
Cloudera Streams Messaging Operator 1.2.0

Kafka Connect Operations
Date published: 2024-06-11
Date modified: 2024-12-02

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

This content is modified and adapted from Strimzi Documentation by Strimzi Authors, which is licensed under CC BY 4.0.

https://strimzi.io/documentation/
https://creativecommons.org/licenses/by/4.0/

Cloudera Streams Messaging Operator | Contents | iii

Contents

Managing connectors..4
Deploying connectors... 4
Deleting connectors.. 5
Stopping, pausing, and resuming connectors...5
Restarting connectors..6
Checking connector task IDs... 6
Restarting connector tasks..6

Configuring connectors.. 7
Configuring automatic restarts for connectors...7
Configuring connector properties...7
Configuring client overrides in connectors..8

Rolling restart Kafka Connect workers...8

Using the Kafka Connect REST API... 9
Using connect_shell.sh... 10

Single Message Transforms... 11
Configuring an SMT chain...12
ConvertFromBytes.. 13
ConvertToBytes...15

Cloudera Streams Messaging Operator Managing connectors

Managing connectors

Learn about deploying and managing Kafka Connect connectors using KafkaConnector resources. Deploying
and managing connectors with KafkaConnector resources is the recommended method by Cloudera for managing
connectors.

To deploy and manage connectors in Cloudera Streams Messaging - Kubernetes Operator, you use
KafkaConnector resources. KafkaConnector resources describe instances of connectors and offer a
Kubernetes-native approach to connector management. You create a KafkaConnector resource to deploy a
connector and manage it by updating the KafkaConnector resource. The Strimzi Cluster Operator updates
configurations and manages the lifecycle of the connectors.

Enabling KafkaConnector resources

KafkaConnector resources are not enabled by default for Kafka Connect clusters. To use KafkaConnector
resources, the KafkaConnect resource used for deploying your Kafka Connect cluster must have the strimzi.io/u
se-connector-resources annotation set to true.

Full resource examples provided by Cloudera in this documentation as well as on the Cloudera Archive have the stri
mzi.io/use-connector-resources annotation set to true.

Rest API usage

Kafka Connect offers a REST API which is also available for use when you deploy a cluster in Cloudera Streams
Messaging - Kubernetes Operator. However, usage of the API is not recommended by Cloudera, and should be
limited to select use cases.

Related Information
Enabling KafkaConnector resources

Using the Kafka Connect REST API

Deploying connectors
Learn how to deploy Kafka Connect connectors using KafkaConnector resources.

Before you begin

• Ensure that the Strimzi Cluster Operator is installed and running. See Installation.
• Ensure that a Kafka Connect cluster is available and running. See Deploying Kafka Connect clusters .
• Ensure that the connectors you plan to deploy are installed in the Kafka Connect cluster. That is, the Kafka image

used by your Kafka Connect cluster includes the required plugin artifacts. See Installing Kafka Connect connector
plugins.

• Ensure that the strimzi.io/use-connector-resources annotation is set to true in the Kafka Connect cluster. See
Enabling KafkaConnector resources.

• Ensure that you know the namespace where the Kafka Connect cluster is deployed. Connectors must be deployed
in the same namespace as the Kafka Connect cluster they are deployed in.

• The example resource in these steps demonstrates deployment of the MirrorHeartbeatConnector, which
is installed by default in all Kafka Connect clusters.

Procedure

1. Create a YAML configuration containing the manifest for your KafkaConnector resource.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector

4

https://docs.cloudera.com/csm-operator/1.2/kafka-connect-deploy-configure/topics/csm-op-connect-configuring-clusters.html#task_xjf_rdg_jcc
https://docs.cloudera.com/csm-operator/1.2/kafka-connect-operations/topics/csm-op-connect-using-rest-api.html
https://docs.cloudera.com/csm-operator/1.2/installation/topics/csm-op-install-overview.html
https://docs.cloudera.com/csm-operator/1.2/kafka-connect-deploy-configure/topics/csm-op-connect-deploying-clusters.html
https://docs.cloudera.com/csm-operator/1.2/kafka-connect-deploy-configure/topics/csm-op-connect-installing-connectors.html
https://docs.cloudera.com/csm-operator/1.2/kafka-connect-deploy-configure/topics/csm-op-connect-installing-connectors.html
https://docs.cloudera.com/csm-operator/1.2/kafka-connect-deploy-configure/topics/csm-op-connect-configuring-clusters.html#task_xjf_rdg_jcc

