
Cloudera Streams Messaging Operator 1.2.0

Monitoring & Diagnostics
Date published: 2024-06-11
Date modified: 2024-12-02

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

This content is modified and adapted from Strimzi Documentation by Strimzi Authors, which is licensed under CC BY 4.0.

https://strimzi.io/documentation/
https://creativecommons.org/licenses/by/4.0/

Cloudera Streams Messaging Operator | Contents | iii

Contents

Log collection.. 4
Openshift... 4
RKE2 with Rancher..4

Monitoring with Prometheus...5
Prometheus metrics...6
Prometheus alerts..6
Kafka Exporter..7

Diagnostics... 8
Capturing a diagnostic bundle with report.sh.. 8
Capturing a thread dump of a pod with java_thread_dump.sh..9
Using kafka_shell.sh... 10
Monitoring pod status during reconciliation..12
Reading Strimzi Cluster Operator logs.. 12
Reading effective generated Kafka broker properties..12
Reading effective generated Kafka Connect worker properties.. 12
Reading Kafka broker logs...13

Cloudera Streams Messaging Operator Log collection

Log collection

Cloudera requires that the logs of Cloudera Streams Messaging - Kubernetes Operator components are stored
long term for diagnostic and supportability purposes. Learn about the settings for platform level log collection
recommended by Cloudera.

Logs can be collected using the log collector feature of the specific Kubernetes platform. Ensuring that log collection
is correctly set up is your responsibility. Cloudera recommends at least one week of retention time for the collected
logs.

Using kubectl logs is not sufficient in some cases. This is because pods are created and destroyed dynamically by
operator applications. The logs of destroyed pods are deleted, which makes them inaccessible. Log collection can
ensure that the logs of already deleted pods are retained.

The following collects the recommended and required logging practices for specific Kubernetes platforms.

Openshift
Latest OpenShift versions support the Vector log collector. Log collection and forwarding can be configured using a
ClusterLogging resource.

Ensure the following if you are on Openshift:

• The ClusterLogging resource includes all namespaces and pods used by the operators.
• Use a log sink that supports time-based retention. The ClusterLogging resource supports a number of log

sinks. Cloudera recommends using a sink that supports time-based retention to limit storage costs. Additionally,
the selected sink should allow easy access to the collected logs when a diagnostic investigation requires them.

Related Information
The Vector documentation

About log collection and forwarding | OpenShift

5.6 Logging API reference | OpenShift

RKE2 with Rancher
Rancher relies on the Logging operator for log collection. Log collection can be configured using Flow, ClusterFlow,
Output, and ClusterOutput resources.

Ensure the following if you are on RKE2 with Rancher:

• When using a Flow resource, ensure that the Flow resource includes all namespaces and pods used by the
operators.

• Use a log sink that supports time-based retention. Output and ClusterOutput resources support a number
of log sinks. Cloudera recommends using a sink that supports time-based retention to limit storage costs.
Additionally, the selected sink should allow easy access to the collected logs when a diagnostic investigation
requires them.

Related Information
Rancher Integration with Logging Services | Rancher

Logging operator documentation

4

https://vector.dev/docs/
https://docs.openshift.com/container-platform/latest/observability/logging/log_collection_forwarding/log-forwarding.html
https://docs.openshift.com/container-platform/latest/observability/logging/api_reference/logging-5-6-reference.html
https://ranchermanager.docs.rancher.com/integrations-in-rancher/logging
https://kube-logging.dev/docs/logging-infrastructure/logging/

Cloudera Streams Messaging Operator Monitoring with Prometheus

Monitoring with Prometheus

Learn about the example files Cloudera provides related to Prometheus monitoring. Additionally, learn about
recommended metrics, alerts, and the Kafka Exporter.

Cloudera provides various example files related to the setup and configuration of Prometheus monitoring. These
example files configure Kafka and other cluster components to expose recommended metrics. Additionally, they set
up a Prometheus instance that scrapes exposed metrics and publishes recommended alerts.

The example files are hosted on the Cloudera Archive. They are located in /csm-operator/1.2/examples/metrics/.

The example files related to Prometheus are as follows.

• kafka-metrics.yaml – A configuration file that includes Kafka, KafkaNodePool, and ConfigMap resource
examples. You can use this configuration example to deploy a Kafka cluster that exposes the recommended
metrics that Prometheus can scrape.

If you already have a cluster and want to configure your existing Kafka to expose metrics, review the
ConfigMap manifest in this example file. The ConfigMap specifies what Kafka and ZooKeeper metrics are
exposed. For comprehensive steps on how to configure Kafka and ZooKeeper to expose Prometheus compatible
metrics, see Configuring Kafka for Prometheus monitoring.

