navigator Encrypt module is running. To view the
status of the Navigator Encrypt module, run navencrypt status --module.

To start the Navigator Encrypt module there must be at least one active mount-point. To verify the mount-points
status, run the following command:

sudo /etc/init.d/navencrypt-mount status

For RHEL 7, use systemctl instead:

sudo systemctl status navencrypt-mount

Changing and Verifying the Master Key
You can perform two operations with the navencrypt key command: change and verify.

You can verify a key against the Navigator Encrypt module, the Navigator Key Trustee server, or both. For example:

sudo /usr/sbin/navencrypt key --verify
sudo /usr/sbin/navencrypt key --verify --only-module
sudo /usr/sbin/navencrypt key --verify --only-keytrustee

Note: The navencrypt key command fails if no volumes are encrypted or the kernel module is not loaded.

The master key can be changed in the event that another key-type authentication mechanism or a new master key is
required. Valid master key types are single-passphrase, dual-passphrase, and RSA key files. To change the master key
type, issue the following command and follow the interactive console:

sudo /usr/sbin/navencrypt key –-change

You can use the --trustees, --votes, and --recoverable options for the new key as described in Table 1: Registration
Options on page 9.

29

CDP Private Cloud Base Maintaining Cloudera Navigator Encrypt

Listing Categories
To list the existing categories for each mount point, run the command navencrypt-move --list-categories. For
example:

$ sudo navencrypt-move --list-categories
Navigator Encrypt Categories found per Mountpoint:
 /dmcrypt-storage
 @mysql
 @keytabs

 /home/jdoe/secrets
 @moms_recipes
 @world_domination_plan

Updating ACL Fingerprints
All rules reference a process fingerprint (a SHA256 digest) that is used to authenticate the process into the file
system. If the file system detects a fingerprint that is different from the one stored in the ACL, the Linux process is
denied access and treated as an untrusted process.

Occasionally this process fingerprint must be updated, such as when software is upgraded. When the fingerprint must
be updated, the Navigator Encrypt administrator re-authenticates the process on the ACL by executing the command
navencrypt acl --update.

The following example demonstrates how to determine when a process fingerprint has been changed and must be
updated:

$ sudo /usr/sbin/navencrypt acl --list
Type MASTER passphrase:
- Type Category Path Profile Process
1 !! ALLOW @mysql * /usr/sbin/mysqld
2 ALLOW @log * /usr/sbin/mysqld
3 !! ALLOW @apache * /usr/lib/apache2/mpm-prefork/

In the example above, the double exclamation (!!) characters indicate that a process fingerprint has changed and must
be updated. Similarly, double E (EE) characters indicate a process read error. This error can be caused by a process
that does not exist or that has permission issues.

Note:

For RHEL-compatible OSes, the prelink application may also be responsible for ACL fingerprint issues.
Prelinking is intended to speed up a system by reducing the time a program needs to begin. Cloudera highly
recommends disabling any automated prelink jobs, which are enabled by default in some systems. As an
alternative, Cloudera recommends that you integrate a manual prelink run into your existing change control
policies to ensure minimal downtime for applications accessing encrypted data.

To disable prelinking, modify the /etc/sysconfig/prelink file and change PRELINKING=yes to PRELINKI
NG=no. Then, run the /etc/cron.daily/prelink script as root. Once finished, automatic prelinking is disabled.

For more information about how prelinking affects your system, see prelink.

Managing Mount Points
The /etc/init.d/navencrypt-mount command mounts all mount points that were registered with the navencrypt-prepare
command and are listed in the /etc/navencrypt/ztab file. The possible operations are:

• start

30

http://en.wikipedia.org/wiki/Prelink

CDP Private Cloud Base Maintaining Cloudera Navigator Encrypt

• stop
• status
• restart

For RHEL 7, use systemctl [start|stop|status|restart] navencrypt-mount.

Note: On RHEL 7, the systemctl command can obscure the exit status of the start and/or stop commands
because navencrypt-mount is loaded as a kernel module instead of running as a background process. Cloudera
strongly recommends that you run systemctl status navencrypt-mount whenever you run the start and/or
stop command to verify that the status of the navencrypt kernel module is still healthy and functioning.

Note: Do not manually unmount the encryption mount point (for example, using umount). If you do so, you
must manually close the dm-crypt device using the following procedure:

1. Run dmsetup table to list the dm-crypt devices.
2. Run cryptsetup luksClose <device_name> to close the device for the unmounted mount point.

When executing the stop operation, the encrypted mount point is unmounted, and your data becomes inaccessible.

The following example shows how to execute navencrypt-mount status with some inactive mount points:

sudo /etc/init.d/navencrypt-mount status

The following example shows how to execute the navencrypt-mount stop command:

sudo /etc/init.d/navencrypt-mount stop

The following example shows how to execute the navencrypt-mount start command:

sudo /etc/init.d/navencrypt-mount start

Here is an example command used to manually mount a directory:

sudo /usr/sbin/mount.navencrypt /path/to_encrypted_data/ /path/to/mountpoint

This command can be executed only if the navencrypt-prepare command was previously executed.

