Cloudera Streams Messaging Operator for Kubernetes 1.6.0

Kafka Replication Overview

Date published: 2024-06-11
Date modified: 2026-01-27

CLOUD=RA

https://docs.cloudera.com/


https://docs.cloudera.com/

© ClouderaInc. 2026. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.



Cloudera Streams Messaging Operator for Kubernetes | Contents | iii

REPIICALION OVEN VIBW.....cceeiciieciie et s st nse e ste e s e s nneenneesnne s 4
REPITICALTON FIOWS......eetieetite et b bbbt b bbbttt sttt 5
REPIICALTION BlIASES. ...ttt et b et bbbt b et b et b e b e s e b e se ekt se b e s b e bt s e ebe e b ene st et sbe e ebe e 5
REDITCALTON POIICIES. ...ttt b et bbb st ekt s e b s e b e seebe e e b e sb e st st et e b et ebe e ebe e 5
Typical repliCation ArChITECIUNE..........ccoiiiieee ettt e b et b et b e bbbt bt 7

Replication connectors and connector ar ChiteCture..........ccocveveevceeevieecciecsiee s 8
Y TS o TN ol o] 0= i o] SO T 9
MirrorCheCKPOINTCONNECION.........cieieieiesiesese et e et s et e s te st e st e e st e se et e s e e e eseesessessesreseeseesseteseeneensenennens 10
gl L= T o= (@] g 1= ot (o OSSP 12
Connector task and 10ad DBalanCiNg.........ccccoveiriiiiiiie et e e e e erenns 13
Replication conneCtor CONfIGUIALiONS.........c.vieieriereseseeieeseeeerese s e sreste e sre e s tesr e ee e sae e ensenee e eseesessesreereseees 14

Recommended configurations for offset syncs and checkpoints tOPICS.........ccovvvverievinesiererere e 15



Cloudera Streams Messaging Operator for Kubernetes Replication overview

Learn about data replication across different Kafka clusters using Cloudera Streams Messaging Operator for
Kubernetes. Get familiar with the concept of replication flows, replication aliases, and replication policies.
Additionally learn the replication architecture recommended by Cloudera.

Cloudera Streams Messaging Operator for Kubernetes does not support MirrorMaker 2 or using the
KafkaMirrorMaker2 resource shipped with Strimzi to replicate data between Kafka clusters. Replication
between Kafka clustersisinstead achieved by manually deploying Kafka Connect clusters and instances of the
M rror Sour ceConnect or, M rr or Checkpoi nt Connect or,and M rr or Hear t beat Connect or,
which are collectively called the replication connectors. A replication setup like thisis referred to as Kafka
Connect-based replication.

Kubernetes

Replication Namespace

Kafka Connect

Source Kafka . ) . Target Kafka
MirrorSource MirrorCheckpoint
Replication

Replication . .
- - Source'topic‘l
MirrorHeartbeat

Using Kafka Connect-based replication offers a complete replication solution that is scalable, robust, and fault
tolerant. It supports the same key features as MirrorMaker 2. For example:

* Replication of Kafkatopic partitions to have multiple copies of the same datain different Kafka clustersto avoid
datalossin case of data center failure.

» Replication of Kafka consumer group offsets to be able to fail over between clusters without losing data.
» Ability to monitor your replication at any time.

In addition, Kafka Connect-based replication has a number of advantages over using MirrorMaker 2, such as:

« Single Messages Transforms (SMTs) can be configured for data replication.

« Manipulating source offsets is possible using the Kafka Connect REST API.

« Some replication architectures, like unidirectional replication, require less resources and Kafka Connect groups
when using overrides for heartbeating.

Using Single Message Transforms in replication flows
Deploying areplication flow
Checking the state of data replication



https://docs.cloudera.com/csm-operator/1.6/kafka-replication-deploy-configure/topics/csm-op-using-smt-replication.html
https://docs.cloudera.com/csm-operator/1.6/kafka-replication-deploy-configure/topics/csm-op-deploying-replications.html
https://docs.cloudera.com/csm-operator/1.6/kafka-replication-deploy-configure/topics/csm-op-checking-replication-state.html

Cloudera Streams Messaging Operator for Kubernetes Replication overview

Replication involves sending records and consumer group checkpoints from a source cluster to atarget cluster. A
replication flow (also referred to as replication or flow) specifies a source and target cluster pair, the direction in
which datais flowing and the topics that are being replicated.