Cloudera Streams Messaging Operator Managing connectors

metadata:
 name: my-heartbeats-connector
 labels:
 strimzi.io/cluster: my-connect-cluster
spec:
 class: org.apache.kafka.connect.mirror.MirrorHeartbeatConnector
 tasksMax: 1
 config:
 source.cluster.alias: source
 target.cluster.bootstrap.servers: my-cluster-kafka-bootstrap:9092

• metadata.name specifies the name of the connector.
• labels.strimzi.io/cluster specifies the name of the Kafka Connect cluster that this connector is deployed in.
• spec.class specifies the fully qualified name of the connector plugin implementation. The connector plugin

must be installed in Kafka Connect.
• spec.taskMax specifies the maximum number of tasks this connector is allowed to create. This is an upper

limit. The connector might not create the maximum number of allowed tasks.
• spec.config includes the configuration of the connector.

You can find additional information about supported properties in the Strimzi API Reference.

2. Deploy the resource.

kubectl apply --filename [***YAML CONFIG***] --namespace [***NAMESPACE***]

Ensure that you deploy the connector in the same namespace where the Kafka Connect cluster is running.

3. Validate that the KafkaConnector resource is created and ready.

kubectl get kafkaconnectors --namespace [***NAMESPACE***]

The output should list your KafkaConnector resource.

NAME CLUSTER CONNECTOR CLASS
 MAX TASKS READY
#...
my-heartbeats-connector my-connect-cluster org.apache.kafka.connect
.mirror.MirrorHeartbeatConnector 2 True

Related Information
KafkaConnectorSpec schema reference | Strimzi API Reference

Deleting connectors
You can delete a connector by deleting its corresponding KafkaConnector resource with kubectl delete.

kubectl delete kafkaconnector [***CONNECTOR NAME***] \
 --namespace [***NAMESPACE***]

Stopping, pausing, and resuming connectors
You can stop, pause, and resume connectors by configuring the spec.state property in the KafkaConnector resource.

Before you begin

#...
kind: KafkaConnector
spec:

5

https://strimzi.io/docs/operators/0.43.0/configuring#type-KafkaConnectorSpec-reference

Cloudera Streams Messaging Operator Managing connectors

 state: stopped

You can set spec.state to running, paused, or stopped. You resume stopped or paused connectors by setting their state
to running. The default value is running.

Restarting connectors
You can restart a connector by annotating the KafkaConnector resource with strimzi.io/restart=”true”.

kubectl annotate kafkaconnector [***CONNECTOR NAME***] \
 --namespace [***NAMESPACE***] \
 strimzi.io/restart="true"

If the annotation is added, the Strimzi Cluster Operator immediately restarts the connector. If the initial restart fails
for any reason, the Strimzi Cluster Operator attempts to restart the connector once per reconciliation loop. The
annotation is automatically removed if the restart is successful.

Checking connector task IDs
You can check the task IDs of a connector by describing the KafkaConnector resource.

kubectl describe kafkaconnector [***CONNECTOR NAME***] \
 --namespace [***NAMESPACE***]

You can find the task IDs in Connector Status. Connector Status also includes the task state and the worker ID.

