
Cloudera Manager 7.1.2

Encrypting Data at Rest in Cloudera Manager
Date published: 2020-05-28
Date modified: 2020-07-10

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Manager | Contents | iii

Contents

Encrypting Data at Rest.. 5

Data at Rest Encryption Reference Architecture..5

Data at Rest Encryption Requirements... 6

Resource Planning for Data at Rest Encryption... 9

HDFS Transparent Encryption...10
Key Concepts and Architecture..11

Keystores and the Hadoop Key Management Server.. 11
KMS Solutions..12
Encryption Zones and Keys... 12
Accessing Files Within an Encryption Zone... 13

Optimizing Performance for HDFS Transparent Encryption.. 15
Enabling HDFS Encryption Using the Wizard..16

Enabling HDFS Encryption Using Navigator Key Trustee Server..17
Enabling HDFS Encryption Using a Java KeyStore... 22

Managing Encryption Keys and Zones..23
Validating Hadoop Key Operations... 23
Creating Encryption Zones...23
Adding Files to an Encryption Zone..24
Deleting Encryption Zones...24
Backing Up Encryption Keys...24
Rolling Encryption Keys.. 25
Re-encrypting Encrypted Data Encryption Keys (EDEKs)... 27

Configuring the Key Management Server (KMS)...31
Configuring the KMS Using Cloudera Manager... 31

Securing the Key Management Server (KMS).. 32
Enabling Kerberos Authentication for the KMS... 32
Configuring TLS/SSL for the KMS...33

Migrating Keys from a Java KeyStore to Cloudera Navigator Key Trustee Server..34
Migrating a Key Trustee KMS Server Role Instance to a New Host... 35

Assumptions and Requirements... 35
Migrate a Key Trustee KMS Server Role Instance to a New Host... 36

Configuring CDP Services for HDFS Encryption... 38
Transparent Encryption Recommendations for HBase.. 38
Transparent Encryption Recommendations for Hive...38
Transparent Encryption Recommendations for Hue.. 40
Transparent Encryption Recommendations for Impala..41
Transparent Encryption Recommendations for MapReduce and YARN.. 42
Transparent Encryption Recommendations for Search..42
Transparent Encryption Recommendations for Spark... 42
Transparent Encryption Recommendations for Sqoop.. 43

Migrating Keys from a Java KeyStore to Cloudera Navigator Key Trustee Server..43

Migrating a Key Trustee KMS Server Role Instance to a New Host... 44
Assumptions and Requirements... 44
Migrating a Key Trustee KMS Server Role Instance to a New Host..45

Configuring CDP Services for HDFS Encryption... 46
HBase.. 47
Hive... 47
Hue.. 49
Impala..50
MapReduce and YARN..51
Search.. 51
Spark..52
Sqoop...52

Using the Ranger Key Management Service...52
Accessing the Ranger KMS Web UI... 53
List and Create Keys.. 57
Roll Over an Existing Key...61
Delete a Key... 65

Cloudera Manager Encrypting Data at Rest

Encrypting Data at Rest

Cloudera clusters can use a combination of data at rest encryption mechanisms, including HDFS transparent
encryption and Cloudera Navigator Encrypt. Both of these data at rest encryption mechanisms can be augmented with
key management using Cloudera Navigator Key Trustee Server and Cloudera Navigator Key HSM..

Before configuring encryption for data at rest, familiarize yourself with the requirements in "Data at Rest Encryption
Requirements".

Related Information
Data at Rest Encryption Requirements

Data at Rest Encryption Reference Architecture

The following diagram illustrates the supported architecture for deploying Cloudera Navigator encryption for data at
rest:

To isolate Key Trustee Server from other enterprise data hub (EDH) services, you must deploy Key Trustee Server on
dedicated hosts in a separate cluster in Cloudera Manager. Deploy Key Trustee KMS on dedicated hosts in the same
cluster as the EDH services that require access to Key Trustee Server. This provides the following benefits:

• You can restart your EDH cluster without restarting Key Trustee Server, avoiding interruption to other clusters or
clients that use the same Key Trustee Server instance.

• You can manage the Key Trustee Server upgrade cycle independently of other cluster components.
• You can limit access to the Key Trustee Server hosts to authorized key administrators only, reducing the attack

surface of the system.
• Resource contention is reduced. Running Key Trustee Server and Key Trustee KMS services on dedicated

hosts prevents other cluster services from reducing available resources (such as CPU and memory) and creating
bottlenecks.

If you are using virtual machines for the Key Trustee Server or Key Trustee KMS hosts, see "Resource Planning for
Data at Rest Encryption".

5

Cloudera Manager Data at Rest Encryption Requirements

Related Information
Resource Planning for Data at Rest Encryption

Data at Rest Encryption Requirements

Encryption comprises several components, each with its own requirements.

Data at rest encryption protection can be applied at a number of levels within Hadoop:

• OS filesystem-level
• Network-level
• HDFS-level (protects both data at rest and in transit)

For more information on the components, concepts, and architecture for encrypting data at rest, see "Encrypting Data
at Rest".

Product Compatibility Matrix

See "Product Compatibility Matrix for Cloudera Navigator Encryption" for the individual compatibility matrices for
each Cloudera Navigator encryption component.

Entropy Requirements

Cryptographic operations require entropy to ensure randomness.

You can check the available entropy on a Linux system by running the following command:

cat /proc/sys/kernel/random/entropy_avail

The output displays the entropy currently available. Check the entropy several times to determine the state of the
entropy pool on the system. If the entropy is consistently low (500 or less), you must increase it by installing rng-tools
and starting the rngd service. Run the following commands on RHEL 6-compatible systems:

sudo yum install rng-tools
sudo echo 'EXTRAOPTIONS="-r /dev/urandom"' >> /etc/sysconfig/rngd
sudo service rngd start
sudo chkconfig rngd on

For RHEL 7, run the following commands:

sudo yum install rng-tools
cp /usr/lib/systemd/system/rngd.service /etc/systemd/system/
sed -i -e 's/ExecStart=\/sbin\/rngd -f/ExecStart=\/sbin\/rngd -f -r \/dev\/u
random/' /etc/systemd/system/rngd.service
systemctl daemon-reload
systemctl start rngd
systemctl enable rngd

Make sure that the hosts running Key Trustee Server, Key Trustee KMS, and Navigator Encrypt have sufficient
entropy to perform cryptographic operations.

Key Trustee Server Requirements

Recommended Hardware and Supported Distributions

Key Trustee Server must be installed on a dedicated server or virtual machine (VM) that is not used for any other
purpose. The backing PostgreSQL database must be installed on the same host as the Key Trustee Server, and must

6

Cloudera Manager Data at Rest Encryption Requirements

not be shared with any other services. For high availability, the active and passive Key Trustee Servers must not share
physical resources. See "Resource Planning for Data at Rest Encryption" for more information.

The recommended minimum hardware specifications are as follows:

• Processor: 1 GHz 64-bit quad core
• Memory: 8 GB RAM
• Storage: 20 GB on moderate- to high-performance disk drives

For information on the supported Linux distributions, see "Product Compatibility Matrix for Cloudera Navigator
Encryption".

Cloudera Manager Requirements

Installing and managing Key Trustee Server using Cloudera Manager requires Cloudera Manager 5.4.0 and higher.
Key Trustee Server does not require Cloudera Navigator Audit Server or Metadata Server.

umask Requirements

Key Trustee Server installation requires the default umask of 0022.

Network Requirements

For new Key Trustee Server installations (5.4.0 and higher) and migrated upgrades (see "Cloudera Enterprise
Upgrade Guide"> for more information), Key Trustee Server requires the following TCP ports to be opened for
inbound traffic:

• 11371

Clients connect to this port over HTTPS.
• 11381 (PostgreSQL)

The passive Key Trustee Server connects to this port for database replication.

For upgrades that are not migrated to the CherryPy web server, the pre-upgrade port settings are preserved:

• 80

Clients connect to this port over HTTP to obtain the Key Trustee Server public key.
• 443 (HTTPS)

Clients connect to this port over HTTPS.
• 5432 (PostgreSQL)

The passive Key Trustee Server connects to this port for database replication.

TLS Certificate Requirements

To ensure secure network traffic, Cloudera recommends obtaining Transport Layer Security (TLS) certificates
specific to the hostname of your Key Trustee Server. To obtain the certificate, generate a Certificate Signing Request
(CSR) for the fully qualified domain name (FQDN) of the Key Trustee Server host. The CSR must be signed by
a trusted Certificate Authority (CA). After the certificate has been verified and signed by the CA, the Key Trustee
Server TLS configuration requires:

• The CA-signed certificate
• The private key used to generate the original CSR
• The intermediate certificate/chain file (provided by the CA)

Cloudera recommends not using self-signed certificates. If you use self-signed certificates, you must use the --sk
ip-ssl-check parameter when registering Navigator Encrypt with the Key Trustee Server. This skips TLS hostname
validation, which safeguards against certain network-level attacks. For more information regarding insecure mode,
see "Registering Cloudera Navigator Encrypt with Key Trustee Server>Registration Options" />.

7

Cloudera Manager Data at Rest Encryption Requirements

Key Trustee KMS Requirements

Recommended Hardware and Supported Distributions

The recommended minimum hardware specifications are as follows:

• Processor: 2 GHz 64-bit quad core
• Memory: 16 GB RAM
• Storage: 40 GB on moderate- to high-performance disk drives

For information on the supported Linux distributions, see "Product Compatibility Matrix for Cloudera Navigator
Encryption".

The Key Trustee KMS workload is CPU-intensive. Cloudera recommends using machines with capabilities
equivalent to your NameNode hosts, with Intel CPUs that support AES-NI for optimum performance. Also, Cloudera
strongly recommends that you enable TLS for both the HDFS and the Key Trustee KMS services to prevent the
passage of plain text key material between the KMS and HDFS data nodes.

Key HSM Requirements

The following are prerequisites for installing Navigator Key HSM:

• Oracle Java Runtime Environment (JRE) 7 or higher with Java Cryptography Extension (JCE) Unlimited Strength
Jurisdiction Policy Files:

• JCE for Java SE 7
• JCE for Java SE 8

• A supported Linux distribution. See "Product Compatibility Matrix for Cloudera Navigator Encryption".
• A supported HSM device:

• SafeNet Luna

• HSM firmware version: 6.2.1
• HSM software version: 5.2.3-1

• SafeNet KeySecure

• HSM firmware version: 6.2.1
• HSM software version: 8.0.1

• Thales nSolo, nConnect

• HSM firmware version: 11.4.0
• Client software version: 2.28.9cam136

• Key Trustee Server 3.8 or higher

Important: You must install Key HSM on the same host as Key Trustee Server.

Root access is required to install Navigator Key HSM.

Navigator Encrypt Requirements

Operating System Requirements

• For supported Linux distributions, see "Product Compatibility Matrix for Cloudera Navigator Encryption".

Supported command-line interpreters:

• sh (Bourne)
• bash (Bash)
• dash (Debian)

8

Cloudera Manager Resource Planning for Data at Rest Encryption

Note: Navigator Encrypt does not support installation or use in chroot environments.

Network Requirements

For new Navigator Key Trustee Server (5.4.0 and higher) installations, Navigator Encrypt initiates TCP traffic over
port 11371 (HTTPS) to the Key Trustee Server.

For upgrades and Key Trustee Server versions lower than 5.4.0, Navigator Encrypt initiates TCP traffic over ports 80
(HTTP) and 443 (HTTPS) to the Navigator Key Trustee Server.

Internet Access

You must have an active connection to the Internet to download many package dependencies, unless you have
internal repositories or mirrors containing the dependent packages.

Maintenance Window

Data is not accessible during the encryption process. Plan for system downtime during installation and configuration.

Administrative Access

To enforce a high level of security, all Navigator Encrypt commands require administrative (root) access (including
installation and configuration). If you do not have administrative privileges on your server, contact your system
administrator before proceeding.

Package Dependencies

Navigator Encrypt requires these packages, which are resolved by your distribution package manager during
installation:

• dkms
• keyutils
• ecryptfs-utils
• libkeytrustee
• navencrypt-kernel-module
• openssl
• lsof
• gcc
• cryptsetup

These packages may have other dependencies that are also resolved by your package manager. Installation works with
gcc, gcc3, and gcc4.

Related Information
Encrypting Data at Rest

Resource Planning for Data at Rest Encryption

AES-NI

JCE for Java SE 7

JCE for Java SE 8

Resource Planning for Data at Rest Encryption

For production environments, you must configure high availability for:

9

https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni
https://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html
https://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

Cloudera Manager HDFS Transparent Encryption

• Key Trustee Server
• Key Trustee KMS

Key Trustee Server and Key Trustee KMS HA Planning

For high availability, you must provision two dedicated Key Trustee Server hosts and at least two dedicated Key
Trustee KMS hosts, for a minimum of four separate hosts. Do not run multiple Key Trustee Server or Key Trustee
KMS services on the same physical host, and do not run these services on hosts with other cluster services. Doing
so causes resource contention with other important cluster services and defeats the purpose of high availability. See
"Data at Rest Encryption Reference Architecture" for more information.

The Key Trustee KMS workload is CPU intensive. Cloudera recommends using machines with capabilities equivalent
to your NameNode hosts, with Intel CPUs that support AES-NI for optimum performance.

Make sure that each host is secured and audited. Only authorized key administrators should have access to them. Red
Hat provides security guides for RHEL:

• RHEL 6 Security Guide
• RHEL 7 Security Guide

For hardware sizing information, see "Data at Rest Encryption Requirements" for recommendations for each
Cloudera Navigator encryption component.

For Cloudera Manager deployments, deploy Key Trustee Server in its own dedicated cluster. Deploy Key Trustee
KMS in each cluster that uses Key Trustee Server. See "Data at Rest Encryption Reference Architecture" for more
information.

For information about enabling Key Trustee Server high availability, refer to "Cloudera Navigator Key Trustee Server
High Availability".

For information about enabling Key Trustee KMS high availability, refer to "Enabling Key Trustee KMS High
Availability".

Virtual Machine Considerations

If you are using virtual machines, make sure that the resources (such as virtual disks, CPU, and memory) for each
Key Trustee Server and Key Trustee KMS host are allocated to separate physical hosts. Hosting multiple services
on the same physical host defeats the purpose of high availability, because a single machine failure can take down
multiple services.

To maintain the security of the cryptographic keys, make sure that all copies of the virtual disk (including any back-
end storage arrays, backups, snapshots, and so on) are secured and audited with the same standards you apply to the
live data.

Related Information
Data at Rest Encryption Requirements

Data at Rest Encryption Reference Architecture

RHEL 6 Security Guide

RHEL 7 Security Guide

AES-NI

Cloudera Navigator Key Trustee Server High Availability

Enabling Key Trustee KMS High Availability

HDFS Transparent Encryption

Data encryption is mandatory for many government, financial, and regulatory entities, worldwide, to meet privacy
and other security requirements. For example, the card payment industry has adopted the Payment Card Industry Data
Security Standard (PCI DSS) for information security.

10

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/index
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni
https://docs.cloudera.com/documentation/enterprise/latest/topics/key_trustee_initialize_ha.html#concept_mkz_cds_rr
https://docs.cloudera.com/documentation/enterprise/latest/topics/key_trustee_kms_ha.html#concept_kmx_5k4_nv

Cloudera Manager HDFS Transparent Encryption

Other examples include requirements imposed by United States government's Federal Information Security
Management Act (FISMA) and Health Insurance Portability and Accountability Act (HIPAA). Encrypting data stored
in HDFS can help your organization comply with such regulations.

