
Cloudera Streaming Analytics - Kubernetes Operator 1.1.2

CSA Operator Management
Date published: 2024-06-15
Date modified: 2024-11-15

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Streaming Analytics - Kubernetes Operator | Contents | iii

Contents

Monitoring and diagnostics... 4

Log collection.. 5

Removing resources..5

Operator configuration.. 6
Namespace management...7

Updating Cloudera license...9

Cloudera Streaming Analytics - Kubernetes Operator Monitoring and diagnostics

Monitoring and diagnostics

Learn about collecting diagnostics information, the diagnostic tool shipped with CSA Operator, as well as a number
of useful kubectl commands that you can use to gather diagnostic information.

In addition to the built-in heath endpoint of the Flink Operator and using the generic kubectl command, Cloudera
provides a separate command line tool that you can use to capture diagnostic information about your CSA Operator
installation. You can use these tools when contacting Cloudera support, or when troubleshooting issues.

Diagnostic bundle

The diagnostic tool is a Python package that collects all relevant resources and logs managed by the CSA Operator
and connects to the REST API of running Flink clusters to fetch additional metrics. It generates a zip file that can be
shared with Cloudera support or examined for troubleshooting.

By default, the diagnostic tool is not downloaded, deployed, or installed when you install CSA Operator and its
components. To use it, download the Python package located in the /csa-operator/1.0/tools/ directory on Cloudera
Archive, and use the following steps to install and create the diagnostic bundle:

1. Create a Python virtual environment.

mkdir venv
python3 -m venv venv
cd venv
source bin/active

2. Install the CSA diagnostic tool with pip install.

pip install ../csaop-diagnostircs-1.0.0.tar.gz

3. Run the diagnostic tool.

csaop-generate-bundle

The following optional arguments can be provided to the diagnostic tool:

a. By default, the diagnostic tool generates the zip file in the current working directory, but you can provide the
path of a custom directory using the -o [OUTPUT_DIR] argument.

The path to the generated zip file is diplayed when the diagnostic tool is successfully run.

Pod status with kubectl

You can check the status of the pods after applying a change to the deployment configuration using kubectl describe:

kubectl describe --namespace [***NAMESPACE***]

Operator log with kubectl

The Flink Operator log contains useful information about the tasks that the operator performs and details for failed
operations. You can check the Flink Operator logs with kubectl logs:

kubectl logs [***FLINK OPERATOR POD***] --namespace [***NAMESPACE***]

4

Cloudera Streaming Analytics - Kubernetes Operator Log collection

Health endpoint

The Flink Operator provides a built-in health endpoint that serves as the information source for Kubernetes liveness
and startup probes. The health probes are enabled by default in the Helm chart as shown in the following example:

operatorHealth:
 port: 8085
 livenessProbe:
 periodSeconds: 10
 initialDelaySeconds: 30
 startupProbe:
 failureThreshold: 30
 periodSeconds: 10

The health endpoint catches startup and informer errors that are exposed by the Java Operator SDK (JOSDK)
framework. By default, if one of the watched namespaces becomes inaccessible, the health endpoint will report an
error and the Flink Operator restarts.

If the Flink Operator needs to be running, even if some namespaces are not accessible, you can use the
kubernetes.operator.startup.stop-on-informer-error configuration and set it to false to disable the automatic restart
behavior. This way the Flink Operator will start even if some namespaces cannot be watched.

Log collection

Cloudera requires that the logs of the operator components are stored long term for diagnostic and supportability
purposes. Learn about the settings for platform level log collection recommended by Cloudera.

Logs can be collected using the log collector feature of the specific Kubernetes platform. Ensuring that log collection
is correctly set up is your responsibility. Cloudera recommends at least one week of retention time for the collected
logs.

Using kubectl logs is not sufficient in some cases. This is because pods are created and destroyed dynamically by
operator applications. The logs of destroyed pods are deleted, which makes them inaccessible. Log collection can
ensure that the logs of already deleted pods are retained.

The following collects the recommended and required logging practices for specific Kubernetes platforms.