For example, assume you have two clusters, A and B. Y ou want to replicate datafrom A to B. To do so you set up an
A->B replication flow. If you wanted to replicate from B to A, you set up a B->A replication flow.

Each replication flow specifies what topics to replicate by way of topic filters (also referred to as allow and deny lists)
using the topics connector property. Therefore, you have full control over what is and what is not replicated

In any replication flow, the two clusters taking part in the replication must have an alias. The diasis a short name that
represents and identifies the cluster.

Aliases are arbitrary, user-defined names. Generally the alias describes your cluster. For example, you can use aliases
that are based on the geographic location of the cluster, like us-east or us-west. Alternatively, in asimple, two-cluster
setup with asingle replication flow you could use aliases like source and target. Aliases are used by default for
prefixing replicated topics. Therefore, using descriptive aiases can help when monitoring replication.

Even though you are free to specify any aias you want, you must use the same aliases for your cluster across all
replication flows that you deploy. For example, consider that you set up two replication flows; one between clusters
A and B and the second between clusters A and C. Y ou must ensure that the alias of cluster A isthe same in both
replication flows. For example, A->B and A->C. Additionaly, if you later on decide to deploy another replication
flow between clusters B and C, you must ensure that both B and C clusters have the same aliases in the newly
deployed replication flow as well. For example B->C.

In any replication flow, the selected source topics are replicated to replicated topics on the target cluster. The basic
rules of how these topics are replicated is defined by the replication policy.

Cloudera Streams Messaging Operator for Kubernetes ships with the following two replication policies. The main
difference between the two policies is how they name replicated topics.

Def aul t Repl i cati onPol i cy or g. apache. kaf ka. connect. m rror. Def aul t Repl i cati onPol i cy

I dentityReplicationPolicy org. apache. kaf ka. connect. mrror. | dentityReplicationPolicy

The Def aul t Repl i cati onPol i cy isthe default and Cloudera-recommended replication policy. Thisis because
the Def aul t Repl i cat i onPol i cy iscapable of automatically detecting replication loops. This policy prefixes
the replicated topic's name with the alias of the source cluster.

For example, the topicl topic from the us-west source cluster creates the us-west.topicl topic on the target cluster.




Cloudera Streams Messaging Operator for Kubernetes Replication overview

US-WEST US-EAST

If areplicated topic is also replicated (there are multiple replication hops in your setup) the replicated topic references
all source and target clusters. The prefix in the name will start with the cluster closest to the fina target cluster. For
example, the topicl topic replicated from the us-west source cluster to the us-east cluster and then to the eu-west
cluster will be named us-east.us-west.topicl.

Figure 3: Two-hop replication using the DefaultReplicationPolicy

US-WEST US-EAST EU-WEST

E—— Kafka Connect us-west.topic1 — Kafka Connect

IdentityReplicationPolicy

Important: Thel dentityReplicati onPol cy does not detect replication loops. As aresult, if you
choosetousethel denti t yRepl i cati onPol cy, you must ensure that topics are not replicated in aloop
between your source and target clusters. Y ou can ensure this by setting up your topic filtersin away that's
appropriate for your use case.

Thel dentityReplicationPol i cy doesnot change the names of replicated topics. When this policy isin use,
topics retain the same name on both source and target clusters. Thistype of replication is also referred to as prefixless
replication.

For example, the topicl topic from the us-west source cluster creates the topicl replicated topic on the target cluster.
Figure 4: Single-hop replication using the IdentityReplicationPolicy

US-WEST US-EAST

Clouderarecommends that you use this replication policy in the following use cases.

* Migrating Kafka data from one cluster to another.
» Aggregating the same topic from multiple clusters to a single target cluster.
» Use caseswhere MirrorMaker 1 compatible replication is required.