Transparent encryption for HDFS implements transparent, end-to-end encryption of data read from and written
to HDFS blocks across your cluster. Transparent means that end-users are unaware of the encryption/decryption
processes, and end-to-end means that data is encrypted at-rest and in-transit (see the Cloudera Engineering Blog post
for complete details).

Note: HDFS Transparent Encryption is not the same as TLS encryption. Clusters configured TLS/SSL
encrypt network communications throughout the cluster. Depending on the type of services your cluster
supports, you may want to configure both HDFS Transparent Encryption and TLS/SSL for the cluster.

HDFS encryption has these capabilities:

• Only HDFS clients can encrypt or decrypt data.
• Key management is external to HDFS. HDFS cannot access unencrypted data or encryption keys. Administration

of HDFS and administration of keys are separate duties encompassed by distinct user roles (HDFS administrator,
Key Administrator), thus ensuring that no single user has unrestricted access to both data and keys.

• The operating system and HDFS interact using encrypted HDFS data only, mitigating threats at the OS- and file-
system-level.

• HDFS uses the Advanced Encryption Standard-Counter mode (AES-CTR) encryption algorithm. AES-CTR
supports a 128-bit encryption key (default), or can support a 256-bit encryption key when Java Cryptography
Extension (JCE) unlimited strength JCE is installed.

• HDFS encryption has been designed to take advantage of the AES-NI instruction set, a hardware-based encryption
acceleration technique, so your cluster performance should not adversely affected by configuring encryption. (The
AES-NI instruction set can be an order of magnitude faster than software implementations of AES.) However,
you may need to update cryptography libraries on your HDFS and MapReduce client hosts to use the acceleration
mechanism.

Related Information
Transparent Encryption in HDFS

AES-NI Standard Instructions

Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files 7 Download

Optimizing Performance for HDFS Transparent Encryption

Key Concepts and Architecture
HDFS must be integrated with an external enterprise-level keystore. The Hadoop Key Management server serves as a
proxy between HDFS clients and the keystore. The keystore can be either the Cloudera Navigator Key Trustee Server
or a support Hardware Security Module.

HDFS transparent encryption involves the creation of an encryption zone, which is a directory in HDFS whose
contents will be automatically encrypted on write and decrypted on read. Each encryption zone is associated with a
key (EZ Key) specified by the key administrator when the zone is created. The EZ keys are stored on the external
keystore.

Keystores and the Hadoop Key Management Server
Integrating HDFS with an external, enterprise-level keystore is the first step to deploying transparent encryption. This
is because separation of duties between a key administrator and an HDFS administrator is a very important aspect of
this feature.

However, most keystores are not designed for the encrypt/decrypt request rates seen by Hadoop workloads. This
led to the development of a new service, called the Hadoop Key Management Server (KMS), which serves as a
proxy between HDFS clients and the backing keystore. Both the keystore and Hadoop KMS must use Hadoop's
KeyProvider API to interact with each other and with HDFS clients.

11

https://blog.cloudera.com/blog/2015/01/new-in-cdh-5-3-transparent-encryption-in-hdfs/
https://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
https://blog.cloudera.com/new-in-cdh-5-3-transparent-encryption-in-hdfs/
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
https://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html

Cloudera Manager HDFS Transparent Encryption

While HDFS encryption can be used with a local Java KeyStore for key management, Cloudera does not recommend
this for production environments where a more robust and secure key management solution should be used. Cloudera
offers the following two options for enterprise-grade key management:

• Cloudera Navigator Key Trustee Server is a key store for managing encryption keys. To integrate with the
Navigator Key Trustee Server, Cloudera provides a custom KMS service, Key Trustee KMS.

• Hardware security modules (HSM) are third-party appliances that provide the highest level of security for keys.

The diagram below illustrates how HDFS clients and the NameNode interact with an enterprise keystore through the
Hadoop Key Management Server. The keystore can be either the Cloudera Navigator Key Trustee Server or a support
HSM.

KMS Solutions
When selecting a Key Management Server (KMS), you must consider the key management and encryption
requirements for your cluster.

The following are the various KMS solutions available, and the criteria often used for selecting each.

Key Trustee KMS with Key Trustee Server

Choose KT KMS with Key Trustee Server if:

• Enterprise-grade key management is required
• Encryption zone key protection by an HSM is not required

Key Trustee KMS with Key Trustee Server and Key HSM

Choose KT KMS with Key Trustee Server and Key HSM if:

• Enterprise-grade key management is required
• Encryption zone key protection by an HSM (as root of trust) is required Performance for encryption zone key

operations is critical

Encryption Zones and Keys
HDFS transparent encryption introduces the concept of an encryption zone (EZ), which is a directory in HDFS whose
contents will be automatically encrypted on write and decrypted on read.

Encryption zones always start off as empty directories, and tools such as distcp with the -skipcrccheck -update flags
can be used to add data to a zone. (These flags are required because encryption zones are being used.) Every file and
subdirectory copied to an encryption zone will be encrypted.

Note: An encryption zone cannot be created on top of an existing directory.

12

Cloudera Manager HDFS Transparent Encryption

Each encryption zone is associated with a key (EZ Key) specified by the key administrator when the zone is created.
EZ keys are stored on a backing keystore external to HDFS. Each file within an encryption zone has its own
encryption key, called the Data Encryption Key (DEK). These DEKs are encrypted with their respective encryption
zone's EZ key, to form an Encrypted Data Encryption Key (EDEK).

The following diagram illustrates how encryption zone keys (EZ keys), data encryption keys (DEKs), and encrypted
data encryption keys (EDEKs) are used to encrypt and decrypt files.

EDEKs are stored persistently on the NameNode as part of each file's metadata, using HDFS extended attributes.
EDEKs can be safely stored and handled by the NameNode because the hdfs user does not have access to the
EDEK's encryption keys (EZ keys). Even if HDFS is compromised (for example, by gaining unauthorized access to a
superuser account), a malicious user only gains access to the encrypted text and EDEKs. EZ keys are controlled by a
separate set of permissions on the KMS and the keystore.

An EZ key can have multiple key versions, where each key version has its own distinct key material (that is, the
portion of the key used during encryption and decryption). Key rotation is achieved by bumping up the version for
an EZ key. Per-file key rotation is then achieved by re-encrypting the file's DEK with the new version of the EZ key
to create new EDEKs. HDFS clients can identify an encryption key either by its key name, which returns the latest
version of the key, or by a specific key version.

Related Information
Managing Encryption Keys and Zones

Extended Attributes in HDFS

Accessing Files Within an Encryption Zone
To encrypt a new file, the HDFS client requests a new EDEK from the NameNode. The NameNode then asks the
KMS to decrypt it with the encryption zone's EZ key. This decryption results in a DEK, which is used to encrypt the
file.

13

https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/ExtendedAttributes.html

Cloudera Manager HDFS Transparent Encryption

The diagram above depicts the process of writing a new encrypted file. Note that the EDEK cache on the NameNode
is populated in the background. Since it is the responsibility of KMS to create EDEKs, using a cache avoids having to
call the KMS for each create request. The client can request new EDEKs directly from the NameNode.

To decrypt a file, the HDFS client provides the NameNode with the file's EDEK and the version number of the EZ
key that was used to generate the EDEK. The NameNode requests the KMS to decrypt the file's EDEK with the
encryption zone's EZ key, which involves checking that the requesting client has permission to access that particular
version of the EZ key. Assuming decryption of the EDEK is successful, the client then uses this DEK to decrypt the
file.

Encryption and decryption of EDEKs takes place entirely on the KMS. More importantly, the client requesting
creation or decryption of an EDEK never handles the EZ key. Only the KMS can use EZ keys to create and decrypt
EDEKs as requested. It is important to note that the KMS does not store any keys, other than temporarily in its cache.
It is up to the enterprise keystore to be the authoritative storage for keys, and to ensure that keys are never lost, as a
lost key is equivalent to introducing a security hole. For production use, Cloudera recommends you deploy two or
more redundant enterprise key stores.

14

Cloudera Manager HDFS Transparent Encryption

Optimizing Performance for HDFS Transparent Encryption
CDP implements the Advanced Encryption Standard New Instructions (AES-NI), which provide substantial
performance improvements. To get these improvements, you need a recent version of libcrypto.so on HDFS and
MapReduce client hosts -- that is, any host from which you originate HDFS or MapReduce requests.

Many OS versions have an older version of the library that does not support AES-NI. The instructions that follow tell
you what you need to do for each OS version that CDP supports.

Warning: To ensure that HDFS encryption functions as expected, the steps described in this section are
mandatory for production use.

RHEL/CentOS 6.5 or later

The installed version of libcrypto.so supports AES-NI, but you need to install the openssl-devel package on all
clients:

sudo yum install openssl-devel

RHEL/CentOS 6.4 or earlier 6.x versions, or SLES 11

Download and extract a newer version of libcrypto.so from a CentOS 6.5 repository and install it on all clients in /var
/lib/hadoop/extra/native/:

1. Download the latest version of the openssl package. For example:

wget http://mirror.centos.org/centos/6/os/x86_64/Packages/openssl-1.0.1e
-30.el6.x86_64.rpm

The libcrypto.so file in this package can be used on SLES 11 as well as RHEL/CentOS.
2. Decompress the files in the package, but do not install it:

rpm2cpio openssl-1.0.1e-30.el6.x86_64.rpm | cpio -idmv

3. If you are using parcels, create the /var/lib/hadoop/extra/native/ directory:

sudo mkdir -p /var/lib/hadoop/extra/native

4. Copy the shared library into /var/lib/hadoop/extra/native/. Name the target file libcrypto.so, with no suffix at the
end, exactly as in the command that follows.

sudo cp ./usr/lib64/libcrypto.so.1.0.1e /var/lib/hadoop/extra/native/lib
crypto.so

Debian Wheezy

The installed version of libcrypto.so supports AES-NI, but you need to install the libssl-devel package on all clients:

sudo apt-get install libssl-dev

Ubuntu Precise and Ubuntu Trusty

Install the libssl-devel package on all clients:

sudo apt-get install libssl-dev

Testing if encryption optimization works

15

Cloudera Manager HDFS Transparent Encryption

To verify that a client host is ready to use the AES-NI instruction set optimization for HDFS encryption at rest, use
the following command:

hadoop checknative

You should see a response such as the following:

14/12/12 13:48:39 INFO bzip2.Bzip2Factory: Successfully loaded & initialized
 native-bzip2
library system-native14/12/12 13:48:39 INFO zlib.ZlibFactory: Successfully
 loaded & initialized native-zlib library
Native library checking:
hadoop: true /usr/lib/hadoop/lib/native/libhadoop.so.1.0.0
zlib: true /lib64/libz.so.1
snappy: true /usr/lib64/libsnappy.so.1
lz4: true revision:99
bzip2: true /lib64/libbz2.so.1
openssl: true /usr/lib64/libcrypto.so

If you see true in the openssl row, Hadoop has detected the right version of libcrypto.so and optimization will work. If
you see false in this row, you do not have the right version.

Enabling HDFS Encryption Using the Wizard
To accommodate the security best practice of separation of duties, enabling HDFS encryption using the wizard
requires different Cloudera Manager user roles for different steps.

Launch the Set up HDFS Data At Rest Encryption wizard in one of the following ways:

• Cluster Set up HDFS Data At Rest Encryption

Minimum Required Role: Key Administrator or Cluster Administrator (also provided by Full Administrator)
• Administration Security Set up HDFS Data At Rest Encryption

Minimum Required Role: Key Administrator or Cluster Administrator (also provided by Full Administrator)
• HDFS service Actions Set up HDFS Data At Rest Encryption

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

On the first page of the wizard, select the root of trust for encryption keys:

• Cloudera Navigator Key Trustee Server
• A file-based password-protected Java KeyStore

Cloudera strongly recommends using Cloudera Navigator Key Trustee Server as the root of trust for production
environments. The file-based Java KeyStore root of trust is insufficient to provide the security, scalability, and
manageability required by most production systems. More specifically, the Java KeyStore KMS does not provide:

• Scalability, so you are limited to only one KMS, which can result in bottlenecks
• High Availability (HA)
• Recoverability, so if you lose the node where the Java KeyStore is stored, then you can lose access to all the

encrypted data

Ultimately, the Java KeyStore does not satisfy the stringent security requirements of most organizations for handling
master encryption keys.

Choosing a root of trust displays a list of steps required to enable HDFS encryption using that root of trust. Each step
can be completed independently. The Status column indicates whether the step has been completed, and the Notes
column provides additional context for the step. If your Cloudera Manager user account does not have sufficient
privileges to complete a step, the Notes column indicates the required privileges.

16

https://en.wikipedia.org/wiki/Separation_of_duties

Cloudera Manager HDFS Transparent Encryption

Available steps contain links to wizards or documentation required to complete the step. If a step is unavailable due to
insufficient privileges or a prerequisite step being incomplete, no links are present and the Notes column indicates the
reason the step is unavailable.

Continue to the section for your selected root of trust for further instructions.

Related Information
Encrypting Data at Rest

Data at Rest Encryption Requirements

Data at Rest Encryption Reference Architecture

Resource Planning for Data at Rest Encryption

Enabling HDFS Encryption Using Navigator Key Trustee Server
Enabling HDFS encryption using Key Trustee Server as the key store involves multiple components.

Before you begin
Before continuing, make sure the Cloudera Manager server host has access to the internal repository hosting the Key
Trustee Server software.

About this task
Selecting Cloudera Navigator Key Trustee Server as the root of trust to view the various steps.

Procedure

1. Enable Kerberos.

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

2. Enable TLS/SSL.

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

17

Cloudera Manager HDFS Transparent Encryption

3. Add a dedicated cluster for the Key Trustee Server.

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

If you have not already done so, you must create an internal repository to install Cloudera Navigator before you
can set up and use Navigator Key Trustee Server.

This step creates a new cluster in Cloudera Manager for the Key Trustee Server hosts to isolate them from other
enterprise data hub (EDH) services for increased security and durability. To complete this step:

a) Click Add a dedicated cluster for the Key Trustee Server.
b) Leave Enable High Availability checked to add two hosts to the cluster.

For production environments, you must enable high availability for Key Trustee Server. Failure to enable high
availability can result in complete data loss in the case of catastrophic failure of a standalone Key Trustee
Server.

Click Continue.
c) Search for new hosts to add to the cluster, or select the Currently Managed Hosts tab to add existing hosts to

the cluster.

After selecting the hosts, click Continue.
d) Select the KEYTRUSTEE_SERVER parcel to install Key Trustee Server using parcels, or select None if you

want to use packages.

If you do not see a parcel available, click More Options and add the repository URL to the Remote Parcel
Repository URLs list. After selecting a parcel or None, click Continue.

If you selected None, click Continue again, and skip to step 4. Install Key Trustee Server binary using
packages or parcels.

e) After the KEYTRUSTEE_SERVER parcel is successfully downloaded, distributed, unpacked, and activated,
click Continue.

f) Click Continue to complete this step and return to the main page of the wizard.

4. Install Key Trustee Server binary using packages or parcels.

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

Important: If you selected None in 3. Add a dedicated cluster for the Key Trustee Server., the step
title is changed to Install Parcel for Key Trustee Server. If you are using packages, skip this step and see
'Installing Key Trustee Server Using the Command Line' for package-based installation instructions. After
installing Key Trustee Server using packages, continue to 5. Install Parcel for Key Trustee KMS.

