Cloudera Streams Messaging Operator 1.1.0

Deploying and Configuring Kafka Replications

Date published: 2024-06-11
Date modified: 2024-09-04

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© ClouderaInc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Streams Messaging Operator | Contents | iii

Deploying a replication FlOW........ocuviieeiie e 4
Configuring prefixIess repliCation...........cccevev e 12
Checking the state of data replication..........ccoceeiriiienee s 13
Configuring data replication OffSELS.........ccceiieiiiesin s 14
Replicating from the latest offset for NAW Partitions............cooeereirciieree e 14
Manually setting exact offsets for specific SOUrce Partitions...........occeveereeneinenres e 14
Enabling exactly-once semantics for replication flows...........cccccevvevieeiieinnnee. 15
Performing a failover or failback..........ccocoviriiiiiin e 17
Performing a continuous and CONtrolled fallOVEN............ooe e 18
Performing a controlled failover With @ CULOFf ..o s 19
Performing a fallOVer 0N iSASIEN.... ..ottt st e e se st sbesbe b b 20
Performing a controlled faillDaCK......... ... 20
Using Single Message Transformsin replication flOws.........ccccceecvvevevvceevenenee. 21

Replication monitoring and diagNOSLICS.......cccuviieeiieeiieiie e 24

Cloudera Streams Messaging Operator Deploying areplication flow

Y ou deploy areplication flow between two clusters by deploying a Kafka Connect cluster and an instance of each
replication connector (MirrorSourceConnector, MirrorCheckpointConnector, and MirrorHeartbeatConnector).
Additionally, you create various ConfigMaps and Secrets that store configuration required for replication.

The following steps walk you through how you can create a replication flow between two secured Kafka clusters.
Both Kafka and Kafka Connect are deployed in Kubernetes.

Kubernetes

Replication Namespace

Kafka Connect

Source Kafka i i f Target Kafka
TLS + PLAIN MIrrorCheCprIHt TL% + PLAIN
Replication ~ Replication
- - Source't°pi01

MirrorHeartbeat

Load
Configs

ConfigMaps, Secrets,
property files

The Kafka Connect cluster that you set up must be anew cluster and must be dedicated to the replication flow.
Reusing an existing cluster that is running other connectors or using the same cluster for multiple replication flowsis
not recommended.

Replication of Kafka data as well as other replication-related tasks are carried out by the replication
connectors. Thesearethe M r r or Sour ceConnect or , M rr or Checkpoi nt Connect or, and
M rror Heart beat Connect or.

Deploying an instance of the M r r or Sour ceConnect or and M r r or Chekpoi nt Connect or are mandatory.
Deploying M r r or Hear t beat Connect or isoptional.

The connectors load their connection-related configuration from various Secr et s, Conf i gmaps, aswell as
property files.

This example usesthe Def aul t Repl i cat i onpol i cy, but provides instructions on what connector properties
you need to add if you want to usethel dent i t yRepl i cati onPol i cy (prefixless replication).

These steps assume that the two Kafka clusters have TLS encryption and PLAIN authentication enabled. Replication
can be configured for any other type of security aswell, but you will need to change the appropriate security
configurations.

For example, assume that one of the clusters does not use PLAIN, but a different authentication method. In a case
like this, you must collect and specify the configuration properties appropriate for that authentication method.
Configuration related to security is stored in Conf i gMaps and Secr et s that you will be setting up.

Cloudera Streams Messaging Operator Deploying areplication flow

Tip: These steps use documentation replaceables to refer to the various resources that you need to set up

Q for replication. For example, the namespace you create will be referred to as[*** REPLICATION NSt **].
Pay attention to the replaceables if you are copying examples. Y ou will need to replace many valuesin the
configuration of your resources.

e Strimzi isinstaled. The Strimzi Cluster Operator is running. Seeinstallation I nstallation.
* You haveidentified the two Kafka clusters that you want to replicate data between.

The clusters can be any type of Kafka cluster running on any platform. These steps assume that both Kafka
instances are running in Kubernetes and were deployed with CSM Operator.

* Resource examples in these steps use various features and configurations available in Kafka Connect. Familiarity
with the following is recommended.

» Deploying Kafka Connect clusters

» Configuration providers

* Adding externa configuration to Kafka Connect worker pods
« Configuring connectors

* Replication overview

* Replication connectors and connector architecture

1. Collect the following for both source and target Kafka clusters.

* Bootstrap servers

e TLStruststore/crt

e TLStruststore password
* PLAIN credentials

The configurations you collect here will be specified inthe Secr et s and Conf i gMaps and the
Kaf kaConnect resource that you create in the following steps.
2. Create a namespace.

kubect| create nanespace [***REPLI CATI ON NS***]

Y ou deploy all resources required for the replication flow in this namespace.
3. CreateaConfi gMvap and two Secr et s for thetarget Kafka cluster.
These resources store configuration that provides access to the target Kafka cluster.
a) CreateaConfi gMap that contains the non-sensitive configuration properties of the target Kafka cluster.

kubect| create configmap [***TARGET CONFI GVAP***] \
--fromliteral =alias=[***TARGET CLUSTER ALI AS***] \
--nanespace [***REPLI CATI ON NS***]

This Conf i gMap does not need to include connection related properties like the bootstrap server. These
connection properties will be sourced from the Kafka Connect worker’s (cluster) property file. Sourcing them
from the workers property file is possible because Kafka Connect will depend on the target Kafka cluster. Y ou
can use this Conf i gMap to store other reusable properties.

b) CreateaSecr et containing the PLAIN password to use when connecting to the target Kafka cluster.

kubect| create secret generic [***TARGET PASSWORD SECRET***] \
--fromliteral =pass=[*** PASSWORD***] \
--nanespace [***REPLI CATI ON NS***]

https://docs.cloudera.com/csm-operator/1.1/installation/topics/csm-op-install-overview.html
https://docs.cloudera.com/csm-operator/1.1/kafka-connect-deploy-configure/topics/csm-op-connect-deploying-clusters.html
https://docs.cloudera.com/csm-operator/1.1/kafka-connect-deploy-configure/topics/csm-op-connect-configuring-clusters.html#task_fsq_tdg_jcc
https://docs.cloudera.com/csm-operator/1.1/kafka-connect-deploy-configure/topics/csm-op-connect-configuring-clusters.html#task_vgy_5dg_jcc
https://docs.cloudera.com/csm-operator/1.1/kafka-connect-operations/topics/csm-op-connect-configuring-connectors.html
https://docs.cloudera.com/csm-operator/1.1/kafka-replication-overview/topics/csm-op-connect-replication-overview.html
https://docs.cloudera.com/csm-operator/1.1/kafka-replication-overview/topics/csm-op-replication-connector-architecture.html

Cloudera Streams Messaging Operator Deploying areplication flow

c) CreateaSecr et that containsthe TLS Certificate Authority (CA) certificate of the target Kafka cluster.

kubect| create secret generic [***TARCGET CERT SECRET***] \
--fromfile=ca.crt=[***PATH TO CA CERT***] \
--nanespace [***REPLI CATI ON NS***]

Tip: If thetarget Kafka cluster was deployed with CSM Operator, aSecr et containing the

O certificate will already exist in the namespace of the target cluster. The secret containing the certificate
iscaled [*** TARGET KAFKA CLUSTER NAME***]-cluster-ca-cert. Y ou can extract the certificate
from this secret and deploy it in the new namespace.