Cloudera Streams Messaging Operator for Kubernetes Replication overview

Learn about the typical replication architecture used for replicating Kafka data with Cloudera Streams M essaging
Operator for Kubernetes.

When using Kafka Connect-based replication, you set up Kafka Connect clusters and deploy instances of the
replication connectors inside the clusters. The Kafka Connect clusters and the connector instances together make up a
replication flow.

A typical architecture for a deployment with multiple replication flowsis as follows.

Kubernetes

Replication Namespace
A->B

Kafka Connect
A->B
Kafka-A Kafka-B

L MirrorSource MirrorCheckpoint o
. Replication A->B . Replication A->B 3 )
topicl > > kafka-a.topic1
MirrorHeartbeat
< Dependency

Replication Namespace
B->A

Dependency Kafka Connect

¢----—-—-----E | g B->A

i Replication B->A HTorSeepoint Replication B->A A
kafka-b.topic2 < < topic2
MirrorHeartbeat

Replication flows that you set up in Cloudera Streams Messaging Operator for Kubernetes should follow these
architectural principles.

One Kafka Connect cluster for each replication flow

Replication is carried out by the replication connectors. To be able to run these connectors, a Kafka
Connect cluster is required where you deploy these connectors. In Cloudera Streams M essaging
Operator for Kubernetes, Cloudera recommends that you deploy a Kafka Connect cluster (Kafka
Connect group) for each and every replication flow that you want to create.

Deploying a unique Kafka Connect cluster for each replication flow makes it easier to manage your
different replication flows. This results in easier monitoring, troubleshooting and reduced rebalance
times.

Kafka Connect clustersdepend on the target Kafka cluster
Any Kafka Connect cluster that you deploy requires a Kafka cluster as a dependency. Kafka
Connect uses the Kafka cluster to store information about its state in internal topics.

For Kafka Connect clusters that you deploy for replication, the cluster must always depend on the
target Kafka cluster of replication flow. The dependency is configured in your Kaf kaConnect
resource with spec.bootstrapServers.




Cloudera Streams Messaging Operator for Kubernetes Replication connectors and connector architecture

This dependency makes configuring the connectors that make up the replication flow easier.
Properties required to connect to the target cluster can be sourced from the property file of the
Kafka Connect workers.

Group IDsand internal topic names follow a consistent naming convention

In a production environment, it is highly likely that you will create multiple replication flows and
therefore deploy multiple Kafka Connect clusters. Ensure that the group IDs and internal topic
names are explicitly configured for each Kafka Connect cluster. These are configured in the spec of
the Kaf kaConnect resource using the following properties:

#. ..

ki nd: Kaf kaConnect

sSpec:
groupld: [***GROUP | D***]
confi gStorageTopic: [***CONFI G TOPI C NAME* * *]
of fset St orageTopi c: [***OFFSET TOPI C NAME***]
statusSt orageTopi c: [***STATUS TOPI C NAME***]

By default both the group ID and internal topic names are hardcoded. If you do not set them
explicitly in your Kaf kaConnect resource, the IDs and names will clash across your clusters.

Cloudera recommends that you use a consistent naming convention in environments with multiple
Kafka Connect clusters. A consistent naming convention can help in avoiding confusion in your
configurations down the line.

Replication policy is consistent acr oss connector s and replication flows
The replication policy configured with replication.policy.class connector property must be identical
in all connectors instances that make up areplication flow. Thisis because the replication policy
influences the behavior of the connectors.

Additionaly, if you are deploying multiple replication flows where a replication flow replicates
replicated topics (you have multiple replication hops), you must ensure that all replication flows use
the same replication policy.

For example, consider that you are replicating a topic from cluster A to cluster B, and then from

cluster B to cluster C. This setup requires two replication flows, A->B and B->C. Both replication
flows must use the same replication policy.

Topicfiltersare consistent across all connectorsin areplication flow
The topic filters configured with the topics connector property must be an exact match in the
M rror Sour ceConnect or and M rr or Checkpoi nt Connect or instancesthat are part
of the samereplication flow. Thisis amust have to ensure that both data and offsets are replicated
properly.

