
Cloudera Streaming Analytics Operator 1.0.0

Flink Application Management
Date published: 2024-06-15
Date modified: 2024-06-15

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Streaming Analytics Operator | Contents | iii

Contents

Deploying Flink applications... 4

Job management... 4

Job lifecycle management.. 6

Application upgrades..7

Savepoint management...8

Routing with ingress...10

Sidecars with pod template... 11

Autoscaler.. 13
Autoscaler configurations... 14

Cloudera Streaming Analytics Operator Deploying Flink applications

Deploying Flink applications

Learn more about how to deploy Flink applications.

Procedure

1. Define the spec.job in the FlinkDeployment configuration file to create an application deployment as shown in the
following example:

apiVersion: flink.apache.org/v1beta1
kind: FlinkDeployment
metadata:
 name: flink-kubernetes-tutorial
spec:
 image: [***REGISTRY HOST***]:[***PORT***]/[***PROJECT***]/flink-kuber
netes-tutorial:latest
 flinkVersion: v1_18
 flinkConfiguration:
 taskmanager.numberOfTaskSlots: "4"
 serviceAccount: flink
 mode: native
 jobManager:
 resource:
 memory: "2048m"
 cpu: 1
 taskManager:
 resource:
 memory: "2048m"
 cpu: 1
 job:
 args: ["--rowsPerSec", "10"]
 jarURI: local:///opt/flink/usrlib/flink-kubernetes-tutorial.jar
 parallelism: 4
 state: running
 upgradeMode: stateless

The following properties are required for the application deployment:

Property Description

jarURI URI of the Flink job JAR file in the Docker image.

parallelism Parallelism of the Flink job.

state State of the Flink job that can be running or suspended.

upgradeMode Upgrade mode of the Flink job that can be one of the following:

• stateless: No state will be saved
• last-state: Uses Flink high availability metadata to resume jobs
• savepoint: Uses Flink savepoints to cancel and resume jobs

2. Submit the YAML file to run the application when configuring the FlinkDeployment resource is complete:

kubectl apply -f your-deployment.yaml

Job management

Learn more about Flink job management.

4

Cloudera Streaming Analytics Operator Job management

In case you make any changes to the FlinkDeployment resource that requires a restart, the Flink Operator
automatically restarts the deployment after applying a patch to the resource. For example, changing the job arguments
can be done with the following:

kubectl -n flink patch FlinkDeployment flink-kubernetes-tutorial \
 --type=merge \
 --patch='{"spec":{"job":{"args":["--rowsPerSec", "100"]}}}'

In this example, patch is used as an alternative to modify the original configuration and apply the changes to the
FlinkDeployment resource.

To restart the deployment without making any changes to the definition, you can update the spec.restartNonce
property. This ensures that the Flink Operator automatically restarts the job if it is different from the previous value.

kubectl -n flink patch FlinkDeployment flink-kubernetes-tutorial \
 --type=merge \
 --patch='{"spec":{"restartNonce":1234}}'

Recovering missing job deployments

In case the Flink cluster deployment is deleted by accident or external process, the Flink Operator can recover the
deployment when high availability is enabled. Ensure that the kubernetes.operator.jm-deployment-recovery.enabled
property is enabled to recover the FlinkDeployment.

Restarting unhealthy job deployments

In case the Flink cluster deployment is considered unhealthy, the Flink Operator can restart the deployment when
high availability is enabled. Ensure that the following properties are enabled to restart the Flink deployment:

• kubernetes.operator.cluster.health-check.enabled
• kubernetes.operator.jm-deployment-recovery.enabled

A Flink deployment is considered unhealthy in the following cases:

• The count of Flink restarts reaches the configured value (default is 64) for kubernetes.operator.cluster.health-c
heck.restarts.threshold property within the window period (default is 2 minutes) configured for kubernetes.o
perator.cluster.health-check.restarts.window.