4. CreateaConfi gMap andaSecr et for the source Kafka cluster.
These resources store configuration that provide access to the source Kafka cluster.

a) CreateaSecr et that containsthe truststore file, the truststore password, and JAAS configuration of the
source Kafka cluster.

kubect| create secret generic [***SOURCE SECRET***] \
--fromliteral =ssl.truststore. password=[*** TRUSTSTORE PASSWORD***] \
--fromfile=truststore.jks=[***TRUSTSTORE FI LE***] \
--fromliteral =sasl.jaas. config="org. apache. kaf ka. cormon. securi
ty. pl ai n. Pl ai nLogi nMbdul e requi red username="[*** USERNAME***] " passwo
rd="[*** PASSWORD***]";"' \
--nanespace [***REPLI CATI ON NS***]

b) Create aConfi gMap that contains non-sensitive configuration properties of the source Kafka cluster.
This Conf i gMap will contain the cluster alias, connection properties, and any other reusable properties.

kubect| create configmap [***SOURCE CONFI GVAP***] \

--fromliteral =alias=[***SOURCE CLUSTER ALI AS***] \

--fromliteral =boot strap. servers=[*** SOURCE KAFKA

BOOTSTRAP***] . [*** SOURCE KAFKA NAMESPACE***]:[***PORT***] \

--fromliteral =security. protocol =SASL_SSL \

--fromliteral =sasl . mechani sm=PLAI N \

--fromliteral =ssl.truststore.|ocation=/opt/kafka/external -confi gur at
ion/[***VOLUVE NAME***]/truststore.jks \

--nanespace [***REPLI CATI ON NS***]

Y ou will attach the truststore as avolume in alater step. Note down the value you specify for [***VOLUME
NAME***]. You will need to provideit in the Kaf kaConnect resource.

5. CreateaConf i gMap that stores configuration related to replication.
This Conf i gMap will store configuration that is shared by the connectors that you will deploy. Thismapis
created to single source configuration that is common across the connectors.

This example creates a Conf i gMap that defines a single property, topics, which specifies what topics should be
replicated. In this example, all test.* topics are added for replication.

kubect| create configmap [***REPLI CATI ON CONFI GVAP***] \
--fromliteral =topics="test.*" \

Cloudera Streams Messaging Operator Deploying areplication flow

--nanespace [***REPLI CATI ON NS***]

This Conf i gMap isreferred to in the following steps as [*** REPLICATION CONFIGMAP***],

Tip: Thereplication policy used by the connectorsis configured in this Conf i gMap. If not specified, the
O Def aul t Repl i cati onPol i cy isused. Add the following property to the Conf i gMap if you want
to use a different replication policy.

replication. policy.class=[***POLI CY CLASSNAME***]

The value of this property isthe fully qualified class name of the replication policy. If
youwant tousethel denti t yRepl i cati onPol i cy (prefixless replication), add
or g. apache. kaf ka. connect . mirror.ldentityReplicati onPolicy asthevaue.

If you choose to configure the policy, you will need to reference the property in the configuration of the
connectors.

6. Deploy aKafka Connect cluster.

api Versi on: kafka.strinzi.iol/vlbeta2
ki nd: Kaf kaConnect
net adat a:
name: [***CONNECT CLUSTER NAME***]
nanespace: [***REPLI CATI ON NS***]
annot at i ons:
strinzi.io/use-connector-resources: "true"
spec:
version: 3.7.0.1.1
replicas: 3
boot strapServers: [***TARGET KAFKA BOOTSTRAP***] . [*** TARGET KAFKA
NAMESPACE* **] : [*** PORT* * *]
tls:
trustedCertificates:
- secretNane: [***TARGET CERT SECRET***]
certificate: ca.crt
aut henti cati on:
type: plain
user name: [*** USERNAME* * *]
passwor dSecr et :
secret Nanme: [***TARGET PASSWORD SECRET* **]
password: pass
ext er nal Confi guration
vol unes:
- nanme: [***VOLUME NAME***]
secret:
secret Nane: [*** SOURCE SECRET***]
itens:
- key: truststore.jks
pat h: truststore.jks
config:
group.id: [***CONNECT CLUSTER NAME***]-consumner-group
of fset.storage.topic: [***CONNECT CLUSTER NAME***] - of f sets-topic
config.storage.topic: [***CONNECT CLUSTER NAME***]-config-topic
status. storage.topic: [***CONNECT CLUSTER NAME***] - st at us-topic
config.storage.replication.factor: -1
of fset.storage.replication.factor: -1
status. storage.replication.factor: -1
config. providers: cfmap, secret,file
config. providers. cfmap. cl ass: io.strinzi.kafka. Kubernet esConfi gMapCon
figProvider
config. provi ders. secret.class: io.strinzi.kafka. Kubernet esSecr et Conf
i gProvi der

Cloudera Streams Messaging Operator

config.providers.file.class: org.apache. kaf ka. cormon. confi g. provi der.
Fi | eConfi gProvi der

Notice the following about this resource configuration.
» The names specified in metadata.name, group.id, and * storage.topic follow a consistent naming convention.

Cloudera recommends adding cluster aiases to these names as well as using prefixes and postfixes. For
example, your cluster name can be repl-uswest-useast. Where repl is a prefix, useast and uswest are the aiases.
The group ID can be repl-uswest-useast-consumer-group, where repl-uswest-useast is the name of the cluster, -
consumer-group is a postfix.

The prefixes and postfixes like repl, -consumer-group, -offsets-topic, -config-topic, -status-topic are merely
suggestions.
« bootstrapServersis set to the target Kafka cluster’ s bootstrap.

That is, this Kafka Connect cluster will depend on the target Kafka cluster. Thisisamust have for correct
replication architecture. The .[*** TARGET KAFKA NAMESPACE***] postfix is only required because this
example assumes that the Kafka cluster is running in Kubernetes.

» trustedCertificates references a Secr et you created in a previous step, which contains the CA certificate of
the target cluster.

« external Configuration mounts the truststore file from a Secr et you created in a previous step.

[***VOLUME NAME***] must be an exact match with the volume name you specified when creating the
Secret.

« * gtorage.replication.factor properties are set to - 1.

This means that these internal topics are created with the default replication factor configured in the Kafka
cluster that this Kafka Connect cluster depends on (the target Kafka cluster).

e The config.providers.* properties enable various configuration providers.

These are necessary as the connectors you set up in alater step load configuration from various external
resources using these configuration providers.

. CreateaRol e and Rol eBi ndi ng.

TheKuber net esConf i gMapConfi gProvi der and Kuber net esSecr et Confi gPr ovi der
configuration providers specified in the Kaf kaConnect resourcein the previous step, require additional access
rightsto access the Conf i gMaps and Secr et s, respectively. Creating the below Rol e and Rol eBi ndi ng is
required to grant them these privileges.

api Versi on: rbac. authori zation. k8s.io/vl
kind: Role
nmet adat a:
name: connector-configuration-role
nanespace: [***REPLI CATI ON NS***]
rul es:
- api Goups: [""]
resources: ["secrets"]
resourceNanes: ["[***SOURCE SECRET***]"]
verbs: ["get"]
- api Goups: [""]
resources: ["confignmaps"]
resourceNames: ["[***SOURCE CONFI GVAP***]" = "[***TARGET
CONFI GvAP* **1 " | "[**** REPL| CATI ON CONFI GVAP**] "]
verbs: ["get"]
api Versi on: rbac. aut hori zati on. k8s.i o/ vl
ki nd: Rol eBi ndi ng
nmet adat a:
nane: connector-configuration-rol e-binding
namespace: [***REPLI CATI ON NS***]
subj ect s:

Deploying areplication flow

Cloudera Streams Messaging Operator Deploying areplication flow

- kind: ServiceAccount
nane: [***CONNECT CLUSTER NAME***] - connect
rol eRef:
kind: Rol e
name: connector-configuration-role
api G oup: rbac. aut horization. k8s.io

» Theresource names you specify in rules.api Groups.resourceNames are the names of the Conf i gMap and
Secr et resources you created for the source and target Kafka clustersin a previous step.

e TheServi ceAccount nameisfixed and follows a pattern.