Cluster aliases are consistent acrossall replication flows
Cluster aliases configured with the source.cluster.alias and target.cluster.alias connector properties
must be configured in each connector instance to use the same alias for the same cluster. This must
be true across all replication flows that you deploy.

Replication of data across different Kafka clustersis carried out by the replication connectors that you deploy
in a Kafka Connect cluster dedicated to a replication flow. Get familiar with these connectors, learn about their
architecture and configuration properties.

There are three different connectors that you deploy to create a replication. Each has its own purpose and carries out a
different task related to replication. The replication connectors are as follows.

e M rrorSourceConect or —Replicates topics between source and target clusters.

8



Cloudera Streams Messaging Operator for Kubernetes Replication connectors and connector architecture

« M rrorCheckpoi nt Connect or — Replicates the committed group offsets between the source and target
clusters.

e MrrorHeartbeat connect or — Creates a heartbeats topic in a chosen cluster and periodically produces
heartbeats into the heartbeats topic.

MirrorSourceConnector
The MirrorSourceConnector is responsible for replicating topics between the source and the target cluster.

The topics that should be replicated are specified with topic filters (also referred to as allow and deny lists) specified
in topics connector property. This gives you full control over what is and what is not replicated. In addition to
replicating user specified topics, the connector automatically replicates all heartbeats topics. which are created by the
M rror Heart beat Connect or.

Figure 6: MirrorSourceConnector

Kafka Cluster A | Connect Worker | Kafka Cluster B
(Dedicated to a flow)

@ | |
| |
data_topic1 C repli SR [y g MirrorSourceConnector Produce data into remote topics—— > lNGEIEM G ][0
|—> A.heartbeats

MirrorHeartbeatConnector

| |

| |

| |

| |

| |

| | heartbeats
o | |

| |

| | A.checkpoints.

| | internal

Important: TheM rr or Sour ceConnect or guarantees at-least-once delivery of messages. This means
& that duplicates are possible, but data will not be lost as long as the source cluster is accessible and the

replication is not obstructed. The M r r or Sour ceConnect or can aso use the exactly-once semantic

to replicate messages transactionally, avoiding duplicates in the target topic. For more information, see,

Enabling exactly-once semantics for replication flows.

heartbeats

mm2-offset- Write offset mapping _ J

MirrorCheckpointConnector
syncs.B.internal into the source cluster

MirrorSourceTask

TheM rror Sour ceTask iscreated by the M rr or Sour ceConnect or . It isresponsible for executing data
replication. It uses a producer for writing replicated data to the target cluster. This producer is managed by the Kafka
Connect framework, all the other clients are managed by the task itself.

Each task receivesits assignment fromthe M r r or Sour ceConnect or asalist of topic partitions. These are
assigned to the consumer. The fetched records are then forwarded to the producer. The target topic nameis generated
based on what replication policy is configured.

Note: Sincethe M r r or Sour ceTask instances share the load over topic partitions, there is no point setting the task
sMax property of the connector to higher than the number of topic partitions that need to be replicated.

Offset sync

In addition to replicating data, the MirrorSourceConnector also manages an offset mapping between the source
and target cluster for each replicated topic partition. This offset mapping is called offset sync and it is used by the
MirrorCheckpointConnector for replicating consumer group offsets.

By default the offset sync is stored in an internal Kafka topic in the source Kafka cluster. The topic is named mm2-
offset-syncs.[*** TARGET CLUSTER ALIAS **].internal.




Cloudera Streams Messaging Operator for Kubernetes Replication connectors and connector architecture

The offset sync is a compact topic, which means that at |east the latest mapping for each replicated topic partition is
kept in the topic, but some old values with older offsets can also be present in the topic until rotation and cleanup.

With the offset.lag.max property you can influence how often a new offset sync should be created. If you create it
often, your mapping will be more accurate, but if your consumer groups can lag behind, it increases the chance that
offset translation will be unsuccessful. For more information, see MirrorCheckpointConnector on page 10.