#...
Connector Status:
 Connector:
 State: RUNNING
 worker_id: my-connect-cluster-connect-0.my-connect-cluster-connect.
connect.svc:8083
 Name: my-source-connector
 Tasks:
 Id: 0
 State: RUNNING
 worker_id: my-connect-cluster-connect-0.my-connect-cluster-conn
ect.connect.svc:8083

Restarting connector tasks
You can restart a connector task by annotating the KafkaConnector resource with strimzi.io/restart-task=”[***TASK
ID***]”.

kubectl annotate KafkaConnector [***CONNECTOR NAME***] \
 --namespace [***NAMESPACE***] \
 strimzi.io/restart-task="[***TASK ID***]"

If the annotation is added, the Strimzi Cluster Operator immediately restarts the connector task. If the initial restart
fails for any reason, the Strimzi Cluster Operator attempts to restart the connector task once per reconciliation loop.
The annotation is automatically removed if the restart is successful.

6

Cloudera Streams Messaging Operator Configuring connectors

Configuring connectors

Learn how you configure connectors with KafkaConnector resources. Configuring connectors with Kafkaconnector
resources is the recommended method by Cloudera for configuring connectors.

Connectors that you deploy using KafkaConnector resources are configured with their corresponding
KafkaConnector resource. When you make a configuration update, the Strimzi Cluster Operator, which manages
the lifecycle of connectors, updates configurations.

Connector properties that you configure in your KafkaConnector resources largely depend on the specific
connector you are using. This is because most configuration properties are connector specific. Always consult the
documentation of the specific connector that you want to configure.

Related Information
Managing connectors

Enabling KafkaConnector resources

Using the Kafka Connect REST API

Configuring automatic restarts for connectors
You can enable the automatic restart of failed connectors and tasks with spec.autoRestart.enabled. Additionally, you
can configure the maximum number of allowed automatic restarts with spec.autoRestart.maxRestarts. Both properties
are configured in the KafkaConnector resource.

#...
kind: KafkaConnector
spec:
 autoRestart:
 enabled: true
 maxRestarts: 10

Note: By default the number of allowed restarts is infinite.

Configuring connector properties
You configure a connector by specifying connector properties in spec.config of the KafkaConnector resource.

This is an example configuration for a FilestreamSourceConnector that reads the Apache Kafka license file
and produces the contents of the file to a specified topic.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
 name: my-source-connector
 labels:
 strimzi.io/cluster: my-connect-cluster
spec:
 class: org.apache.kafka.connect.file.FileStreamSourceConnector
 tasksMax: 2
 config:
 file: "/opt/kafka/LICENSE"
 topic: my-topic

7

https://docs.cloudera.com/csm-operator/1.2/kafka-connect-operations/topics/csm-op-connect-managing-connectors.html
https://docs.cloudera.com/csm-operator/1.2/kafka-connect-deploy-configure/topics/csm-op-connect-configuring-clusters.html#task_xjf_rdg_jcc
https://docs.cloudera.com/csm-operator/1.2/kafka-connect-operations/topics/csm-op-connect-using-rest-api.html

Cloudera Streams Messaging Operator Rolling restart Kafka Connect workers

Connector configurations you specify in spec.config will largely depend on the connector itself. Consult the
documentation for your specific connector to learn what properties it supports.

Note: You can load external configuration values from external sources by using configuration providers.
This can be useful for loading credentials like passwords, access keys, or any other sensitive information.

Related Information
Configuration providers

Loading configuration values from external sources | Strimzi

Configuring client overrides in connectors
Learn how to configure client configuration overrides in connectors. Configuring overrides enables you to fine-tune
your connector configuration.

Important: Connector configuration overrides must be enabled in your Kafka Connect cluster
(KafkaConnector resource). Otherwise, the client overrides you specify in your connector are
disregarded. See Configuring connector configuration override policy.

The Kafka Connect framework manages Kafka clients (producers, consumers, and admin clients) used by connectors
and tasks. By default, these clients use worker-level properties. In some use-cases, you might want to fine-tune these
properties with overrides.

For example, you can use overrides to configure unique authentication credentials for your connectors. Or you can
use overrides to fine-tune connector performance.

Overrides take precedence over worker-level properties. You configure overrides with the following prefixes.

• producer.override. – used for overriding producer properties.
• consumer.override. – used for overriding consumer properties.
• admin.override. – used for overriding admin client properties.

To configure an override, add any supported consumer, producer, or admin client property with the corresponding
prefix to spec.config in your KafkaConnector resource.

