
Cloudera Streams Messaging Operator 1.1.0

Kafka Security
Date published: 2024-06-11
Date modified: 2024-09-04

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

This content is modified and adapted from Strimzi Documentation by Strimzi Authors, which is licensed under CC BY 4.0.

https://strimzi.io/documentation/
https://creativecommons.org/licenses/by/4.0/

Cloudera Streams Messaging Operator | Contents | iii

Contents

Channel encryption (TLS)... 4
Using auto-generated self-signed certificates...4
Using external certificates.. 4

Authentication... 5
Configuring mTLS authentication..5
Configuring OAuth authentication... 6
Configuring LDAP authentication..7
Configuring SCRAM-SHA-512 authentication... 8
Configuring PLAIN authentication.. 9

Simple ACL authorization...10
Configuring simple ACL..10
Configuring ACL rules...11
Configuring super users..12

User management... 13

Inter-broker and ZooKeeper security.. 13

Setting the security context of Kafka cluster components..................................14

Cloudera Streams Messaging Operator Channel encryption (TLS)

Channel encryption (TLS)

Learn how to configure channel encryption (TLS) for Kafka clusters. You have multiple options for configuring
TLS. You can use auto-generated and self-signed certificates, use a custom external certificates, or use an external
certificate authority (CA) certificate, but have broker certificates automatically generated by the Strimzi Cluster
Operator.

Using auto-generated self-signed certificates
When the tls property is set to true on one of the Kafka listeners, the Strimzi Cluster Operator creates self-signed
certificates. In this case, the Strimzi Cluster Operator automatically sets up and renews certificates.

You can add a TLS-enabled listener by configuring spec.kafka.listeners in your Kafka resource.

#...
kind: Kafka
spec:
 kafka:
 listeners:
 - name: plain
 port: 9092
 type: internal
 tls: false
 - name: tls
 port: 9093
 type: internal
 tls: true

Related Information
Secrets generated by the operators | Strimzi

Using external certificates
It is possible to pass externally issued certificates as secrets to the Strimzi Cluster Operator, however there’s no way
to request new certificates automatically, they have to be prepared ahead of time.

The spec.kafka.listeners[n].configuration.brokerCertChainAndKey.secretName property specifies to the secret
containing the broker certificate.

#...
kind: Kafka
spec:
 clusterCa:
 generateCertificateAuthority: false
 clientsCa:
 generateCertificateAuthority: false
 kafka:
 listeners:
 - name: tls
 port: 9093
 type: internal
 tls: true
 configuration:
 brokerCertChainAndKey:
 secretName: cluster-cert
 certificate: tls.crt

4

https://strimzi.io/docs/operators/0.41.0/deploying#certificates-and-secrets-str

Cloudera Streams Messaging Operator Authentication

 key: tls.key

When using externally created certificates, the spec.clusterCa.generateCertificateAuthority and spec.clientsCa.gener
ateCertificateAuthority properties have to be set to false to avoid generating self-signed CAs.

The Strimzi Cluster Operator expects the CA certificates to be in specific Kubernetes secrets and specific structure.
For a cluster with name my-cluster, the following commands can be used to create those secrets for the Strimzi
Cluster Operator when the CA is provided externally.

kubectl create secret generic my-cluster-cluster-ca-cert -n kafka \
 --from-file="ca.p12" \
 --from-file="ca.crt" \
 --from-file="ca.password"

kubectl create secret generic my-cluster-clients-ca-cert -n kafka \
 --from-file="ca.p12" \
 --from-file="ca.crt" \
 --from-file="ca.password"

kubectl create secret generic my-cluster-cluster-ca -n kafka \
 --from-file="ca.key"

kubectl create secret generic my-cluster-clients-ca -n kafka \
 --from-file="ca.key"

kubectl label secret my-cluster-cluster-ca-cert -n kafka \
 "strimzi.io/kind=Kafka" "strimzi.io/cluster=my-cluster

kubectl label secret my-cluster-clients-ca-cert -n kafka \
 "strimzi.io/kind=Kafka" "strimzi.io/cluster=my-cluster"

kubectl label secret my-cluster-cluster-ca -n kafka \
 "strimzi.io/kind=Kafka" "strimzi.io/cluster=my-cluster"

kubectl label secret my-cluster-clients-ca -n kafka \
 "strimzi.io/kind=Kafka" "strimzi.io/cluster=my-cluster"

It is also possible to only create the CA and let the Strimzi Cluster Operator use that to provision certificates. In
that case skip the broker and client certificate creation and do not specify the brokerCertChainAndKey” field on the
listeners.