Thefollowing is an example Kaf kaConnect or resource that represents an instance of the
M rror Sour ceConnect or .

This connector example replicates the partitions of the test topic from a Kafka cluster that is aliased as target. The topi
cs property (topic filter) must match the topics property inthe M r r or Checkpoi nt Connect or that is part of the
same replication flow.

api Version: kafka.stringi.iolvl
ki nd: Kaf kaConnect or
nmet adat a:
name: ny-source-connect or
| abel s:
strinei.iolcluster: my-connect-cluster
spec:
cl ass: org. apache. kaf ka. connect. m rror. M rror Sour ceConnect or
t asksMax:
config:
topi cs: test
source.cluster.alias: us-west
source. cl uster. boot strap. servers: source-cl uster-kaf ka-boot strap. kaf ka: 9
092
target.cluster.alias: us-east
target.cluster.bootstrap. servers: target-cluster-Kkafka-bootstrap. kaf ka
: 9092
refresh.topics.interval.seconds: 10
key. converter: org.apache. kaf ka. connect. converters. Byt eArrayConverter
val ue. converter: org.apache. kaf ka. connect. converters. Byt eArrayConverter

Enabling exatcly-once semantics for replication flows
Replication connector configurations

The MirrorCheckpointConnector is responsible for replicating the committed group offsets between the source and
target clusters. The offsets are translated based on the offset sync topic managed by the MirrorSourceConnector.
The tranglated offsets are periodically applied to the consumer group offsets in the target cluster by the
MirrorCheckpointConnector.

10


https://docs.cloudera.com/csm-operator/1.6/kafka-replication-deploy-configure/topics/csm-op-enabling-replication-eos.html
https://docs.cloudera.com/csm-operator/1.6/kafka-replication-overview/topics/csm-op-replication-connector-architecture.html#concept_x2y_c1m_jcc

Cloudera Streams Messaging Operator for Kubernetes Replication connectors and connector architecture

Query group offsets for Invoke Kafka Admin API

| replicated topics and groups to synch group offsets I

Kafka Cluster A Kafka Cluster B

data_topic1 MirrorSourceConnector
heartbeats MirrorHeartbeatConnector

i
mm2-offset- Consume offset sync MirrorCheckpointConnector Write mapped A.checkpoints.
syncs.B.internal for offset mappings | | and commited offsets’ internal

Important: TheM rr or Checkpoi nt Connect or provides at-least-once guarantee for consumers. The
guarantee stays at-least-once even when exactly-once semantics (EOS) is enabled for the data replication.
Additionally, the MirrorCheckpointConnector only works in the context of a single replication flow. If there
are other messages being produced into the replicated topicsin the target cluster, the checkpointing cannot
account for those messages. The checkpoints do not guarantee anything for the messages produced by other
clients or replicated in different flows (for example, in an aggregator architecture).

Connect Worker
(Dedicated to a flow)

A.data_topic1

A heartbeats

heartbeats

TheM rror Checkpoi nt Task iscreated by theM r r or Checkpoi nt Connect or . It isresponsible for
executing consumer group offset synchronization. It uses a producer for writing translated offsets to the target cluster.
This producer is managed by the Kafka Connect framework, all the other clients are managed by the task itself.

Each task receivesits assignment from the M r r or Checkpoi nt Connect or asalist of consumer groups. The
offsets of the assigned consumer groups are periodically queried for the replicated topic partitions through an admin
client, get trandated based on the offset syncs topic and are synchronized in the target cluster consumer offsets.

Note: SincetheM rr or Checkpoi nt Task instances share the load over consumer groups, thereis no
point setting the tasksMax property higher than the number of consumer groups that need to be replicated.

Since sync.group.offsets.enabled is set to true by default, the offsets are periodically applied to the consumer
groups in the target cluster automatically, no additional connector configuration is needed in order to make it
work. The frequency of this processis controlled by the sync.group.offsets.interval.seconds property of the

M rror Checkpoi nt Connect or , which defaults to 60 seconds. Having this feature enabled isamust in any
replication flow that you set up.

