Cloudera Streaming Analytics 1.11.1

Storm Flink Migration

Date published: 2019-12-17
Date modified: 2024-04-16

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Streaming Analytics | Contents | iii

Comparing Storm and FlNK.........ooveiie e 4
CONCEPLUBL QIfFEIEINCES. ... ettt b et bbbt b et b e e bt b e e b e 4
DIfferenCes iN arChItECIUNE.ottt sttt st e e e se et ene e e e e eseesennesrenes 6
Differences in data diStrIDULION...........oiiiiiiie ettt s e e esessesaesresteseesrens 9

Migrating from Storm t0 FINK........ccce i 12

Cloudera Streaming Analytics Comparing Storm and Flink

Before you start the migration process from Storm to Flink, you need to understand the differences and similarities
between the two frameworks. Y ou can create real-time data processing applications with both systems, but there are
differences in concept, architecture, and data distribution. Understanding these differences can make the migration
process easier.

Storm and Flink can process unbounded data streams in real-time with low latency. Storm uses tuples, spouts, and
bolts that construct its stream processing topology. For Flink, you need sources, operators, and sinks to process events
within its data pipeline. Other than the terminology, the two systems handle state differently. Furthermore, Flink has
an event windowing function to achieve exatly-once processing.

Cloudera Streaming Analytics Comparing Storm and Flink

Storm Topology > Flink Data Pipeline

Stream

A named list of values of any data A unit of data, in a structured message

type usually a java object, or Row object with
known fields
Spout) Source

Generating a stream from a

X Generating data stream to Flink
real-time data source

Bolt P Operator

Transforming one or more data streams
into a new data stream

Representing data processing logic,
emitting tuples for downstream
bolts

Receiving transformed data stream from
Flink, and writing to an external source

Trident

High-level API built on top of Stormto | State of the data stored in memory, on
manage state disk

Grouping elements from an unbounded
stream together by time, element count, or
custom logic

In aFlink program, the incoming data from a source are transformed by a defined operation which resultsin one

or more output streams. The transformation or computation on the data is completed by an operator where you

can also add windowing function or join data streams. The main conceptua difference between Storm and Flink

is state handling. While you need Trident API to manage state and fault tolerancy in Storm, Flink handles state in-
memory and on disk, which makes the process of checkpointing and state management faster in Flink. Thisalso
makes the maintenance, troubleshooting, and upgrading processes easier in Flink, because the state of an application
and the state of the different operators within the data pipeline are saved. The following illustration details how these
conceptsin Storm and Flink structure of their dataflow.

Cloudera Streaming Analytics

Comparing Storm and Flink

Storm Topology

Trident Topology

BoltD
Bolt B
i
Flink Data pipeline
r—— === — == h
Flink

Stateful Operator

1

El N -

The following table shows the connectors supported for Storm and Flink. When choosing sources and sinks for
Flink, you need to first determine the purpose and business logic of your application and then decide on the suitable

connectors within the data pipeline.

Storm Connectors Flink Connectors

Spout Kafka Source Kafka
HDFS HDFS
Bolt Kafka Sink Kafka
HBase HBase

Hive Kudu
HDFS HDFS

Hive

Differences in architecture

The basic architecture of task execution is similar in Storm and Flink. The main difference between the two systems
isthat Workers and Executors are responsible for executing the tasks in Storm, while in Flink the execution is done
by only the Task Managers. The Task Managers a so manage the state backend, which is a durable storage for storing

states.

Cloudera Streaming Analytics Comparing Storm and Flink

Storm Architecture /\ Flink Architecture

Woarkers

A Storm process, a worker may run '
one or more executors

Executing the tasks of a dataflow,
buffering and exchanging the data
streams

A Storm thread launched by a Storm
worker, may run one or more tasks

Process Controller Job Manager

Keeping track of distributed tasks,
scheduling the next task, and reacting
to finished tasks or execution failures

Monitoring and restarting failed
Storm processes

Nimbus node /\ Manager node
Running a process controller, and |
the Storm nimbus, Ul, and other Running the Job manager

related daemons

Worker node) Worker node

Running worker processes that run

Storm topologies Running the Task Managers

State backend

Storing periodic, asynchronous,
incremental snapshots of the
application

Flink has a simpler architecture compared to Storm as the Task Managers fulfill the jobs of Workers and Executors.
The process of task execution is similar: a Process Controller/Job Manager on a master node starts aworker node. On
aworker node the Workers and Executors in Storm, Task Managersin Flink are responsible for running the Tasks. As
the Executor, the Task Manager can also run more than one tasks at the same time. The resource management for the
tasks are completed by the Process Controller in Storm and by the Job manager in Flink.

In a Storm cluster, the Nimbus runs the Storm topology and distributes it to the Supervisor from which the processes
are delegated to workers. ZooK eeper is needed to coordinate the communication between the Nimbus and Supervisor
node. In aFlink cluster, Flink jobs are executed as Y ARN applications. HDFS is used to store recovery and log data,
while ZooK eeper is used for high availability coordination for jobs. The following illustrations detail the architecture,
task execution, and cluster layout in Storm and Flink.

