Cloudera Streaming Analytics - Kubernetes Operator 1.1.2

Flink Application Management

Date published: 2024-06-15
Date modified: 2024-11-06

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© ClouderaInc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Streaming Analytics - Kubernetes Operator | Contents | iii

Deploying FIiNK @appliCatioNS.........ccceiieiieeiie e s 4
JOD MANAGEMENL ... ee e e saee e s e e sneeereesnee s 4
Job lifecycle management ... s 6
PN o] o1 or= 1 Lo T o= o =SS 7
SavePOINt MANAGEMENT.......ccei et ere e e s neeenneesneeenns 8
ROULING WITN TNQEESS.....eiiiieie et 10
Sidecars with pod tEMPIaLE.........ccoovveiieieee e 11
AAUTOSCAIEN ...ttt ettt e et e e b e bt e e et e st e eb e e e e e e sbenneeneas 13

JANU 10 's oz 1= oo 1o (U= o) SN 14

Cloudera Streaming Analytics - Kubernetes Operator Deploying Flink applications

Deploying Flink applications
Learn more about how to deploy Flink applications.

Procedure

1. Define the spec.job in the FlinkDeployment configuration file to create an application deployment as shown in the
following example:

api Versi on: flink.apache.org/vlbetal
ki nd: Fl i nkDepl oynent
nmet adat a:
nane: flink-kubernetes-tutori al
spec:
i mge: [***REG STRY HOST***]:[***PORT***] /[***PRQIECT***]/f | i nk- kuber
netes-tutorial:|latest
flinkVersion: vl 18
flinkConfiguration:
t askmanager . nunber Of TaskSl ot s: " 4"
servi ceAccount: flink
node: native
j obManager :
resource:
menory: "2048nt
cpu: 1
t askManager :
resour ce:
menory: "2048nt
cpu: 1
j ob:
args: ["--rowsPerSec", "10"]
jarURI: local:///opt/flink/usrlib/flink-kubernetes-tutorial.jar
parallelism 4
state: running
upgr adeMbde: statel ess

The following properties are required for the application deployment:

Property Description

jarURI URI of the Flink job JAR file in the Docker image.

parallelism Parallelism of the Flink job.

state State of the Flink job that can be running or suspended.
upgradeMode Upgrade mode of the Flink job that can be one of the following:

« stateless: No state will be saved
¢ last-state: Uses Flink high availability metadata to resume jobs
* savepoint: Uses Flink savepoints to cancel and resume jobs

2. Submit the YAML fileto run the application when configuring the Fl i nkDepl oynent resource is complete:

kubect!| apply -f your-depl oynent. yam

Job management

Learn more about Flink job management.

Cloudera Streaming Analytics - Kubernetes Operator Job management

In case you make any changesto the Fl i nkDepl oyment resource that requires arestart, the Flink Operator
automatically restarts the deployment after applying a patch to the resource. For example, changing the job arguments
can be done with the following:

kubectl -n flink patch FlinkDeployment flink-kubernetes-tutorial \
--type=nerge \
--patch="{"spec": {"job":{"args":["--rowsPerSec", "100"]}}}'

In this example, patch is used as an aternative to modify the original configuration and apply the changes to the
FI i nkDepl oynment resource.

To restart the deployment without making any changes to the definition, you can update the spec.restartNonce
property. This ensures that the Flink Operator automatically restarts thejob if it is different from the previous value.

kubectl -n flink patch FlinkDepl oynment flink-kubernetes-tutorial \
--type=nerge \
--patch="{"spec": {"restart Nonce": 1234} }"'

In case the Flink cluster deployment is deleted by accident or external process, the Flink Operator can recover the
deployment when high availability is enabled. Ensure that the kubernetes.operator.jm-depl oyment-recovery.enabled
property is enabled to recover the Fl i nkDepl oynent .

In case the Flink cluster deployment is considered unhealthy, the Flink Operator can restart the deployment when
high availability is enabled. Ensure that the following properties are enabled to restart the Flink deployment:

» kubernetes.operator.cluster.health-check.enabled
» kubernetes.operator.jm-depl oyment-recovery.enabled

A Flink deployment is considered unhealthy in the following cases:

« The count of Flink restarts reaches the configured value (default is 64) for kubernetes.operator.cluster.health-c
heck.restarts.threshold property within the window period (default is 2 minutes) configured for kubernetes.o
perator.cluster.health-check.restarts.window.