If you have not already done so, you must create an internal repository to install Cloudera Navigator before you
can set up and use Navigator Key Trustee Server.

This step is completed automatically during step 3. Add a dedicated cluster for the Key Trustee Server. if you are
using parcels. If the step is incomplete for any reason (such as the wizard being interrupted or a failure installing
the parcel), complete it manually:

a) Click Install Key Trustee Server binary using packages or parcels.
b) Select the KEYTRUSTEE_SERVER parcel to install Key Trustee Server, or select None if you need to install

Key Trustee Server manually using packages.

If you do not see a parcel available, click More Options and add the repository URL to the Remote Parcel
Repository URLs list.

After selecting a parcel, click Continue.
c) After the KEYTRUSTEE_SERVER parcel is successfully downloaded, distributed, unpacked, and activated,

click Finish to complete this step and return to the main page of the wizard.

18

Cloudera Manager HDFS Transparent Encryption

5. Install Parcel for Key Trustee KMS.

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

If you have not already done so, you must create an internal repository to install Cloudera Navigator before you
can set up and use Navigator Key Trustee Server.

This step installs the Key Trustee KMS parcel. If you are using packages, skip this step and see 'Installing Key
Trustee KMS Using Packages' for instructions. After installing Key Trustee KMS using packages, continue to 6.
Add a Key Trustee Server Service.

To complete this step for parcel-based installations:

a) Click Install Parcel for Key Trustee KMS.
b) Select the KEYTRUSTEE parcel to install Key Trustee KMS.

If you do not see a parcel available, click More Options and add the repository URL to the Remote Parcel
Repository URLs list. After selecting a parcel, click Continue.

c) After the KEYTRUSTEE parcel is successfully downloaded, distributed, unpacked, and activated, click Finish
to complete this step and return to the main page of the wizard.

6. Add a Key Trustee Server Service.

Minimum Required Role: Key Administrator (also provided by Full Administrator)

This step adds the Key Trustee Server service to Cloudera Manager.

To complete this step:

a) Click Add a Key Trustee Server Service.
b) Click Continue.
c) On the Customize Role Assignments for Key Trustee Server page, select the hosts for the Active Key Trustee

Server and Passive Key Trustee Server roles.

Make sure that the selected hosts are not used for other services and click Continue.
d) The Entropy Considerations page provides commands to install the rng-tools package to increase available

entropy for cryptographic operations.

After completing these commands, click Continue.
e) The Synchronize Active and Passive Key Trustee Server Private Keys page provides instructions for

generating and copying the Active Key Trustee Server private key to the Passive Key Trustee Server. Cloudera
recommends following security best practices and transferring the private key using offline media, such
as a removable USB drive. For convenience (for example, in a development or testing environment where

19

Cloudera Manager HDFS Transparent Encryption

maximum security is not required), you can copy the private key over the network using the provided rsync
command.

After you have synchronized the private keys, run the ktadmin init command on the Passive Key Trustee
Server as described in the wizard. After the initialization is complete, check the box to indicate you have
synchronized the keys and click Continue in the wizard.

f) The Setup TLS for Key Trustee Server page provides instructions on replacing the auto-generated self-signed
certificate with a production certificate from a trusted Certificate Authority (CA).

Click Continue to view and modify the default certificate settings.
g) On the Review Changes page, you can view and modify the following settings:

• Database Storage Directory (db_root)

Default value: /var/lib/keytrustee/db

The directory on the local filesystem where the Key Trustee Server database is stored. Modify this value to
store the database in a different directory.

• Active Key Trustee Server TLS/SSL Server Private Key File (PEM Format) (ssl.privatekey.location)

Default value: /var/lib/keytrustee/.keytrustee/.ssl/ssl-cert-keytrustee-pk.pem

The path to the Active Key Trustee Server TLS certificate private key. Accept the default setting to use
the auto-generated private key. If you have a CA-signed certificate, change this path to the CA-signed
certificate private key file. This file must be in PEM format.

• Active Key Trustee Server TLS/SSL Server Certificate File (PEM Format) (ssl.cert.location)

Default value: /var/lib/keytrustee/.keytrustee/.ssl/ssl-cert-keytrustee.pem

The path to the Active Key Trustee Server TLS certificate. Accept the default setting to use the auto-
generated self-signed certificate. If you have a CA-signed certificate, change this to the path to the CA-
signed certificate. This file must be in PEM format.

• Active Key Trustee Server TLS/SSL Server CA Certificate (PEM Format) (ssl.cacert.location)

Default value: (none)

The path to the file containing the CA certificate and any intermediate certificates (if any intermediate
certificates exist, then they are required here) used to sign the Active Key Trustee Server certificate. If you

20

https://en.wikipedia.org/wiki/Privacy-enhanced_Electronic_Mail

Cloudera Manager HDFS Transparent Encryption

have a CA-signed certificate, set this value to the path to the CA certificate or certificate chain file. This
file must be in PEM format.

• Active Key Trustee Server TLS/SSL Private Key Password (ssl.privatekey.password)

Default value: (none)

The password for the Active Key Trustee Server private key file. Leave this blank if the file is not
password-protected.

• Passive Key Trustee Server TLS/SSL Server Private Key File (PEM Format) (ssl.privatekey.location)

Default value: /var/lib/keytrustee/.keytrustee/.ssl/ssl-cert-keytrustee-pk.pem

The path to the Passive Key Trustee Server TLS certificate private key. Accept the default setting to use
the auto-generated private key. If you have a CA-signed certificate, change this path to the CA-signed
certificate private key file. This file must be in PEM format.

• Passive Key Trustee Server TLS/SSL Server Certificate File (PEM Format) (ssl.cert.location)

Default value: /var/lib/keytrustee/.keytrustee/.ssl/ssl-cert-keytrustee.pem

The path to the Passive Key Trustee Server TLS certificate. Accept the default setting to use the auto-
generated self-signed certificate. If you have a CA-signed certificate, change this to the path to the CA-
signed certificate. This file must be in PEM format.

• Passive Key Trustee Server TLS/SSL Server CA Certificate (PEM Format) (ssl.cacert.location)

Default value: (none)

The path to the file containing the CA certificate and any intermediate certificates (if any intermediate
certificates exist, then they are required here) used to sign the Passive Key Trustee Server certificate. If you
have a CA-signed certificate, set this value to the path to the CA certificate or certificate chain file. This
file must be in PEM format.

• Passive Key Trustee Server TLS/SSL Private Key Password (ssl.privatekey.password)

Default value: (none)

The password for the Passive Key Trustee Server private key file. Leave this blank if the file is not
password-protected.

After reviewing the settings and making any changes, click Continue.
h) After all commands complete successfully, click Continue.

If the Generate Key Trustee Server Keyring appears stuck, make sure that the Key Trustee Server host has
enough entropy.

i) Click Finish to complete this step and return to the main page of the wizard.

For parcel-based Key Trustee Server releases 5.8 and higher, Cloudera Manager automatically backs up Key
Trustee Server (using the ktbackup.sh script) after adding the Key Trustee Server service. It also schedules
automatic backups using cron. For package-based installations, you must manually back up Key Trustee Server
and configure a cron job.

Cloudera Manager configures cron to run the backup script hourly. The latest ten backups are retained in /var/lib/
keytrustee in cleartext.

7. Restart stale services and redeploy client configuration.

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

This step restarts all services which were modified while enabling HDFS encryption.

To complete this step:

a) Click Restart stale services and redeploy client configuration.
b) Click Restart Stale Services.
c) Ensure that Re-deploy client configuration is checked, and click Restart Now.
d) After all commands have completed, click Finish.

21

https://en.wikipedia.org/wiki/Privacy-enhanced_Electronic_Mail

Cloudera Manager HDFS Transparent Encryption

8. Validate Data Encryption.

Minimum Required Role: Key Administrator or Cluster Administrator (also provided by Full Administrator)

This step launches a tutorial with instructions on creating an encryption zone and putting data into it to verify that
HDFS encryption is enabled and working.

Related Information
Resource Planning for Data at Rest Encryption

Data at Rest Encryption Reference Architecture

Data at Rest Encryption Requirements

Configuring TLS/SSL for the KMS

Enabling HDFS Encryption Using a Java KeyStore
Cloudera strongly recommends using Cloudera Navigator Key Trustee Server as the root of trust for production
environments. The file-based Java KeyStore root of trust is insufficient to provide the security, scalability, and
manageability required by most production systems.

About this task
After selecting A file-based password-protected Java KeyStore as the root of trust, the following steps are displayed.

Procedure

1. Enable Kerberos.

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

2. Enable TLS/SSL.

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

3. Add a Java KeyStore KMS Service.

Minimum Required Role: Key Administrator (also provided by Full Administrator)

This step adds the Java KeyStore KMS service to the cluster. The Java KeyStore KMS service uses a password-
protected Java KeyStore for cryptographic key management.

To complete this step:

a) Click Add a Java KeyStore KMS Service.
b) Select a cluster host for the Java KeyStore KMS service. Click Continue.
c) The Setup TLS for Java KeyStore KMS page provides high-level instructions for configuring TLS

communication between the EDH cluster and the Java KeyStore KMS.

Click Continue.
d) The Review Changes page lists the Java KeyStore settings. Click the icon next to any setting for information

about that setting.

Enter the location and password for the Java KeyStore and click Continue.

4. Click Continue to automatically configure the HDFS service to depend on the Java KeyStore KMS service.

5. Click Finish to complete this step and return to the main page of the wizard.

6. Restart stale services and redeploy client configuration.

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

This step restarts all services that were modified while enabling HDFS encryption.

To complete this step:

a) Click Restart stale services and redeploy client configuration.
b) Click Restart Stale Services.
c) Ensure that Re-deploy client configuration is checked, and click Restart Now.
d) After all commands have completed, click Finish.

22

Cloudera Manager HDFS Transparent Encryption

7. Validate Data Encryption.

Minimum Required Role: Key Administrator or Cluster Administrator

This step launches a Validate Data Encryption tutorial with instructions describing how to create an encryption
zone and place data into it to verify that HDFS encryption is enabled and working.

Related Information
Configuring TLS/SSL for the KMS

Managing Encryption Keys and Zones
Interacting with the KMS and creating encryption zones requires the use of two CLI commands: hadoop key and hdfs
 crypto. Before getting started with creating encryption keys and setting up encryption zones, make sure that your
KMS ACLs have been set up according to best practices.

Validating Hadoop Key Operations
Use hadoop key create to create a test key, and then use hadoop key list to retrieve the key list.

sudo -u <key_admin> hadoop key create keytrustee_test
hadoop key list

Warning: If you are using or plan to use Cloudera Navigator Key HSM in conjunction with Cloudera
Navigator Key Trustee Server, ensure that:

Key names begin with alphanumeric characters and do not use special characters other than hyphen (-), period
(.), or underscore (_). Using other special characters can prevent you from migrating your keys to an HSM.

Creating Encryption Zones
Once a KMS has been set up and the NameNode and HDFS clients have been correctly configured, use the hadoop k
ey and hdfs crypto command-line tools to create encryption keys and set up new encryption zones.

Important: Cloudera does not currently support configuring the root directory as an encryption zone. Nested
encryption zones are also not supported.

Important: The Java Keystore KMS default Truststore (for example, org.apache.hadoop.crypto.key.JavaKey
StoreProvider) does not support uppercase key names.

• Create an encryption key for your zone as keyadmin for the user/group (regardless of the application that will be
using the encryption zone):

sudo -u hbase hadoop key create <key_name>

• Create a new empty directory and make it an encryption zone using the key created above.

sudo -u hdfs hadoop fs -mkdir /encryption_zone
sudo -u hdfs hdfs crypto -createZone -keyName <key_name> -path /
encryption_zone

You can verify creation of the new encryption zone by running the -listZones command. You should see the
encryption zone along with its key listed as follows:

$ sudo -u hdfs hdfs crypto -listZones
/encryption_zone <key_name>

Warning: Do not delete an encryption key as long as it is still in use for an encryption zone. This results
in loss of access to data in that zone. Also, do not delete the KMS service, as your encrypted HDFS data
will be inaccessible. To prevent data loss, first copy the encrypted HDFS data to a non-encrypted zone
using the distcp command.

23

Cloudera Manager HDFS Transparent Encryption

Related Information
Configuring CDP Services for HDFS Encryption

Adding Files to an Encryption Zone
You can add files to an encryption zone by copying them to the encryption zone using distcp.

For example:

sudo -u hdfs hadoop distcp /user/dir /encryption_zone

Important: You can delete files or directories that are part of an HDFS encryption zone.

DistCp Considerations

A common use case for DistCp is to replicate data between clusters for backup and disaster recovery purposes.
This is typically performed by the cluster administrator, who is an HDFS superuser. To retain this workflow when
using HDFS encryption, the virtual path prefix /.reserved/raw/ has been introduced, that gives superusers direct
access to the underlying block data in the filesystem. This allows superusers to distcp data without requiring access
to encryption keys, and avoids the overhead of decrypting and re-encrypting data. It also means the source and
destination data will be byte-for-byte identical, which would not have been true if the data was being re-encrypted
with a new EDEK.

Warning: When using /.reserved/raw/ to distcp encrypted data, make sure you preserve extended attributes
with the -px flag. This is because encrypted attributes such as the EDEK are exposed through extended
attributes and must be preserved to be able to decrypt the file.

This means that if the distcp is initiated at or above the encryption zone root, it will automatically create a
new encryption zone at the destination if it does not already exist. Hence, Cloudera recommends you first
create identical encryption zones on the destination cluster to avoid any potential mishaps.

Copying data from encrypted locations

By default, distcp compares checksums provided by the filesystem to verify that data was successfully copied to
the destination. When copying from an encrypted location, the file system checksums will not match because the
underlying block data is different. This is true whether or not the destination location is encrypted or unencrypted.

In this case, you can specify the -skipcrccheck and -update flags to avoid verifying checksums. When you use -ski
pcrccheck, distcp checks the file integrity by performing a file size comparison, right after the copy completes for
each file.

Deleting Encryption Zones
To remove an encryption zone, delete the encrypted directory.

Warning: This command deletes the entire directory and all of its contents. Ensure that the data is no longer
needed before running this command.

sudo -u hdfs hadoop fs -rm -r -skipTrash /encryption_zone

Important: The Key Trustee KMS does not directly execute a key deletion (for example, it may perform a
soft delete instead, or delay the actual deletion to prevent mistakes). In these cases, errors may occur when
creating or deleting a key using the same name after it has already been deleted.

Backing Up Encryption Keys
It is very important that you regularly back up your encryption keys. Failure to do so can result in irretrievable loss of
encrypted data.

24

Cloudera Manager HDFS Transparent Encryption

If you are using the Java KeyStore KMS, make sure you regularly back up the Java KeyStore that stores the
encryption keys.

Rolling Encryption Keys
When you roll an EZ key, you are essentially creating a new version of the key (ezKeyVersionName). Rolling EZ
keys regularly helps enterprises minimize the risk of key exposure. If a malicious attacker were to obtain the EZ key
and decrypt encrypted data encryption keys (EDEKs) into DEKs, they could gain the ability to decrypt HDFS files.
Rolling an EZ key ensures that all DEKs for newly-created files will be encrypted with the new version of the EZ
key. The older EZ key version that the attacker obtained cannot decrypt these EDEKs.