Authentication

Learn how to configure Authentication for Kafka. Multiple authentication mechanisms are supported.

Configuring mTLS authentication
Learn how to enable mTLS authentication on broker listeners with or without an external certificate.

To enable mTLS authentication on any of the broker listeners, set the spec.kafka.listeners[n].authentication.type
property to tls.

#...

5

Cloudera Streams Messaging Operator Authentication

kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 listeners:
 - name: tls
 port: 9093
 type: internal
 tls: true
 authentication:
 type: tls

To use mTLS authentication using an external certificate, you need to set the type field in the KafkaUser resource
to tls-external. A secret and credentials are not created for the user:

#...
kind: KafkaUser
metadata:
 name: my-user
 labels:
 strimzi.io/cluster: my-cluster
spec:
 authentication:
 type: tls-external

Related Information
Installing your own CA certificates | Strimzi

Configuring OAuth authentication
Learn how to configure OAuth authentication for Kafka. OAuth is configured by creating a Kubernetes secret for the
Oauth certificate and configuring OAuth for a listener in your Kafka resource.

Before you begin
Enure that you have the following:

• An OAuth server running that is accessible from the Kafka Kubernetes environment.
• Both Kafka brokers and clientsare able to access the OAuth server.
• The TLS certificates of the OAuth server must be available in PEM format.
• The following attributes of the OAuth environment must be determined:

• userNameClaim – the claim name which contains the client ID. Typically this is asub, but its OAuth provider
dependent.

• validIssuerUri – it must point to the URL that clients can use to connect to the OAuth server. The value can be
obtained from the well-known endpoint of the OAuth server or a JWT token.

To set up OAuth, create a Kubernetes secret for the OAuth certificate. The Strimzi Cluster Operator will mount and
use the secret when configuring the listener.

kubectl create secret \
 -n kafka generic <oauth-server-cert-secret> \
 --from-file=<oauth-server-cert.pem>

The following snippet configures a Kafka cluster with an OAuth authenticated listener on port 9093. Notice that the
authentication section in the listener config contains all OAuth specific settings.

#...
kind: Kafka

6

https://strimzi.io/docs/operators/0.41.0/deploying#installing-your-own-ca-certificates-str

Cloudera Streams Messaging Operator Authentication

spec:
 kafka:
 listeners:
 - name: oauth
 port: 9093
 type: internal
 tls: false
 authentication:
 type: oauth
 jwksEndpointUri: <uri-from-kafka-brokers-to-oauth-server>
 tlsTrustedCertificates:
 - secretName: <oauth-server-cert-secret>
 certificate: <oauth-server-cert.pem>
 userNameClaim: <user-name-claim>
 validIssuerUri: <uri-from-kafka-clients-to-oauth-server>
 maxSecondsWithoutReauthentication: 3600

Note: If maxSecondsWithoutReauthentication is not set, authenticated sessions remain open even after token
expiry.

Related Information
Using OAuth 2.0 token-based authentication | Strimzi

Configuring LDAP authentication
Learn how to configure LDAP authentication for Kafka. LDAP is configured by creating a Kubernetes secret that
stores your LDAP truststore and configuring your Kafka resource to include a listener that has LDAP enabled.

Before you begin
Ensure that you have the following:

• An LDAP server running that is accessible from the Kafka Kubernetes environment.
• A truststore container that contains the CA certificate of the LDAP server (ldap.truststore.jks).

To set up LDAP, create a secret from the truststore in Kubernetes. The Strimzi Cluster Operator will be able to mount
the secret for the brokers

kubectl create secret -n kafka generic ldap-truststore --from-file=ldap-trus
tstore.jks

Afterward, modify the Kafka resource configuration to include the LDAP configuration.