• kafka-connect–metrics.yaml – A configuration file that includes a KafkaConnect and a ConfigMap resource
example. You can use this configuration example to deploy a Kafka Connect cluster with a single worker that
exposes the recommended metrics that Prometheus can scrape.

If you already have a cluster and want to configure your existing Kafka Connect cluster to expose metrics, review
the ConfigMap manifest in this example file. The ConfigMap specifies what Kafka Connect metrics are
exposed. For comprehensive steps on how to configure Kafka Connect to expose Prometheus compatible metrics,
see Configuring Kafka Connect for Prometheus monitoring.

• /prometheus-install/

• alertmanager.yaml – An example AlertManager resource for deploying and configuring the Prometheus
Alertmanager.

• prometheus.yaml – A configuration file that you can use to deploy a Prometheus server.
• prometheus-rules.yaml – An example PrometheusRule resource that includes alert rules recommended by

Cloudera.
• strimzi-pod-monitor.yaml – Includes examples of PodMonitor resources. These resources define

Prometheus jobs that scrape metrics directly from pods. Podmonitor resources are used to scrape metrics
data directly from Kafka, ZooKeeper, Operator, Kafka Bridge and Cruise Control pods.

• /prometheus-additional-properties/

• prometheus-additional.yaml – A Secret resource that stores additional Prometheus configuration for
scraping CPU, memory, and disk volume usage metrics. These metrics are reported by the Kubernetes
cAdvisor agent and kubelet on the nodes.

• /prometheus-alertmanager-config/

• alert-manager-config.yaml – A Secret resource containing additional configuration for the Prometheus
Operator. The configuration specifies hook definitions for sending notifications from your Kafka cluster
through the Alertmanager.

Note: Configuration examples located in the prometheus-install, prometheus-additional-properties, and
prometheus-alertmanager-config directories are Prometheus Operator resource examples. You must have a
running instance of the Prometheus Operator in your cluster to use them.

Related Information
Configuring Kafka for Prometheus monitoring

Configuring Kafka Connect for Prometheus monitoring

Cloudera Archive

5

https://docs.cloudera.com/csm-operator/1.2/kafka-deploy-configure/topics/csm-op-configuring-prometheus-monitoring-kafka.html
https://docs.cloudera.com/csm-operator/1.2/kafka-connect-deploy-configure/topics/csm-op-connect-configuring-prometheus-monitoring.html
https://archive.cloudera.com/p/csm-operator/1.2/examples/metrics/

Cloudera Streams Messaging Operator Monitoring with Prometheus

Prometheus Operator

Prometheus metrics
To expose metrics recommended by Cloudera, set up and configure Prometheus, Kafka, and Kafka Connect instances
using the example configuration files provided by Cloudera.

The example files are hosted on the Cloudera Archive. They are located in /csm-operator/1.2/examples/metric
s/. When you deploy using these examples, your deployment exposes and monitors the metrics recommended by
Cloudera.

The specific metrics that you need to monitor will depend on your use case and operational objectives. As a result,
any metric can be useful and there are no metrics that can be highlighted. Start out with the provided example files
and make changes as necessary.

Prometheus alerts
Cloudera provides a Prometheus alert configuration example that contains recommended alert rules. Learn about the
highlighted alerts defined in this example. Additionally, learn about configuring custom alerts for Kafka components
and the Strimzi Cluster Operator.

Default (recommended) alerts

The prometheus-rules.yaml file is an example PrometheusRule resource that has various alert rules specified. The
alerts specified in this example are generally useful for most use cases and all of them are recommended by Cloudera.

The following is a list of the highlighted alerts for Kafka, Kafka Connect, and ZooKeeper defined in the example.
Ensure that you always have these alerts configured as they give good insight into the state and health of your cluster.

Kafka

• KafkaRunningOutOfSpace – Kafka is running out of free disk space. Reported for each
Persistent Volume Claim.

• UnderReplicatedPartitions – Kafka has underreplicated partitions. Reported for each Kafka pod.
• OfflinePartitions – One or more partitions have no leader on the actual Kafka pods.
• OfflineLogDirectoryCount – Reports the number of offline log directories located on the actual

Kafka pod.
• KafkaNetworkProcessorAvgIdle – Less than 30% of network processor capacity available on

the actual Kafka pod. You can avoid this alert by increasing the num.network.threads broker
property.

• KafkaRequestHandlerAvgIdle – Less than 30% of request handler capacity is available on the
actual Kafka pod. You can avoid this alert by increasing the num.io.threads broker property.