The name is the Kafka Connect cluster name postfixed with -connect. This name is fixed because the
Ser vi ceAccount isgenerated and named by the Strimzi Cluster Operator. That is, the -connect postfix, is
not user defined, ensure that you do not change it.

8. Enable datareplication by deploying an instance of M r r or Sour ceConnect or .

M rror Sour ceConnect or requires access to both the source and target Kafka clusters. Therefore, it requires
access to all configurations you set up in previous steps. Additionally, some extra configuration is required.

Configuration required to connect to the target cluster is sourced from the Kafka Connect worker’s property file.

Configuration required to connect to the source cluster is sourced from the Conf i gMap, Secr et , and truststore
volume you set up for the source cluster in a previous step.

Other configurations such as the target cluster aliasis sourced from the Conf i gMap you set up for the target
cluster in a previous step.

api Versi on: kafka.strinzi.iolvlbeta2
ki nd: Kaf kaConnect or
net adat a:
name: mirror-source-connector
namespace: [***REPLI CATI ON NS***]

| abel s:
strinei.iol/cluster: [***CONNECT CLUSTER NAME***]
spec:
cl ass: org. apache. kaf ka. connect. mrror. M rror Sour ceConnect or
tasksMax: 3
config:

key. converter: org.apache. kaf ka. connect. converters. Byt eArrayConverter
val ue. converter: org.apache. kaf ka. connect. converters. Byt eArrayConver
ter
refresh.topics.interval.seconds: 10
topics: ${cfmap:[***REPLI CATI ON NS***]/[***REPLI CATI ON
CONFI GVAP***] : t opi cs}

#replication.policy.class: ${cfmp:[***REPLI CATI ON
NS***] /[*** REPLI CATI ON CONFI GVAP***] : repl i cati on. pol i cy. cl ass}

Source cluster configurations - sourced from confignmap, secret and
vol une

source. cluster.alias: ${cfmp:[***REPLI CATI ON NS***] /[*** SOURCE
CONFI GVAP***] : al i as}

source. cluster. bootstrap. servers: ${cfnmap: [***REPLI CATI ON
NS***] /[*** SOURCE CONFI GVAP***] : boot st rap. servers}

source. cluster.security. protocol: ${cfmap:[***REPLI CATI ON
NS***] /[*** SOURCE CONFI GVAP***]:security. protocol}

source. cl uster. sasl . nechani sm ${cf map: [***REPLI CATI ON
NS***] /[*** SOURCE CONFlI GVAP***]: sasl . mechani sn}

source. cluster.sasl.jaas.config: ${secret:[***REPLI CATI ON
NS***] /[*** SOURCE SECRET***]: sasl .| aas. confi g}

source.cluster.ssl.truststore.location: ${cfmap:[***REPLI CATI ON
NS***] /[*** SOURCE CONFlI GVAP***]:ssl.truststore. | ocation}

Cloudera Streams Messaging Operator Deploying areplication flow

source. cluster.ssl.truststore. password: ${secret:[***REPLI CATI ON
NS***] /[*** SOURCE SECRET***]:ssl.truststore. password}

Target cluster configurations - nostly sourced fromthe Connect wor
ker config

target.cluster.alias: ${cfmap: [***REPLI CATI ON NS***] /[*** TARGET

CONFI GVAP***] : al i as}

target.cluster.bootstrap.servers: ${file:/tnp/strinei-connect.proper
ties: boot strap. servers}

target.cluster.security.protocol: ${file:/tnp/strinzi-connect.proper
ties:security. protocol}

target.cluster.sasl.nechanism ${file:/tnp/strinei-connect.propertie
s: sasl . mechani sni

target.cluster.sasl.jaas.config: ${file:/tnp/strinzi-connect.propertie
s:sasl . jaas.config}

target.cluster.ssl.truststore.location: ${file:/tnp/strinzi-connect.
properties:ssl.truststore.| ocation}

target.cluster.ssl.truststore. password: ${file:/tnp/strinei-connect.
properties:ssl.truststore. password}

* Uncomment the replication.policy.class property if you added this property to [***REPLICATION
CONFIGMAP***]. This property configures what replication policy is used for replication.

9. Enable consumer group offset synchronization by deploying an instance of M r r or Checkpoi nt Connect or.

M rror Checkpoi nt Connect or requires accessto both the source and target clusters. Additionally, it
requires the same replication policy configuration, topic filters, and offset synchronization configurations as used
by M r r or Sour ceConnect or . Cloudera recommends using the automatic offset synchronization feature of
the connector.

api Versi on: kafka.strinzi.iol/vlbeta2
ki nd: Kaf kaConnect or
net adat a:
nane: mrror-checkpoint-connector
nanespace: [***REPLI CATI ON NS***]

| abel s:
strinei.io/cluster: [***CONNECT CLUSTER NAME***]
spec:
cl ass: org. apache. kaf ka. connect. mrror. M rror Checkpoi nt Connect or
tasksMax: 3
config:

key. converter: org.apache. kaf ka. connect. converters. Byt eArrayConverter
val ue. converter: org. apache. kaf ka. connect. converters. Byt eArrayConver
ter
refresh. groups.interval .seconds: 10
sync. group. of f sets. enabl ed: true
topics: ${cfmap:[***REPLI CATI ON NS***]/[***REPLI CATI ON
CONFI GVAP***1 : t opi cs}
groups: test.*
#replication.policy.class: ${cfmp:[***REPLI CATI ON
NS***] /[*** REPLI CATI ON CONFI GVAP***] : repl i cati on. policy. cl ass}

Source cluster configurations - sourced from configmap, secret and
vol une

source. cluster.alias: ${cfmp:[***REPLI CATI ON NS***] /[*** SOURCE
CONFI GVAP***] : al i as}

source. cluster. bootstrap. servers: ${cfnmap: [***REPLI CATI ON
NS***] /[*** SOURCE CONFI GVAP***]: boot st rap. server s}

source. cluster.security. protocol: ${cfmap:[***REPLI CATI ON
NS***] /[*** SOURCE CONFI GVAP***]: security. protocol}

source. cl uster. sasl . nechani sm ${cf map: [***REPLI CATI ON
NS***] /[*** SOURCE CONFI GVAP***]: sasl . mechani sni

source. cl uster.sasl.jaas.config: ${secret:[***REPLI CATI ON
NS***] /[*** SOURCE SECRET***]:sasl.jaas. confi g}

10

Cloudera Streams Messaging Operator Deploying areplication flow

source.cluster.ssl.truststore.location: ${cfmap:[***REPLI CATI ON
NS***] /[*** SOURCE CONFI GVAP***]:ssl.truststore. | ocation}

source. cluster.ssl.truststore. password: ${secret:[***REPLI CATI ON
NS***] /[*** SOURCE SECRET***]: ssl.truststore. password}

Target cluster configurations - nostly sourced fromthe Connect wor
ker config

target.cluster.alias: ${cfmap:[***REPLI CATI ON NS***] /[*** TARGET

CONFI GVAP***] : al i as}

target.cluster.bootstrap.servers: ${file:/tnp/strinzi-connect.proper
ties: bootstrap. servers}

target.cluster.security.protocol: ${file:/tnp/strinei-connect. proper
ties:security. protocol}

target.cluster.sasl.nechanism ${file:/tnp/strinei-connect.propertie
s: sasl . mechani sni

target.cluster.sasl.jaas.config: ${file:/tnp/strinei-connect.propertie
s:sasl . jaas. config}

target.cluster.ssl.truststore.location: ${file:/tnp/strinei-connect.
properties:ssl.truststore. | ocation}

target.cluster.ssl.truststore. password: ${file:/tnp/strinzi-connect.
properties:ssl.truststore. password}

» Uncomment the replication.policy.class property if you added this property to [***REPLICATION
CONFIGMAP***]. This property configures what replication policy is used for replication.