Openshift

Latest OpenShift versions support the Vector log collector. Log collection and forwarding can be configured using a
ClusterLogging resource.

Ensure the following if you are on Openshift:

• The ClusterLogging resource includes all namespaces and pods used by the operators.
• Use a log sink that supports time-based retention. The ClusterLogging resource supports a number of log

sinks. Cloudera recommends using a sink that supports time-based retention to limit storage costs. Additionally,
the selected sink should allow easy access to the collected logs when a diagnostic investigation requires them.

Removing resources

Removing the Flink Operator and its resources before intalling a newer version of the CSA Operator.

About this task
Before installing a newer version of the CSA Operator, you need to ensure that the Flink Operator and its resources
are deleted from your namespace(s). Simply uninstalling the CSA Operator does not mean that all of the resources are
removed from the cluster.

5

Cloudera Streaming Analytics - Kubernetes Operator Operator configuration

Procedure

1. Remove the Flink Operator using the following command:

helm uninstall flink-operator -n flink

When deleting the Flink Operator, the following message indicates which resources remain in the namespace:

These resources were kept due to the resource policy:
[RoleBinding] flink-role-binding
[Role] flink
[ServiceAccount] flink
[PersistentVolumeClaim] postgreSQL

In case the PostgreSQL (or other database) persistent volume claim is not removed, the SQL project and job
related data is stored in the database.

2. Remove the remaining resources using kubectl:

kubectl delete rolebinding flink-role-binding -n flink
kubectl delete role flink -n flink
kubectl delete serviceaccount flink -n flink

3. Update the CSA CRDs using the following commands:

helm template oci://container.repository.cloudera.com/cloudera-helm/csa-
operator/csa-operator --version 1.1.2-b17 --include-crds --output-dir .

kubectl replace -f csa-operator/charts/flink-kubernetes-operator/crds/fl
inkdeployments.flink.apache.org-v1.yml

kubectl replace -f csa-operator/charts/flink-kubernetes-operator/crds/fl
inksessionjobs.flink.apache.org-v1.yml

Operator configuration

Specify default configurations for the Flink Operator.

You can specify default configuration for the Flink Operator that is shared between the operator itself and the Flink
deployments.

The configuration files are mounted externally through ConfigMaps created during the Helm chart installation.
Cloudera recommends reviewing and adjusting the configurations in the values.yaml file, if applicable, before
deploying the Flink Operator in production environments.

To append to the default configuration, define the flink-conf.yaml key in the flink-kubernetes-operator.defaultConfigu
ration section of the Helm values.yaml file:

defaultConfiguration:
 create: true
 # Set append to false to replace configuration files
 append: true
 flink-conf.yaml: |+
 # Flink Config Overrides
 kubernetes.operator.metrics.reporter.slf4j.factory.class: org.apache.f
link.metrics.slf4j.Slf4jReporterFactory
 kubernetes.operator.metrics.reporter.slf4j.interval: 5 MINUTE

 kubernetes.operator.reconcile.interval: 15 s
 kubernetes.operator.observer.progress-check.interval: 5 s

6

Cloudera Streaming Analytics - Kubernetes Operator Operator configuration

The list of Flink Operator configurations can be found in Specifying Operator Configuration.

Dynamic Operator Configuration

The Kubernetes Operator supports dynamic config changes through the ConfigMaps of the Operator. Dynamic
operator configuration is enabled by default, and can be disabled by setting kubernetes.operator.dynamic.config.enabl
ed to false. The time interval for checking dynamic config changes can be set by kubernetes.operator.dynamic.conf
ig.check.interval. The default value for the time interval is 5 minutes.

You can verify that the dynamic operator configuration is enabled through the deploy/flink-kubernetes-operator log
has:

2022-05-28 13:08:29,222 o.a.f.k.o.c.FlinkConfigManager [INFO] Enabled dynam
ic config updates, checking config changes every PT5M

To change configuration values dynamically the ConfigMap can be directly edited using kubectl patch or kubectl edit
command.