If cluster.health-check.checkpoint-progress.enabledis enabled and the count of successful Flink checkpoints do not
change within the window period (default is 5 minutes) configured for kubernetes.operator.cluster.health-check.che
ckpoint-progress.window

Restarting failed job deployments

In case the Flink job is failed, the Flink Operator can restart the failed job when kubernetes.operator.job.restart.fail
ed property is enabled. In this case when the job status is FAILED the Flink Operator deletes the current job and
redeploys it using the latest successful checkpoint.

Manually recovering deployments

In case the Flink deployment is in a state where the Flink Operator cannot determine the health of the application or
the latest checkpoint cannot be used to recover the deployment, manual recovery can be used.

You have the following options to restore a job from the target savepoint or checkpoint:
Redeploying with savepointRedeployNonce

You can redeploy a Flink Deployment or Flink Session Job resource from a target savepoint by
using the savepointRedeployNonce andinitialSavepointPath in thejob.spec as shown in the
following example:

 job:

5

Cloudera Streaming Analytics Operator Job lifecycle management

 initialSavepointPath: file://redeploy-target-savepoint
 # If not set previously, set to 1, otherwise increment, e.g. 2
 savepointRedeployNonce: 1

When changing the savepointRedeployNonce the operator will redeploy the job to the savepoint
defined in the initialSavepointPath. The savepoint path must not be empty.

Deleting and recreating resources

You also have the option to completely delete and recreate the resources to solve any deployment
related issues. This resets the status information to start from a clean slate. However, savepoint
history will be lost and the Flink Operator will not clean up past periodic savepoints taken before
the deletion. You can use the following steps to recreate the FlinkDeployment resource from a
user defined savepoint path:

1. Locate the latest checkpoint or savepoint metafile in the configured checkpoint or savepoint
directory.

2. Delete the FlinkDeployment resource of your application.
3. Check that the current savepoint is still present, and that your FlinkDeployment resource is

deleted completely.
4. Modify the job.spec and set the initialSavepointPath to the last checkpoint location.
5. Recreate the FlinkDeployment resource.
6. Monitor the job to see what caused the problem before.

Job lifecycle management

Learn more about Flink job lifecycle management.

You can control the state of the application using the state property of the spec.job in the FlinkDeployment
resource. The following application states are supported:

• running: The job is expected to be running and processing data.
• suspended: Data processing is temporarily suspended, with the intention of continuing later.

You can stop the Flink job by modifying the spec.job.state from running to suspended.

$ kubectl -n [*** NAMESPACE ***] patch FlinkDeployment [*** FLINK DEPLOYMENT
 NAME ***] \
 --type=merge \
 --patch='{"spec":{"job":{"state":"suspended"}}}'

Suspended jobs can be restarted using the same method:

$ kubectl [*** NAMESPACE ***] patch FlinkDeployment [*** FLINK DEPLOYMENT
 NAME ***] \
 --type=merge \
 --patch='{"spec":{"job":{"state":"running"}}}'

The following state transition scenarios exist when updating the existing Flink Deployment resource:

• from running to running: Job upgrade operation. In practice, a suspend followed by a restore operation.
• from running to suspended: Suspend operation to stop the application while maintaining the application state.
• from suspended to running: Restore operation to start the application from current state using the latest spec.
• from suspended to suspended : Deployment spec is updated, but the application is not started.

6

Cloudera Streaming Analytics Operator Application upgrades

The explained state changes do not remove the FlinkDeployment resource from the cluster, the operation is
simply suspended. When you no longer wish to process data using an existing FlinkDeployment resource, the
following command can be used to delete the application:

kubectl -n [*** NAMESPACE ***] delete FlinkDeployment [*** FLINK DEPLOYMENT
 NAME ***]

Application upgrades

Learn more about Flink application upgrades.