« The sync.group.offsets.enabled is true by default, setting this property explicitly to true is not necessary. The
property is explicitly set to true in this example to highlight Cloudera recommendations.

10. Enable heartbeating by deploying an instance of M r r or Hear t beat Connect or .

M rror Hear t beat Connect or isresponsible for creating minimal replication traffic in the flow. Because of
this, the Connector needs access to the source cluster, but configured asiif it was the target cluster. This means that
you need to provide the source cluster configurations with the producer.override. and target.cluster. prefixes.

api Versi on: kafka.strinzi.iol/vlbeta2
ki nd: Kaf kaConnect or
net adat a:
nanme: mrror-heartbeat-connector
nanespace: [***REPLI CATI ON NS***]

| abel s:
strinei.io/cluster: [***CONNECT CLUSTER NAME***]
spec:
cl ass: org.apache. kaf ka. connect. nmirror. M rror Heart beat Connect or
tasksivax: 1
config:

key. converter: org.apache. kaf ka. connect. converters. Byt eArrayConverter
val ue. converter: org.apache. kaf ka. connect. converters. Byt eArrayConvert
er

#replication.policy.class: ${cfmp:[***REPLI CATI ON
NS***] /[*** REPLI CATI ON CONFI GVAP***] : repl i cati on. pol i cy. cl ass}

Cluster aliases

source.cluster.alias: ${cfrmp:[***REPLI CATI ON NS***] /[*** SOURCE
CONFI GVAP***] : al i as}

target.cluster.alias: ${cfmap:[***REPLI CATI ON NS***] /[*** TARGET
CONFI GVAP***] : al i as}

Source cluster configurations configured as target - sourced from
configmap, secret and vol unme

target.cluster.bootstrap.servers: ${cfmap:[***REPLI CATI ON
NS***] /[*** SOURCE CONFI GVAP***]: boot st rap. server s}

target.cluster.security.protocol: ${cfmap:[***REPLI CATI ON
NS***] /[*** SOURCE CONFI GVAP***]: security. protocol}

11

Cloudera Streams Messaging Operator Configuring prefixless replication

target.cluster.sasl.nmechanism ${cfmp:[***REPLI CATI ON
NS***] /[*** SOURCE CONFI GVAP***]: sasl . mechani sn}
target.cluster.sasl.jaas.config: ${secret:[***REPLI CATI ON
NS***] /[*** SOURCE SECRET***]: sasl .| aas. confi g}
target.cluster.ssl.truststore.location: ${cfmap:[***REPLI CATI ON
NS***] /[*** SOURCE CONFI GVAP***]:ssl.truststore. | ocation}
target.cluster.ssl.truststore. password: ${secret:[***REPL|I CATI ON
NS***] /[*** SOURCE SECRET***]:ssl.truststore. password}

Source cluster configurations configured as producer override - sou
rced from configmap, secret and vol une

producer . overri de. boot strap. servers: ${cfnmap: [***REPLI CATI ON
NS***] /[*** SOURCE CONFI GVAP***]: boot st rap. server s}

producer.override. security. protocol: ${cfmp:[***REPLI CATI ON
NS***] /[*** SOURCE CONFI GVAP***]: security. protocol}

producer . overri de. sasl . mechani sm ${cf map: [***REPLI CATI ON
NS***] /[*** SOURCE CONFI GVAP***]: sasl . mechani snt

producer.override. sasl . aas. config: ${secret:[***REPLI CATI ON
NS***] /[*** SOURCE SECRET***]: sasl .| aas. confi g}

producer.override.ssl.truststore.location: ${cfmap:[***REPLI CATI ON
NS***] /[*** SOURCE CONFI GVAP***]:ssl|.truststore. | ocation}

producer. override. ssl.truststore. password: ${secret:[***REPLI CATI ON
NS***] /[*** SOURCE SECRET***]:ssl.truststore. password}

« Uncomment the replication.policy.class property if you added this property to [*** REPLICATION
CONFIGMAP***] ., This property configures what replication policy is used for replication.

By default, replication flows you deploy use the DefaultReplicationPolicy, which prefixes the replicated topic names
in the target Kafka cluster. If you want replicated topics to retain their original name, you configure your replication
flow to use IdentityReplicationPolicy instead.

Y ou configure replications flowsto usethel dent i t yRepl i cati onPol i cy withthe

replication. policy.class connector property. This property specifies the class name of the replication
policy to use. You add the property to the configuration of the replication connectors that you deploy for each
replication flow. That is, you need to add the property to the configuration of M r r or Sour ceConnect or,

M rror Heart Beat Connect or,and M rr or Checkpoi nt Connect or.

The value of this property must be set to the same replication policy in each connector instance that is deployed for a
replication flow.

Instead of hardcoding the replication policy in each connector configuration, Cloudera recommends that you add
the valueto a Conf i giVap that stores properties that are common to the connectors, and load the value using the
Kuber net esConf i gMapConf i gPr ovi der .

#. ..
ki nd: Kaf kaConnect or
spec:
cl ass: org. apache. kaf ka. connect. mrror. M rrorHeartbeat Connect or
config:
replication.policy.class: ${cfmap:[***REPLI CATI ON NS***]/[***REPLI CATI ON
CONFI GWAP***] : repl i cation. policy. cl ass}

A configuration setup like this enables you to specify the replication policy centrally.

Important: TheKuber net esConf i gMapConfi gPr ovi der must be enabled in the Kafka Connect
cluster where you deploy your connectors. Additionally, an appropriate Rol e and Rol eBi ndi ng is
required for the configuration provider to work.

12

Cloudera Streams Messaging Operator Checking the state of data replication

Deploying areplication flow
Replication policies
Configuration providers

Learn how to check the current state of data replication.

TheM rror Sour ceConnect or keepstrack of its progress in the source cluster using the Kafka Connect
framework. Kafka Connect allows checking and manipulating the source offsets of the connectors. Y ou can check
the current state of data replication by extracting source offsets and comparing them with the end offsets of replicated
partitions.

These steps use the connect_shell.sh and kafka shell.sh CSM Operator tools. Ensure that these tools are available
to you. Running kafka_shell.sh is only necessary if your source Kafka cluster is deployed with CSM Operator. See
Using kafka shell.sh and Using connect_shell.sh.

1. Useconnect_shell.sh to exec into a Kafka Connect admin pod of the replicator Kafka Connect cluster.

./ connect _shel |l .sh --nanespace=[*** REPLI CATI ON NAMESPACE***] --cl ust
er =[*** CONNECT CLUSTER NAME***]

2. Usethe GET / connect or s/ CONNECTOR/ of f set s endpoi nt of the Kafka Connect REST API to extract
source offsets.

curl -s $CONNECT REST URL/connectors/[*** CONNECTOR NAME***]/ of f sets

[*** CONNECTOR NAME***] isthe name of the M r r or Sour ceConnect or instance.