If cluster.health-check.checkpoint-progress.enabledis enabled and the count of successful Flink checkpoints do not
change within the window period (default is 5 minutes) configured for kubernetes.operator.cluster.health-check.che
ckpoint-progress.window

In case the Flink job isfailed, the Flink Operator can restart the failed job when kubernetes.operator.job.restart.fail
ed property is enabled. In this case when the job status is FAILED the Flink Operator deletes the current job and
redeploysit using the latest successful checkpoint.

In case the Flink deployment isin a state where the Flink Operator cannot determine the health of the application or
the latest checkpoint cannot be used to recover the deployment, manual recovery can be used.

Y ou have the following options to restore ajob from the target savepoint or checkpoint:
Redeploying with savepointRedeployNonce
Y ou can redeploy a Flink Deployment or Flink Session Job resource from atarget savepoint by

using the savepointRedeployNonce andinitial SavepointPath in the ob.spec as shown in the
following example:

j ob:

Cloudera Streaming Analytics - Kubernetes Operator Job lifecycle management

i nitial Savepoi ntPath: file://redepl oy-target-savepoi nt
| f not set previously, set to 1, otherwi se increnent, e.g. 2
savepoi nt Redepl oyNonce: 1

When changing the savepointRedeployNonce the operator will redeploy the job to the savepoint
defined in the initial SavepointPath. The savepoint path must not be empty.

Deleting and recreating resour ces

Y ou also have the option to completely delete and recreate the resources to solve any deployment
related issues. This resets the status information to start from a clean slate. However, savepoint
history will be lost and the Flink Operator will not clean up past periodic savepoints taken before
the deletion. Y ou can use the following stepsto recreate the FI i nkDepl oynent resource from a
user defined savepoint path:

1. Locate the latest checkpoint or savepoint metafile in the configured checkpoint or savepoint
directory.

2. DeletetheFl i nkDepl oynent resource of your application.

3. Check that the current savepoint is still present, and that your FI i nkDepl oynment resourceis
deleted completely.

4. Modify the job.spec and set the initial SavepointPath to the last checkpoint location.

5. Recreatethe FI i nkDepl oyment resource.

6. Monitor the job to see what caused the problem before.

Learn more about Flink job lifecycle management.

Y ou can control the state of the application using the state property of the spec.job inthe Fl i nkDepl oynent
resource. The following application states are supported:

* running: The job is expected to be running and processing data.
» suspended: Data processing istemporarily suspended, with the intention of continuing later.

Y ou can stop the Flink job by modifying the spec.job.state from running to suspended.

$ kubectl -n [*** NAMESPACE ***] patch FlinkDepl oynent [*** FLI NK DEPLOYMENT
NANVE ***] \

--type=nerge \

--patch="{"spec": {"job":{"state": "suspended"}}}"'

Suspended jobs can be restarted using the same method:

$ kubectl [*** NAMESPACE ***] patch FlinkDepl oynent [*** FLI NK DEPLOYMENT
NANVE ***] \

--type=nerge \

--patch="{"spec": {"job":{"state":"running"}}}'

The following state transition scenarios exist when updating the existing Flink Deployment resource:

« from running to running: Job upgrade operation. In practice, a suspend followed by arestore operation.

« from running to suspended: Suspend operation to stop the application while maintaining the application state.
« from suspended to running: Restore operation to start the application from current state using the latest spec.
« from suspended to suspended : Deployment spec is updated, but the application is not started.

Cloudera Streaming Analytics - Kubernetes Operator Application upgrades

The explained state changes do not remove the FI i nkDepl oynent resource from the cluster, the operation is
simply suspended. When you no longer wish to process data using an existing FI i nkDepl oynment resource, the
following command can be used to del ete the application:

kubectl -n [*** NAMESPACE ***] del ete FlinkDepl oynent [*** FLI NK DEPLOYMENT
'\lA,\/E ***]

Learn more about Flink application upgrades.