#...
kind: KafkaConnector
spec:
 config:
 producer.override.batch.size: 1234

This example configures the producer batch size, which is a typical property you tweak when fine-tuning connectors
and clients for performance.

Related Information
Producer Configs | Kafka

Consumer Configs | Kafka

Admin Configs | Kafka

Rolling restart Kafka Connect workers

You can initiate a rolling restart of your Kafka Connect workers by annotating the StrimziPodSet resource or the
individual Kafka Connect pods with the strimzi.io/manual-rolling-update="true" annotation. You annotate the
StrimziPodSet if you want to restart all workers in your cluster. You annotate individual pods if you want to restart
specific workers.

8

https://docs.cloudera.com/csm-operator/1.2/kafka-connect-deploy-configure/topics/csm-op-connect-configuring-clusters.html#task_fsq_tdg_jcc
https://strimzi.io/docs/operators/0.43.0/deploying#assembly-loading-config-with-providers-str
https://docs.cloudera.com/csm-operator/1.2/kafka-connect-deploy-configure/topics/csm-op-connect-configuring-clusters.html#task_t12_xdg_jcc
https://kafka.apache.org/38/documentation.html#producerconfigs
https://kafka.apache.org/38/documentation.html#consumerconfigs
https://kafka.apache.org/38/documentation.html#adminclientconfigs

Cloudera Streams Messaging Operator Using the Kafka Connect REST API

Annotating the StrimziPodSet resource

Each Kafka Connect cluster has their own StrimziPodSet resource. This resource manages all the pods related to
the Kafka Connect cluster. Annotating this resource restarts all workers in your cluster.

kubectl annotate strimzipodset [***CONNECT CLUSTER NAME***]-connect strimzi
.io/manual-rolling-update="true" --namespace [***NAMESPACE***]

In the next reconciliation loop, the Strimzi Cluster Operator initiates a rolling restart of all pods. After the pods are
restarted, the annotation is automatically removed from the StrimziPodSet.

Annotating Pod resources

If you want to restart a specific pod or a set of specific pods, you annotate each Pod resource individually.

kubectl annotate pod [***KAFKA CONNECT POD***] strimzi.io/manual-rolling-u
pdate="true" --namespace [***NAMESPACE***]

The annotated pod is rolling restarted with the next reconciliation loop. The annotation is automatically removed from
the pod after the pod is restarted.

Using the Kafka Connect REST API

Kafka Connect offers a REST API that you can use to manage and monitor connectors. Learn about the REST API,
available endpoints, and recommended use. Additionally learn about connect_shell.sh, which is a command line tool
that you can use to establish quick access to the REST API.

The Kafka Connect REST API is available as a ClusterIP type Kubernetes service. The service is named
[****CONNECT CLUSTER NAME***]-connect-api. Its default port is 8083.

[****CONNECT CLUSTER NAME***] is the name of your Kafka Connect cluster. The name is specified in the
metadata.name property of the KafkaConnect resource used to deploy the cluster. The service is created when you
deploy the cluster.

The REST API offers various endpoints and operations that you can use to manage (create, update, delete) as well
as to monitor the connectors running in your Kafka Connect cluster. You can find a comprehensive reference in the
Kafka Connect Rest API reference.

API access and security

By default the Kafka Connect API is only accessible from within the Kubernetes Cluster. Additionally, the default
network policies only allow access by the Strimzi Cluster Operator and Kafka Connect pods. This is done because the
REST API is insecure by default and it cannot be secured. As a result Cloudera recommends the following:

• Do not expose the REST API to applications running outside the Kubernetes cluster.
• Use KafkaConnector resources to manage connectors instead of the REST API.

Recommended use

Cloudera recommends that you use the API selectively for specific use-cases. In general for any connector
management operations, use KafkaConnector resources. However, you can use any endpoints or operations that
return information about the cluster and connectors For example, you can use the GET /connector-plugins
endpoint with connectorsOnly set to false to list all plugins that are installed in the Kafka Connect cluster.