Before you begin
Before attempting to roll an encryption key (also known as an encryption zone key, or EZ key),you must be familiar
with the concepts associated with Navigator Data Encryption and the HDFS Transparent Encryption.

About this task
You may want to roll the encryption key periodically, as part of your security policy or when an external security
compromise is detected.

Procedure

1. Before rolling any keys, log in as HDFS Superuser and verify/identify the encryption zones to which the current
key applies.

This operation also helps clarify the relationship between the EZ key and encryption zones, and, if necessary,
makes it easier to identify more important, high priority zones.

$ hdfs crypto –listZones
/ez key1
/ez2 key2
/user key1

The first column identifies the encryption zone paths; the second column identifies the encryption key name.

2. You can verify that the files inside an encryption zone are encrypted using the hdfs crypto -getFileEncryptionInfo
command.

Note the EZ key version name and value, which you can use for comparison and verification after rolling the EZ
key.

$ hdfs crypto –getFileEncryptionInfo –path /ez/f
{cipherSuite: {name: AES/CTR/NoPadding, algorithmBlockSize: 16}. crypto
ProtocolVersion:
CryptoProtocolVersion{description=’Encryption zones’, version=2, unknow
nValue=null}, edek: 373c0c2e919c27e58c1c343f54233cbd,
iv: d129c913c8a34cde6371ec95edfb7337, keyName: key1, ezKeyVersionName:
 7mbvopZ0Weuvs0XtTkpGw3G92KuWc4e4xcTXl0bXCpF}

25

Cloudera Manager HDFS Transparent Encryption

3. Log off as HDFS Superuser and log in as Key Administrator.

Because keys can be rolled, a key can have multiple key versions, where each key version has its own key
material (the actual secret bytes used during DEK encryption and EDEK decryption). You can fetch an encryption
key by either its key name, returning the latest version of the key, or by a specific key version.

Roll the encryption key (previously identified/confirmed by the HDFS Superuser in step 1. Here, the <key name>
is key1.

hadoop key roll key1

This operation contacts the KMS and rolls the keys there. Note that this can take a considerable amount of time,
depending on the number of key versions residing in the KMS.

Rolling key version from KeyProvider: org.apache.hadoop.crypto.key.kms.L
oadBalancingKMSClientProvider@5ea434c8
for keyName: key1
key1 has been successfully rolled.
org.apache.hadoop.crypto.key.kms.LoadBalancingKMSClientProvider@5ea434c8
 has been updated.

4. Log out as Key Administrator, and log in as HDFS Superuser. Verify that new files in the encryption zone have a
new EZ key version.

Note: For performance reasons, the NameNode caches EDEKs, so after rolling an encryption key, you
may not be able to see the new version encryption key immediately, or at least until after the EDEK cache
is consumed. Of course, the file decryption and encryption still works with these EDEKs. If you require
that all files' DEKs in an encryption zone are encrypted using the latest version encryption key, please re-
encrypt the EDEKs.

$ hdfs crypto –getFileEncryptionInfo –path /ez/new_file
{cipherSuite: {name: AES/CTR/NoPadding, algorithmBlockSize: 16}. cryptoP
rotocolVersion:
CryptoProtocolVersion{description=’Encryption zones’, version=2, unknown
Value=null}, edek: 9aa13ea4a700f96287cfe1349f6ff4f2,
iv: 465c878ad9325e42fa460d2a22d12a72, keyName: key1, ezKeyVersionName:
 4tuvorJ6Feeqk8WiCfdDs9K32KuEj7g2ydCAv0gNQbY}

Alternatively, you can use KMS Rest API to view key metadata and key versions. Elements appearing in brackets
should be replaced with your actual values. So in this case, before rolling a key, you can view the key metadata
and versions as follows:

$ curl -k --negotiate -u: "https://<KMS_HOSTNAME>:16000/kms/v1/key/<key-
name>/_metadata"
{
 "name" : "<key-name>",
 "cipher" : "<cipher>",
 "length" : <length>,
 "description" : "<decription>",
 "created" : <millis-epoc>,
 "versions" : <versions> (For example, 1)
}
$ curl -k --negotiate -u: "https://<KMS_HOSTNAME>:16000/kms/v1/key/<key-
name>/_currentversion"
{
 "material" : "<material>",
 "name" : "<key-name>",
 "versionName" : "<versionName>" (For example, version 1)

26

Cloudera Manager HDFS Transparent Encryption

}

Roll the key and compare the results:

$ hadoop key roll key1

Rolling key version from KeyProvider: KMSClientProvider[https://<KMS_HOS
TNAME>:16000/kms/v1/]

 for key name: <key-name>

key1 has been successfully rolled.

KMSClientProvider[https://<KMS_HOSTNAME>/kms/v1/] has been updated.

$ curl -k --negotiate -u: "https://<KMS_HOSTNAME>:16000/kms/v1/key/<key-
name>/_currentversion"
{
 "material" : "<material>", (New material)
 "name" : "<key-name>",
 "versionName" : "<versionName>" (New version name. For example, version
 2)
}

$ curl -k --negotiate -u: "https://<KMS_HOSTNAME>:16000/kms/v1/key/<key-
name>/_metadata"
{
 "name" : "<key-name>",
 "cipher" : "<cipher>",
 "length" : <length>,
 "description" : "<decription>",
 "created" : <millis-epoc>,
 "versions" : <versions> (For example, version 2)
}

Re-encrypting Encrypted Data Encryption Keys (EDEKs)
When you re-encrypt an EDEK, you are essentially decrypting the original EDEK created by the DEK, and then re-
encrypting it using the new (rolled) version of the EZ key. The file's metadata, which is stored in the NameNode, is
then updated with this new EDEK. Re-encryption does not impact the data in the HDFS files or the DEK–the same
DEK is still used to decrypt the file, so re-encryption is essentially transparent.
Related Information
Rolling Encryption Keys

Benefits and Capabilities
In addition to minimizing security risks, re-encrypting the EDEK offers other capabilities and benefits.

• Re-encrypting EDEKs does not require that the user explicitly re-encrypt HDFS files.
• In cases where there are several zones using the same key, the Key Administrator has the option of selecting

which zone’s EDEKs are re-encrypted first.
• The HDFS Superuser can also monitor and cancel re-encryption operations.
• Re-encryption is restarted automatically in cases where you have a NameNode failure during the re-encryption

operation.

Prerequisites and Assumptions
There are certain considerations that you must be aware of as you re-encrypt an EDEK.

• It is recommended that you perform EDEK re-encryption at the same time that you perform regular cluster
maintenance because the operation can adversely impact CPU resources on the NameNode.

27

Cloudera Manager HDFS Transparent Encryption

• In Cloudera Manager, review the cluster’s NameNode status, which must be in “Good Health”. If the cluster
NameNode does not have a status of “Good Health”, then do not proceed with the re-encryption of the EDEK. In
the Cloudera Manager WebUI menu, you can verify the status for the cluster NameNode, which must not be in
Safe mode (in other words, the WebUI should indicate “Safemode is off”).

Running the re-encryption command without successfully verifying the preceding items will result in failures with
errors.

Limitations
There are few limitations associated with the re-encryption of EDEKs.

Caution: You cannot perform any rename operations within the encryption zone during re-encryption. If you
attempt to perform a rename operation during EDEK re-encryption, you will receive an IOException error.

EDEK re-encryption does not change EDEKs on snapshots, due to the immutable nature HDFS snapshots. Thus, you
should be aware that after EZ key exposure, the Key Administrator must delete snapshots.

Re-encrypting an EDEK
This scenario operates on the assumption that an encryption zone has already been set up for this cluster.

Procedure

1. Navigate to the cluster in which you will be rolling keys and re-encrypting the EDEK.

2. Log in as HDFS Superuser.

3. View all of the options for the hdfs crypto command:

$ hdfs crypto
[-createZone –keyName <keyName> -path <path>]
[-listZones]
[-provisionTrash –path <path>]
[-getFileEncryptionInfo –path <path>]
[-reencryptZone <action> -path <zone>]
[-listReencryptionStatus]
[-help <command-name>]

4. Before rolling any keys, verify/identify the encryption zones to which the current key applies.

This operation also helps clarify the relationship between the EZ key and encryption zones, and, if necessary,
makes it easier to identify more important, high priority zones.

$ hdfs crypto –listZones
/ez key1

The first column identifies the encryption zone path (/ez); the second column identifies the encryption key name
(key1).

5. Exit from the HDFS Superuser account and log in as Key Administrator.

6. Roll the encryption key (previously identified/confirmed by the HDFS Superuser in step 4).

Here, the <key name> is key1

hadoop key roll key1

This operation contacts the KMS and rolls the keys. Note that this can take a considerable amount of time,
depending on the number of key versions.

Rolling key version from KeyProvider: org.apache.hadoop.crypto.key.kms.L
oadBalancingKMSClientProvider@5ea434c8
for keyName: key1
key1 has been successfully rolled.

28

Cloudera Manager HDFS Transparent Encryption

org.apache.hadoop.crypto.key.kms.LoadBalancingKMSClientProvider@5ea434c8
 has been updated.

7. Log out as Key Administrator, and log in as HDFS Superuser.

8. Before performing the re-encryption, you can verify the status of the current key version being used (keyName).

Then, after re-encrypting, you can confirm that the EZ key version (ezKeyVersionName) and EDEK have
changed.

$ hdfs crypto –getFileEncryptionInfo –path /ez/f
{cipherSuite: {name: AES/CTR/NoPadding, algorithmBlockSize: 16}. crypto
ProtocolVersion:
CryptoProtocolVersion{description=’Encryption zones’, version=2, unknow
nValue=null}, edek: 9aa13ea4a700f96287cfe1349f6ff4f2,
iv: d129c913c8a34cde6371ec95edfb7337, keyName: key1, ezKeyVersionName:
 7mbvopZ0Weuvs0XtTkpGw3G92KuWc4e4xcTXl0bXCpF}

9. After the EZ key has been rolled successfully, re-encrypt the EDEK by running the re-encryption command on the
encryption zone:

$ hdfs crypto –reencryptZone –start –path /ez

The following information appears when the submission is complete. At this point, the NameNode is processing
and re-encrypting all of the EDEKs under the /ez directory.

re-encrypt command successfully submitted for zone: /ez action: START:

Depending on the number of files, the re-encryption operation can take a long time. Re-encrypting a 1M EDEK
file typically takes between 2-6 minutes, depending on the NameNode hardware. To check the status of the re-
encryption for the zone:

hdfs crypto –listReencryptionStatus

Column Name Description Sample Data

ZoneName The encryption zone name /ez

Status • Submitted: the command is received,
but not yet being processed by the
NameNode.

• Processing: the zone is being processed
by the NameNode.

• Completed: the NameNode has finished
processing the zone, and every file in the
zone has been re-encrypted.

Completed

EZKey Version Name The encryption zone key version name,
which used for re-encryption comparison.
After re-encryption is complete, all files in
the encryption zone are guaranteed to have
an EDEK whose encryption zone key version
is at least equal to this version.

ZMHfRoGKeXXgf0QzCX8q16NczIw2sq0rWRTOHS3YjCz

Submission Time The time at which the re-encryption
operation commenced.

2017-09-07 10:01:09,262-0700

Is Canceled? True: the encryption operation has been
canceled.

False: the encryption operation has not been
canceled.

False

Completion Time The time at which the re-encryption
operation completed.

2017-09-07 10:01:10,441-0700

29

Cloudera Manager HDFS Transparent Encryption

Column Name Description Sample Data

Number of files re-encrypted The number that appears in this column
reflects only the files whose EDEKs have
been updated. If a file is created after the key
is rolled, then it will already have an EDEK
that has been encrypted by the new key
version, so the re-encryption operation will
skip that file. In other words, it's possible
for a "Completed" re-encryption to reflect a
number of re-encrypted files that is less than
the number of files actually in the encryption
zone.

Note: In cases when you re-encrypt an EZ
key that has already been re-encrypted and
there are no new files, the number of files re-
encrypted will be 0.

1

Number of failures When 0, no errors occurred during the re-
encryption operation. If larger than 0, then
investigate the NameNode log, and re-
encrypt.

0

Last file Checkpointed Identifies the current position of the re-
encryption process in the encryption zone--in
other words, the file that was most recently
re-encrypted.

0

10. After the re-encryption completes, you can confirm that the EDEK and EZ Key Version Name values have
changed.

$ hdfs crypto –getFileEncryptionInfo –path /ez/f
{cipherSuite: {name: AES/CTR/NoPadding, algorithmBlockSize: 16}. crypto
ProtocolVersion:
CryptoProtocolVersion{description=’Encryption zones’, version=2, unknow
nValue=null}, edek: 373c0c2e919c27e58c1c343f54233cbd,
iv: d129c913c8a34cde6371ec95edfb7337, keyName: key1, ezKeyVersionName:
 ZMHfRoGKeXXgf0QzCX8q16NczIw2sq0rWRTOHS3YjCz }

Managing Re-encryption Operations
There are various facets of the EDEK re-encryption process such as cancelling re-encryption, rolling keys during a re-
encryption operation, and throttling re-encryption operations.

Cancelling Re-encryption

Only users with the HDFS Superuser privilege can cancel the EDEK re-encryption after the operation has started.

To cancel a re-encryption:

hadoop crypto -reencryptZone cancel -path <zone>

Rolling Keys During a Re-encryption Operation

While it is not recommended, it is possible to roll the encryption zone key version on the KMS while a re-encryption
of that encryption zone is already in progress in the NameNode. The re-encryption is guaranteed to complete with all
DEKs re-encrypted, with a key version equal to or later than the encryption zone key version when the re-encryption
command was submitted. This means that, if initially the key version is rolled from v0 to v1, then a re-encryption
command was submitted. If later on the KMS the key version is rolled again to v2, then all EDEKs will be at least
re-encrypted to v1. To ensure that all EDEKs are re-encrypted to v2, submit another re-encryption command for the
encryption zone.

Rolling keys during re-encryption is not recommended because of the potential negative impact on key management
operations. Due to the asynchronous nature of re-encryption, there is no guarantee of when, exactly, the rolled

30

Cloudera Manager HDFS Transparent Encryption

encryption keys will take effect. Re-encryption can only guarantee that all EDEKs are re-encrypted at least on the EZ
key version that existed when the re-encryption command is issued.

Throttling Re-encryption Operations

With the default operation settings, you will not typically need to throttle re-encryption operations. However, in cases
of excessive performance impact due to the re-encryption of large numbers of files, advanced users have the option of
throttling the operation so that the impact on the HDFS NameNode and KT KMS are minimized.

Specifically, you can throttle the operation to control the rate of the following:

• The number of EDEKs that the NameNode should send to the KMS to re-encrypt in a batch
(dfs.namenode.reencrypt.batch.size)

• The number of threads in the NameNode that can run concurrently to contact the KMS.
(dfs.namenode.reencrypt.edek.threads)

• Percentage of time the NameNode read-lock should be held by the re-encryption thread
(dfs.namenode.reencrypt.throttle.limit.handler.ratio)

• Percentage of time the NameNode write-lock should be held by the re-encryption thread
(dfs.namenode.reencrypt.throttle.limit.updater.ratio)

You can monitor the HDFS NameNode heap and CPU usage from Cloudera Manager.