Cloudera Streaming Analytics

Comparing Storm and Flink

For Architecture

Storm Architecture

Worker node

Nimbus node

Process
Executor

controller

Task
(Spout)

Worker
ecuto Executor Executor
Task
(Bolt)
0 0
Task Task
(Bolt) (Bolt)

Flink Architecture

Worker node

Task Slot

Master node

Job Manager

Task Slot

Task Manager

Task Slot

Task Slot

State backend

R

Task Manager

Task Slot

Task Slot

For Cluster layout

Cloudera Streaming Analytics Comparing Storm and Flink

Storm Cluster Flink Cluster

Master node

I I
I I
| Nimbus |
I I
I I
I I

ZooKeeper YARN HDFS
C - J
- - - = B
| Worker node |
I YARN HDFS |
.- - _ _ _ _ _ _ J

Differences in data distribution

Both Flink and Storm distribute data within their processing elements. Stream grouping in Storm controls the routing
of tuples. Thereis no similar function in Flink, but you can use keys and the broadcast function on your data stream to
handle the distribution of events.

Cloudera Streaming Analytics Comparing Storm and Flink

Tuple distribution > Event distribution

Parallelism

Stream grouping

Controlling the routing of tuples to
bolts for processing

Field grouping Keyby() function

Changing the partitioning of streams,
where each operator subtask sends
data to different target subtasks

Partitioning the stream by the
fields specified in the grouping

Stream grouping: all Broadcast function

Sending a single copy of each .
tuple to all instances of the Broadcasting streams to all parallel

receiving bolt instances of an operator

When exchanging data between the elements, Storm supports different methods that include shuffle, field, all, direct,
custom, and global. These methods determine if all the datais shared between all bolts, or just certain data with
defined fields. In Flink, you can achieve similar result using keys and the broadcast function. The keyBy function

is used to partition and group the data together within the incoming stream by given properties or keys. When
broadcasting, you share an incoming stream with all parallel instances of an operator. The most common use case for
broadcast is sharing a set of rules or raw data within the operators. Like this, the operators process the stream, based
on the same configuration, or they work on the same data for analytical purposes.

The following illustrations show the comparison of data distributing methods of Storm and Flink.

For Field grouping and keyby function

10

Cloudera Streaming Analytics Comparing Storm and Flink

Storm tuple distribution with field grouping

Bolt A Bolt B

value a

> k-

value ¢

value ¢

Bolt C
Flink event distribution by key
Operator Operator
Keys (A, B, Y)
m \ keyBy (A, B, Y)
Keys (D, E, Z)
Subtasks

|
|
| Keys (A, B, Y)
|

= .
Keys (D, E, Z)

For All grouping and broadcast function

11

Cloudera Streaming Analytics Migrating from Storm to Flink

Storm tuple distribution with grouping all

Bolt A Bolt B

B ——

Flink event distribution with broadcast

Process operator

Operator

Subtask 3

Emm——— Sink

Migrating from Storm to Flink

After understanding the differences and similarities of Storm and Flink, you can migrate your Storm topologies

to FHink data pipelines. When your Flink application is ready, you need to submit your Flink job to your Cloudera
Streaming Analytics (CSA) cluster. Using the Flink Dashboard and Atlas you can monitor your application and job
metadata.

The following high-level steps summarize the migration process from Storm to Flink:

1. Identify the Flink application sources and sinksin your Storm topology.
2. ldentify the Flink application business logic from your Storm topology.
3. Map your Storm topology to the Flink data pipeline.

a. If youare using Trident, you need to consider how Flink handles state in itself. For more information, see State
handling in Flink and the Stateful Tutorial.

4. Build your Flink application project.

After creating the Flink application, you only need to set up the CSA cluster, and submit your Flink application to
your cluster.

12

Cloudera Streaming Analytics Migrating from Storm to Flink

Core features of Flink
Stateful Tutorial

CSA Quickstart

Installing CSA Parcel

Adding Flink as a Service

Flink Quickstart Archetype

Flink streaming application structure
Running a Flink Job

Metadata Manegement with Atlas
Monitoring with Flink Dashboard

13

https://docs.cloudera.com/csa/1.11.1/overview/topics/csa-flink-features.html
https://github.com/cloudera/flink-tutorials/tree/master/flink-stateful-tutorial
https://docs.cloudera.com/csa/1.11.1/quickstart/topics/csa-quickstart.html
https://docs.cloudera.com/csa/1.11.1/installation/topics/csa-installing-parcel.html
https://docs.cloudera.com/csa/1.11.1/installation/topics/csa-add-flink-service.html
https://docs.cloudera.com/csa/1.11.1/quickstart/topics/csa-flink-archetype.html
https://docs.cloudera.com/csa/1.11.1/how-to-flink/topics/csa-application-logic.html
https://docs.cloudera.com/csa/1.11.1/how-to-flink/topics/csa-run-job.html
https://docs.cloudera.com/csa/1.11.1/how-to-flink/topics/csa-atlas-flink.html
https://docs.cloudera.com/csa/1.11.1/how-to-flink/topics/csa-hs-webui.html

	Contents
	Comparing Storm and Flink
	Conceptual differences
	Differences in architecture
	Differences in data distribution

	Migrating from Storm to Flink