The consumer groups can only be updated in the target cluster if there are no active membersin the group at that time.
To make sure the consumer offset information is always replicated to the target cluster, checkpoints are also created
in the target cluster in an internal topic called [*** SOURCE CLUSTER ALIAS***].checkpoints.internal. Thistopic
contains the information about each replicated consumer group where they left consuming in the source cluster.

Checkpointing guarantees that replicated group checkpoints are monotonic. Thisis true aslong as the upstream
committed offset of the group is monotonic. This means that checkpointing prioritizes monotonicity over emitting
new checkpoint records.




Cloudera Streams Messaging Operator for Kubernetes Replication connectors and connector architecture

The difficulty in performing checkpointing consistently is the offset translation. Checkpointing relies on the offset
syncs to perform offset trandation from upstream to downstream offsets. The offset syncs are backed by a compact
topic which ensures that the last offset sync of a partition is always kept in the topic, but it is also possible that older
offset syncs are also present.

Checkpointing utilizes these older offset syncs to perform offset translation on awide range of upstream offsets. The
width of this range solely depends on the number and age of the offset sync records that are present in the backing
topic. In a best-case scenario, offset trandation is performed on awide range of offsetsif the offset sync history is
present. In aworst-case scenario, offset tranglation can only happen based on the last offset sync record.

Any consumer groups which lag behind the translatable range are not checkpointed. To fine-tune the worst-case
guarantees, configure the offset.lag.max property for theM r r or Sour ceConnect or . Configuring this property
influences how often a new offset sync should be created for each partition.

Thefollowing is an example Kaf kaConnect or resource that represents an instance of the

M rror Checkpoi nt Connect or . This connector example replicates the offsets of the testgroup consumer
group related to partitions of the test topic. The topics property (topics filter) must match the topics property in the
M rror Sour ceConnect or that ispart of the same replication flow.

api Versi on: kafka.stringi.iolvl
ki nd: Kaf kaConnect or
nmet adat a:
nane: my-checkpoi nt-connect or
| abel s:
strinei.iolcluster: my-connect-cluster
spec:
cl ass: org. apache. kaf ka. connect. m rror. M rror Checkpoi nt Connect or
tasksMax: 2
config:
topi cs: test
groups: testgroup
source.cluster.alias: us-east
source. cl uster. boot strap. servers: source-cl uster-kaf ka-boot strap. kaf ka
: 9092
target.cluster.alias: us-west
target.cluster. bootstrap. servers: target-cluster-kafka-bootstrap. kaf ka: 9
092
refresh. groups.interval .seconds: 10
em t.checkpoi nts.interval .seconds: 10
key. converter: org.apache. kaf ka. connect. converters. Byt eArrayConverter
val ue. converter: org. apache. kaf ka. connect. converters. Byt eArrayConverter

Replication connector configurations

The MirrorHeartbeatConnector is responsible for creating a heartbeats topic in a chosen cluster and to periodically
produce heartbeats into the heartbeats topic.

The purpose of thisisto always have at least a single topic that can be replicated. To achieve this, Cloudera
recommends configuring the connector to create the heartbeats topic in the source cluster and let the
M rror Sour ceConnect or to replicateit.

This functions as areliable smoke test for the replication flow. This can be also helpful in edge cases where a
M rrord i ent isused that requires having heartbeats to discover the replication flows and upstream clusters.
Configuring this connector is not required to deploy replication flow, but it is recommended.

12


https://docs.cloudera.com/csm-operator/1.6/kafka-replication-overview/topics/csm-op-replication-connector-architecture.html#concept_x2y_c1m_jcc

Cloudera Streams Messaging Operator for Kubernetes Replication connectors and connector architecture

TheM rror Hear t beat Task iscreated by theM r r or Hear t beat Connect or . It isresponsible for producing
heartbeats into the configured cluster’s heartbeats topic. It uses a producer for writing heartbeats to the heartbeats
topic. This producer is managed by the Kafka Connect framework, all the other clients are managed by the task itself.
ThereisawaysasingleM r r or Hear t beat Task instance created by aM r r or Hear t beat Connect or .