#...
kind: Kafka
spec:
 kafka:
 listeners:
 - name: ldap
 port: 9094
 type: internal
 tls: false
 authentication:
 type: custom
 sasl: true
 listenerConfig:
 plain.sasl.server.callback.handler.class: org.apache.kafka.comm
on.security.ldap.internals.LdapPlainServerCallbackHandler
 plain.sasl.jaas.config: 'org.apache.kafka.common.security.plai
n.PlainLoginModule required ssl.truststore.password="<ssl-truststore-passwor
d>" ssl.truststore.location="/opt/kafka/custom-authn-secrets/custom-listener

7

https://strimzi.io/docs/operators/0.41.0/deploying#assembly-oauth-authentication_str

Cloudera Streams Messaging Operator Authentication

-ldap-9094/ldap-truststore/ldap-truststore.jks" ldap_url="ldaps://<ldap-serv
er-url:port>" user_dn_template="cn={0},ou=users,dc=ldap-dc,dc=ldap";'
 sasl.enabled.mechanisms: PLAIN
 secrets:
 - key: ldap-truststore.jks
 secretName: ldap-truststore

Note: By convention, the Strimzi Cluster Operator mounts custom listener secrets to /opt/kafka/custom-
authn-secrets/custom-listener-<listener name>-<listener port>/<secret name>/<secret key>.

Apply the configuration changes to the Kafka resource and wait for the Strimzi Cluster Operator to reconcile the
cluster.

Configuring SCRAM-SHA-512 authentication
Learn how to enable SCRAM-SHA-512 authentication and generate SCRAM credentials for your clients.

To enable SCRAM-SHA-512 authentication, you can specify a listener in your Kafka resource that has authenticati
on.type set to scram-sha-512. Additionally, you create a KafkaUser resource to generate SCRAM credentials for your
clients.

#...
kind: Kafka
metadata:
 name: my-cluster
 namespace: kafka
spec:
 kafka:
 listeners:
 - name: scram
 port: 9093
 type: internal
 tls: false
 authentication:
 type: scram-sha-512

To generate SCRAM credentials that your clients can use to access Kafka, you create a KafkaUser resource that
has spec.authentication.type set to scram-sha-512. For example:

#...
kind: KafkaUser
metadata:
 name: my-user
 namespace: kafka
 labels:
 strimzi.io/cluster: my-cluster
spec:
 authentication:
 type: scram-sha-512

When the user specified by the KafkUser resource is created, the Strimzi User Operator creates a new secret with
the same name as the KafkaUser resource. The secret contains the generated password (data.password) as
well as a JAAS configuration string (data.sasl.jaas.config). The password and JAAS are encoded with
Base64. As a result, they must be decoded when you retrieve them for use.

Using kubectl, you can extract both the password and JAAS. However, when configuring your clients, you typically
want to extract the JAAS, as this is the string that you add to your client’s configuration. Specifically, the JAAS

8

Cloudera Streams Messaging Operator Authentication

string you extract is the value you set for sasl.jaas.config in your Kafka client configuration. The following command
example prints the full JAAS configuration generated for a user.

kubectl get secret [***SECRET NAME***] \
 --namespace [***NAMESPACE***] \
 --output jsonpath='{.data.sasl\.jaas\.config}' \
| base64 -d

Configuring PLAIN authentication
Learn how to configure PLAIN (basic) authentication by applying a custom authentication configuration for Kafka on
an exposed listener.

To set up PLAIN, create a secret that contains the jaas.conf with the username-password configuration.

echo -n 'org.apache.kafka.common.security.plain.PlainLoginModule required us
er_kafka="password";' > kafka-jaas.conf

kubectl create secret -n kafka generic my-kafka-secret-name --from-file=kafk
a-jaas.conf

Next, a Role and a RoleBinding is needed to be able to use the kafka-jaas.conf secret:

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: kafka-configuration-role
rules:
- apiGroups: [""]
 resources: ["secrets"]
 resourceNames: ["my-kafka-secret-name"]
 verbs: ["get"]

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: kafka-configuration-role-binding
subjects:
- kind: ServiceAccount
 name: my-cluster-kafka
 namespace: kafka
roleRef:
 kind: Role
 name: kafka-configuration-role
 apiGroup: rbac.authorization.k8s.io

Finally, the Kafka listener can be configured. By setting the spec.kafka.listeners[n].authentication.sasl to true, the
Strimzi Cluster Operator will configure SASL protocol for the listener.

#...
kind: Kafka
spec:
 kafka:
 listeners:
 - name: plain
 port: 9093
 type: internal
 tls: true
 authentication:
 type: custom

9

Cloudera Streams Messaging Operator Simple ACL authorization

 sasl: true
 listenerConfig:
 plain.sasl.server.callback.handler.class: org.apache.kafka.comm
on.security.plain.internals.PlainServerCallbackHandler
 sasl.enabled.mechanisms: PLAIN
 plain.sasl.jaas.config: ${secrets:kafka/my-kafka-secret-name:k
afka-jaas.conf}
 config:
 config.providers: secrets
 config.providers.secrets.class: io.strimzi.kafka.KubernetesSecretConfi
gProvider

Related Information
Using RBAC Authorization | Kubernetes

Simple ACL authorization

Learn how to configure Simple ACL authorization, ACL rules, and well as super users.