Configuring the Key Management Server (KMS)
Hadoop Key Management Server (KMS) is a cryptographic key management server based on the Hadoop
KeyProvider API. It provides a KeyProvider implementation client that interacts with the KMS using the HTTP
REST API.

Both the KMS and its client support HTTP SPNEGO Kerberos authentication and TLS/SSL-secured communication.
The KMS is a Java-based web application that uses a preconfigured Jetty server bundled with the Hadoop
distribution.

Cloudera provides the following implementations of the Hadoop KMS:

• Java KeyStore KMS - The default Hadoop KMS included in CDH that uses a file-based Java KeyStore (JKS) for
its backing keystore. For parcel-based installations, no additional action is required to install or upgrade the KMS.
Cloudera strongly recommends not using Java Keystore KMS in production environments. Java KeyStore KMS
does not support high availability.

• Key Trustee KMS - A custom KMS that uses Cloudera Navigator Key Trustee Server for its backing keystore
instead of the file-based Java KeyStore (JKS) used by the default Hadoop KMS. Cloudera strongly recommends
using Key Trustee KMS in production environments to improve the security, durability, and scalability of your
cryptographic key management. Also, integrating Key Trustee Server with Cloudera Navigator Key HSM
provides an additional layer of protection.

• Navigator KMS Services backed by Thales HSM - A custom KMS that uses a supported Thales Hardware
Security Module (HSM) as its backing keystore. This KMS service provides the highest level of key isolation to
customers who require it.

• Navigator KMS Services backed by Luna HSM - A custom KMS that uses a supported Luna Hardware Security
Module (HSM) as its backing keystore. This KMS provides the highest level of key isolation to customers who
require it.

Related Information
Securing the Key Management Server (KMS)

Configuring the KMS Using Cloudera Manager
If you are using Cloudera Manager, you can view and edit the KMS configuration by navigating to the specific pages,
depending on the KMS implementation you are using.

• Key Trustee KMS service Configuration

31

Cloudera Manager HDFS Transparent Encryption

• Java KeyStore KMS service Configuration

Configuring the KMS Cache Using Cloudera Manager
By default, the KMS caches keys to reduce the number of interactions with the key provider. You can disable the
cache by setting the hadoop.kms.cache.enable property to false.

The cache is only used with the getCurrentKey(), getKeyVersion() and getMetadata() methods.

For the getCurrentKey() method, entries are cached for a maximum of 30000 milliseconds to prevent stale keys.

For the getKeyVersion() method, entries are cached with a default inactivity timeout of 600000 milliseconds (10
minutes).

You can configure the cache and its timeout values by adding the following properties to KMS
serviceConfigurationAdvancedKey Management Server Proxy Advanced Configuration Snippet (Safety Valve) for
kms-site.xml:

<property>
 <name>hadoop.kms.cache.enable</name>
 <value>true</value>
</property>
<property>
 <name>hadoop.kms.cache.timeout.ms</name>
 <value>600000</value>
</property>

<property>
 <name>hadoop.kms.current.key.cache.timeout.ms</name>
 <value>30000</value>
</property>

Configuring the Audit Log Aggregation Interval
Audit logs are generated for GET_KEY_VERSION, GET_CURRENT_KEY, DECRYPT_EEK, and GENERATE
_EEK operations.

Entries are aggregated by user, key, and operation for a configurable interval, after which the number of aggregated
operations by the user for a given key is written to the audit log.

The interval is configured in milliseconds by adding the hadoop.kms.aggregation.delay.ms property to KMS
serviceConfigurationAdvancedKey Management Server Proxy Advanced Configuration Snippet (Safety Valve) for
kms-site.xml:

<property>
 <name>hadoop.kms.aggregation.delay.ms</name>
 <value>10000</value>
</property>

Securing the Key Management Server (KMS)
Cloudera provides the following implementations of Key Mangement Server (KMS): Ranger KMS with database,
Ranger KMS with Key Trustee Server and Ranger KMS with Key Trustee Server and Key HSM (if HSM support
is required) You can secure the KMS using Kerberos, TLS/SSL communication, and access control lists (ACLs) for
operations on encryption keys.

Cloudera Manager instructions can be performed for both Ranger KMS and Ranger KMS with KTS.

Enabling Kerberos Authentication for the KMS
You can use Cloudera Manager to enable Kerberos authentication for the KMS.

32

Cloudera Manager HDFS Transparent Encryption

About this task
Minimum Required Role: Full Administrator

Procedure

1. Open the Cloudera Manager Admin Console and go to the KMS service.

2. Click Configuration.

3. Set the Authentication Type property to kerberos.

4. Click Save Changes.

5. Because Cloudera Manager does not automatically create the principal and keytab file for the KMS, you must run
the Generate Credentials command manually.

On the top navigation bar, go to Administration Security Kerberos Credentials and click Generate Missing
Credentials

Note: This does not create a new Kerberos principal if an existing HTTP principal exists for the KMS
host.

6. Return to the home page by clicking the Cloudera Manager logo.

7. Click the icon that is next to any stale services to invoke the cluster restart wizard.

8. Click Restart Stale Services.

9. Click Restart Now.

10. Click Finish.

Configuring TLS/SSL for the KMS
You must configure specific TLS/SSL properties associated with the KMS.

About this task
Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Procedure

1. Go to the KMS service.

2. Click Configuration.

3. In the Search field, type TLS/SSL to show the KMS TLS/SSL properties (in the Key Management Server Default
Group Security category).

4. Edit the following TLS/SSL properties according to your cluster configuration.

Property Description

Enable TLS/SSL for Key
Management Server

Encrypt communication between clients and Key Management Server using Transport Layer
Security (TLS) (formerly known as Secure Socket Layer (TLS/SSL)).

Key Management Server TLS/SSL
Server JKS Keystore File Location

The path to the TLS/SSL keystore file containing the server certificate and private key used for
TLS/SSL. Used when Key Management Server is acting as a TLS/SSL server. The keystore must
be in JKS format.

Key Management Server TLS/SSL
Server JKS Keystore File Password

The password for the Key Management Server JKS keystore file.

Key Management Server Proxy TLS/
SSL Certificate Trust Store File

The location on disk of the truststore, in .jks format, used to confirm the authenticity of TLS/SSL
servers that Key Management Server Proxy might connect to. This is used when Key Management
Server Proxy is the client in a TLS/SSL connection. This truststore must contain the certificates
used to sign the services connected to. If this parameter is not provided, the default list of well-
known certificate authorities is used instead.

Key Management Server Proxy TLS/
SSL Certificate Trust Store Password

The password for the Key Management Server Proxy TLS/SSL Certificate Trust Store File. This
password is not required to access the truststore; this field can be left blank. This password provides
optional integrity checking of the file. The contents of truststores are certificates, and certificates
are public information.

33

Cloudera Manager HDFS Transparent Encryption

5. Click Save Changes.

6. Return to the home page by clicking the Cloudera Manager logo.

7. Click the icon that is next to any stale services to invoke the cluster restart wizard.

8. Click Restart Stale Services.

9. Click Restart Now.

10. Click Finish.

Migrating Keys from a Java KeyStore to Cloudera Navigator Key Trustee
Server

You can migrate keys from an existing Java KeyStore (JKS) to Key Trustee Server to improve security, durability,
and scalability.

Before you begin
This procedure assumes that the Java KeyStore (JKS) is on the same host as the new Key Trustee KMS service.

Procedure

1. Stop the Java KeyStore KMS service.

2. Add and configure the Key Trustee KMS service, and configure HDFS to use it for its KMS Service setting.

3. Restart the HDFS service and redeploy client configuration for this to take effect.

a. Home Cluster-wide Deploy Client Configuration

4. Add the following to the Key Management Server Proxy Advanced Configuration Snippet (Safety Valve) for
kms-site.xml (Key Trustee KMS Service Configuration Category Advanced):

<property>
 <name>hadoop.kms.key.provider.uri</name>
 <value>keytrustee://file@/var/lib/kms-keytrustee/keytrustee/.keytrustee/
,jceks://file@/path/to/kms.keystore</value>
 <description>URI of the backing KeyProvider for the KMS</description>
</property>

<property>
 <name>hadoop.security.keystore.java-keystore-provider.password-file</
name>
 <value>/tmp/password.txt</value>
 <description>Java KeyStore password file</description>
</property>

If the Java KeyStore is not password protected, omit the hadoop.security.keystore.java-keystore-provider.pass
word-file property.

5. Click Save Changes and restart the Key Trustee KMS service.

If the Java KeyStore is not password protected, skip to step 7.

6. Create the file /var/lib/keytrustee-kms/jetty-deployment/webapps/kms/WEB-INF/classes/tmp/password.txt and
add the Java KeyStore password to it.

7. Change the ownership of /var/lib/keytrustee-kms/jetty-deployment/webapps/kms/WEB-INF/classes/tmp/
password.txt to kms:kms.

sudo chown kms:kms /var/lib/keytrustee-kms/jetty-deployment/webapps/kms/
WEB-INF/classes/tmp/password.txt

34

Cloudera Manager HDFS Transparent Encryption

8. From the host running the Key Trustee KMS service, if you have not configured Kerberos and TLS/SSL, run the
following command:

curl -L -d "trusteeOp=migrate"
"http://kms01.example.com:16000/kms/v1/trustee/key/migrate?user.n
ame=username&trusteeOp=migrate"

If you have configured Kerberos and TLS/SSL, use the following command instead:

curl --negotiate -u : -L -d "trusteeOp=migrate"
"https://kms01.example.com:16000/kms/v1/trustee/key/migrate?user.n
ame=username&trusteeOp=migrate" --cacert /path/to/kms/cert

9. Monitor /var/log/kms-keytrustee/kms.log and /var/log/kms-keytrustee/kms-catalina.<date>.log to verify that the
migration is successful.

You can also run sudo -u <key_admin> hadoop key list to verify that the keys are listed.

10. After you have verified that the migration is successful, remove the safety valve entry used in step 3 and restart
the Key Trustee KMS service.

Migrating a Key Trustee KMS Server Role Instance to a New Host
In some cases – for example, after your upgrading your servers – it is desirable to migrate a Key Trustee KMS Server
role instance to a new host. This procedure describes how to move a Key Trustee KMS proxy service role instance
from an existing cluster host to another cluster host.

The security and performance requirements for the KMS proxy are based on providing a dedicated system to the role,
and not shared with CDP or other services.

Note: This migration procedure applies only to the Key Trustee KMS Server, and does not apply to the Key
Trustee Server. Do not attempt this migration on the Key Trustee Server.

The KMS proxy represents a service that must be:

• secure
• isolated from non-administrator access
• maintained as a system with a higher level of isolation and security requirements compared to other cluster nodes

Assumptions and Requirements
There are various assumptions and requirements that apply during the migration of a Key Trustee KMS server role
instance to a new host.

• Complete the steps one node at a time (migrate to the first new node, verify, then repeat the steps to migrate to
second new node, verify, and so on).

• The sequence of restarts indicated throughout the steps are critical to successfully completing the migration
without data loss. Do not skip any of the steps.

• As required for any KMS service that is configured for HA, Zookeeper must be deployed as a service (true by
default).

• Review and examine TLS and Kerberos configuration requirements: the new KMS nodes must be ready with a
Java Keystore and Truststore that present the correct host certificates while also trusting the Key Trustee Server. If
the custom Kerberos keytab retrieval script is in use for Kerberos integration, it is important to have those keytabs
ready and ingested before proceeding.

• For this use case/procedure, assume that the existing KMS proxy host instances are named:

• ktkms01.example.com
• ktkms02.example.com

35

Cloudera Manager HDFS Transparent Encryption

• Assume that the host destination instances are:

• ktkms03.example.com
• ktkms04.example.com

Related Information
Migrate a Key Trustee KMS Server Role Instance to a New Host

Migrate a Key Trustee KMS Server Role Instance to a New Host
After ensuring that the requirements for migrating the Key Trustee KMS Server role instance to a new instance are
satisfied, initiate the migration process.

About this task

Warning: Do not attempt this migration procedure on any Key Trustee KMS version lower than 5.16.0.

Procedure

1. Back up the Key Trustee KMS private key and configuration directory.

2. Before adding the new role instance, see Resource Planning for Data at Rest Encryption for considerations when
selecting a host.

3. Run the Add Role Instances wizard for the Key Trustee KMS service (Key Trustee KMS service Actions Add
Role Instances).

4. Click Select hosts and select the checkbox for the host to which you are adding the new Key Management Server
proxy service role instance.

Click OK and then Continue.

5. On the Review Changes page of the wizard, confirm the authorization code, organization name, and settings, and
then click Finish.

6. Select and start the new KMS instance (Actions for Selected Start).

Important: The initial startup of the KMS instance may fail with the following error message:

java.io.IOException: Unable to verify private key match between KMS
hosts.
If the system has been recently upgraded, DO NOT TAKE FURTHER ACTION
 and contact your
support representative as soon as possible. If this is a new installa
tion, verify
private key files have been synced between all KMS hosts. Aborting
 to prevent data inconsistency.

If this occurs, it indicates that the KMS attempted to verify the Key Trustee private key has been
synchronized with the new instance, but was unable to because that synchronization has not yet taken
place. This is expected behavior at this point in the process. Proceed to the next step, and the new KMS
instance will come up when the KMS service is restarted after the synchronization.

7. Verify that a Kerberos HTTP principal has been created for that specific host role instance in the Security
configuration interface (Administration Security Kerberos Credentials).

For example, in this scenario the existing KMS Kerberos principal is HTTP/
ktkms01.example.com@EXAMPLE.COM , and you must verify the new host principal HTTP/
ktkms03.example.com@EXAMPLE.COM has been created before continuing. If you cannot verify the new
host principal, then click Generate Missing Credentials on the Kerberos Credentials tab to generate it before
continuing.

If the custom Kerberos keytab retrieval script is in use for Kerberos integration, it is important to have those
keytabs ready and ingested before proceeding.

36

Cloudera Manager HDFS Transparent Encryption

8. Synchronize the Key Trustee KMS private key.

In this use case you log into the original working KMS instance host, which is ktkms01.example.com , and
synchronize the keys from your existing KMS host ktkms01.example.com to the new host to which you are
migrating, ktkms03.example.com. Copy the private key over the network by running the following command as a
privileged (root) user on the original Key Trustee KMS host:

rsync -zav /var/lib/kms-keytrustee/keytrustee/.keytrustee root@ktkms03.e
xample.com:/var/lib/kms-keytrustee/keytrustee/.

Replace the host name (here, it is ktkms03.example.com) with the hostname of the Key Trustee KMS host to
which you are migrating.

Warning: It is very important that you perform this step. If the KMS private key is not copied from the
existing instance to the new instance, then the encryption keys will be inaccessible when the old KMS
instance is removed from the cluster.

9. To verify that the Key Trustee KMS private keys successfully synchronized, compare the MD5 hash of the private
keys.

On each Key Trustee KMS host, run the following command:

$ md5sum /var/lib/kms-keytrustee/keytrustee/.keytrustee/secring.gpg

If the outputs are different, contact Cloudera Support for assistance. Do not attempt to synchronize existing keys.
If you overwrite the private key and do not have a backup, any keys encrypted by that private key are permanently
inaccessible, and any data encrypted by those keys is permanently irretrievable. If you are configuring Key
Trustee KMS high availability for the first time, continue synchronizing the private keys.

10. Restart the Key Trustee KMS service (Key Trustee KMS service Actions Restart).

After the restart completes, click Close.