When the job specifications are changed for aFl i nkDepl oynment or Fl i nkSessi onJob resource, the running
application must be upgraded. In case of upgrades, the Flink Operator automatically stops the currently running
application, if it's not in a suspended state. After stopping, the Flink Operator redeploys the application using the new
specification. When redeploying stateful applications, their state is carried over from (suspended remains suspended,
running will be started again).

Y ou can configure how states are managed when stopping and restarting stateful applications using the upgradeMode
setting in spec.job. The following values are supported for upgradeMode:

o dtateless: stateless application upgrades from empty state

e savepoint: asavepoint is created during the upgrade process to provide safety and possibility for the savepoint
to be used as backup. The Flink application must be in running state to allow the savepoint to be created. In case
the application isin an unhealthy state, the last checkpoint will be used, unless kubernetes.operator.job.upgrade.
last-state-fallback.enabled is set to false. If the last checkpoint is not available, the job upgrade will fail. For more
information, see Savepoint management.

« last-state: the latest checkpoint information is used for quick upgrades in any application state (even for failing
jobs). Healthy application state is not required as the latest checkpoint information is used. Manual recovery might
be necessary in case the high availability metadataislost. Y ou can configure the kubernetes.operator.job.upgrade.
| ast-state.max.allowed.checkpoint.age to limit the time the application may fall back to when picking up the latest
checkpoint. If the checkpoint is older than the configured value, a savepoint will be created instead (for healthy
applications only).

IE Note: The last-state value for upgradeMode is not supported for session clusters.

The upgradeM ode configuration controls both the stop and restore mechanisms as shown in the following table:

Configuration Requirement None Checkpointing & HA Enabled Checkpoint/Savepoint directory
defined

Job Status Requirement None HA metadata available Job Running*

Suspend Mechanism Cancel/Delete Delete Flink deployment (keep Cancel with savepoint
HA metadata)

Restore Mechanism Deploy from empty state Recover last state using HA Restore From savepoint
metadata

Production Use Not recommended Recommended Recommended

1 When HA is enabled and the application isin an unhealthy state, the savepoint upgrade mode might fall back to the
|ast-state behavior.

Cloudera Streaming Analytics - Kubernetes Operator

Savepoint management

Learn more about Flink savepoint management.

Savepoints are triggered automatically by the system during the upgrade process, as described in the previous section.
Y ou can also trigger savepoints manually or periodically, but user-created savepoints will not be used during the
restoration process after the upgrade, and are not required for correct operation.

For savepoints to work, Flink requires a durable storage to save its data. Y ou can use any type of (local or networked)
mounted volumes, or object storage (for example S3, Longhorn, NFS, etc). In this documentation we use an NFS
volume type.

To enable and use savepoints, you need to update the following properties (compared to the previous specifications):

Define a new volume to store the savepoint and mount it to the flink-main-container container.

Enable savepoints by adding the savepoint directory to spec.flinkConfiguration.

Enable checkpoints by adding the checkpoint directory to spec.flinkConfiguration.

Enable periodic savepoints triggered by the Flink Operator by adding kubernetes.operator.periodic.savepoint.inter
val: 2h.

Set upgradeM ode to savepoint to create savepoints and resume from them before each restart.

api Version: flink.apache. org/vlbetal
ki nd: Fl i nkDepl oynent

net adat a:
nane: flink-kubernetes-tutorial
spec:
i mge: [***REGQ STRY HOST***]:[***PORT***]/[***PRQIECT***]/f| i nk- kuber nete

s-tutorial:latest

flinkVersion: vl1_18

flinkConfiguration:
t askmanager . nunber O TaskSl ots: "4"
state.savepoints.dir: file:///opt/flink/durable/savepoints
state. checkpoints.dir: file:///opt/flink/durable/checkpoints
hi gh-avai l abi lity.storageDir: file:///opt/flink/durable/ha
kuber net es. oper at or. peri odi c. savepoi nt.interval : 2h

servi ceAccount: flink
node: native
j obManager :
r esour ce:
menory: "2048nt
cpu: 1
t askManager :
r esour ce:
menory: "2048nt
cpu: 1
podTenpl at e:
spec:
cont ai ners:
- nane: flink-nmain-container
vol uneMount s:
- mount Pat h: /opt/flink/durable
nane: flink-vol une
vol unes:
- nane: flink-volunme
nfs:
server: ny-nfs-server. exanpl e.com