• ClusterOperatorContainerDown – The Strimzi Cluster Operator has been down for longer than
90 seconds.

Kafka Connect

• ConnectContainersDown – Connect pods have been down or in CrashLookBackOff status for
more than three minutes.

• ConnectFailedConnector – One or more connectors have been in a failed state for five minutes.
• ConnectFailedTask – One or more connectors have been in a failed state for five minutes.

ZooKeeper

• AvgRequestLatency – Zookeeper average request latency on the pod.
• ZookeeperRunningOutOfSpace – Zookeeper is running out of free disk space.

6

https://prometheus-operator.dev/

Cloudera Streams Messaging Operator Monitoring with Prometheus

Custom alerts and groups

In addition to the default alerts, you can define custom ones as well. To do this, you extend your PrometheusRule
resource (prometheus-rules.yaml) with additional alert rules.

Alert rules are grouped and the prometheus-rules.yaml example contains the following default groups.

• kafka
• zookeeper
• entityOperator
• kafkaExporter
• connect

For example, to monitor Cruise Control, you must introduce a Cruise Control group that contains valid alert rules.
Specifying a new group is also useful if you want to identify host machine related problems. You can find more
information on defining alert rules in the Prometheus documentation.

Alerts for the Strimzi Cluster Operator

By default, prometheus-rules.yaml contains a single alert related to the Strimzi Cluster Operator. This alert monitors
whether the container of the operator is down. You can define additional alerts using the following metrics.

• strimzi_reconciliations_already_enqueued_total – Number of reconciliations skipped because another
reconciliation for the same resource was still running.

• strimzi_reconciliations_duration_seconds – The time reconciliation takes to complete.
• strimzi_reconciliations_duration_seconds_max – Max time of reconciliation takes.
• strimzi_reconciliations_failed_total – Number of failed reconciliations done by the operator for individual

resources which failed.
• strimzi_reconciliations_locked_total – Number of reconciliations skipped because another reconciliation for the

same resource was still running.
• strimzi_reconciliations_max_batch_size – Max size recorded for a single event batch.
• strimzi_reconciliations_periodical_total – Number of periodical reconciliations done by the operator.
• strimzi_reconciliations_successful_total – Number of reconciliations done by the operator for individual resources

which were successful.
• strimzi_reconciliations_total – Number of reconciliations done by the operator for individual resources.
• strimzi_resources – Number of custom resources the operator sees.
• strimzi_resources_paused – Number of custom resources with paused reconciliations.

Related Information
Alerting rules | Prometheus

Kafka Exporter
You can use Kafka Exporter to publish additional Kafka metrics related to brokers and clients.

Kafka Exporter is an open source project to enhance the monitoring of Apache Kafka brokers and clients. Kafka
Exporter extracts additional metrics data from Kafka brokers related to offsets, consumer groups, consumer lag, and
topics.

If Kafka Exporter is deployed, it is typically deployed with its default configuration (spec.kafkaExporter: {}).
Cloudera recommends that you deploy Kafka Exporter and customize its configuration based on your cluster and
operational objectives.

Cloudera recommends that at minimum you capture additional metrics for your mission critical topics and groups.
Additional metrics include metrics related to latest offsets, consumer lags, and others.

The following example configures the Kafka Exporter to collect additional metrics from all topics and groups.

#...

7

https://www.prometheus.io/docs/prometheus/latest/configuration/alerting_rules/

Cloudera Streams Messaging Operator Diagnostics

kind: Kafka
metadata:
 name: my-cluster
spec:
 kafkaExporter:
 topicRegex: ".*"
 groupRegex: ".*"

This configuration snippet is included in the kafka-metrics.yaml example provided by Cloudera, which is the
recommended baseline example for a Kafka deployment that has metric collection enabled.

Related Information
Kafka Exporter | GitHub

KafkaExporterSpec schema reference | Strimzi

Diagnostics

Learn about collecting diagnostics information, the diagnostic tools shipped with Cloudera Streams Messaging
- Kubernetes Operator, as well as a number of useful kubectl commands that you can use to gather diagnostic
information.

Cloudera provides various command line tools that you can use to capture diagnostic bundles, thread dumps, and
other types of information about your Cloudera Streams Messaging - Kubernetes Operator installation. You use these
tools when contacting Cloudera support or when troubleshooting issues.

There are three tools available.

• report.sh – A diagnostic bundle tool that captures various information about your Cloudera Streams Messaging -
Kubernetes Operator installation.