Note: The frequency of updates of the offset values returned by this command is controlled by the offset.f
B lush.interval.ms property of the M r r or Sour ceConnect or . Theinterval is 60 seconds by default.

3. Inthe source cluster, use the kafka-get-offsets.sh Kafka tool to extract the end offsets of the replicated partitions.

bi n/ kaf ka- get - of f sets. sh --boot strap-server [***SOURCE CLUSTER
HOST***] : [***PORT***] --topic "test.*"

« The kafka-get-offsets.sh tool accepts aregex string as the topic filter, but does not accept alist of regexes. To
specify multiple regex expressions in a single command (as a single regex string), chain expressions together
with pipes (]).

--topic "test.*|abc. *|zxc. *"

« |If the source Kafka cluster isa CSM Operator Kafka cluster, use kafka_shell.sh to run the kafka-get-offsets.sh
tool

4. Compare extracted end offsets with the source offsets extracted in Step 2 on page 13.

13

https://docs.cloudera.com/csm-operator/1.1/kafka-replication-deploy-configure/topics/csm-op-deploying-replications.html
https://docs.cloudera.com/csm-operator/1.1/kafka-replication-overview/topics/csm-op-connect-replication-overview.html#concept_ekb_ztd_mcc
https://docs.cloudera.com/csm-operator/1.1/kafka-connect-deploy-configure/topics/csm-op-connect-configuring-clusters.html#task_fsq_tdg_jcc
https://docs.cloudera.com/csm-operator/1.1/monitoring-diagnostics/topics/csm-op-diagnostics.html#task_sqn_11b_1bc
https://docs.cloudera.com/csm-operator/1.1/kafka-connect-operations/topics/csm-op-connect-using-rest-api.html#task_vbx_f3g_jcc

Cloudera Streams Messaging Operator Configuring data replication offsets

Learn how you can configure and modify what offset the MirrorSourceConnector replicates form.

By default, M r r or Sour ceConnect or replicates datafrom the start of the source topics, and keeps track of the
progress by committing source offsets into the Kafka Connect framework.

This behavior can be modified in the following ways.

» Starting data replication from the latest offset for new partitions.
» Manually setting exact offsets for specific source partitions.

Caution: Cloudera advises caution when modifying what offsets replication starts at. Modifying the start
offset might affect the guarantees provided for data replication.

To replicate data from the latest offset, you configure auto.offset.reset property for the source consumer in the
MirrorSourceConnector.

#...
ki nd: Kaf kaConnect or
spec:
cl ass: org.apache. kaf ka. connect. mrror. M rror Sour ceConnect or
config:
sour ce. consuner . aut o. of fset.reset: |atest

With this configuration, all new partitions (without a committed offset) are replicated from the latest offset. Cloudera
recommends applying this configuration under special circumstances only asiit violates the at-least-once guarantee of
datareplication.

This example uses the source.consumer. prefix. That is, auto.offset.reset is specifically set for the source consumer in
the connector, which is the consumer connecting to the source cluster.

auto.offset.reset | Kafka
Replication connector configurations

In some situations, it might be necessary to rewind the replication and reprocess records, or fast forward and skip
some records. To do this, you can manipulate the exact offsets per partition and change the state of the replication.

e The connect_shell.shtool isavailableto you. See Using connect_shell.sh.
» Ensurethat you are familiar with the process of checking replication state. See Checking the state of data
replication .

1. StoptheM rr or Sour ceConnect or.
To do this, set the spec.state property to stopped in the Kaf kaConnect or resource of the connector.

#. ..
ki nd: Kaf kaConnect or

14

https://kafka.apache.org/37/documentation.html#consumerconfigs_auto.offset.reset
https://docs.cloudera.com/csm-operator/1.1/kafka-replication-overview/topics/csm-op-replication-connector-architecture.html#concept_x2y_c1m_jcc
https://docs.cloudera.com/csm-operator/1.1/kafka-connect-operations/topics/csm-op-connect-using-rest-api.html#task_vbx_f3g_jcc
https://docs.cloudera.com/csm-operator/1.1/kafka-replication-deploy-configure/topics/csm-op-checking-replication-state.html
https://docs.cloudera.com/csm-operator/1.1/kafka-replication-deploy-configure/topics/csm-op-checking-replication-state.html

Cloudera Streams Messaging Operator Enabling exactly-once semantics for replication flows

spec:
cl ass: or g. apache. kaf ka. connect . nmirror. M rror Sour ceConnect or
state: stopped

2. Use connect_shell.sh to get administrative access to the Connect REST API.

connect _shel | . sh --nanmespace=[*** CONNECT CLUSTER NAMESPACE***] \
--cluster=[***CONNECT CLUSTER NAME***]

3. Create a payload to manipulate the source offsets with the offset management endpoints of the Kafka Connect
REST API.

The payload is connector specific. For example, the structure for theM r r or Sour ceConnect or isthe
following.

{"of fsets":[{"partition":{"cluster":"[***SOURCE CLUSTER ALI AS***]" "p
artition":0,"topic":"[***SOURCE TOPI C NAME***]"},"of fset":{"of fset
"i[***OFFSET***]}}]}

Y ou can specify multiple partitions in the structure. Additionally, you can set offsets.offset to null to clear the
offset for a specific partition.

4. Submit the payload.

curl --data 'PAYLOAD -H "Content-Type: application/json" -X PATCH $CONN
ECT_REST_URL/ connect ors/[*** CONNECTOR NAME***]/ of f sets

5. ResumetheM rr or Sour ceConnect or .
To do this, set the spec.state property to running in the Kaf kaConnect or resource of the connector.

#o..

ki nd: Kaf kaConnect or

spec:
cl ass: or g. apache. kaf ka. connect . mirror. M rror Sour ceConnect or
state: running

Y ou enable exactly once semantics (EOS) for replication flows by configuring EOS in the KafkaConnect resource.
Optionally, Cloudera recommends that you set the source consumer isolation level in your MirrorSourceConnector to
read_committed.

The progressof M r r or Sour ceConnect or istracked by periodically committing the offsets of the processed
messages. If the connector fails, uncommitted messages are reprocessed after the connector starts running again.

Using EOS, source connectors are able to handle offset commits and message produces in a single transaction. This
either resultsin a successful operation where messages are produced to the target topic along with offset commits, or
arollback of the whole operation. EOS is enabled in the Kaf kaConnect resource with the exactly.once.source.supp
ort property.

If transactional producers are writing messages to the source topic, Cloudera recommends that you filter records from
the aborted transactions out from the replicated data. Otherwise, aborted transactions are marked as committed in the
target, which resultsin invalid data. Thisis configured inyour M r r or Sour ceConnect or with theisolation.level
property. Y ou set the property to read_committed.

Important: Due to the periodic nature of checkpointing, EOS does not apply to failover and failback
scenarios. Duplicate messages are expected.

15

Cloudera Streams Messaging Operator Enabling exactly-once semantics for replication flows

1. Enable EOSin your KafkaConnect resource.

Configuration differs for newly deployed resources and existing resources.

Set exactly.once.source.support to enabled.

#. ..
ki nd: Kaf kaConnect
spec:
config:
exact |l y. once. source. support: enabl ed

a. Set exactly.once.source.support to preparing.

#. ..
ki nd: Kaf kaConnect
spec:
confi g:
exact|y.once. source. support: preparing

b. Wait until configuration changes are applied and worker pod rolling restart finishes. The restart beginsin
the next reconciliation loop.

kubect| get pods --nanespace [***NAMESPACE***] --watch

c. Set exactly.once.source.support to enabled.