11. Restart the cluster.

This refreshes all the KMS instances in the cluster, and ensures all stale services are restarted.

12. Redeploy the client configuration (Home > Cluster > Deploy Client Configuration).

13. Run the steps in Validating Hadoop Key Operations.

Perform the check multiple times to exercise the Load balanced KMS nodes properly. If a command fails during
this test, stop immediately, halt the cluster, and contact Cloudera Support.

14. Remove the old KMS instance being migrated.

First stop the KMS instance (ktkms01.example.com) (Select KMS instance Actions for Selected Stop), and
then delete it (Select KMS instance > Actions for Selected > Delete).

Delete the /var/lib/kms-keytrustee directories on the old KMS instance only after configuring and verifying the
new KMS instances. Delete this material only after completing the following tasks:

a) Remove the old KMS instances from the KMS service.
b) Verify that you can read previously encrypted data only using the new KMS instances.

15. Restart the cluster.

This refreshes all the KMS instances in the cluster, and ensures all stale services are restarted.

16. Redeploy the client configuration (Home Clusterwide Deploy Client Configuration).

17. Re-run the steps in Validating Hadoop Key Operations.

Perform the check multiple times to exercise the Load balanced KMS nodes properly. If a command fails during
this test, stop immediately, halt the cluster, and contact Cloudera Support.

18. Repeat these steps for any additional KMS node migrations you wish to perform.

In the use case shown here, repeat the steps to migrate the ktkms02.example.com host to the
ktkms04.example.com host.

37

Cloudera Manager HDFS Transparent Encryption

Configuring CDP Services for HDFS Encryption
There are recommendations that you must consider for setting up HDFS Transparent Encryption with various CDP
services.

Important: Encrypting /tmp using HDFS encryption is not supported.

Transparent Encryption Recommendations for HBase
Make /hbase an encryption zone. Do not create encryption zones as subdirectories under /hbase, because HBase may
need to rename files across those subdirectories. When you create the encryption zone, name the key hbase-key to
take advantage of auto-generated KMS ACLs.

Steps

On a cluster without HBase currently installed, create the /hbase directory and make that an encryption zone.

On a cluster with HBase already installed, perform the following steps:

1. Stop the HBase service.
2. Move data from the /hbase directory to /hbase-tmp.
3. Create an empty /hbase directory and make it an encryption zone.
4. Distcp all data from /hbase-tmp to /hbase, preserving user-group permissions and extended attributes.
5. Start the HBase service and verify that it is working as expected.
6. Remove the /hbase-tmp directory.

KMS ACL Configuration for HBase

In the KMS ACL, grant the hbase user and group DECRYPT_EEK permission for the HBase key:

<property>
 <name>key.acl.hbase-key.DECRYPT_EEK</name>
 <value>hbase hbase</value>
 </description>
</property>

Transparent Encryption Recommendations for Hive
HDFS encryption has been designed so that files cannot be moved from one encryption zone to another or from
encryption zones to unencrypted directories. Therefore, the landing zone for data when using the LOAD DATA IN
PATH command must always be inside the destination encryption zone.

To use HDFS encryption with Hive, ensure you are using one of the following configurations:

Single Encryption Zone

With this configuration, you can use HDFS encryption by having all Hive data inside the same encryption zone. In
Cloudera Manager, configure the Hive Scratch Directory (hive.exec.scratchdir) to be inside the encryption zone.

Recommended HDFS Path: /user/hive

To use the auto-generated KMS ACL, make sure you name the encryption key hive-key.

For example, to configure a single encryption zone for the entire Hive warehouse, you can rename /user/hive to /user/
hive-old, create an encryption zone at /user/hive, and then distcp all the data from /user/hive-old to /user/hive.

In Cloudera Manager, configure the Hive Scratch Directory (hive.exec.scratchdir) to be inside the encryption zone by
setting it to /user/hive/tmp, ensuring that permissions are 1777 on /user/hive/tmp.

38

Cloudera Manager HDFS Transparent Encryption

Multiple Encryption Zones

With this configuration, you can use encrypted databases or tables with different encryption keys. To read data from
read-only encrypted tables, users must have access to a temporary directory that is encrypted at least as strongly as the
table.

For example:

1. Configure two encrypted tables, ezTbl1 and ezTbl2.
2. Create two new encryption zones, /data/ezTbl1 and /data/ezTbl2.
3. Load data to the tables in Hive using LOAD statements.

Other Encrypted Directories

• LOCALSCRATCHDIR: The MapJoin optimization in Hive writes HDFS tables to a local directory and then
uploads them to the distributed cache. To ensure these files are encrypted, either disable MapJoin by setting hive
.auto.convert.join to false, or encrypt the local Hive Scratch directory (hive.exec.local.scratchdir) using Cloudera
Navigator Encrypt.

• DOWNLOADED_RESOURCES_DIR: JARs that are added to a user session and stored in HDFS are downloaded
to hive.downloaded.resources.dir on the HiveServer2 local filesystem. To encrypt these JAR files, configure
Cloudera Navigator Encrypt to encrypt the directory specified by hive.downloaded.resources.dir.

• NodeManager Local Directory List: Hive stores JARs and MapJoin files in the distributed cache. To use MapJoin
or encrypt JARs and other resource files, the yarn.nodemanager.local-dirs YARN configuration property must be
configured to a set of encrypted local directories on all nodes.

Changed Behavior after HDFS Encryption is Enabled
You must consider various factors when working with Hive tables after enabling HDFS transparent encryption for
Hive.

• Loading data from one encryption zone to another results in a copy of the data. Distcp is used to speed up the
process if the size of the files being copied is higher than the value specified by HIVE_EXEC_COPYFILE_M
AXSIZE. The minimum size limit for HIVE_EXEC_COPYFILE_MAXSIZE is 32 MB, which you can modify by
changing the value for the hive.exec.copyfile.maxsize configuration property.

• When loading data to encrypted tables, Cloudera strongly recommends using a landing zone inside the same
encryption zone as the table.

• Example 1: Loading unencrypted data to an encrypted table - Use one of the following methods:

• If you are loading new unencrypted data to an encrypted table, use the LOAD DATA ... statement. Because
the source data is not inside the encryption zone, the LOAD statement results in a copy. For this reason,
Cloudera recommends landing data that you need to encrypt inside the destination encryption zone. You
can use distcp to speed up the copying process if your data is inside HDFS.

• If the data to be loaded is already inside a Hive table, you can create a new table with a LOCATION inside
an encryption zone as follows:

CREATE TABLE encrypted_table [STORED AS] LOCATION ... AS SELECT * FR
OM <unencrypted_table>

The location specified in the CREATE TABLE statement must be inside an encryption zone. Creating a
table pointing LOCATION to an unencrypted directory does not encrypt your source data. You must copy
your data to an encryption zone, and then point LOCATION to that zone.

• Example 2: Loading encrypted data to an encrypted table - If the data is already encrypted, use the CREATE
 TABLE statement pointing LOCATION to the encrypted source directory containing the data. This is the
fastest way to create encrypted tables.

CREATE TABLE encrypted_table [STORED AS] LOCATION ... AS SELECT * FROM <
encrypted_source_directory>

39

Cloudera Manager HDFS Transparent Encryption

• Users reading data from encrypted tables that are read-only must have access to a temporary directory which is
encrypted with at least as strong encryption as the table.

• Temporary data is now written to a directory named .hive-staging in each table or partition
• Previously, an INSERT OVERWRITE on a partitioned table inherited permissions for new data from the existing

partition directory. With encryption enabled, permissions are inherited from the table.

KMS ACL Configuration for Hive
When Hive joins tables, it compares the encryption key strength for each table. For this operation to succeed, you
must configure the KMS ACL to allow the hive user and group READ access to the Hive key.

<property>
 <name>key.acl.hive-key.READ</name>
 <value>hive hive</value>
</property>

If you have restricted access to the GET_METADATA operation, you must grant permission for it to the hive user or
group:

<property>
 <name>hadoop.kms.acl.GET_METADATA</name>
 <value>hive hive</value>
</property>

If you have disabled HiveServer2 Impersonation, you must configure the KMS ACLs to grant DECRYPT_EEK
permissions to the hive user, as well as any user accessing data in the Hive warehouse.

Cloudera recommends creating a group containing all Hive users, and granting DECRYPT_EEK access to that group.

For example, suppose user jdoe (home directory /user/jdoe) is a Hive user and a member of the group hive-users. The
encryption zone (EZ) key for /user/jdoe is named jdoe-key, and the EZ key for /user/hive is hive-key. The following
ACL example demonstrates the required permissions:

<property>
 <name>key.acl.hive-key.DECRYPT_EEK</name>
 <value>hive hive-users</value>
</property>
<property>
 <name>key.acl.jdoe-key.DECRYPT_EEK</name>
 <value>jdoe,hive</value>
</property>

If you have enabled HiveServer2 impersonation, data is accessed by the user submitting the query or job, and the
user account (jdoe in this example) may still need to access data in their home directory. In this scenario, the required
permissions are as follows:

<property>
 <name>key.acl.hive-key.DECRYPT_EEK</name>
 <value>nobody hive-users</value>
</property>

<property>
 <name>key.acl.jdoe-key.DECRYPT_EEK</name>
 <value>jdoe</value>
</property>

Transparent Encryption Recommendations for Hue
Make /user/hue an encryption zone because Oozie workflows and other Hue-specific data are stored there by default.
When you create the encryption zone, name the key hue-key to take advantage of auto-generated KMS ACLs.

40

Cloudera Manager HDFS Transparent Encryption

Steps

On a cluster without Hue currently installed, create the /user/hue directory and make it an encryption zone.

On a cluster with Hue already installed:

1. Create an empty /user/hue-tmp directory.
2. Make /user/hue-tmp an encryption zone.
3. DistCp all data from /user/hue into /user/hue-tmp.
4. Remove /user/hue and rename /user/hue-tmp to /user/hue.

KMS ACL Configuration for Hue

In the KMS ACLs, grant the hue and oozie users and groups DECRYPT_EEK permission for the Hue key:

<property>
 <name>key.acl.hue-key.DECRYPT_EEK</name>
 <value>oozie,hue oozie,hue</value>
</property>

Transparent Encryption Recommendations for Impala
There are various recommendations to consider when configuring HDFS Transparent Encryption for Impala.

Recommendations

• If HDFS encryption is enabled, configure Impala to encrypt data spilled to local disk.
• Limit the rename operations for internal tables once encryption zones are set up. Impala cannot do an ALTER

TABLE RENAME operation to move an internal table from one database to another, if the root directories for
those databases are in different encryption zones. If the encryption zone covers a table directory but not the parent
directory associated with the database, Impala cannot do an ALTER TABLE RENAME operation to rename an
internal table, even within the same database.

• Avoid structuring partitioned tables where different partitions reside in different encryption zones, or where any
partitions reside in an encryption zone that is different from the root directory for the table. Impala cannot do an
INSERT operation into any partition that is not in the same encryption zone as the root directory of the overall
table.

• If the data files for a table or partition are in a different encryption zone than the HDFS trashcan, use the PURGE
keyword at the end of the DROP TABLE or ALTER TABLE DROP PARTITION statement to delete the HDFS
data files immediately. Otherwise, the data files are left behind if they cannot be moved to the trashcan because of
differing encryption zones. This syntax is available in Impala 2.3 and higher.

Steps

Start every impalad process with the --disk_spill_encryption=true flag set. This encrypts all spilled data using
AES-256-CFB. Set this flag by selecting the Disk Spill Encryption checkbox in the Impala configuration (Impala
serviceConfigurationCategorySecurity).

Important: Impala does not selectively encrypt data based on whether the source data is already encrypted
in HDFS. This results in at most 15 percent performance degradation when data is spilled.

KMS ACL Configuration for Impala

Cloudera recommends making the impala user a member of the hive group, and following the ACL recommendations
in KMS ACL Configuration for Hive.

Related Information
KMS ACL Configuration for Hive

41

Cloudera Manager HDFS Transparent Encryption

Transparent Encryption Recommendations for MapReduce and YARN
MapReduce v1 stores both history and logs on local disks by default. Even if you do configure history to be stored on
HDFS, the files are not renamed. Hence, no special configuration is required.

Recommendations for MapReduce v2 (YARN)

Make /user/history a single encryption zone, because history files are moved between the intermediate and done
directories, and HDFS encryption does not allow moving encrypted files across encryption zones. When you create
the encryption zone, name the key mapred-key to take advantage of auto-generated KMS ACLs.

Steps

On a cluster with MRv2 (YARN) installed, create the /user/history directory and make that an encryption zone.

If /user/history already exists and is not empty:

1. Create an empty /user/history-tmp directory.
2. Make /user/history-tmp an encryption zone.
3. DistCp all data from /user/history into /user/history-tmp.
4. Remove /user/history and rename /user/history-tmp to /user/history.

Transparent Encryption Recommendations for Search
Make /solr an encryption zone. When you create the encryption zone, name the key solr-key to take advantage of
auto-generated KMS ACLs.

Steps

On a cluster without Solr currently installed, create the /solr directory and make that an encryption zone.

On a cluster with Solr already installed:

1. Create an empty /solr-tmp directory.
2. Make /solr-tmp an encryption zone.
3. DistCp all data from /solr into /solr-tmp.
4. Remove /solr, and rename /solr-tmp to /solr.

KMS ACL Configuration for Search

In the KMS ACL, grant the solr user and group DECRYPT_EEK permission for the Solr key:

<property>
 <name>key.acl.solr-key.DECRYPT_EEK</name>
 <value>solr solr</value>
 </description>
</property>

Transparent Encryption Recommendations for Spark
There are various recommendations to consider when configuring HDFS Transparent Encryption for Spark.

Recommendations

• By default, application event logs are stored at /user/spark/applicationHistory, which can be made into an
encryption zone.

• Spark also optionally caches its JAR file at /user/spark/share/lib (by default), but encrypting this directory is not
required.

• Spark does not encrypt shuffle data. To do so, configure the Spark local directory, spark.local.dir (in Standalone
mode), to reside on an encrypted disk. For YARN mode, make the corresponding YARN configuration changes.

42

Cloudera Manager HDFS Transparent Encryption

KMS ACL Configuration for Spark

In the KMS ACL, grant DECRYPT_EEK permission for the Spark key to the spark user and any groups that can
submit Spark jobs:

<property>
 <name>key.acl.spark-key.DECRYPT_EEK</name>
 <value>spark spark-users</value>
</property>

Transparent Encryption Recommendations for Sqoop
There are various recommendations to consider when configuring HDFS Transparent Encryption for Sqoop.

Recommendations

• For Hive support: Ensure that you are using Sqoop with the --target-dir parameter set to a directory that is inside
the Hive encryption zone.

• For append/incremental support: Make sure that the sqoop.test.import.rootDir property points to the same
encryption zone as the --target-dir argument.

• For HCatalog support: No special configuration is required.

Migrating Keys from a Java KeyStore to Cloudera Navigator Key Trustee
Server

You can migrate keys from an existing Java KeyStore (JKS) to Key Trustee Server to improve security, durability,
and scalability. If you are using the Java KeyStore KMS service, and want to use Key Trustee Server as the backing
key store for “HDFS Transparent Encryption”, use the following procedure.

This procedure assumes that the Java KeyStore (JKS) is on the same host as the new Key Trustee KMS service.