• java_thread_dump.sh – A thread dump capturing tool that collects thread dumps of containers in a specified pod.
• kafka_shell.sh – An administrative tool that sets up a pod where you can easily run Kafka command line tools.

Diagnostic tools are not downloaded, deployed, or installed when you install Cloudera Streams Messaging -
Kubernetes Operator and its components. You must download and run them separately. All tools are available for
download from the Cloudera Archive. They are located in the /csm-operator/1.2/tools/ directory.

In addition to the tools provided by Cloudera, you can also use kubectl to gather diagnostics and troubleshooting data.

Related Information
Cloudera Archive

Capturing a diagnostic bundle with report.sh
Use report.sh to capture diagnostic information about your deployment.

About this task

Cloudera Streams Messaging - Kubernetes Operator diagnostic bundles are captured using the report.sh command
line tool. The bundle that the tool captures is used as the baseline when contacting Cloudera support for assistance.
The bundle captures all available, cluster-wide information about Cloudera Streams Messaging - Kubernetes
Operator.

Before you begin

• Ensure that you have access to your Cloudera credentials (username and password).

8

https://github.com/danielqsj/kafka_exporter
https://strimzi.io/docs/operators/0.43.0/configuring#type-KafkaExporterSpec-reference
https://archive.cloudera.com/p/csm-operator/1.2/tools/

Cloudera Streams Messaging Operator Diagnostics

• Ensure that the environment where you run the tool has the following:

• Bash 4.3 or higher
• GNU utilities:

• echo
• grep
• sed
• date
• wc
• jobs
• wait

• base64
• kubectl or oc
• kubeconfig configured to target Kubernetes cluster
• zip

Procedure

1. Download the tool.

curl --user [***USERNAME***] \
 https://archive.cloudera.com/p/csm-operator/1.2/tools/report.sh \
 --output report.sh \
&& chmod +x report.sh

Replace [*** USERNAME***] with your Cloudera username. Enter your Cloudera password when prompted.

2. Capture a diagnostic bundle.

./report.sh

You can also use available options to fine-tune how many namespaces and clusters the tool captures in parallel as
well as how many parallel Kubernetes calls it is allowed to make. Configuring these options and increasing their
values can make capturing a diagnostic bundle faster in larger deployments.

./report.sh \
 --parallel-ns=10 \
 --parallel-cluster=6 \
 --parallel-kubectl=15

The tool prints the resources it collects information on. Afterward it generates a diagnostic bundle ZIP (report
file). The path to the generated ZIP is printed on the standard output.

Tip: Use the --help option to view additional options and information on tool usage.

Capturing a thread dump of a pod with java_thread_dump.sh
Use java_thread_dump.sh to capture a thread dump of a pod.

About this task
Some types of issues require investigating the threads of the components running in a Cloudera Streams Messaging
- Kubernetes Operator installation. You can use the java_thread_dump.sh command line tool to capture the thread
dumps of all containers of a specific pod with the specified number of samples and frequency.

9

Cloudera Streams Messaging Operator Diagnostics

Before you begin

• Ensure that you have access to your Cloudera credentials (username and password).
• Ensure that the environment where you run the tool has the following:

• Bash 4 or higher
• GNU utilities:

• echo
• grep
• sed
• date

• kubectl or oc
• kubeconfig configured to target Kubernetes cluster
• zip

Procedure

1. Download the tool.

curl --user [***USERNAME***] \
 https://archive.cloudera.com/p/csm-operator/1.2/tools/java_thread_dump.
sh \
 --output java_thread_dump.sh \
&& chmod +x java_thread_dump.sh

Replace [***USERNAME***] with your Cloudera username. Enter your Cloudera password when prompted.

2. Capture a thread dump of a pod.

./dump.sh --namespace=[***POD NAMESPACE***] \
 --pod=[***POD NAME***] \
 --dumps=[***NUMBER OF THREAD DUMPS***] \
 --interval=[***DUMP INTERVAL IN SECONDS***]

The tool collects the specified number of thread dumps for the specified pod with the specified interval.
Afterward, it generates a ZIP (report file) containing the thread dumps.

Tip: Use the --help option to view additional options and information on tool usage.

Using kafka_shell.sh
Use kafka_shell.sh to set up a pod where Kafka CLI tools are readily available.

About this task

Kafka is shipped with a number of useful CLI tools. Easy access to these tools is essential for administering and
troubleshooting your cluster. The kafka_shell.sh command line tool creates a pod where all Kafka CLI tools are
readily available, and full Kafka admin client configurations are prepared.