If you want to query the REST API, Cloudera recommends that you use the connect_shell.sh tool.

Related Information
Kafka Connect REST API

9

https://docs.cloudera.com/csm-operator/1.2/csm-operator-rest-api-reference/index.html

Cloudera Streams Messaging Operator Using the Kafka Connect REST API

Using connect_shell.sh
Use connect_shell.sh to set up a pod that allows easy access to the Kafka Connect REST API. The pod created with
this tool includes preset configurations, such as the $CONNECT_REST_URL environment variable, which is set to
the base URL of the API.

Before you begin

• Ensure that you have access to your Cloudera credentials (username and password).
• Ensure that the environment where you run the tool has the following:

• Bash 4 or higher.
• GNU utilities:

• echo
• grep
• sed
• head

• kubectl or oc
• kubeconfig configured to target Kubernetes cluster

Procedure

1. Download the tool.

curl --user [***USERNAME***] \
 https://archive.cloudera.com/p/csm-operator/1.2/tools/connect_shell.sh \
 --output connect_shell.sh --location \
&& chmod +x connect_shell.sh

Replace [***USERNAME***] with your Cloudera username. Enter your Cloudera password when prompted.

2. Use the tool.

You have two choices. You can either use the tool interactively. In this case, you run the tool which opens an
interactive shell window where you run queries. Alternatively, you can use pipe (|) to run queries one at a time.

For Interactive

a. Run the tool.

./connect_shell.sh \
 --namespace=[***CONNECT CLUSTER NAMESPACE***] \
 --cluster=[***CONNECT CLUSTER NAME***]

b. Query the REST API.

For example, you can list your topics with the following command.

curl $CONNECT_REST_URL/connector-plugins

This example queries /connector-plugins endpoint which returns available connector plugins in the cluster.

The pod is deleted when you exit the interactive shell.

For Pipe

To run one-off queries, pipe them into connect_shell.sh.

echo 'curl $CONNECT_REST_URL/connector-plugins' \
| ./connect_shell.sh --namespace=[***CONNECT CLUSTER NAMESPACE***] \

10

Cloudera Streams Messaging Operator Single Message Transforms

 --cluster=[***CONNECT CLUSTER NAME***]

Tip: Use the --help option to view additional options and information on tool usage.

Related Information
Kafka Connect REST API

Single Message Transforms

Single Message Transforms (SMT) is a message transformation framework that you can deploy on top of Kafka
Connect connectors to apply message transformations and filtering. Learn about the SMT framework as well as the
transformation plugins available in Cloudera Streams Messaging - Kubernetes Operator.

Kafka Connect connectors provide ready-to-use tools to integrate between Kafka and external data stores. Still, in
many use cases, the data moved by the connectors require some sanitization and transformation. To provide extra
flexibility built on top of connectors, Kafka Connect also supports an SMT framework.

The SMT framework installs a transformation chain on top of connectors that modifies and filters the data on a single
message basis. An SMT chain consists of transform and predicate plugins. Transform plugins are used to modify
the data. For example, you can insert, replace, mask as well as perform various other modifications on the messages
moved by connectors. Predicate plugins are used to add additional logic to your chain so that the transformation chain
is only applied to messages which satisfy specified conditions.

The SMT framework requires that data is converted to the Kafka Connect internal data format. This data format is
specific to Kafka Connect and consists of a structure and schema descriptor (SchemaAndValue) specific to Connect.

Supported SMT plugins

Cloudera Streams Messaging - Kubernetes Operator ships with and supports the following SMT plugins:

• All Apache Kafka plugins. For more information, see Transformations in the Apache Kafka documentation.
• The following Cloudera specific plugins:

• ConvertFromBytes on page 13
• ConvertToBytes on page 15

Note: The ConverFromBytes and ConvertToBytes transformation plugins transform binary data to and
from the Kafka Connect internal data format. These plugins are specifically developed to enable the use of
the SMT framework with connectors that only support binary data.