To verify that the configuration value of kubernetes.operator.reconcile.interval is changed to 30 seconds, the deploy/f
link-kubernetes-operator log should have the following information:

2022-05-28 13:08:30,115 o.a.f.k.o.c.FlinkConfigManager [INFO] Updating defa
ult configuration to {kubernetes.operator.reconcile.interval=PT30S}

Note: Cloudera recommends setting the kubernetes.operator.reconcile.interval to a lower value for the
changes to take effect in a shorter time.

Related Information
Specifying Operator Configuration | Apache Flink Kubernetes Operator

Namespace management
The Flink Operator is capable of watching all of the Kubernetes cluster namespaces. However, when installing the
CSA Operator, you can limit its access to a single or set number of namespaces.

By default, the Flink Operator is capable for watching all of the Kubernetes cluster namespaces. This means that no
matter in which namespace the Flink Deployment is deployed, the Flink Operator picks it up and executes the Flink
job in that namespace. However, in production environments managing access to the namespaces might be necessary.
In this case, you can specify a list of namespaces the Flink Operator can watch and have access.

When installing the CSA Operator, you can define the namespace configuration with helm install:

helm install csa-operator --namespace [***NAMESPACE***] \
--set 'flink-kubernetes-operator.image.imagePullSecrets[0].name=[***SECRET
 NAME***]' \
--set 'ssb.sse.image.imagePullSecrets[0].name=[***SECRET NAME***]' \
--set 'ssb.sqlRunner.image.imagePullSecrets[0].name=[***SECRET NAME***]' \
--set-file clouderaLicense.fileContent=[***PATH TO LICENSE FILE***] \
--set flink-kubernetes-operator.watchAnyNamespace=true \
oci://container.repository.cloudera.com/cloudera-helm/csa-operator/csa-op
erator --version 1.1.2-b17

By setting the watchAnyNamespace to true, you enable the Flink Operator to have access to all of the namespace on
the Kubernetes cluster. You can limit this configuration by listing the namespaces that should be watched by the Flink
Operator:

-- set flink-kubernetes-operator.watchNamespaces={namespace1},{namespace2}

7

https://nightlies.apache.org/flink/flink-kubernetes-operator-docs-release-1.8/docs/operations/configuration/#specifying-operator-configuration

Cloudera Streaming Analytics - Kubernetes Operator Operator configuration

You have the option to create multiple namespaces and deploy Flink Deployments in any of the created namespaces
as the Flink Operator can pick up the deployments from the watched namespaces. This also means that SSB does not
have to be in the same namespace as the Flink Deployment. However, SSB can only manage one namespace. This
means that if you want to deploy SSB in multiple namespaces, you need to install SSB in every namespace.

As an example, if you want to have two namespaces with Flink in namespace1 and SSB in namespace2, you need
to install the Flink Kubernetes Operator in namespace1 without SSB, and install SSB without the Flink Kubernetes
Operator in namespace2.

Watching all namespaces

By default, the Flink Operator has access to all of the namespace on the Kubernetes cluster. This means that no matter
in which namespace the Flink Deployment is deployed, the Flink Operator picks it up and executes the Flink job in
that namespace.

Limiting access to namespaces

In production environments managing access to the namespaces might be necessary. In this case, you can specify a
list of namespaces the Flink Operator can watch and have access.

You can limit the Flink Operator’s access to one or more specific namespaces using the following configuration
parameter:

--set "flink-kubernetes-operator.watchNamespaces
={[***NAMESPACE1***],[***NAMESPACE2***]}"

You have the option to create multiple namespaces and deploy Flink Deployments in any of them, as the Flink
Operator will pick up the deployments from all the watched namespaces you specified.

Note: Watching multiple namespaces with the Flink Operator also means that SSB does not have to be in the
same namespace as the Flink Deployment. However, SSB can only manage one namespace. This means that
if you want to deploy SSB in multiple namespaces, you need to install SSB in every namespace.