Savepoint management

https://docs.cloudera.com/csa-operator/1.0/flink-application-management/topics/csa-op-flink-savepoint-management.html

Cloudera Streaming Analytics - Kubernetes Operator Savepoint management

path: /data/flink/

j ob:
args: ["--rowsPerSec", "10", "--outputPath", "/opt/flink/durable"]
jarURI: local:///opt/flink/usrlib/flink-kubernetes-tutorial.jar

parallelism 4
state: running
upgr adeMbde: savepoi nt

Y ou can use the following commands to create the new deployment:

kubectl -n flink del ete FlinkDepl oynent flink-kubernetes-tutorial
kubect!l -n flink apply -f flink-deploynent.yamn

After the application is running, you trigger a savepoint using the following command:

kubect!l -n flink patch FlinkDepl oynment flink-kubernetes-tutorial \
--type=nerge \
--patch="{"spec": {"]j ob":{"savepoi nt Tri gger Nonce": 1234} }}"

In case the application is suspended, the Flink Operator automatically creates a savepoint and resumes the application
from the savepoint when restarted.

The Flink Operator automatically keepstrack of the savepoint history, whether it’s triggered automatically by an
upgrade or manually (ad-hoc or by a periodic task). Y ou can configure an automatic removal of older savepoints by
changing the cleanup behavior as shown in the following example:

kuber net es. oper at or. savepoi nt. hi story. max. age: 24 h
kuber net es. oper at or. savepoi nt. hi story. max. count: 5

Y ou can disable the savepoint cleanup completely by setting the kubernetes.operator.savepoint.cleanup.enabled
property to false. In this case, the Flink Operator still collects and saves the savepoint history, but does not perform
any cleanup operations.

Even though savepoints are triggered automatically during an upgrade process, you can also trigger a savepoint
manually or periodically. These configurations are optional and have no impact on the automatic savepoint triggering,
and not required for the correct operation of the Flink cluster.

Manually triggering a savepoint

Y ou can use the savepointTriggerNonce property in spec.job to create a new savepoint by defining a
new (different or random) value to the property:

j ob:
'sé;/epoi nt Tri gger Nonce: 123
This change will be applied by the Flink Operator as described in the previous sections.
Periodically triggering a savepoint

Y ou can use the kubernetes.operator.periodic.savepoint.interval property, on aper-job level, to
trigger a savepoint after a specified period:

flinkConfiguration:
i(ﬁber net es. operat or. peri odi c. savepoi nt.interval: 6h

The timely execution of the periodic savepoint is not guaranteed asit can be delayed due to
unhealthy job status or other user operation.

Cloudera Streaming Analytics - Kubernetes Operator Routing with ingress

Learn more about routing with ingress.

The Flink Operator supports creating Ingress entries for external User Interface (Ul) access. The Ingress solution is
ideal for production environments, and the manual port-forwarding of the service port can be used for smaller local
jobs.

Ingress controllers allow you to route traffic from outside the Kubernetes cluster to your Service resources by
providing a single point of entry and routing the traffic based on the data in the request (for example, URL path) to
the correct services. Ingress can also be used to easily set up HTTPS for your services without the need to install any
certificates to Fink itself.

Note: Before deploying the Flink Deployment resource using ingress, ensure that the NGINX Ingress
E controller isinstalled on your Kubernetes cluster. If you have an OpenShift cluster, then you might already
have HAProxy enabled, and that will automatically pick up new Ingress resources created by the operator.