2. Setisolation.level inyour M rr or Sour ceConnect or .

#...
ki nd: Kaf kaConect or
spec:
cl ass: org. apache. kaf ka. connect. m rror. M rror Sour ceConnect or

config:
sour ce. consuner.isol ation.level: read _conmitted

This example uses the source.consumer. prefix. That is, isolation.level is specifically set for the source consumer
in the connector, which is the consumer connecting to the source cluster.

B Note:
Setting the isolation.level comes with caveats. If the connector reaches a message written by an
uncommitted transaction, it stops reading until the transaction is either committed or rolled back. This
can cause significant lag in replication. Y ou can limit this by applying an appropriate application timeout,
however, the timeout you set will depend on the application and use case.

Replication connector configurations
Performing afailover or failback

16

https://docs.cloudera.com/csm-operator/1.1/kafka-replication-overview/topics/csm-op-replication-connector-architecture.html#concept_x2y_c1m_jcc
https://docs.cloudera.com/csm-operator/1.1/kafka-replication-deploy-configure/topics/csm-op-replication-failover-failback.html

Cloudera Streams Messaging Operator Performing afailover or failback

Learn about failover and failback operations that you can perform between two Kafka clusters that have data
replication enabled. Performing afailback or failover operation enables you to migrate consumer and producer
applications between Kafka clusters. These operations are typically performed after a disaster event or in migration
scenarios.

Source Kafka Target Kafka

Prod Replication Replicati
Refie Connect o

Group offsetsync
L

Consume
business_topic
Consumer

The producer and consumer applications both connect to the source cluster, while a Kafka Connect cluster is
configured to replicate the business topics and synchronize the group offsets into the target cluster. Note that the busi
ness_topic in the target cluster is not created by replication. Instead you create this topic in preparation for the failover
or failback scenario.

source.business_topic

There are multiple types of failover and failback operations that you can carry out. Which one you perform depends
on your scenario and use case. The failover and failback types are as follows.
Continuous and controlled failover

A continuous and controlled failover is carried out when all applications and services are working
as expected, but you want to move workloads from one cluster to another. This type of failover is
continuous because applications are moved continuously to the target without a cutoff. This failover
can be performed rapidly and comes with minimal service disruptions.

Thisfailover type works with Def aul t Repl i cati onPol i cy only.

Controlled failover with a cutoff

A controlled failover with a cutoff is carried out when all applications and services are working as
expected. The cutoff means that producers are stopped for the duration of the failover and consumer
traffic is exhausted in the source cluster.

Compared to a continuous failover, this failover is more complex, but does not rely on group offset
syncing, and can also guarantee message ordering for consumers even across the failover.

Thisfailover type works with both the Def aul t Repl i cati onPol i cy and
I dentityReplicationPolicy.
Failover on disaster

A failover on disaster is carried out when you encounter a disaster scenario where your source
cluster becomes unavailable. A failover on adisaster simply consists of reconfiguring and restarting
your client applications to use the target Kafka cluster.

Controlled failback

17

Cloudera Streams Messaging Operator Performing afailover or failback

A controlled failback is the same as afailover operation but in areverse order. That is, you move
clients back to their original cluster. A failback operation assumes that you already performed a
failover operation.

Learn how to perform a continuous and controlled failover between Kafka clusters that have data replication enabled.

A continuous and controlled failover is carried out when all applications and services are working as expected.

That is, thereis no disaster scenario. Instead you make an executive decision to move your workload from the
source cluster to the target cluster so that you can stop the source cluster, either temporarily or permanently, without
disrupting applications.

The failover is continuous because applications can be continuously moved to the target cluster without a strict cutoff.
Because of this, the failover can be performed rapidly with minimal service disruptions.

Throughout this process, replication of Kafka datais not stopped, ensuring that no dataiis lost.

A

Important: Thisfailover type works with Def aul t Repl i cati onPol i cy only.

Ensure that you are familiar with the process of checking replication state. See Checking the state of datareplication .

1. Fail over consumers.

a)

b)

0)

d)

Gracefully stop consumers.

This allows the consumers to commit their offsets to the source Kafka cluster of their latest state.
Wait for the replication to successfully synchronize the latest offsets.

Calculate wait time based on the intervals configured in the emit.checkpoints.interval .seconds

(default 60 seconds) and synch.group.offsets.interval .seconds (default 60 seconds) properties of the
M rr or Checkpoi nt Connect or . Thewait timeisthe sum of these properties multiplied by two.

wait time = 2 * (emt.checkpoints.interval.seconds + sync. group. of fsets.
i nt erval . seconds)

Configure consumers to connect to the target cluster and to consume from both the replicated and the active
(prefixless) topic in the target cluster.
Thereisapossibility that consumers till did not process all messages from the source cluster. To pick up the

remaining data, they need to consume from the prefixed replica topics as well as from the active (prefixless)
topic so that they also see the new data produced to the target cluster when the producers are failed over.

Important: Thisalso means that message ordering is not guaranteed, as consumers now consume
from two separate topics. Replicated messages might get mixed with messages produced into the target
cluster.

Start consumers.

18

https://docs.cloudera.com/csm-operator/1.1/kafka-replication-deploy-configure/topics/csm-op-checking-replication-state.html

Cloudera Streams Messaging Operator Performing afailover or failback

2. Fail over producers.

a) Gracefully stop producers.

b) Configure producers to connect to the target cluster.
Producers can safely produce to the exact same topics without any name changes as the replicated datais
stored in a prefixed topic.

E Note: Producers must never be configured to produce to the replicated (prefixed) topics.

c) Start producers.
3. Wait for the replication fo finish replicating all data that was produced to the cluster.

At this point, it is still possible that not al records are migrated to the target cluster. Check the state of the
replication to ensure that all records are fully replicated.

4, Stop the source cluster.

Learn how to perform a controlled failover with a cutoff between Kafka clusters that have data replication enabled.

A controlled failover with a cutoff is carried out when all applications and services are working as expected. That is,
thereis no disaster scenario. Instead you make an executive decision to stop the source cluster, either temporarily or
permanently, and move your workload from the source to the target cluster.

The failover has a cutoff because producers are stopped for the duration of the failover. Additionally, all consumer
traffic is exhausted in the source cluster. Thisresultsin alonger disruption in client applications.

A controlled failover with a cutoff is a complex process, but does not rely on group offset syncing, and can also
guarantee message ordering for consumers even across the failover.

Important: Thisfailover type works with both the Def aul t Repl i cat i onPol i cy and
& I dentityReplicationPolicy.

Ensure that you are familiar with the process of checking replication state. See Checking the state of data replication .

1. Gracefully stop producers.
This stops the ingress traffic, allowing al consumersto fully read all data.
2. Monitor the consumers and the replication, and wait until all datais read.

« To monitor the consumer applications, use the kafka-consumer-groups.sh Kafka tool with the --describe
option. Wait until the lag becomes 0.

Note: There might be consumer groups of old or inactive applications for which the lag will never
become 0. Y ou will have to decide whether to follow up on those cases or ignore them for the cutoff.

» To check replication state, compare source offsets and the offsets of theM r r or Sour ceConnect or . Wait
until replication fully catches up with business data.
3. Gracefully stop consumers.
4. Gracefully stop replication.