Examples
Installing SSB in a single namespace (other than the Flink Operator)

If you want to have two namespaces, with

• Flink installed only in namespace1 (but managing all namespaces)
• and SSB installed only in namespace2,

you would use the following commands:

helm install \
--namespace namespace1 \
--set ssb.enabled=false
--set "flink-kubernetes-operator.watchNamespaces=namespace1"
--set-file flink-kubernetes-operator.clouderaLicense.fileConte
nt=[***PATH TO LICENSE FILE***]
csa-operator csa-operator-1.0.0-b293.tgz

helm install \
--namespace namespace2 \
--set flink-kubernetes-operator.enabled=false
csa-operator csa-operator-1.0.0-b293.tgz

This example installs the Flink Operator in namespace1 without SSB, and install SSB (without
the Flink Operator) in namespace2. The Flink Operator will be watching all namespaces, because
there’s no limitation set.

Installing Flink Operator and SSB in separate namespaces

8

Cloudera Streaming Analytics - Kubernetes Operator Updating Cloudera license

If you want to have two separate namespaces, with both Flink and SSB installed and only watching
a single namespace, you would use the following commands:

helm install \
--namespace namespace1 \
--set ssb.enabled=true
--set "flink-kubernetes-operator.watchNamespaces=namespace1"
--set-file flink-kubernetes-operator.clouderaLicense.fileConte
nt=[***PATH TO LICENSE FILE***]
csa-operator csa-operator-1.0.0-b293.tgz

helm install \
--namespace namespace2 \
--set ssb.enabled=true
--set "flink-kubernetes-operator.watchNamespaces=namespace2"
--set-file flink-kubernetes-operator.clouderaLicense.fileConte
nt=[***PATH TO LICENSE FILE***]
csa-operator csa-operator-1.0.0-b293.tgz

This example installs the Flink Operator with SSB in namespace1 and namespace1. The --set "fl
ink-kubernetes-operator.watchNamespaces parameter limits the Flink Operator’s access to watch
Flink Deployments in the single namespace it’s installed in.

Updating Cloudera license

CSA Operator requires a valid license to function. You must update expired licenses, otherwise, cluster resources
will break down over time. Once the license expires, the cluster resources you deployed will continue to run, but
reconciliation of resources will be blocked. For example: failed pods will not be restarted and deploying new Flink
jobs will not be possible. In general, the control mechanisms in place that keep resources healthy will be blocked.
This will result in deployed resources breaking down over time.

About this task

You register your initial license during installation by setting the clouderaLicense.fileContent Helm chart property.
When this property is set, a Kubernetes secret is automatically generated that stores your license. The name of the
secret is csa-op-license.

When the license expires, it must be updated. You can update the license by updating the secret that stores the license,
with data from your new license, specifically the value of the data.license property in the secret.

Licenses can be updated at any time. If your license is already expired and you update your license, restrictions on
functionality are lifted immediately after the license is updated.

Updating a license does not carry any risks and does not result in cluster downtime.

Before you begin

Important: Ensure that the start date of your new license is the current or a past date. Licenses become
valid on their start date. Updating your old license with a new license that is not yet valid is the equivalent of
registering an expired license. The start date of a license is specified in the startDate property of the license.

Procedure

1. Create a manifest in YAML format that defines the license secret.

Add your new license to stringData.license. Ensure that you add the full contents of the license as it is in the
license file you received from Cloudera.

apiVersion: v1

9

Cloudera Streaming Analytics - Kubernetes Operator Updating Cloudera license

kind: Secret
metadata:
 name: csa-op-license
type: Opaque
stringData:
 license: |
 [***YOUR LICENSE***]

2. Replace your old secret with the new one.

kubectl replace --namespace [***NAMESPACE***] -filename [***LICENSE SECRET
 YAML***]

3. Verify that the license is updated.

kubectl get secret csa-op-license \
 --namespace [***NAMESPACE***] \
 --output jsonpath=“{.data.license}” \
| base64 --decode

The output of this command should be identical with the contents of the license file you received from Cloudera.

10

	Contents
	Monitoring and diagnostics
	Log collection
	Removing resources
	Operator configuration
	Namespace management

	Updating Cloudera license