1. Stop the Java KeyStore KMS service.
2. Add and configure the Key Trustee KMS service, and configure HDFS to use it for its KMS Service setting.
3. Restart the HDFS service and redeploy client configuration for this to take effect:

a. Home Cluster-wide Deploy Client Configuration
4. Add the following to the Key Management Server Proxy Advanced Configuration Snippet (Safety Valve) for

kms-site.xml (Key Trustee KMS Service Configuration Category Advanced):

<property>
 <name>hadoop.kms.key.provider.uri</name>
 <value>keytrustee://file@/var/lib/kms-keytrustee/keytrustee/.keytrustee/
,jceks://file@/path/to/kms.keystore</value>
 <description>URI of the backing KeyProvider for the KMS</description>
</property>

<property>
 <name>hadoop.security.keystore.java-keystore-provider.password-file</
name>
 <value>/tmp/password.txt</value>
 <description>Java KeyStore password file</description>
</property>

If the Java KeyStore is not password protected, omit the hadoop.security.keystore.java-keystore-provider.pass
word-file property.

5. Click Save Changes and restart the Key Trustee KMS service. If the Java KeyStore is not password protected, skip
to step 7.

43

Cloudera Manager HDFS Transparent Encryption

6. Create the file /var/lib/keytrustee-kms/jetty-deployment/webapps/kms/WEB-INF/classes/tmp/password.txt and
add the Java KeyStore password to it.

7. Change the ownership of /var/lib/keytrustee-kms/jetty-deployment/webapps/kms/WEB-INF/classes/tmp/
password.txt to kms:kms:

sudo chown kms:kms /var/lib/keytrustee-kms/jetty-deployment/webapps/kms/
WEB-INF/classes/tmp/password.txt

8. From the host running the Key Trustee KMS service, if you have not configured Kerberos and TLS/SSL, run the
following command:

curl -L -d "trusteeOp=migrate" "http://kms01.example.com:16000/kms/v1/tr
ustee/key/migrate?user.name=username&trusteeOp=migrate"

If you have configured Kerberos and TLS/SSL, use the following command instead:

curl --negotiate -u : -L -d "trusteeOp=migrate" "htt
ps://kms01.example.com:16000/kms/v1/trustee/key/migrate?user.n
ame=username&trusteeOp=migrate" --cacert /path/to/kms/cert

9. Monitor /var/log/kms-keytrustee/kms.log and /var/log/kms-keytrustee/kms-catalina.<date>.log to verify that the
migration is successful. You can also run sudo -u <key_admin> hadoop key list to verify that the keys are listed.

10. After you have verified that the migration is successful, remove the safety valve entry used in step 3 and restart
the Key Trustee KMS service.

Migrating a Key Trustee KMS Server Role Instance to a New Host
Note: This migration procedure applies only to the Key Trustee KMS Server, and does not apply to the Key
Trustee Server. Do not attempt this migration on the Key Trustee Server.

In some cases–for example, after upgrading your servers–it is desirable to migrate a Key Trustee KMS Server role
instance to a new host. This procedure describes how to move a Key Trustee KMS proxy service role instance from
an existing cluster host to another cluster host. The security and performance requirements for the KMS proxy are
based on providing a dedicated system to the role, and not shared with CDP or other services. The KMS proxy
represents a service that must be:

• secure
• isolated from non-administrator access
• maintained as a system with a higher level of isolation and security requirements compared to other cluster nodes

Related Information
Enabling HDFS Encryption Using the Wizard

Configuring the Key Management Server (KMS)

Securing the Key Management Server (KMS)

Assumptions and Requirements

Warning: Do not attempt this migration procedure on any Key Trustee KMS version lower than 5.16.0.

The following assumptions and requirements apply during the migration of a Key Trustee KMS server role instance
to a new host as described in this procedure:

• Complete the steps one node at a time (migrate to the first new node, verify, then repeat the steps to migrate to
second new node, verify, and so on).

• The sequence of restarts indicated throughout the steps are critical to successfully completing the migration
without data loss. Do not skip any of the steps.

44

Cloudera Manager HDFS Transparent Encryption

• As required for any KMS service that is configured for HA, Zookeeper must be deployed as a service (true by
default). Refer to “Adding a Service” for details about how to add services.

• Review and examine TLS and Kerberos configuration requirements: the new KMS nodes must be ready with a
Java Keystore and Truststore that present the correct host certificates while also trusting the Key Trustee Server. If
the custom Kerberos keytab retrieval script is in use for Kerberos integration, it is important to have those keytabs
ready and ingested before proceeding. Refer to “Using a custom Kerberos keytab retrieval script” for details.

• For this use case/procedure, assume that the existing KMS proxy host instances are named:

• ktkms01.example.com
• ktkms02.example.com

• Assume that the host destination instances are:

• ktkms03.example.com
• ktkms04.example.com

Migrating a Key Trustee KMS Server Role Instance to a New Host

1. Back up the Key Trustee KMS private key and configuration directory. See “Back up Key Trustee Server clients”
for more information.

2. Before adding the new role instance, see “Resource Planning for Data at Rest Encryption” for considerations
when selecting a host.

3. Run the Add Role Instances (“Role Instances”) wizard for the Key Trustee KMS service (Key Trustee KMS
service Actions Add Role Instances).

4. Click Select hosts and select the checkbox for the host to which you are adding the new Key Management Server
proxy service role instance. Click OK and then Continue.

5. On the Review Changes page of the wizard, confirm the authorization code, organization name, and settings, and
then click Finish.

6. Select and start the new KMS instance (Actions for SelectedStart).

Important:

The initial startup of the KMS instance may fail with the following error message:

java.io.IOException: Unable to verify private key match between KMS
hosts. If the system has been recently upgraded, DO NOT TAKE FURTHER
 ACTION and contact your support representative as soon as possible.
 If this is a new installation, verify private key files have been s
ynced between all KMS hosts. Aborting to prevent data inconsistency.

If this occurs, it indicates that the KMS attempted to verify the Key Trustee private key has been
synchronized with the new instance, but was unable to because that synchronization has not yet taken
place. This is expected behavior at this point in the process. Proceed to the next step, and the new KMS
instance will come up when the KMS service is restarted after the synchronization.

7. Verify that a Kerberos HTTP principal has been created for that specific host role instance in the Security
configuration interface (Administration Security Kerberos Credentials)).

For example, in this scenario the existing KMS Kerberos principal is HTTP/ktkms01.example.com@EXAMPLE
.COM, and you must verify the new host principal HTTP/ktkms03.example.com@EXAMPLE.COM has been
created before continuing. If you cannot verify the new host principal, then click Generate Missing Credentials on
the Kerberos Credentials tab to generate it before continuing.

If the custom Kerberos keytab retrieval script is in use for Kerberos integration, it is important to have those
keytabs ready and ingested before proceeding. Refer to “Using a custom Kerberos keytab retrieval script” for
details.

8. Synchronize the Key Trustee KMS private key. In this use case you log into the original working KMS instance
host, which is ktkms01.example.com, and synchronize the keys from your existing KMS host ktkms01.example.

45

Cloudera Manager HDFS Transparent Encryption

com to the new host to which you are migrating, ktkms03.example.com. Copy the private key over the network by
running the following command as a privileged (root) user on the original Key Trustee KMS host:

rsync -zav /var/lib/kms-keytrustee/keytrustee/.keytrustee root@ktkms03.e
xample.com:/var/lib/kms-keytrustee/keytrustee/.

Replace the host name (here we are using ktkms03.example.com) with the hostname of the Key Trustee KMS host
to which you are migrating.

Warning: It is very important that you perform this step. If the KMS private key is not copied from the
existing instance to the new instance, then the encryption keys will be inaccessible when the old KMS
instance is removed from the cluster.

9. To verify that the Key Trustee KMS private keys successfully synchronized, compare the MD5 hash of the private
keys. On each Key Trustee KMS host, run the following command:

$ md5sum /var/lib/kms-keytrustee/keytrustee/.keytrustee/secring.gpg

If the outputs are different, contact Cloudera Support for assistance. Do not attempt to synchronize existing keys.
If you overwrite the private key and do not have a backup, any keys encrypted by that private key are permanently
inaccessible, and any data encrypted by those keys is permanently irretrievable. If you are configuring Key
Trustee KMS high availability for the first time, continue synchronizing the private keys.

10. Restart the Key Trustee KMS service (Key Trustee KMS serviceActionsRestart). After the restart completes, click
Close.

11. Restart the cluster (“Starting, Stopping, Refreshing, and Restarting a Cluster”). This refreshes all the KMS
instances in the cluster, and ensures all stale services are restarted.

12. Redeploy the client configuration (HomeClusterDeploy Client Configuration).
13. Run the steps in “Managing Encryption Keys and Zones”. Perform the check multiple times to exercise the Load

balanced KMS nodes properly. If a command fails during this test, stop immediately, halt the cluster, and contact
Cloudera Support.

14. Remove the old KMS instance being migrated. First stop the KMS instance (ktkms01.example.com) (Select KMS
instanceActions for SelectedStop), and then delete it (Select KMS instanceActions for SelectedDelete).

Delete the /var/lib/kms-keytrustee directories on the old KMS instance only after configuring and verifying the
new KMS instances. Delete this material only after completing the following tasks:

a. Remove the old KMS instances from the KMS service.
b. Verify that you can read previously encrypted data only using the new KMS instances.

15. Restart the cluster (“Starting, Stopping, Refreshing, and Restarting a Cluster”). This refreshes all the KMS
instances in the cluster, and ensures all stale services are restarted.

16. Redeploy the client configuration (HomeClusterwideDeploy Client Configuration).
17. Re-run the steps in “Managing Encryption Keys and Zones”. Perform the check multiple times to exercise the

Load balanced KMS nodes properly. If a command fails during this test, stop immediately, and halt the cluster.
18. Repeat these steps for any additional KMS node migrations you wish to perform. So in the use case shown here,

we would repeat the steps to migrate the ktkms02.example.com host to the ktkms04.example.com host.

Configuring CDP Services for HDFS Encryption
This page contains recommendations for setting up HDFS Transparent Encryption with various CDP services.

Important: HDFS encryption does not support file transfer (reading, writing files) between zones through
WebHDFS. For web-based file transfer between encryption zones managed by HDFS, use HttpFS with a load
balancer (“Add the HttpFS role”) instead.

Important: Encrypting /tmp using HDFS encryption is not supported.

46

Cloudera Manager HDFS Transparent Encryption

HBase

Recommendations

Make /hbase an encryption zone. Do not create encryption zones as subdirectories under /hbase, because HBase may
need to rename files across those subdirectories. When you create the encryption zone, name the key hbase-key to
take advantage of auto-generated KMS ACLs (“Configuring KMS Access Control Lists (ACLs)”).

Steps

On a cluster without HBase currently installed, create the /hbase directory and make that an encryption zone.

On a cluster with HBase already installed, perform the following steps:

1. Stop the HBase service.
2. Move data from the /hbase directory to /hbase-tmp.
3. Create an empty /hbase directory and make it an encryption zone.
4. Distcp all data from /hbase-tmp to /hbase, preserving user-group permissions and extended attributes.
5. Start the HBase service and verify that it is working as expected.
6. Remove the /hbase-tmp directory.

KMS ACL Configuration for HBase

In the KMS ACL (“Configuring KMS Access Control Lists (ACLs)”), grant the hbase user and group DECRYPT_
EEK permission for the HBase key:

<property>
 <name>key.acl.hbase-key.DECRYPT_EEK</name>
 <value>hbase hbase</value>
 </description>
</property>

Hive

HDFS encryption has been designed so that files cannot be moved from one encryption zone to another or from
encryption zones to unencrypted directories. Therefore, the landing zone for data when using the LOAD DATA IN
PATH command must always be inside the destination encryption zone.

To use HDFS encryption with Hive, ensure you are using one of the following configurations:

Single Encryption Zone

With this configuration, you can use HDFS encryption by having all Hive data inside the same encryption zone. In
Cloudera Manager, configure the Hive Scratch Directory (hive.exec.scratchdir) to be inside the encryption zone.

Recommended HDFS Path: /user/hive

To use the auto-generated KMS ACLs (“Configuring KMS Access Control Lists (ACLs)”), make sure you name the
encryption key hive-key.

For example, to configure a single encryption zone for the entire Hive warehouse, you can rename /user/hive to /user/
hive-old, create an encryption zone at /user/hive, and then distcp all the data from /user/hive-old to /user/hive.

In Cloudera Manager, configure the Hive Scratch Directory (hive.exec.scratchdir) to be inside the encryption zone by
setting it to /user/hive/tmp, ensuring that permissions are 1777 on /user/hive/tmp.

Multiple Encryption Zones

With this configuration, you can use encrypted databases or tables with different encryption keys. To read data from
read-only encrypted tables, users must have access to a temporary directory that is encrypted at least as strongly as the
table.

47

Cloudera Manager HDFS Transparent Encryption

For example:

1. Configure two encrypted tables, ezTbl1 and ezTbl2.
2. Create two new encryption zones, /data/ezTbl1 and /data/ezTbl2.
3. Load data to the tables in Hive using LOAD statements.

For more information, see Changed Behavior after HDFS Encryption is Enabled on page 48.

Other Encrypted Directories

• LOCALSCRATCHDIR: The MapJoin optimization in Hive writes HDFS tables to a local directory and then
uploads them to the distributed cache. To ensure these files are encrypted, either disable MapJoin by setting hive
.auto.convert.join to false, or encrypt the local Hive Scratch directory (hive.exec.local.scratchdir) using Cloudera
Navigator Encrypt.

• DOWNLOADED_RESOURCES_DIR: JARs that are added to a user session and stored in HDFS are downloaded
to hive.downloaded.resources.dir on the HiveServer2 local filesystem. To encrypt these JAR files, configure
Cloudera Navigator Encrypt to encrypt the directory specified by hive.downloaded.resources.dir.

• NodeManager Local Directory List: Hive stores JARs and MapJoin files in the distributed cache. To use MapJoin
or encrypt JARs and other resource files, the yarn.nodemanager.local-dirs YARN configuration property must be
configured to a set of encrypted local directories on all nodes.

Changed Behavior after HDFS Encryption is Enabled

• Loading data from one encryption zone to another results in a copy of the data. Distcp is used to speed up the
process if the size of the files being copied is higher than the value specified by HIVE_EXEC_COPYFILE_M
AXSIZE. The minimum size limit for HIVE_EXEC_COPYFILE_MAXSIZE is 32 MB, which you can modify by
changing the value for the hive.exec.copyfile.maxsize configuration property.

• When loading data to encrypted tables, Cloudera strongly recommends using a landing zone inside the same
encryption zone as the table.

• Example 1: Loading unencrypted data to an encrypted table - Use one of the following methods:

• If you are loading new unencrypted data to an encrypted table, use the LOAD DATA ... statement. Because
the source data is not inside the encryption zone, the LOAD statement results in a copy. For this reason,
Cloudera recommends landing data that you need to encrypt inside the destination encryption zone. You
can use distcp to speed up the copying process if your data is inside HDFS.

• If the data to be loaded is already inside a Hive table, you can create a new table with a LOCATION inside
an encryption zone as follows:

CREATE TABLE encrypted_table [STORED AS] LOCATION ... AS SELECT * FR
OM <unencrypted_table>

The location specified in the CREATE TABLE statement must be inside an encryption zone. Creating a
table pointing LOCATION to an unencrypted directory does not encrypt your source data. You must copy
your data to an encryption zone, and then point LOCATION to that zone.