19

https://docs.cloudera.com/csm-operator/1.1/kafka-replication-deploy-configure/topics/csm-op-checking-replication-state.html

Cloudera Streams Messaging Operator Performing afailover or failback

5. Ifusingthel dentityRepl i cati onPol i cy: Reset the offsets of all consumer groups to the latest offset in
the target cluster.

This ensures that old data is not consumed after the failover. Steps 2 on page 19 and 3 on page 19 already
ensure that all old data has been successfully consumed.

6. Configure the producers to connect to the target cluster.
Producers can safely produce to the exact same topics without any name changes.

E Note: Producers must never be configured to produce to the replicated (prefixed) topics.

7. Start producers.
8. Configure consumers to connect to the target cluster.
Consumers can safely consume from the exact same topics without any name changes.

» If Defaul t ReplicationPol i cy andtopic prefixing is used, the replicated data is separated into the
prefixed topic. This only affects new consumers, as old consumers were previously allowed to completely
consume old data from the source cluster.

« IfldentityReplicationPolicy isused, al old datawaswritten into the topic already, since Step 2 on
page 19 and 3 on page 19 ensure that there will be no more old data coming into the topic. Only newly
produced datais written into it after the failover.

9. Start consumers.
10. Stop the source cluster.

Learn how to perform afailover operation in adisaster scenario between Kafka clusters that have data replication
enabled.

In adisaster scenario where your source cluster becomes unavailable, you cannot perform afailover in a controlled
manner. In acase like this, afailover operation simply involves reconfiguring and restarting all client applicationsto
use the target Kafka cluster.

In afailover on disaster, the data and the group offsets replicated up until the failure can be used to continue
processing.

In adisaster scenario with an uncontrolled stop and crash event, some messages that were successfully accepted in
the source cluster might not be replicated to the target cluster. This means that some messages will not be accessible
for consumers, even though they were successfully produced into the source cluster. Thisis dueto the fact that
replication is asynchronous and may lag behind the source data. Thisis also true when exactly-once semantics (EOS)
is enabled for data replication.

Learn about performing failback operations between Kafka clusters that have data replication enabled.

A controlled failback operation is the same as afailover operation, but in reverse order. That is, you move your clients
back to their original Kafka cluster. Typically this means moving from the target cluster of the replication to the
source cluster of the replication some time after afailover operation was performed.

To complete afailback operation, follow the steps for any of the failover operations, but in reverse order. However,
take note of the following caveats.

« A failback assumes a bidirectional replication, as data produced into the target Kafka is not present in source, so
the data needs replication.

20

Cloudera Streams Messaging Operator Using Single Message Transforms in replication flows

* You cannot perform afailback operation if thel dent i t yRepl i cati onPol i cy isinuse

Thisisbecausethel dent i t yRepl i cati onPol i cy does not allow bidirectional replication over the
same topics as the topic names are not atered during replication. A bidirectional replication setup with
I dentityReplicationPolicy wouldresultinareplication loop where topics are infinitely replicated
between source and target clusters. If usingthel dent i t yRepl i cati onPol i cy, after afailover you must
stop and remove your previous replication setup and reconfigure it again in the reverse direction before you can be
ready to failback.

e« TheM rror Checkpoi nt Connect or and group offset synchronization only function in the context of a
single replication flow. Mapping offsets back to the original topic is not supported.

This means that any progress made by consumersin the target Kafka cluster over the replicated (prefixed) topics,
akathe old data, islost. Thereisahigh likelihood that consumers will reprocess old data after the failback. Y ou
can avoid a scenario like thisif the initial failover operation that you carry out isa controlled failover with a
cutoff. A failover with a cutoff guarantees that all old data was already consumed.

In CSM Operator you can apply Single Message Transforms (SMT) in the connectors that make up areplication flow.
Configuring an SMT chain enables you to transform the Kafka records during replication. This collection of examples
demonstrates how you can transform keys and values as well as metadatain Kafka records during replication.

The following examples on key and value transformation are simple examples that are meant to demonstrate the use
of the SMT framework in data replication. They might not be directly applicable or appropriate for al use casesin
aproduction environment. Specifically, these examples usethe JsonConver t er with schemaless datawhich is
handled as a Map by the Kafka Connect framework. Y ou can replacethe JsonConver t er for any other converters
to handle data with schema depending on your data formats present in your use case.

Whileit is possible to modify the topic name of arecord using the SMT framework, these types of transformations
should not be used in replication flows. Modifying the topic name can block replication policy and data replication as
awhole.

Whenthe M r r or Sour ceTask provides Kafka records for the Kafka Connect framework, it provides them with
keys and values as only bytes that have the BY TES schema. Thisistrue even if your datainside the blob is structured
data, for example JSON.

Theresult of thisisthat you can not directly manipulate the data, because most SMT plugins rely on the Kafka
Connect internal dataformat and its schema. In this context, the BYTES schemais meaningless. Y ou can use the
Convert Fr onByt es plugin with an appropriate converter to be able to run manipulations on structured data.

The following example converts each replicated message value into JSON format with the Convert Fr onByt es
plugin. This example assumes that the message values contain JSON data.

#. ..
ki nd: Kaf kaConnect or
nmet adat a:
name: my-sour ce-connect or
| abel s:
strinei.iolcluster: my-connect-cluster
spec:
cl ass: org. apache. kaf ka. connect. m rror. M rror Sour ceConnect or
config:

transforns: Convert FronBytes

transforns. Convert FronByt es. t ype: com cl ouder a. di m kaf ka. connect . t r ansf
orns. Convert FronByt es$Val ue

transf orns. Convert FronByt es. converter: org.apache. kaf ka. connect.j son. Jso
nConverter

21

Cloudera Streams Messaging Operator Using Single Message Transforms in replication flows

transforms. Convert FronByt es. converter. schenmas. enabl e: fal se

Adding additional transfor mations

Y ou can put any transformation after the Conver t Fr onByt es plugin. The following example replaces two fields
in the record values with the Repl aceFi el d plugin.

#. ..
ki nd: Kaf kaConnect or
nmet adat a:
name: my-source-connect or
| abel s:
strinei.iolcluster: my-connect-cluster
spec:
cl ass: org. apache. kaf ka. connect. m rror. M rror Sour ceConnect or
config:

transforns: Convert FronBytes, Repl aceFi el d

transf orns. Convert FronByt es. t ype: com cl ouder a. di m kaf ka. connect . trans
for ms. Convert FronByt es$Val ue

transf orns. Convert FronByt es. converter: org.apache. kaf ka. connect. json. Js
onConverter

transf orns. Convert FronByt es. converter. schenas. enabl e: fal se

transforns. Repl aceFi el d. type: org. apache. kaf ka. connect . transf or ns. Repl ac
eFi el d$Val ue

transforns. Repl aceFi el d. renanes: nane: repl aced_nane, age: r epl aced_age

After applying your transformation, you have to consider how to create bytes from your structured JSON. Thereisa
required converter in the connector configuration which is applied on the records just before providing them for the
Kafka connect framework’ s producer.

This conversion happens after the data goes through your SMT chain. In this example, you can simply use
JsonConvert er asvaue converter, you do not need additional SMT steps to convert values back.

#. ..
ki nd: Kaf kaConnect or
nmet adat a:
name: my-source-connect or
| abel s:
strinei.iolcluster: my-connect-cluster
spec:
cl ass: org. apache. kaf ka. connect. m rror. M rror Sour ceConnect or
config:

val ue. converter: org.apache. kaf ka. connect.j son. JsonConverter
val ue. converter. schenas. enabl e: fal se
key. converter: org.apache. kaf ka. connect. converters. Byt eArrayConverter

The keys were not converted to JSON, so you can use Byt eAr r ayConver t er onthem, only the values need to be
converted from JSON to byte array.