To use the Ingress controller, you must create the Ingress resources in the Kubernetes cluster with the required filters
and configurations that describe when and how to route requests to the Flink service. This can be done by adding the
spec.ingressthe Fl i nkDepl oyment resource as shown in the following example:

api Version: flink.apache. org/vlbetal
ki nd: Fl i nkDepl oynent
nmet adat a:
name: flink-kubernetes-tutoria
spec:
i mge: [***REG STRY HOST***]:[***PORT***] /[***PRQIECT***]/f| i nk- kuber nete
s-tutorial:latest
flinkVersion: vl1_18
flinkConfiguration:
t askmanager . nunber O TaskSl ots: "4"
servi ceAccount: flink
node: native
j obManager :
resource:
menory: "2048nt
cpu: 1
t askManager :
resour ce:
menory: "2048nt
cpu: 1
j ob:
jarURI: local:///opt/flink/usrlib/flink-kubernetes-tutorial.jar
parallelism 4
state: running
upgr adeMbde: statel ess
i ngress:
cl assNanme: ngi nx
tenplate: "[***HOSTNAME***]/{{nanmespace}}/{{name}}(/|9$)(.*)"
annot at i ons:
ngi nx. i ngress. kubernetes.io/rewite-target: "/$2"

Y ou can use the following command to create the new deployment:

kubectl -n flink apply -f flink-deploynent.yam

10

https://www.nginx.com/products/nginx-ingress-controller/
https://www.nginx.com/products/nginx-ingress-controller/

Cloudera Streaming Analytics - Kubernetes Operator Sidecars with pod template

The Flink Operator will automatically create thel ngr ess resources specified when creating the deployment. If you
inspect the newly created | ngr ess resource, it should look something like this:

api Versi on: networking. k8s.io/vl
ki nd: | ngress
nmet adat a:
annot at i ons:
ngi nx. i ngress. kubernetes.io/rewite-target: /$2
nane: flink-kubernetes-tutoria
nanespace: flink

spec:
rul es:
- http:
pat hs:
- backend:
servi ce:
nane: flink-kubernetes-tutorial -rest
port:
nunber: 8081

path: /flink/flink-kubernetes-tutorial(/|$)(.%*)
pat hType: | npl enentati onSpecific

Y ou can see that the Operator has replaced the template /{ { namespace} } /{{ name} } (/|$)(.*) with /flink/flink-kuberne
tes-tutorial (/|$)(.*) which corresponds to the namespace and name of the job. This makes it easier to run multiple jobs
with the same ingress configuration, even in multiple namespaces.

Y ou can also notice that two Regex capturing groups are specified in the path filter. The nginx.ingress.kubernetes.io/
rewrite-target annotation instructs the Ingress controller to rewrite the URI path to only contain characters matched by
the second capture group (in this example, (.*)).

Thiswill re-write the path of http://local host/flink/flink-kubernetes-tutorial /#/job/running to simply be /#/job/running
when routing it to the Flink service.

Y ou can further customize it using the template template: "flink.mydomain.com/{ { namespace} } /{{ name} } (/|$)(.*)".
Thiswill add the host flink.mydomain.com to the rules list and allows for even greater freedom of configuration.

Note: In case you use HAProxy (which is the default on OpenShift), you might need to change some
E configurations, as shown in the following examples:

i ngress:
tenplate: "[***|I NGRESS FQDN***]/ {{nanmespace}}/{{nane}}"
annot at i ons:
hapr oxy. rout er. openshift.io/rewite-target: /

Y ou can extend your FlinkDeployment in case you want to add more containersin your Kubernetes pod using the pod
template and sidecars.

The Flink Operator CRD has aminimal set of settings to express the basic attributes of a deployment. For more
customization you can use the flinkConfiguration and podTemplate properties.

Pod templates allow customization of the Flink job and task manager pods, to, for example, specify volume mounts,
ephemeral storage, sidecar containers and so on.

Pod templates can be layered as shown in the below example. Y ou can define the settings for the pod templates to be
applied to both the job and task manager in a common pod template. Y ou can also add another template under the job
or task manager to define additional settings that supplement (or override) the common template, for example when
using sidecars.

11

Cloudera Streaming Analytics - Kubernetes Operator Sidecars with pod template

Defining sidecars instruct the Flink Operator to create other containersin the Flink JobManager and TaskManager
pods, for example:

» todownload artifacts (for example, JAR files) before executing the job
 to collect metrics and logs from Flink during runtime and analyze/save them.