When the job specifications are changed for a FlinkDeployment or FlinkSessionJob resource, the running
application must be upgraded. In case of upgrades, the Flink Operator automatically stops the currently running
application, if it’s not in a suspended state. After stopping, the Flink Operator redeploys the application using the new
specification. When redeploying stateful applications, their state is carried over from (suspended remains suspended,
running will be started again).

You can configure how states are managed when stopping and restarting stateful applications using the upgradeMode
setting in spec.job. The following values are supported for upgradeMode:

• stateless: stateless application upgrades from empty state
• savepoint: a savepoint is created during the upgrade process to provide safety and possibility for the savepoint

to be used as backup. The Flink application must be in running state to allow the savepoint to be created. In case
the application is in an unhealthy state, the last checkpoint will be used, unless kubernetes.operator.job.upgrade.
last-state-fallback.enabled is set to false. If the last checkpoint is not available, the job upgrade will fail. For more
information, see Savepoint management.

• last-state: the latest checkpoint information is used for quick upgrades in any application state (even for failing
jobs). Healthy application state is not required as the latest checkpoint information is used. Manual recovery might
be necessary in case the high availability metadata is lost. You can configure the kubernetes.operator.job.upgrade.
last-state.max.allowed.checkpoint.age to limit the time the application may fall back to when picking up the latest
checkpoint. If the checkpoint is older than the configured value, a savepoint will be created instead (for healthy
applications only).

Note: The last-state value for upgradeMode is not supported for session clusters.

The upgradeMode configuration controls both the stop and restore mechanisms as shown in the following table:

Table 1:

Stateless Last state Savepoint

Configuration Requirement None Checkpointing & HA Enabled Checkpoint/Savepoint directory
defined

Job Status Requirement None HA metadata available Job Running1

Suspend Mechanism Cancel/Delete Delete Flink deployment (keep
HA metadata)

Cancel with savepoint

Restore Mechanism Deploy from empty state Recover last state using HA
metadata

Restore From savepoint

Production Use Not recommended Recommended Recommended

1 When HA is enabled and the application is in an unhealthy state, the savepoint upgrade mode might fall back to the
last-state behavior.

7

Cloudera Streaming Analytics Operator Savepoint management

Related Information
Savepoint management

Savepoint management

Learn more about Flink savepoint management.

Savepoints are triggered automatically by the system during the upgrade process, as described in the previous section.
You can also trigger savepoints manually or periodically, but user-created savepoints will not be used during the
restoration process after the upgrade, and are not required for correct operation.

For savepoints to work, Flink requires a durable storage to save its data. You can use any type of (local or networked)
mounted volumes, or object storage (for example S3, Longhorn, NFS, etc). In this documentation we use an NFS
volume type.

To enable and use savepoints, you need to update the following properties (compared to the previous specifications):

• Define a new volume to store the savepoint and mount it to the flink-main-container container.
• Enable savepoints by adding the savepoint directory to spec.flinkConfiguration.
• Enable checkpoints by adding the checkpoint directory to spec.flinkConfiguration.
• Enable periodic savepoints triggered by the Flink Operator by adding kubernetes.operator.periodic.savepoint.inter

val: 2h.
• Set upgradeMode to savepoint to create savepoints and resume from them before each restart.

apiVersion: flink.apache.org/v1beta1
kind: FlinkDeployment
metadata:
 name: flink-kubernetes-tutorial
spec:
 image: [***REGISTRY HOST***]:[***PORT***]/[***PROJECT***]/flink-kubernete
s-tutorial:latest
 flinkVersion: v1_18
 flinkConfiguration:
 taskmanager.numberOfTaskSlots: "4"
 state.savepoints.dir: file:///opt/flink/durable/savepoints
 state.checkpoints.dir: file:///opt/flink/durable/checkpoints
 high-availability.storageDir: file:///opt/flink/durable/ha
 kubernetes.operator.periodic.savepoint.interval: 2h
 serviceAccount: flink
 mode: native
 jobManager:
 resource:
 memory: "2048m"
 cpu: 1
 taskManager:
 resource:
 memory: "2048m"
 cpu: 1
 podTemplate:
 spec:
 containers:
 - name: flink-main-container
 volumeMounts:
 - mountPath: /opt/flink/durable
 name: flink-volume
 volumes:
 - name: flink-volume
 nfs:
 server: my-nfs-server.example.com