Configuring simple ACL
Learn how to enable and configure simple ACL authorization for Kafka.

Simple ACL authorization is enabled by setting spec.kafka.authorization.type to simple in your Kafka resource.
Additionally, to manage user (client) access, you create KafkaUser resources that have a matching authorization
type configured. KafkaUser resources configure authorization rules for users that require access to your cluster.

The following is an example Kafka resource with simple ACL and mTLS authentication enabled.

#...
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 authorization:
 type: simple
 listeners:
 - name: tls
 port: 9093
 type: internal
 tls: true
 authentication:
 type: tls

Following the configuration of the Kafka resource, you create KafkaUser resources, which define the access
control rules for the users (clients) accessing Kafka. When creating a KafkUser resource for simple authorization,
you set spec.authorization.type to simple (matching the authorization configuration of Kafka) Additionally, you
define the rules for the user with the acls property. Each rule is defined as an array.

The following is a KafkaUser example configured for simple authorization that includes a few example rules.

#...
kind: KafkaUser
metadata:
 name: my-user
 labels:
 strimzi.io/cluster: my-cluster

10

https://kubernetes.io/docs/reference/access-authn-authz/rbac/

Cloudera Streams Messaging Operator Simple ACL authorization

spec:
 authorization:
 type: simple
 acls:
 - resource:
 type: topic
 name: my-topic
 patternType: literal
 operations:
 - Read
 - Describe
 - resource:
 type: topic
 name: "*"
 patternType: literal
 type: allow
 host: "*"
 operations:
 - Read
 - resource:
 type: group
 name: my-group
 patternType: prefix
 operations:
 - Read

Note: The KafkaUser resource specifies the username in the metadata.name property. The username must
follow the Kubernetes rules for the metadata fields. So for example underscores (_) are not allowed. If you
need to create a user with an incompatible name, disable the Strimzi User Operator and manage users directly
in Kafka. In this case, limitations on naming imposed by Kubernetes do not apply.

Related Information
Object Names and IDs | Kubernetes

Configuring ACL rules
Learn how to configure ACL rules for simple ACL authorization.

ACL rules are specified in the acls property of the KafkaUser resource.

#...
kind: KafkaUser
spec:
 authorization:
 type: simple
 acls:
 - resource:
 type: topic
 name: "*"
 patternType: literal
 type: allow
 host: "*"
 operations:
 - Read

The properties you use to define an ACL rule are as follows.

resource

The resource property specifies the Kafka resource that the rule applies to. Simple authorization
supports the following resource types, which are specified in the type property.

11

https://kubernetes.io/docs/concepts/overview/working-with-objects/names/

Cloudera Streams Messaging Operator Simple ACL authorization

• topic
• group
• cluster
• transactionalId

For topic, group, and transactionalID type resources you can specify the name of the resource that
the rule applies to in the name property. Resources of the cluster type do not have a name.

The name of the resource is either a literal or a prefix. This is specified in the value of the patternT
ype property which can be either literal or prefix.

• Literal names (patterntype: literal) are interpreted as they are specified in name.
• Prefix names (patterntype: prefix) treat the value specified in name as a prefix. The rule is

applied to all resources that have names starting with the prefix.

The name property accepts an asterisk (*) as a value. If name is set to * and patternType is literal,
the rule applies to all resources.

#...
- resource:
 type: topic
 name: *
 patternType: literal

type

The type property specifies the type of the rule. This is an optional property, the rule type is set to
allow by default if it is not specified.

Important: While the type property accepts both allow and deny as values, deny
rules are not supported.

host

You use the hostproperty to restrict the rule to apply to a specified remote host. If set to *, the rule is
applied to all hosts. This is an optional property, the default value is *.

operations

The operations property specifies a list of operations for the rule. Supported operations are Read,
Write, Delete, Alter, Describe, All, IdempotentWrite, ClusterAction, Create, AlterConfigs, Describe
Configs.

Some operations are not valid on some resources. See the Apache Kafka documentation for a
comprehensive matrix regarding operations and their supported resources.