• Example 2: Loading encrypted data to an encrypted table - If the data is already encrypted, use the CREATE
 TABLE statement pointing LOCATION to the encrypted source directory containing the data. This is the
fastest way to create encrypted tables.

CREATE TABLE encrypted_table [STORED AS] LOCATION ... AS SELECT * FROM <
encrypted_source_directory>

• Users reading data from encrypted tables that are read-only must have access to a temporary directory which is
encrypted with at least as strong encryption as the table.

• Temporary data is now written to a directory named .hive-staging in each table or partition
• Previously, an INSERT OVERWRITE on a partitioned table inherited permissions for new data from the existing

partition directory. With encryption enabled, permissions are inherited from the table.

48

Cloudera Manager HDFS Transparent Encryption

KMS ACL Configuration for Hive

When Hive joins tables, it compares the encryption key strength for each table. For this operation to succeed, you
must configure the KMS ACLs (“Configuring KMS Access Control Lists (ACLs)”) to allow the hive user and group
READ access to the Hive key:

<property>
 <name>key.acl.hive-key.READ</name>
 <value>hive hive</value>
</property>

If you have restricted access to the GET_METADATA operation, you must grant permission for it to the hive user or
group:

<property>
 <name>hadoop.kms.acl.GET_METADATA</name>
 <value>hive hive</value>
</property>

If you have disabled “HiveServer2 Security Configuration”, you must configure the KMS ACLs to grant DECRYPT_
EEK permissions to the hive user, as well as any user accessing data in the Hive warehouse.

Cloudera recommends creating a group containing all Hive users, and granting DECRYPT_EEK access to that group.

For example, suppose user jdoe (home directory /user/jdoe) is a Hive user and a member of the group hive-users. The
encryption zone (EZ) key for /user/jdoe is named jdoe-key, and the EZ key for /user/hive is hive-key. The following
ACL example demonstrates the required permissions:

<property>
 <name>key.acl.hive-key.DECRYPT_EEK</name>
 <value>hive hive-users</value>
</property>
<property>
 <name>key.acl.jdoe-key.DECRYPT_EEK</name>
 <value>jdoe,hive</value>
</property>

If you have enabled HiveServer2 impersonation, data is accessed by the user submitting the query or job, and the
user account (jdoe in this example) may still need to access data in their home directory. In this scenario, the required
permissions are as follows:

<property>
 <name>key.acl.hive-key.DECRYPT_EEK</name>
 <value>nobody hive-users</value>
</property>

<property>
 <name>key.acl.jdoe-key.DECRYPT_EEK</name>
 <value>jdoe</value>
</property>

Hue

Recommendations

Make /user/hue an encryption zone because Oozie workflows and other Hue-specific data are stored there by default.
When you create the encryption zone, name the key hue-key to take advantage of auto-generated KMS ACLs
(“Configuring KMS Access Control Lists (ACLs)”).

49

Cloudera Manager HDFS Transparent Encryption

Steps

On a cluster without Hue currently installed, create the /user/hue directory and make it an encryption zone.

On a cluster with Hue already installed:

1. Create an empty /user/hue-tmp directory.
2. Make /user/hue-tmp an encryption zone.
3. DistCp all data from /user/hue into /user/hue-tmp.
4. Remove /user/hue and rename /user/hue-tmp to /user/hue.

KMS ACL Configuration for Hue

In the KMS ACLs (“Configuring KMS Access Control Lists (ACLs)”), grant the hue and oozie users and groups
DECRYPT_EEK permission for the Hue key:

<property>
 <name>key.acl.hue-key.DECRYPT_EEK</name>
 <value>oozie,hue oozie,hue</value>
</property>

Impala

Recommendations

• If HDFS encryption is enabled, configure Impala to encrypt data spilled to local disk.
• In releases lower than Impala 2.2.0 / CDH 5.4.0, Impala does not support the LOAD DATA statement when the

source and destination are in different encryption zones. If you are running an affected release and need to use
LOAD DATA with HDFS encryption enabled, copy the data to the table's encryption zone prior to running the
statement.

• Use Cloudera Navigator to lock down the local directory where Impala UDFs are copied during execution. By
default, Impala copies UDFs into /tmp, and you can configure this location through the --local_library_dir startup
flag for the impalad daemon.

• Limit the rename operations for internal tables once encryption zones are set up. Impala cannot do an ALTER
TABLE RENAME operation to move an internal table from one database to another, if the root directories for
those databases are in different encryption zones. If the encryption zone covers a table directory but not the parent
directory associated with the database, Impala cannot do an ALTER TABLE RENAME operation to rename an
internal table, even within the same database.

• Avoid structuring partitioned tables where different partitions reside in different encryption zones, or where any
partitions reside in an encryption zone that is different from the root directory for the table. Impala cannot do an
INSERT operation into any partition that is not in the same encryption zone as the root directory of the overall
table.

• If the data files for a table or partition are in a different encryption zone than the HDFS trashcan, use the PURGE
keyword at the end of the DROP TABLE or ALTER TABLE DROP PARTITION statement to delete the
HDFS data files immediately. Otherwise, the data files are left behind if they cannot be moved to the trashcan
because of differing encryption zones. This syntax is available in Impala 2.3 / CDH 5.5 and higher.

Steps

Start every impalad process with the --disk_spill_encryption=true flag set. This encrypts all spilled data using
AES-256-CFB. Set this flag by selecting the Disk Spill Encryption checkbox in the Impala configuration (Impala
serviceConfigurationCategorySecurity).

Important: Impala does not selectively encrypt data based on whether the source data is already encrypted
in HDFS. This results in at most 15 percent performance degradation when data is spilled.

50

Cloudera Manager HDFS Transparent Encryption

KMS ACL Configuration for Impala

Cloudera recommends making the impala user a member of the hive group, and following the ACL recommendations
in KMS ACL Configuration for Hive on page 49.

MapReduce and YARN

MapReduce v1

Recommendations

MRv1 stores both history and logs on local disks by default. Even if you do configure history to be stored on HDFS,
the files are not renamed. Hence, no special configuration is required.

MapReduce v2 (YARN)

Recommendations

Make /user/history a single encryption zone, because history files are moved between the intermediate and done
directories, and HDFS encryption does not allow moving encrypted files across encryption zones. When you create
the encryption zone, name the key mapred-key to take advantage of auto-generated KMS ACLs (“Configuring KMS
Access Control Lists (ACLs)”).

Steps

On a cluster with MRv2 (YARN) installed, create the /user/history directory and make that an encryption zone.

If /user/history already exists and is not empty:

1. Create an empty /user/history-tmp directory.
2. Make /user/history-tmp an encryption zone.
3. DistCp all data from /user/history into /user/history-tmp.
4. Remove /user/history and rename /user/history-tmp to /user/history.

KMS ACL Configuration for MapReduce

In the KMS ACLs (“Configuring KMS Access Control Lists (ACLs)”), grant DECRYPT_EEK permission for the
MapReduce key to the mapred and yarn users and the hadoop group:

<property>
 <name>key.acl.mapred-key.DECRYPT_EEK</name>
 <value>mapred,yarn hadoop</value>
 </description>
</property>

Search

Recommendations

Make /solr an encryption zone. When you create the encryption zone, name the key solr-key to take advantage of
auto-generated KMS ACLs (“Configuring KMS Access Control Lists (ACLs)”).

Steps

On a cluster without Solr currently installed, create the /solr directory and make that an encryption zone.

On a cluster with Solr already installed:

1. Create an empty /solr-tmp directory.
2. Make /solr-tmp an encryption zone.

51

Cloudera Manager HDFS Transparent Encryption

3. DistCp all data from /solr into /solr-tmp.
4. Remove /solr, and rename /solr-tmp to /solr.

KMS ACL Configuration for Search

In the KMS ACLs (“Configuring KMS Access Control Lists (ACLs)”), grant the solr user and group DECRYPT_
EEK permission for the Solr key:

<property>
 <name>key.acl.solr-key.DECRYPT_EEK</name>
 <value>solr solr</value>
 </description>
</property>

Spark

Recommendations

• By default, application event logs are stored at /user/spark/applicationHistory, which can be made into an
encryption zone.

• Spark also optionally caches its JAR file at /user/spark/share/lib (by default), but encrypting this directory is not
required.

• Spark does not encrypt shuffle data. To do so, configure the Spark local directory, spark.local.dir (in Standalone
mode), to reside on an encrypted disk. For YARN mode, make the corresponding YARN configuration changes.

KMS ACL Configuration for Spark

In the KMS ACLs (“Configuring KMS Access Control Lists (ACLs)”), grant DECRYPT_EEK permission for the
Spark key to the spark user and any groups that can submit Spark jobs:

<property>
 <name>key.acl.spark-key.DECRYPT_EEK</name>
 <value>spark spark-users</value>
</property>

Sqoop

Recommendations

• For Hive support: Ensure that you are using Sqoop with the --target-dir parameter set to a directory that is inside
the Hive encryption zone. For more details, see Hive on page 47.

• For append/incremental support: Make sure that the sqoop.test.import.rootDir property points to the same
encryption zone as the --target-dir argument.

• For HCatalog support: No special configuration is required.

Using the Ranger Key Management Service
Ranger KMS can be accessed by logging into the Ranger web UI as the KMS administrator.

Role Separation

Ranger uses separate admin users for Ranger and Ranger KMS.

• The Ranger admin user manages Ranger access policies.
• The Ranger KMS admin user (keyadmin by default) manages access policies and keys for Ranger KMS, and has

access to a different set of UI features than the Ranger admin user.

52

Cloudera Manager HDFS Transparent Encryption

Using separate administrator accounts for Ranger and Ranger KMS separates encryption work (encryption keys and
policies) from cluster management and access policy management.

Accessing the Ranger KMS Web UI
How to access the Ranger Key Management Service web UI.

To access Ranger KMS, click the Ranger Admin web UI link, enter your Ranger KMS admin user name and
password, then click Sign In.

After logging in, the Service Manager page appears.

53

Cloudera Manager HDFS Transparent Encryption

54

Cloudera Manager HDFS Transparent Encryption

To edit Ranger KMS repository properties, click the Edit icon for the service and update the settings on the Edit
Service page.

55

Cloudera Manager HDFS Transparent Encryption

56

Cloudera Manager HDFS Transparent Encryption

List and Create Keys
How to list and create Ranger KMS keys.

List existing keys

1. Log in to Ranger as the Ranger KMS admin user.
2. Click Encryption in the top menu to display the Key Management page.
3. Use the Select Service box to Select a Ranger KMS service. The keys for the service are dislayed.

57

Cloudera Manager HDFS Transparent Encryption

58

Cloudera Manager HDFS Transparent Encryption

Create a new key

1. Click Add New Key.
2. On the Key Detail page, add a valid key name.
3. Specify a cipher. Ranger KMS supports AES/CTR/NoPadding as the cipher suite.
4. Specify the key length: 128 or 256 bits.
5. Add other attributes as needed, then click Save.

59

Cloudera Manager HDFS Transparent Encryption

60

Cloudera Manager HDFS Transparent Encryption

Roll Over an Existing Key
How to roll over an existing Ranger KMS key.

About this task

Rolling over (or "rotating") a key retains the same key name, but the key will have a different version. This operation
re-encrypts existing file keys, but does not re-encrypt the actual file. Keys can be rolled over at any time.

After a key is rotated in Ranger KMS, new files will have the file key encrypted by the new master key for the
encryption zone.

Procedure

1. Log in to Ranger as the Ranger KMS admin user, click Encryption in the top menu, then select a Ranger KMS
service.

61

Cloudera Manager HDFS Transparent Encryption

2. To rotate a key, click the Rollover icon for the key in the Action column.

62

Cloudera Manager HDFS Transparent Encryption

63

Cloudera Manager HDFS Transparent Encryption

3. Click OK on the confirmation pop-up.

64

Cloudera Manager HDFS Transparent Encryption

Delete a Key
How to delete a Ranger KMS key.

About this task

Important:

Deleting a key associated with an existing encryption zone will result in data loss.

Procedure

1. Log in to Ranger as the Ranger KMS admin user, click Encryption in the top menu, then select a Ranger KMS
service.

2. Click on the Delete icon for the key in the Action column.

3. Click OK on the confirmation pop-up.

65

	Contents
	Encrypting Data at Rest
	Data at Rest Encryption Reference Architecture
	Data at Rest Encryption Requirements
	Resource Planning for Data at Rest Encryption
	HDFS Transparent Encryption
	Key Concepts and Architecture
	Keystores and the Hadoop Key Management Server
	KMS Solutions
	Encryption Zones and Keys
	Accessing Files Within an Encryption Zone

	Optimizing Performance for HDFS Transparent Encryption
	Enabling HDFS Encryption Using the Wizard
	Enabling HDFS Encryption Using Navigator Key Trustee Server
	Enabling HDFS Encryption Using a Java KeyStore

	Managing Encryption Keys and Zones
	Validating Hadoop Key Operations
	Creating Encryption Zones
	Adding Files to an Encryption Zone
	Deleting Encryption Zones
	Backing Up Encryption Keys
	Rolling Encryption Keys
	Re-encrypting Encrypted Data Encryption Keys (EDEKs)
	Benefits and Capabilities
	Prerequisites and Assumptions
	Limitations
	Re-encrypting an EDEK
	Managing Re-encryption Operations

	Configuring the Key Management Server (KMS)
	Configuring the KMS Using Cloudera Manager
	Configuring the KMS Cache Using Cloudera Manager
	Configuring the Audit Log Aggregation Interval

	Securing the Key Management Server (KMS)
	Enabling Kerberos Authentication for the KMS
	Configuring TLS/SSL for the KMS

	Migrating Keys from a Java KeyStore to Cloudera Navigator Key Trustee Server
	Migrating a Key Trustee KMS Server Role Instance to a New Host
	Assumptions and Requirements
	Migrate a Key Trustee KMS Server Role Instance to a New Host

	Configuring CDP Services for HDFS Encryption
	Transparent Encryption Recommendations for HBase
	Transparent Encryption Recommendations for Hive
	Changed Behavior after HDFS Encryption is Enabled
	KMS ACL Configuration for Hive

	Transparent Encryption Recommendations for Hue
	Transparent Encryption Recommendations for Impala
	Transparent Encryption Recommendations for MapReduce and YARN
	Transparent Encryption Recommendations for Search
	Transparent Encryption Recommendations for Spark
	Transparent Encryption Recommendations for Sqoop

	Migrating Keys from a Java KeyStore to Cloudera Navigator Key Trustee Server
	Migrating a Key Trustee KMS Server Role Instance to a New Host
	Assumptions and Requirements
	Migrating a Key Trustee KMS Server Role Instance to a New Host

	Configuring CDP Services for HDFS Encryption
	HBase
	KMS ACL Configuration for HBase

	Hive
	Other Encrypted Directories
	Changed Behavior after HDFS Encryption is Enabled
	KMS ACL Configuration for Hive

	Hue
	KMS ACL Configuration for Hue

	Impala
	KMS ACL Configuration for Impala

	MapReduce and YARN
	MapReduce v1
	MapReduce v2 (YARN)
	KMS ACL Configuration for MapReduce

	Search
	KMS ACL Configuration for Search

	Spark
	KMS ACL Configuration for Spark

	Sqoop

	Using the Ranger Key Management Service
	Accessing the Ranger KMS Web UI
	List and Create Keys
	Roll Over an Existing Key
	Delete a Key