8

https://docs.cloudera.com/csa-operator/1.0/flink-application-management/topics/csa-op-flink-savepoint-management.html

Cloudera Streaming Analytics Operator Savepoint management

 path: /data/flink/
 job:
 args: ["--rowsPerSec", "10", "--outputPath", "/opt/flink/durable"]
 jarURI: local:///opt/flink/usrlib/flink-kubernetes-tutorial.jar
 parallelism: 4
 state: running
 upgradeMode: savepoint

You can use the following commands to create the new deployment:

kubectl -n flink delete FlinkDeployment flink-kubernetes-tutorial
kubectl -n flink apply -f flink-deployment.yaml

After the application is running, you trigger a savepoint using the following command:

kubectl -n flink patch FlinkDeployment flink-kubernetes-tutorial \
 --type=merge \
 --patch='{"spec":{"job":{"savepointTriggerNonce":1234}}}'

In case the application is suspended, the Flink Operator automatically creates a savepoint and resumes the application
from the savepoint when restarted.

The Flink Operator automatically keeps track of the savepoint history, whether it’s triggered automatically by an
upgrade or manually (ad-hoc or by a periodic task). You can configure an automatic removal of older savepoints by
changing the cleanup behavior as shown in the following example:

kubernetes.operator.savepoint.history.max.age: 24 h
kubernetes.operator.savepoint.history.max.count: 5

You can disable the savepoint cleanup completely by setting the kubernetes.operator.savepoint.cleanup.enabled
property to false. In this case, the Flink Operator still collects and saves the savepoint history, but does not perform
any cleanup operations.

Additional savepoint operations

Even though savepoints are triggered automatically during an upgrade process, you can also trigger a savepoint
manually or periodically. These configurations are optional and have no impact on the automatic savepoint triggering,
and not required for the correct operation of the Flink cluster.

Manually triggering a savepoint

You can use the savepointTriggerNonce property in spec.job to create a new savepoint by defining a
new (different or random) value to the property:

job:
 ...
 savepointTriggerNonce: 123

This change will be applied by the Flink Operator as described in the previous sections.

Periodically triggering a savepoint

You can use the kubernetes.operator.periodic.savepoint.interval property, on a per-job level, to
trigger a savepoint after a specified period:

flinkConfiguration:
 ...
 kubernetes.operator.periodic.savepoint.interval: 6h

The timely execution of the periodic savepoint is not guaranteed as it can be delayed due to
unhealthy job status or other user operation.

9

Cloudera Streaming Analytics Operator Routing with ingress

Routing with ingress

Learn more about routing with ingress.

The Flink Operator supports creating Ingress entries for external User Interface (UI) access. The Ingress solution is
ideal for production environments, and the manual port-forwarding of the service port can be used for smaller local
jobs.

Ingress controllers allow you to route traffic from outside the Kubernetes cluster to your Service resources by
providing a single point of entry and routing the traffic based on the data in the request (for example, URL path) to
the correct services. Ingress can also be used to easily set up HTTPS for your services without the need to install any
certificates to Flink itself.

Note: Before deploying the Flink Deployment resource using ingress, ensure that the NGINX Ingress
controller is installed on your Kubernetes cluster. If you have an OpenShift cluster, then you might already
have HAProxy enabled, and that will automatically pick up new Ingress resources created by the operator.