Related Information
AclRule schema reference | Strimzi API reference

Operations and Resources on Protocols | Apace Kafka

Configuring super users
In addition to creating users with KafkaUser resources that have specific access restrictions defined, you can choose
to designate super users in your Kafka cluster. Super users have unlimited access, regardless of access restrictions.

To designate super users for a Kafka cluster, add a list of user principals to the spec.kafka.authorization.superUsers
property in your Kafka resource.

#...
kind: Kafka
spec:
 kafka:

12

https://strimzi.io/docs/operators/0.41.0/configuring.html#type-AclRule-reference
https://kafka.apache.org/37/documentation.html#operations_resources_and_protocols

Cloudera Streams Messaging Operator User management

 authorization:
 type: simple
 superUsers:
 - CN=client_1
 - user_2
 - CN=client_3
 listeners:
 - name: tls
 port: 9093
 type: internal
 tls: true
 authentication:
 type: tls

If a user uses mTLS authentication, the username is the common name from the TLS certificate subject prefixed with
CN=. If you are not using the Strimzi User Operator and using your own certificates for mTLS, the username is the
full certificate subject.

A full certificate subject can have the following fields.

CN=user,OU=my_ou,O=my_org,L=my_location,ST=my_state,C=my_country_code

Omit any fields that are not present.

User management

Users are created and managed with the Strimzi Entity Operator and KafkaUser resources.

The Strimzi Entity Operator can set up external Kafka users with KafkaUser resources. In theKafkaUser
resource, authentication can be configured with spec.authentication property and authorization can be configured
using the spec.authorization.type property.

The following is an example of a KafkaUser resource that has tls authentication and simple authorization
configured

#...
kind: KafkaUser
spec:
 authentication:
 type: tls
 authorization:
 type: simple
 acls:
 - resource:
 type: topic
 name: my-topic
 patternType: literal
 operations:
 - All

Inter-broker and ZooKeeper security

Learn about inter-broker and ZooKeeper security.

13

Cloudera Streams Messaging Operator Setting the security context of Kafka cluster components

Inter-broker security

Kafka exposes ports 9090 and 9091 for inter-broker communication as well as communication with Cruise Control
and the operators. These listeners are not configurable and use mTLS authentication by default. As a result, only
clients that have access to the certificate secrets can access Kafka through these listeners. To protect these secrets, it
is possible to further limit access to the cluster by using RBAC authorization to restrict namespace access to specific
users.

By separating internal and external listeners, internal listener configurations can be simplified and kept secure when
opening the cluster for access to external clients.

ZooKeeper security

Communication between the ZooKeeper servers on all ports, as well as between clients and ZooKeeper, is encrypted
using TLS. Communication between Kafka brokers and ZooKeeper servers is also encrypted.

When both a keystore and a truststore are configured for both Kafka and ZooKeeper, both components use mTLS.
There is no separate flag or configuration property you can use. This is enabled by default.

ZooKeeper uses ACLs to restrict access to Znodes. The ACL usage (zookeeper.set.acl) is not configurable, as it is
managed by the Strimzi Cluster Operator itself.

Related Information
Using RBAC Authorization | Kubernetes

Setting the security context of Kafka cluster components

The Kafka resource allows users to specify the security context at the pod and container level with template
properties.

The Kafka resource allows users to specify the security context at the pod and container level with template
properties.

#...
kind: Kafka
spec:
 kafka:
 template:
 pod:
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop:
 - ALL
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 kafkaContainer:
 securityContext:
 # ...
 cruiseControl:
 template:
 pod:
 securityContext:
 # ...
 cruiseControlContainer:
 # ...

In addition to Kafka, you can also set the security context of other Kafka cluster components configured in the
Kafka resource in the same way.

14

https://kubernetes.io/docs/reference/access-authn-authz/rbac/

Cloudera Streams Messaging Operator Setting the security context of Kafka cluster components

Related Information
Pod Security Standards | Kubernetes

15

https://kubernetes.io/docs/concepts/security/pod-security-standards/

	Contents
	Channel encryption (TLS)
	Using auto-generated self-signed certificates
	Using external certificates

	Authentication
	Configuring mTLS authentication
	Configuring OAuth authentication
	Configuring LDAP authentication
	Configuring SCRAM-SHA-512 authentication
	Configuring PLAIN authentication

	Simple ACL authorization
	Configuring simple ACL
	Configuring ACL rules
	Configuring super users

	User management
	Inter-broker and ZooKeeper security
	Setting the security context of Kafka cluster components