The following example sets up another container running next to Flink in all the created pods to periodically output
the size of thelog file:

api Version: flink.apache. org/vlbetal
ki nd: Fl i nkDepl oynent
net adat a:
nane: flink-kubernetes-tutoria
spec:
i mge: [***REG STRY HOST***]:[***PORT***] /[***PRQIECT***]/fl i nk- kubernete
s-tutorial:latest
flinkVersion: vl 18
flinkConfiguration:
t askmanager . nunber & TaskSl ot s: " 4"
servi ceAccount: flink
node: native
j obManager :
resource:
menory: "2048nf
cpu: 1
t askManager :
resource:
menory: "2048nt
cpu: 1
j ob:
jarURI: local:///opt/flink/usrlib/flink-kubernetes-tutorial.jar
parallelism 4
state: running
upgr adeMbde: statel ess
podTenpl at e:
spec:
cont ai ners:
- nane: flink-main-container
vol umeMunt s:
- nount Path: /opt/flink/log
nane: flink-Iogs
- nane: sidecar
i mage: busybox
command: ['sh','-c',"while true; do wc -I /flink-logs/*.log; s
| eep 5; done']
vol umeMount s:
- mount Path: /flink-Iogs
nane: flink-Iogs
i ni t Cont ai ners:
Sanpl e sidecar contai ner
- nane: sidecar-init
i mage: busybox

command: ['sh', '-c¢', 'echo initContainer |oaded |
vol unes:
- nane: flink-Iogs
emptybDir: {}

Y ou can use the following commands to create the new deployment:

kubectl -n flink apply -f flink-deploynent.yam

12

Cloudera Streaming Analytics - Kubernetes Operator Autoscaler

This sidecar creates a new temporary volume called flink-logs in the Flink main container that is mounted to the
default log output path, /opt/flink/log. The example also creates a BusyBox sidecar that also mounts the same volume
and periodically printsthe logs' line count.

Note: You must use the flink-main-container name to modify the Flink container, so the Flink Operator can
merge the configurations together when creating the container.

Theinit-container is atype of container that needs to finish running and exit with code O before the other containers
can start. As an example, this can be used to download artifacts for the Flink jobs.

The Flink Operator offers ajob autoscaler functionality that can scale individual job vertices (chained operator
groups) based on various metrics collected from running Flink applications.

Note: Theterm “operator” in this section refers to the function of the Flink Operator to transform one or
more DataStreams into a new DataStream. For more information, see DataStream operators documentation.

The autoscaler can be used to eliminate back pressure and satisfy a set utilization target. Adjusting the parallelism
for ajob on vertex level enables efficient autoscaling of complex and heterogeneous streaming applications. The
autoscaler uses the built-in job upgrade mechanism to perform the rescaling.

The autoscaler has the following key benefits:

« Better cluster resource utilization and lower operating costs

e Automatic parallelism tuning for even complex streaming pipelines
» Automatic adaptation to changing load patterns

» Detailed utilization metrics for performance debugging

The autoscaler uses the metrics exposed by the Flink metric system. The following metrics are collected directly from
aFlink job:

» Backlog information at each source

« Incoming data rate at the sources (for example, records per sec written into a Kafka topic)
« Number of records processed per second in each job vertex

* Busy time per second of each job vertex (current utilization)

Note: Container memory and CPU utilization metrics are not used by the autoscaler directly. High utilization
E isreflected in the processing rate and busy time metrics of the individual job vertices.

The autoscaler algorithm cal culates the required processing capacity and target data rate for each operator starting
from the source. The target data rate for the source verticesis equal to the incoming data rate. For downstream
operators, the target data rate is calculated as the sum of the input (upstream) operators output data rate along the
given edge in the processing graph.

13

Cloudera Streaming Analytics - Kubernetes Operator Autoscaler

Source 1 100/s
Input: 100/s

Processor
Input: 100/s

Sink

Input: 150/s

Output Ratio: 0.5

Source 2
Input: 200/s

200/s

The target utilization percentage of the operators can be configured in the pipeline. For example, you can keep all
operators busy between 60% and 80%. The autoscaler will find a parallelism configuration that matches the output
rates of all operators with the input rates of all downstream operators at the targeted utilization. Asthe load increases
or decreases, the autoscaler adjusts the parallelism levels of the individual operator to fulfill the current rate over time.