To use the Ingress controller, you must create the Ingress resources in the Kubernetes cluster with the required filters
and configurations that describe when and how to route requests to the Flink service. This can be done by adding the
spec.ingress the FlinkDeployment resource as shown in the following example:

apiVersion: flink.apache.org/v1beta1
kind: FlinkDeployment
metadata:
 name: flink-kubernetes-tutorial
spec:
 image: [***REGISTRY HOST***]:[***PORT***]/[***PROJECT***]/flink-kubernete
s-tutorial:latest
 flinkVersion: v1_18
 flinkConfiguration:
 taskmanager.numberOfTaskSlots: "4"
 serviceAccount: flink
 mode: native
 jobManager:
 resource:
 memory: "2048m"
 cpu: 1
 taskManager:
 resource:
 memory: "2048m"
 cpu: 1
 job:
 jarURI: local:///opt/flink/usrlib/flink-kubernetes-tutorial.jar
 parallelism: 4
 state: running
 upgradeMode: stateless
 ingress:
 className: nginx
 template: "[***HOSTNAME***]/{{namespace}}/{{name}}(/|$)(.*)"
 annotations:
 nginx.ingress.kubernetes.io/rewrite-target: "/$2"

You can use the following command to create the new deployment:

kubectl -n flink apply -f flink-deployment.yaml

10

https://www.nginx.com/products/nginx-ingress-controller/
https://www.nginx.com/products/nginx-ingress-controller/

Cloudera Streaming Analytics Operator Sidecars with pod template

The Flink Operator will automatically create the Ingress resources specified when creating the deployment. If you
inspect the newly created Ingress resource, it should look something like this:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 annotations:
 nginx.ingress.kubernetes.io/rewrite-target: /$2
 name: flink-kubernetes-tutorial
 namespace: flink
spec:
 rules:
 - http:
 paths:
 - backend:
 service:
 name: flink-kubernetes-tutorial-rest
 port:
 number: 8081
 path: /flink/flink-kubernetes-tutorial(/|$)(.*)
 pathType: ImplementationSpecific

You can see that the Operator has replaced the template /{{namespace}}/{{name}}(/|$)(.*) with /flink/flink-kuberne
tes-tutorial(/|$)(.*) which corresponds to the namespace and name of the job. This makes it easier to run multiple jobs
with the same ingress configuration, even in multiple namespaces.

You can also notice that two Regex capturing groups are specified in the path filter. The nginx.ingress.kubernetes.io/
rewrite-target annotation instructs the Ingress controller to rewrite the URI path to only contain characters matched by
the second capture group (in this example, (.*)).

This will re-write the path of http://localhost/flink/flink-kubernetes-tutorial/#/job/running to simply be /#/job/running
when routing it to the Flink service.

You can further customize it using the template template: "flink.mydomain.com/{{namespace}}/{{name}}(/|$)(.*)".
This will add the host flink.mydomain.com to the rules list and allows for even greater freedom of configuration.

Note: In case you use HAProxy (which is the default on OpenShift), you might need to change some
configurations, as shown in the following examples:

ingress:
 template: "[***INGRESS FQDN***]/{{namespace}}/{{name}}"
 annotations:
 haproxy.router.openshift.io/rewrite-target: /

Sidecars with pod template

You can extend your FlinkDeployment in case you want to add more containers in your Kubernetes pod using the pod
template and sidecars.

The Flink Operator CRD has a minimal set of settings to express the basic attributes of a deployment. For more
customization you can use the flinkConfiguration and podTemplate properties.

Pod templates allow customization of the Flink job and task manager pods, to, for example, specify volume mounts,
ephemeral storage, sidecar containers and so on.

Pod templates can be layered as shown in the below example. You can define the settings for the pod templates to be
applied to both the job and task manager in a common pod template. You can also add another template under the job
or task manager to define additional settings that supplement (or override) the common template, for example when
using sidecars.

11

Cloudera Streaming Analytics Operator Sidecars with pod template

Defining sidecars instruct the Flink Operator to create other containers in the Flink JobManager and TaskManager
pods, for example:

• to download artifacts (for example, JAR files) before executing the job
• to collect metrics and logs from Flink during runtime and analyze/save them.