11

https://docs.cloudera.com/csm-operator/1.2/csm-operator-rest-api-reference/index.html
https://kafka.apache.org/38/documentation.html#connect_transforms

Cloudera Streams Messaging Operator Single Message Transforms

Configuring an SMT chain
Learn how to configure a Single Message Transformation (SMT) chain for Kafka Connect connectors.

SMT chains can be configured within the configuration of a Kafka Connect connector using SMT specific
configuration properties. To set up a chain, you first define your transformation chain with the transforms property
and optionally define your predicates using the predicates property. Afterward, you use transforms.* and predicates.*
to configure the plugins in the chain. For example, the following configuration snippet sets up a transformation chain
that filters messages based on their header and removes a specified field from messages.

#...
kind: KafkaConnector
spec:
 config:
 transforms: FilterAudit,MaskField
 transforms.MaskField.type: org.apache.kafka.connect.transforms.MaskField
$Value
 transforms.MaskField.fields: CreditCardNumber

 transforms.FilterAudit.type: org.apache.kafka.connect.transforms.Filter
 transforms.FilterAudit.predicate: IsAudit
 transforms.FilterAudit.negate: false

 predicates: IsAudit
 predicates.IsAudit.type: org.apache.kafka.connect.transforms.predicate
s.HasHeaderKey
 predicates.IsAudit.name: Audit

The following sections go through the properties in this example and give an overview on how to set up a
transformation chain.

Configuring transforms

The transforms property contains a comma-separated list of transformation aliases. Each alias represents one step in
the transformation chain. The aliases you add to the property are arbitrary names, they are used in other properties to
configure that particular transformation step. For example, the following defines a two step transformation chain.

transforms: FilterAudit,MaskField

The transforms.[***ALIAS***].type property specifies which transformation plugin should be used in a
transformation step. [***ALIAS***] is one of the aliases that you specified in transforms. The value of the property is
the fully qualified name of the transformation plugin that should be used in the step. For example, the following line
specifies org.apache.kafka.connect.transforms.MaskField$Value as the plugin for the MaskField step.

transforms.MaskField.type: org.apache.kafka.connect.transforms.MaskField$Val
ue

Many transformation plugins support changing both the key and the value of a record. For these plugins, typically, a
nested value or key class can be referenced as the type.

The transforms.[***ALIAS***].[***KEY***] property is used to configure the transformation plugins in your chain.
This property is passed to the transformation plugin itself with transforms.[***ALIAS***] stripped from the property
key. [***ALIAS***] is the alias of a plugin you specified in transforms. [***KEY***] is a property key that the
plugin accepts. For example, the MaskField plugin has a fields property that specifies which fields should be removed
from the structure.

transforms.MaskField.fields: CreditCardNumber

12

Cloudera Streams Messaging Operator Single Message Transforms

Configuring predicates

Predicates are a separate set of plugins. You use them to conditionally enable certain steps in the transformation
chain. Predicates are configured in a similar way to transforms. You must specify the predicate aliases, associate the
aliases with a plugin, and set plugin specific properties.

predicates: IsAudit
predicates.IsAudit.type: org.apache.kafka.connect.transforms.predicates.HasH
eaderKey
predicates.IsAudit.name: Audit

In this example the IsAudit predicate is an instance of the HasHeaderKey predicate plugin. This predicate returns true
for records where a specific header key is present. predicates.IsAudit.name=Audit configures the predicate to look for
the Audit header in the records.

After a predicate is set up, you can associate the predicate with any number of transformation steps using the pred
icate property. If a predicate is associated with a transformation, that transformation step is only applied to the
messages that match the condition specified in the predicate.