The heartbeats topic is created in the cluster specified in the target.cluster.* properties of the
M rror Hear t beat Connect or . If you choose to use this connector you must ensure that the
target. cl uster.* propertiesrefer to the source cluster in the replication flow.

With a setup like this, you will have atopic that is automatically replicated and acts as a reliable smoke test for your
replication flow. To configure the connector to create the heartbeats in the source cluster, you override the producer
client managed by Kafka Connect to connect and produce to the source Kafka cluster.

Cloudera a so recommends configuring target.cluster.bootstrap.servers to point to the source cluster. In this context,
the target means where to produce heartbeats, not the replication flow’ starget. This property is required by other
internal connector clients other than the producer.

Thefollowing is an example Kaf kaConnect or resource that represents an instance of the
M rror Heart beat Connect or.

This configuration example contains the client overrides and other settings that configure the connector to produce
heartbesats to the source cluster.

api Versi on: kafka.strinei.iolvl
ki nd: Kaf kaConnect or
nmet adat a:
nane: mny-heartbeat-connector
| abel s:
strinei.iolcluster: mny-connect-cluster
spec:
cl ass: org.apache. kaf ka. connect. nmirror. M rrorHeart beat Connect or
tasksivax: 2
config:
source. cluster.alias: us-west
target.cluster.alias: us-east
target.cluster.bootstrap. servers: source-cl uster-kaf ka-boot strap. kaf k
a: 9092
producer. overri de. boot st rap. servers: source-cl uster-kaf ka-boot strap. k
af ka: 9092
key. converter: org.apache. kaf ka. connect. converters. Byt eArrayConverter
val ue. converter: org.apache. kaf ka. connect. converters. Byt eArrayConverter

Replication connector configurations

Learn how tasks are distributed and how load is balanced in replication flows.

A typical production Kafka Connect cluster consists of multiple workers. Whenever areplication flow is configured,
the replication connectors that make up areplication flow create their own tasks.

If you choose to deploy all three replication connectors, then the connectors will create one or
more M rr or Sour ceTasks, oneor more M r r or Checkpoi nt Tasks, aswell asasingle
M rror Hear t beat Task.

13


https://docs.cloudera.com/csm-operator/1.6/kafka-replication-overview/topics/csm-op-replication-connector-architecture.html#concept_x2y_c1m_jcc

Cloudera Streams Messaging Operator for Kubernetes Replication connectors and connector architecture

The connectors and tasks are assigned to the Kafka Connect workersin around robin fashion.

When the Kafka Connect workers already have their assigned connectors and tasks, there can be changes that result in
triggering a rebalance which means tasks and connectors should be reassigned. These changes can be the following.

* A worker joins or leaves the group (membership change)
« Thefilter for replicated topics or groups changes and the number of tasks changes because of this
The reassignment of connectors and tasks are done in a cooperative and incremental manner. This allows for the

majority of the work to continue without interruption. Based on Kafka Connect group membership changes, the tasks
can aso be moved between workers.

Learn what configuration properties and prefixes are available for replication connectors.

The replication connectors support various properties. Supported properties of the connectors can be categorized
into groups. There are anumber of common properties that are accepted by all three connectors. Additionally, each
connector has a unique set of propertiesthat it supports.

The following table lists each property group and provides alink to the relevant reference section of the Apache
K afka documentation.

Common source connector properties Source Connector Configs | Kafka
Common replication connector properties MirrorMaker Common Configs | Kafka
M r r or Sour ceConnect or properties MirrorMaker Source Configs | Kafka

M rror Checkpoi nt Connect or properties MirrorMaker Checkpoint Configs | Kafka
M rror Hear t beat Connect or properties MirrorMaker Heartbeat Configs | Kafka

Important: The sync.group.offsets.enabled property of theM r r or Checkpoi nt Connect or issetto

& false by default in Apache Kafka. However, in Cloudera Streams Messaging Operator for Kubernetes this
property is set to true by default to ensure that consumer offsets are automatically synchronized whenever
possible. Thisis done using the Kafka Admin API. Automatic consumer offset synchronization is only
possibleif the consumer group is empty at that moment in the target

All three replication connectors use multiple Kafka clients (producer, consumer, admin client) internally. These
clients are created by the connector itself and are not managed by the Kafka Connect framework. Y ou can provide
common client configurations to these internal clients on different levels by using configuration prefixes.