The following example sets up another container running next to Flink in all the created pods to periodically output
the size of the log file:

apiVersion: flink.apache.org/v1beta1
kind: FlinkDeployment
metadata:
 name: flink-kubernetes-tutorial
spec:
 image: [***REGISTRY HOST***]:[***PORT***]/[***PROJECT***]/flink-kubernete
s-tutorial:latest
 flinkVersion: v1_18
 flinkConfiguration:
 taskmanager.numberOfTaskSlots: "4"
 serviceAccount: flink
 mode: native
 jobManager:
 resource:
 memory: "2048m"
 cpu: 1
 taskManager:
 resource:
 memory: "2048m"
 cpu: 1
 job:
 jarURI: local:///opt/flink/usrlib/flink-kubernetes-tutorial.jar
 parallelism: 4
 state: running
 upgradeMode: stateless
 podTemplate:
 spec:
 containers:
 - name: flink-main-container
 volumeMounts:
 - mountPath: /opt/flink/log
 name: flink-logs
 - name: sidecar
 image: busybox
 command: ['sh','-c','while true; do wc -l /flink-logs/*.log; s
leep 5; done']
 volumeMounts:
 - mountPath: /flink-logs
 name: flink-logs
 initContainers:
 # Sample sidecar container
 - name: sidecar-init
 image: busybox
 command: ['sh', '-c', 'echo initContainer loaded']
 volumes:
 - name: flink-logs
 emptyDir: {}

You can use the following commands to create the new deployment:

kubectl -n flink apply -f flink-deployment.yaml

12

Cloudera Streaming Analytics Operator Autoscaler

This sidecar creates a new temporary volume called flink-logs in the Flink main container that is mounted to the
default log output path, /opt/flink/log. The example also creates a BusyBox sidecar that also mounts the same volume
and periodically prints the logs' line count.

Note: You must use the flink-main-container name to modify the Flink container, so the Flink Operator can
merge the configurations together when creating the container.

The init-container is a type of container that needs to finish running and exit with code 0 before the other containers
can start. As an example, this can be used to download artifacts for the Flink jobs.

Autoscaler

The Flink Operator offers a job autoscaler functionality that can scale individual job vertices (chained operator
groups) based on various metrics collected from running Flink applications.

Note: The term “operator” in this section refers to the function of the Flink Operator to transform one or
more DataStreams into a new DataStream. For more information, see DataStream operators documentation.

The autoscaler can be used to eliminate back pressure and satisfy a set utilization target. Adjusting the parallelism
for a job on vertex level enables efficient autoscaling of complex and heterogeneous streaming applications. The
autoscaler uses the built-in job upgrade mechanism to perform the rescaling.

The autoscaler has the following key benefits:

• Better cluster resource utilization and lower operating costs
• Automatic parallelism tuning for even complex streaming pipelines
• Automatic adaptation to changing load patterns
• Detailed utilization metrics for performance debugging

The autoscaler uses the metrics exposed by the Flink metric system. The following metrics are collected directly from
a Flink job:

• Backlog information at each source
• Incoming data rate at the sources (for example, records per sec written into a Kafka topic)
• Number of records processed per second in each job vertex
• Busy time per second of each job vertex (current utilization)

Note: Container memory and CPU utilization metrics are not used by the autoscaler directly. High utilization
is reflected in the processing rate and busy time metrics of the individual job vertices.

The autoscaler algorithm calculates the required processing capacity and target data rate for each operator starting
from the source. The target data rate for the source vertices is equal to the incoming data rate. For downstream
operators, the target data rate is calculated as the sum of the input (upstream) operators output data rate along the
given edge in the processing graph.