A good example for using a predicate is the Filter transformation plugin. This is because Filter filters (drops) all
messages by default. Therefore, it must be used together with predicates to specify filtering logic. For example, the
following configuration instructs the SMT framework that the FilterAudit step should only be invoked for messages
where the IsAudit predicate returns true. That is, all messages with the Audit header will be filtered and will not be
transformed by any subsequent steps in the transformation chain.

transforms.FilterAudit.predicate: IsAudit
transforms.FilterAudit.negate: false

The condition of a predicate can be inverted using negate. If negate is set to true, the SMT framework applies the
transformation to any record that does not match the condition. For example, the following configuration instructs the
SMT framework that the FilterAudit step should only be invoked for messages where the IsAudit predicate returns
false.

transforms.FilterAudit.predicate: IsAudit
transforms.FilterAudit.negate: true

ConvertFromBytes
ConvertFromBytes is a Cloudera specific transformation plugin that converts binary data to the Kafka Connect
internal data format. You can use this plugin to make connectors that only support binary data compatible with the
Single Message Transforms (SMT) framework.

Fully qualified names

• com.cloudera.dim.kafka.connect.transforms.ConvertFromBytes$Key

• com.cloudera.dim.kafka.connect.transforms.ConvertFromBytes$Value

Description

Important: Ensure that you have an in-depth understanding about the following aspects of the connector that
you plan on using with ConvertFromBytes.

• The type of the connector
• The converter type used by the connector
• The header converter type used by the connector

These aspects of a connector heavily influence how the plugin and how the transformation chain that includes
this plugin must be configured.

13

Cloudera Streams Messaging Operator Single Message Transforms

The ConvertFromBytes transformation plugin accepts binary data and converts it into the Kafka Connect internal
data format with a nested converter that transforms binary data. To support header based converter logic, the plugin
requires a header converter to correctly transform record headers when interacting with the converter. This plugin
supports both key and value conversion.

Using this plugin with connectors that only support binary data makes the connector fully compatible with the SMT
framework. On their own, connectors that only support binary data have limited compatibility with transformations
even if the binary data is structured. This is because transformations are only fully supported on data that is in the
Kafka Connect internal data format. Binary only connectors, for example MirrorSourceConnector, emit data that has
the BYTES schema and do not provide conversion to the Kafka Connect internal data format by default. When you
use a binary only connector with the ConvertFromBytes plugin, the binary data is parsed into a compatible structure,
which can then be further processed with the transformation chain.

Figure 1: Source connector example flow with ConvertFromBytes

Example

The following configuration example adds a ConvertFromBytes transformation as a first step of the transformation
chain. The conversion uses a schemaless JSON transformation to parse the binary data. The transformation steps, the
connector, or the converter, whichever comes directly after FromBytes, receives a properly structured record instead
of binary data.

#...
kind: KafkaConnector
spec:
 config:
 transforms: FromBytes,...
 transforms.FromBytes.type: com.cloudera.dim.kafka.connect.transformation
s.convert.ConvertFromBytes$Value
 transforms.FromBytes.converter: org.apache.kafka.connect.json.JsonConve
rter
 transforms.FromBytes.converter.schemals.enable: false

Configuration properties

Table 1: ConvertFromBytes properties reference

Property Default Value Required Description

converter True The fully qualified name of the
converter implementation to use.
For example: org.apache.kafka
.connect.json.JsonConverter

header.converter org.apache.kafka.connect.storage
.SimpleHeaderConverter

True The fully qualified name of the
header converter implementation
to use. This converter must
match the header converter of the
connector.

14

Cloudera Streams Messaging Operator Single Message Transforms

Property Default Value Required Description

converter. False A configuration prefix. Use this
prefix to configure the properties
of the converter specified in conv
erter. Property keys and values
specified with the prefix are
passed directly to the converter
with the prefix stripped. For
example:

transfor
ms.[***TRANSFORM
 ALIAS***].con
vert
er.[***CONVERTER
 PROPERTY
 KEY***]:[***CONVERTER
 PROPERTY
 VALUE***]

header.converter. False A configuration prefix. Use this
prefix to configure the properties
of the header converter specified
in header.converter. Property
keys and values specified with the
prefix are passed directly to the
header converter with the prefix
stripped. For example:

transfor
ms.[***TRANSFORM
 ALIAS***].con
vert
er.[***HEADER
 CONVERTER
 PROPERTY
 KEY***]:[***HEADER
 CONVERTER
 PROPERTY
 VALUE***]

ConvertToBytes
ConvertToBytes is a Cloudera specific transformation plugin that converts Kafka Connect internal data to binary
data. You can use this plugin to make connectors that only support binary data compatible with the Single Message
Transforms (SMT) framework.