There can be two types of variablesin the prefix:

o [***CLUSTER TYPE***] — This variable specifies the type of the cluster. This variableis either source or target.

o [***CLIENT TYPE***] — This variable specifies the type of client. This variable can be PRODUCER,
CONSUMER, or ADMIN.

[***CLUSTER TYPE***].cluster prefix

Properties that use the [*** CLUSTER TYPE***] .cluster prefix are applied to all clients used for
connecting to the cluster type specified in the prefix.

14


https://kafka.apache.org/41/documentation/#sourceconnectconfigs
https://kafka.apache.org/41/documentation/#mirrormakerconfigs
https://kafka.apache.org/41/documentation/#mirrormakersourceconfigs
https://kafka.apache.org/41/documentation/#mirrormakercheckpointconfigs
https://kafka.apache.org/41/documentation/#mirrormakerheartbeatconfigs

Cloudera Streams Messaging Operator for Kubernetes Replication connectors and connector architecture

For example, the following configuration ensures that all internal clients that interact with the
source cluster will use the same bootstrap server.

source. cl uster. boot strap. server s=l ocal host: 9092

[***CLIENT TYPE***] prefix
Properties that use the [*** CLIENT TYPE***] prefix are applied to al clients of the type specified

in the prefix regardless of what type of cluster (source or target) they connect to. This prefix has a
higher precedence than the [*** CLUSTER TYPE***].cluster prefix.

For example, the following configuration ensures that all clients that admin clients use the same
bootstrap server.

adm n. boot st rap. server s=l ocal host : 9092

[***CLUSTER TYPE***].[***CLIENT TYPE***] prefix

Properties that use the [*** CLUSTER TYPE***].[***CLIENT TYPE***] prefix are applied to all
client types specified in the prefix that connect to the cluster type specified in the prefix. This prefix
has a higher precedence than the [*** CLIENT TYPE***] prefix.

For example, the following configuration ensures that all producers that connect to the target cluster
use the same bootstrap server.

target. producer. boot strap. servers=l ocal host: 9093

Cloudera recommends the following configuration for the offset synchs and checkpoints topics.

When the checkpoint connector starts and restarts, it reads the offset syncs topic from the beginning. To ensure

that offset trandations remain accurate, you need to determine how long you must keep offset sync records
uncompacted. Cloudera recommends setting min.compaction.lag.ms equal to the maximum tolerable consumer lag (in
milliseconds).

Similarly to the offset syncs topic, the checkpoints topic is aso read from the beginning during connector
initialization. With this topic, the goal isto keep at least one checkpoint message uncompressed for each subscription.
Y ou achieve this by calculating an appropriate value for segment.bytes. Thisis because records in the active segment
are not compacted. Cloudera recommends the following formulafor calculation.

segnent . byt es = max( REPLI CATED GROUPS* SUBSCRI BED PARTI Tl ONS* CHECKPO NT_MSG_S
| ZE, 64 MB)

Calculate CHECKPOINT_MSG_SIZE with the following formula.

avarage topic nanme |length + avarage group id length + 4 bytes for partition
id

When evaluating configuration, Cloudera used 16 B topic names and 16 B group IDs, which comes out to a36 B
total.

The formula defines 64Mb minimum value to avoid too frequent segment rolls. Y ou can adjust this value as required.
Additionally, if you want to have more frequent compaction, you can experiment with setting min.cleanable.dirty.
ratio to alower value. The default is 0.5.

15



	Contents
	Replication overview
	Replication flows
	Replication aliases
	Replication policies
	Typical replication architecture

	Replication connectors and connector architecture
	MirrorSourceConnector
	MirrorCheckpointConnector
	MirrorHeartbeatConnector
	Connector task and load balancing
	Replication connector configurations
	Recommended configurations for offset syncs and checkpoints topics