13

Cloudera Streaming Analytics Operator Autoscaler

The target utilization percentage of the operators can be configured in the pipeline. For example, you can keep all
operators busy between 60% and 80%. The autoscaler will find a parallelism configuration that matches the output
rates of all operators with the input rates of all downstream operators at the targeted utilization. As the load increases
or decreases, the autoscaler adjusts the parallelism levels of the individual operator to fulfill the current rate over time.

Note: Before using the autoscaler, ensure that you met all the necessary requirements and you are aware of
the limitations. For more information, see Autoscaler limitations page.

Related Information
DataStream operators | Apache Flink

Autoscaler limitations | Apache Flink Kubernetes Operator

Autoscaler configurations
Learn more about how to configure the autoscaler.

You can tune the autoscaler by changing the default configurations based on your environment:

...
flinkVersion: v1_18
flinkConfiguration:
 job.autoscaler.enabled: "true"
 job.autoscaler.stabilization.interval: 1m
 job.autoscaler.metrics.window: 5m
 job.autoscaler.target.utilization: "0.6"
 job.autoscaler.target.utilization.boundary: "0.2"
 job.autoscaler.restart.time: 2m
 job.autoscaler.catch-up.duration: 5m
 pipeline.max-parallelism: "720"

You can use the following configurations to change the behavior of the autoscaler:

Table 2: Autoscaler configuration properties

Configuration Default value Description

job.autoscaler.enabled false Enables or disables the autoscaler
functionality. The default false value still
supports a passive/metrics-only mode. In this
case the autoscaler only collects and evaluates
scaling related performance metrics, but does
not trigger any job upgrades. This can be
used to learn using the autoscaler without any
impact on the running applications.

14

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/dev/datastream/operators/overview/
https://nightlies.apache.org/flink/flink-kubernetes-operator-docs-release-1.8/docs/custom-resource/autoscaler/#job-requirements-and-limitations

Cloudera Streaming Analytics Operator Autoscaler

Configuration Default value Description

job.autoscaler.stabilization.interval 5 minutes Specifies the stabilization period in which no
new scaling will be executed.

job.autoscaler.metrics.window 15 minutes Specifies the size of the scaling metrics
aggregation window. The size of the window
determines how small fluctuations affect the
autoscaler: more stability can be achieved
with increased window size, but with larger
windows the autoscaler might be slower to
react to sudden changes.

job.autoscaler.target.utilization 0.7 Specifies the target vertex utilization for stable
job performance and some buffer for load
fluctuations. The default 0.7 targets 70%
utilization/load for the job vertexes.

job.autoscaler.target.utilization.boundary 0.3 Specifies the target of vertex utilization
boundary for an extra buffer to avoid
immediate scaling on load fluctuations. The
default 0.3 targets 30% deviation from the
target utilization before triggering a scaling
action.

job.autoscaler.restart.time 5 minutes Specifies the expected time an application
restarts.

job.autoscaler.catch-up.duration 30 minutes Specifies the expected time to entirely process
any backlog after a scaling operation is
completed. When lowering the catch-up
duration, the autoscaler reserves more extra
capacity for the auto scaling actions.

pipeline.max-parallelism 200 Specifies the maximum parallelism the
autoscaler can use. This limit is ignored if
the value is higher than the max parallelism
configured in the Flink configuration or
directly on each operator. To ensure flexible
scaling, it is recommended to choose max
parallelism configurations that have a lot of
divisors, such as 120, 180, 240, and so on.

For the full list of configuration properties, see the Autoscaler configuration page.

Related Information
Autoscaler Configuration | Apache Flink Kubernetes Operator

15

https://nightlies.apache.org/flink/flink-kubernetes-operator-docs-release-1.8/docs/operations/configuration/#autoscaler-configuration

	Contents
	Deploying Flink applications
	Job management
	Job lifecycle management
	Application upgrades
	Savepoint management
	Routing with ingress
	Sidecars with pod template
	Autoscaler
	Autoscaler configurations