Fully qualified names

• com.cloudera.dim.kafka.connect.transforms.ConvertFromBytes$Key

• com.cloudera.dim.kafka.connect.transforms.ConvertFromBytes$Value

15

Cloudera Streams Messaging Operator Single Message Transforms

Description

Important: Ensure that you have an in-depth understanding about the following aspects of the connector that
you plan on using with ConvertToBytes.

• The type of the connector
• The converter type used by the connector
• The header converter type used by the connector

These aspects of a connector heavily influence how the plugin and how the transformation chain that includes
this plugin must be configured.

The ConvertToBytes transformation plugin accepts data in the Kafka Connect internal data format and converts it to
binary data with a nested converter. To support header based converter logic, the plugin requires a header converter
to correctly transform record headers when interacting with the converter. This plugin supports both key and value
conversion.

Using this plugin with connectors that only support binary data makes the connector fully compatible with the SMT
framework. On their own, connectors that only support binary data have limited compatibility with transformations
even if the binary data is structured. This is because the format of the data after transformations are carried out is
normally the Kafka Connect internal data format. Binary only connectors, however, expect data that has the BYTES
schema and do not provide conversion from the Kafka Connect internal data format by default. When you use the
ConvertToBytes plugin with a binary only connector, the structured data is converted to binary format, which can
then be picked up by the connector.

Figure 2: Sink connector example flow with ConvertToBytes

Example

The following configuration example adds a ConvertToBytes transformation as the last step of the transformation
chain. The conversion uses a schemaless JSON transformation to serialize the structured data. The transformation
steps, the connector, or the converter, whichever comes directly after ToBytes, receives a properly structured record
instead of binary data.

#...
kind: KafkaConnector
spec:
 config:
 transforms: ...,ToBytes
 transforms.ToBytes.type: com.cloudera.dim.kafka.connect.transformation
s.convert.ConvertToBytes$Value
 transforms.ToBytes.converter: org.apache.kafka.connect.json.JsonConve
rter
 transforms.ToBytes.converter.schemals.enable: false

16

Cloudera Streams Messaging Operator Single Message Transforms

Configuration properties

Table 2: ConvertToBytes properties reference

Property Default Value Required Description

converter True The fully qualified name of the
converter implementation to use.
For example: org.apache.kafka
.connect.json.JsonConverter

header.converter org.apache.kafka.connect.storage
.SimpleHeaderConverter

True The fully qualified name of the
header converter implementation
to use. This converter must
match the header converter of the
connector.

converter. False A configuration prefix. Use this
prefix to configure the properties
of the converter specified in conv
erter. Property keys and values
specified with the prefix are
passed directly to the converter
with the prefix stripped. For
example:

transfor
ms.[***TRANSFORM
 ALIAS***].con
vert
er.[***CONVERTER
 PROPERTY
 KEY***]:[***CONVERTER
 PROPERTY
 VALUE***]

header.converter. False A configuration prefix. Use this
prefix to configure the properties
of the header converter specified
in header.converter. Property
keys and values specified with the
prefix are passed directly to the
header converter with the prefix
stripped. For example:

transfor
ms.[***TRANSFORM
 ALIAS***].con
vert
er.[***HEADER
 CONVERTER
 PROPERTY
 KEY***]:[***HEADER
 CONVERTER
 PROPERTY
 VALUE***]

17

	Contents
	Managing connectors
	Deploying connectors
	Deleting connectors
	Stopping, pausing, and resuming connectors
	Restarting connectors
	Checking connector task IDs
	Restarting connector tasks

	Configuring connectors
	Configuring automatic restarts for connectors
	Configuring connector properties
	Configuring client overrides in connectors

	Rolling restart Kafka Connect workers
	Using the Kafka Connect REST API
	Using connect_shell.sh

	Single Message Transforms
	Configuring an SMT chain
	ConvertFromBytes
	ConvertToBytes