The pod created by kafka_shell.sh:

• Uses the Kafka docker image. This means that Kafka CLI tools are readily accessible within the pod.
• Has both a truststore and keystore present that give you administrative privileges.
• Has a ready-to-use client configuration file available at /tmp/client.properties.
• Has bootstrap server configuration available in the BOOTSTRAP_SERVERS environment variable.

You can use the tool in two ways. You either use it interactively, or run one-off commands using pipe.

10

Cloudera Streams Messaging Operator Diagnostics

Before you begin

Caution: This tool gives administrative access to the Kafka cluster. Cloudera advises caution when using
this tool.

• Ensure that you have access to your Cloudera credentials (username and password).
• Ensure that the environment where you run the tool has the following:

• Bash 4 or higher
• GNU utilities:

• echo
• grep
• sed
• date
• cut
• head

• kubectl or oc
• kubeconfig configured to target Kubernetes cluster
• zip

Procedure

1. Download the tool.

curl --user [***USERNAME***] \
 https://archive.cloudera.com/p/csm-operator/1.2/tools/kafka_shell.sh \
 --output kafka_shell.sh \
&& chmod +x kafka_shell.sh

Replace [***USERNAME***] with your Cloudera username. Enter your Cloudera password when prompted.

2. Use the tool.

You have two choices. You can either use the tool interactively. In this case, you run the tool which opens an
interactive shell window where you run your Kafka CLI commands. Alternatively, you can use pipe (|) to run
Kafka CLI commands one at a time.

For Interactive

a. Run the tool.

./kafka_shell.sh \
 --namespace=[***KAFKA CLUSTER NAMESPACE***] \
 --cluster=[***KAFKA CLUSTER NAME***]

b. Run your Kafka CLI command within the shell that opens.

For example, you can list your topics with the following command.

bin/kafka-topics.sh \
 --list \
 --command-config /tmp/client.properties \
 --bootstrap-server $BOOTSTRAP_SERVERS

The kafka-shell pod is deleted after you exit the interactive shell.

For Pipe

To run one-off commands, pipe them into kafka_admin_shell.sh. For example:

echo 'bin/kafka-topics.sh \

11

Cloudera Streams Messaging Operator Diagnostics

 --list \
 --command-config /tmp/client.properties \
 --bootstrap-server $BOOTSTRAP_SERVERS' \
| ./kafka_shell.sh --namespace=[***KAFKA CLUSTER NAMESPACE***] \
 --cluster=[***KAFKA CLUSTER NAME***]

The kafka-shell pod is deleted after you run your command.

Tip: Use the --help option to view additional options and information on tool usage.

Monitoring pod status during reconciliation
You can check the status of the pods after applying a change to the deployment configuration using kubectl get pods.

kubectl get pods --namespace [***NAMESPACE***] --output wide --watch

Reading Strimzi Cluster Operator logs
The Strimzi Cluster Operator log contains useful information about the tasks that the operator performs and details for
failed operations. You can check the Strimzi Cluster Operator logs with kubectl logs.

kubectl logs [***STRIMZI CLUSTER OPERATOR POD***] --names
pace [***NAMESPACE***]

Reading effective generated Kafka broker properties
You can get the effective Kafka properties of a broker using kubectl exec. Broker properties are generated by the
Strimzi Cluster Operator.

kubectl exec -it \
 --namespace [***NAMESPACE***] \
 [***KAFKA BROKER POD***] \
 --container kafka \
 -- /bin/bash -c "cat /tmp/strimzi.properties"

Reading effective generated Kafka Connect worker properties
You can get the effective properties of a worker using kubectl exec. Worker properties are generated by the Strimzi
Cluster Operator.

kubectl exec -it \
 --namespace [***NAMESPACE***] \
 [***KAFKA CONNECT POD***] \
 --container [***CONNECT CLUSTER NAME***]-connect \
 -- /bin/bash -c "cat /tmp/strimzi-connect.properties"

12

Cloudera Streams Messaging Operator Diagnostics

Reading Kafka broker logs
You can check the Kafka broker logs with kubectl logs.

kubectl logs [***KAFKA BROKER POD***] --namespace [***NAMESPACE***] -f

13

	Contents
	Log collection
	Openshift
	RKE2 with Rancher

	Monitoring with Prometheus
	Prometheus metrics
	Prometheus alerts
	Kafka Exporter

	Diagnostics
	Capturing a diagnostic bundle with report.sh
	Capturing a thread dump of a pod with java_thread_dump.sh
	Using kafka_shell.sh
	Monitoring pod status during reconciliation
	Reading Strimzi Cluster Operator logs
	Reading effective generated Kafka broker properties
	Reading effective generated Kafka Connect worker properties
	Reading Kafka broker logs