Navigator Encrypt Kernel Module Setup
If the kernel headers were not installed on your host, or if the wrong version of the kernel headers were installed,
the Navigator Encrypt module was not built at installation time. To avoid reinstalling the system, install the correct
headers and execute the navencrypt-module-setup command. This attempts to build the module and install it.

This method is also an efficient way to install any new Navigator Encrypt module feature or fix without otherwise
modifying your current Navigator Encrypt environment.

Navigator Encrypt Configuration Directory Structure
The file and directory structure of /etc/navencrypt is as follows:

$ tree /etc/navencrypt/
/etc/navencrypt/
control -> /etc/navencrypt/jSpi9SM65xUIIhrau1Nn8ZXmQhrrQ9e363EUz8HKiRs
jSpi9SM65xUIIhrau1Nn8ZXmQhrrQ9e363EUz8HKiRs
rules
ztab
locust
keytrustee
 ### clientname

31

CDP Private Cloud Base Maintaining Cloudera Navigator Encrypt

 ### deposits
 # ### dev.loop0
 # ### media.31E5-79B9locustlocust[system ~]# . /etc/*release[system ~]#
 . /etc/*release
 # ### mnt.a
 # ### mnt.encrypted
 # ### mnt.tomount
 ### pubring.gpg
 ### pubring.gpg~
 ### random_seed
 ### secring.gpg
 ### trustdb.gpg
 ### ztrustee.conf

The following files and folders are part of the created file structure:

• control

File that saves information about the mount points and corresponding Navigator Key Trustee keys. If this file is
accidentally deleted, you can restore it using the navencrypt control --restore-control-file command.

• rules

File that contains the ACL rules. It is encrypted with the user-provided master key.
• ztab

File that contains information about all the mount points and their encryption type.

Important: Use caution when editing the /etc/navencrypt/ztab file. Entries are tab-separated (not space-
separated). The ztab file must not contain empty lines.

• keytrustee

Directory where Navigator Key Trustee GPG keys are stored. These are generated during navencrypt register
operations.

• keytrustee/deposits

Directory where the Navigator Encrypt mount encryption keys (MEKs) are saved. These are encrypted with the
user-provided master key. If these are accidentally deleted, you can restore them from Key Trustee Server using
the navencrypt key --restore-keys command.

Every mount point has an internal randomly-generated encryption passphrase.

Collecting Navigator Encrypt Environment Information
When troubleshooting problems with Navigator Encrypt, it is helpful to gather information about the installation and
environment. Navigator Encrypt provides a command to facilitate this:

sudo navencrypt-collect

This command collects and outputs to the console the following information:

• Information about the system on which Navigator Encrypt is installed
• Entries from /etc/navencrypt/ztab
• The contents of the keytrustee.conf file
• Recent entries from the Navigator Encrypt log file
• Configured software repositories
• Checksums of all /usr/src/navencrypt* and /usr/sbin/navencrypt* files

You can use this information to compare Navigator Encrypt installations, and you can also provide this information to
Cloudera Support for troubleshooting. The navencrypt-collect command only outputs this information on the console,
and does not generate any files or upload to Cloudera.

32

CDP Private Cloud Base Maintaining Cloudera Navigator Encrypt

To save the information to a file, use the redirect operator (>). For example:

sudo navencrypt-collect > navencrypt.info

Upgrading Navigator Encrypt Hosts
See "Best Practices for Upgrading Navigator Encrypt Hosts" in the Upgrading Cloudera Navigator Encrypt guide for
information about upgrading operating systems (OS) and kernels on hosts that have Navigator Encrypt installed.

33

	Contents
	Cloudera Navigator Encrypt Overview
	Process-Based Access Control List
	Encryption Key Storage and Management

	Registering Cloudera Navigator Encrypt with Key Trustee Server
	Prerequisites
	Registering with Key Trustee Server

	Preparing for Encryption Using Cloudera Navigator Encrypt
	Navigator Encrypt Commands
	Preparing for Encryption
	Block-Level Encryption with dm-crypt
	Block-Level Encryption with a Loop Device

	Navigator Encrypt and Device UUIDs
	Pass-through Mount Options for navencrypt-prepare

	Encrypting and Decrypting Data Using Cloudera Navigator Encrypt
	Before You Begin
	Encrypting Data
	Decrypting Data

	Converting from Device Names to UUIDs for Encrypted Devices
	Preparing for UUID Conversion
	Converting a Single Device
	Converting All Available Devices
	Finalizing the Conversion
	Rolling Back the UUID Conversion

	Navigator Encrypt Access Control List
	Managing the Access Control List
	ACL Profile Rules

	Maintaining Cloudera Navigator Encrypt
	Manually Backing Up Navigator Encrypt
	Validating Navigator Encrypt Configuration
	Restoring Mount Encryption Keys (MEKs) and Control File
	Access Modes
	Changing and Verifying the Master Key
	Listing Categories
	Updating ACL Fingerprints
	Managing Mount Points
	Navigator Encrypt Kernel Module Setup
	Navigator Encrypt Configuration Directory Structure
	Collecting Navigator Encrypt Environment Information
	Upgrading Navigator Encrypt Hosts