Note: Before using the autoscaler, ensure that you met all the necessary requirements and you are aware of
E the limitations. For more information, see Autoscaler limitations page.

Related Information

DataStream operators | Apache Flink

Stateful and statel ess application upgrades | Apache Flink
Autoscaler limitations | Apache Flink Kubernetes Operator

Autoscaler configurations
Learn more about how to configure the autoscaler.

Y ou can tune the autoscaler by changing the default configurations based on your environment:

flinkVersion: vl 18
flinkConfiguration:
j ob. aut oscal er. enabl ed: "true"
j ob. autoscal er.stabilization.interval: 1m
j ob. autoscal er. netrics. wi ndow. 5m
j ob. autoscal er.target.utilization: "0.6"
j ob. autoscal er.target.utilization.boundary: "O0.2"
job. autoscal er.restart.tine: 2m
j ob. aut oscal er. cat ch-up. durati on: 5m
pi pel i ne. max-parallelism "720"

Y ou can use the following configurations to change the behavior of the autoscaler:

14

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/dev/datastream/operators/overview/
https://nightlies.apache.org/flink/flink-kubernetes-operator-docs-main/docs/custom-resource/job-management/#stateful-and-stateless-application-upgrades
https://nightlies.apache.org/flink/flink-kubernetes-operator-docs-release-1.8/docs/custom-resource/autoscaler/#job-requirements-and-limitations

Cloudera Streaming Analytics - Kubernetes Operator Autoscaler

Table 2: Autoscaler configuration properties

job.autoscaler.enabled fase Enables or disables the autoscaler
functionality. The default false value still
supports a passive/metrics-only mode. In this
case the autoscaler only collects and evaluates
scaling related performance metrics, but does
not trigger any job upgrades. This can be

used to learn using the autoscaler without any
impact on the running applications.

job.autoscaler.stabilization.interval 5 minutes Specifies the stabilization period in which no
new scaling will be executed.

job.autoscaler.metrics.window 15 minutes Specifies the size of the scaling metrics
aggregation window. The size of the window
determines how small fluctuations affect the
autoscaler: more stability can be achieved
with increased window size, but with larger
windows the autoscaler might be slower to
react to sudden changes.

job.autoscaler.target.utilization 0.7 Specifies the target vertex utilization for stable
job performance and some buffer for load
fluctuations. The default 0.7 targets 70%
utilization/load for the job vertexes.

job.autoscal er.target. utili zation.boundary 0.3 Specifiesthe target of vertex utilization
boundary for an extra buffer to avoid
immediate scaling on load fluctuations. The
default 0.3 targets 30% deviation from the
target utilization before triggering a scaling

action.

job.autoscaler.restart.time 5 minutes Specifies the expected time an application
restarts.

job.autoscaler.catch-up.duration 30 minutes Specifies the expected time to entirely process

any backlog after a scaling operation is
completed. When lowering the catch-up
duration, the autoscaler reserves more extra
capacity for the auto scaling actions.

pipeline.max-parallelism 200 Specifies the maximum parallelism the
autoscaler can use. Thislimit isignored if
the valueis higher than the max parallelism
configured in the Flink configuration or
directly on each operator. To ensure flexible
scaling, it is recommended to choose max
parallelism configurations that have a lot of
divisors, such as 120, 180, 240, and so on.

For the full list of configuration properties, see the Autoscaler configuration page.

Related Information
Autoscaler Configuration | Apache Flink Kubernetes Operator

15

https://nightlies.apache.org/flink/flink-kubernetes-operator-docs-release-1.8/docs/operations/configuration/#autoscaler-configuration

	Contents
	Deploying Flink applications
	Job management
	Job lifecycle management
	Application upgrades
	Savepoint management
	Routing with ingress
	Sidecars with pod template
	Autoscaler
	Autoscaler configurations