Filtering datausing SMTs

If your replication flow replicates topics with different data formats, a transformation chain like the one in the
examples above will fail when trying converting data of the wrong type.

A typical example of that happens when your replication flow usesaM r r or Hear t beat Connect or . The
heartbeats topic contains records that can not be converted into JISON. Since heartbest records are automatically
replicated by the M r r or Sour ceConnect or, you will encounter exceptions during data conversion

In cases like this, you must use predicates to filter heartbeat records from the transformation chain.

#H. ..
ki nd: Kaf kaConnect or
net adat a:

22

Cloudera Streams Messaging Operator Using Single Message Transforms in replication flows

nane: ny-source-connect or

| abel s:
strinei.iolcluster: my-connect-cluster
spec:
cl ass: org. apache. kaf ka. connect. m rror. M rror Sour ceConnect or
config:

transforns: Convert FronByt es, Repl aceFi el d, Convert ToByt es

transforms. Convert FronByt es. t ype: com cl ouder a. di m kaf ka. connect . transf
or ms. Convert Fr onByt es$Val ue

transf orns. Convert FronByt es. converter: org.apache. kaf ka. connect.j son. Jso
nConverter

transf orns. Convert FronByt es. converter. schenas. enabl e: fal se

transforms. Repl aceFi el d. t ype: org. apache. kaf ka. connect . transforns. Rep
| aceFi el d$Val ue

transf orns. Repl aceFi el d. renanes: nane:repl aced_nane, age: r epl aced_age

transforns. Convert ToByt es. type: com cl ouder a. di m kaf ka. connect . t ransf or
ns. Convert ToByt es$Val ue

transforns. Convert ToByt es. converter: org.apache. kaf ka. connect . json. JsonC
onverter

transforms. Convert ToByt es. converter. schemas. enabl e: fal se

predi cates: Not Heart beats

predi cat es. Not Heart beats. type: org. apache. kaf ka. connect . transf orns. pred
i cat es. Topi cNaneMat ches

pr edi cat es. Not Heart beats. pattern: ~(?!(.+\.)?heartbeats).*$

transforms. Convert FronByt es. predi cate: Not Heart beats

transforms. Repl aceFi el d. predi cate: Not Heart beat s

transforns. Convert ToByt es. predi cate: Not Heart beat s

key. converter: org.apache. kaf ka. connect. converters. Byt eArrayConverter

val ue. converter: org.apache. kaf ka. connect. converters. Byt eArrayConverter

Since heartbeats records are not converted into JSON, they remain byte arrays. All the other record values, however,
will be converted to JSON.

To make al records have the same data format, you have to convert your non heartbeat record values back

to byte arrays, (Convert ToByt es). After applying it, all your records are byte arrays, so you can use

Byt eArrayConvert er asthekey and value converters asfinal converters. If you need to manipulate the metadata
part of the records (including heartbeats), you can do that by applying some additional SMTs globally without any
predicates.

Unlike transformation of key or values, you can transform the metadata (headers, timestamps and so on) in Kafka
records without any preliminary conversion. That is, you do not need to create a chain with multiple transforms or
predicates. You can ssimply use asingle plugin like | nsert Header .

The following transformation chain example adds smt-header-key=smt-header-value as a fixed header to al of the
replicated records using the | nser t Header plugin.

#. ..
ki nd: Kaf kaConnect or
nmet adat a:
name: my-sour ce-connect or
| abel s:
strinei.iolcluster: my-connect-cluster
spec:
cl ass: org. apache. kaf ka. connect. m rror. M rror Sour ceConnect or
config:

transforns: |nsertHeader

transforns. | nsert Header . header: snt-header - key

transforms. | nsert Header . type: org. apache. kaf ka. connect . transformns. | nsert
Header

transforms. | nsert Header. val ue.literal: snt-header-val ue

23

Cloudera Streams Messaging Operator Replication monitoring and diagnostics

Single Message Transforms
MirrorHeartbeatConnector
Transformations | Kafka

If you already installed Prometheus and Grafana, you can monitor your replication flows. When configuring Kafka
cluster replication, replication connectors provide some additional metrics which are worth monitoring besides the
underlying Kafka Connect cluster metrics.

For the complete list of replication connector related metrics, Monitoring Geo-Replication in the Apache Kafka
documentation. In order to be able to access these metrics, you must configure the Connect IM X metrics exporter.

Y ou can use the included kafka-connect-replication-metrics.yaml example file to create a Kafka Connect cluster
which exports the necessary metrics. This example exports both replication related metrics as well as metrics about
the underlying Kafka Connect cluster, which can be useful when monitoring replication flows.

Before applying the example file, you need to modify spec.bootstrapServers which should point to your target Kafka
cluster. After deploying the replication connectors into this Kafka Connect cluster, the metrics will be available with
the kafka _connect_mirror_ prefix. Y ou can change the prefix by specifying different renaming rules in the IMX
exporter configuration.

The following are some metrics that can be of interest when monitoring a replication:

» kafka connect_mirror_mirrorsourceconnector_byte rate — Measures the Bytes/sec in replicated records through
the source connector.

» kafka_connect_mirror_mirrorsourceconnector_record_age ms— Time duration between record timestamp in the
source topic and the time when the source connector handles the record.

» kafka connect_mirror_mirrorsourceconnector_replication_latency _ms— Time duration it takes records to
propagate from source to target. The difference between record timestamp in the source topic and the time when
the producer receives ack from the target cluster that the record was written successfully.

» kafka_connect_source task_source record_active count — The number of records that this task has consumed
from the source but not yet produced to the target.

« kafka connect_connector_task offset_commit_avg time ms— Time duration that this task takes to commit its
offsets to the target.

» kafka_consumer_fetch manager_records_lag — Consumer lag which in the context of the replication indicates
whether the consumer in the source connector can keep up with the rate records are produced in the source.

A sample Grafana dashboard is provided in strimzi-kafka-connect-replication.json among the examples which
configures visualizations of the above metrics. It can serve as a basis for monitoring replication flows. Y ou can even
use it for multiple replication flows, as you can choose the namespace and connect cluster which you want to monitor.
Y ou might want to tailor it to your specific needs by modifying or extending this dashboard.

The prometheus-rules.yaml contains some replication related alerting rules under the replication group. Y ou might
want to configure the exact thresholds based on your specific needs or define your own rules. It is also recommended
to configure the alerting rules for Kafka Connect (connect group).

Monitoring Geo-Replication
Cloudera Archive

24

https://docs.cloudera.com/csm-operator/1.1/kafka-connect-operations/topics/kafka-connect-smt-overview.html
https://docs.cloudera.com/csm-operator/1.1/kafka-replication-overview/topics/csm-op-replication-connector-architecture.html#concept_cs4_55d_mcc
https://kafka.apache.org/37/documentation.html#connect_transforms
https://kafka.apache.org/37/documentation.html#georeplication-monitoring
https://archive.cloudera.com/p/csm-operator/1.1/examples/metrics/

	Contents
	Deploying a replication flow
	Configuring prefixless replication
	Checking the state of data replication
	Configuring data replication offsets
	Replicating from the latest offset for new partitions
	Manually setting exact offsets for specific source partitions

	Enabling exactly-once semantics for replication flows
	Performing a failover or failback
	Performing a continuous and controlled failover
	Performing a controlled failover with a cutoff
	Performing a failover on disaster
	Performing a controlled failback

	Using Single Message Transforms in replication flows
	Replication monitoring and diagnostics

