
Cloudera Streams Messaging Operator for Kubernetes 1.6.0

Schema Registry Security
Date published: 2024-06-11
Date modified: 2026-01-27

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2026. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Streams Messaging Operator for Kubernetes | Contents | iii

Contents

Channel encryption (TLS) in Schema Registry...4
Configuring TLS channel encryption...4
Managing certificates..5

Authentication in Schema Registry.. 6
Configuring OAuth authentication... 6

Authorization in Schema Registry..8
Configuring authorization and users.. 8
Configuring principal mapping.. 8

Cloudera Streams Messaging Operator for Kubernetes Channel encryption (TLS) in Schema Registry

Channel encryption (TLS) in Schema Registry

Get started with TLS encryption in Schema Registry. Learn which types of traffic you can secure with TLS,
corresponding configuration properties, and recommended certificate management practices.

You can protect sensitive data and ensure secure access to Schema Registry by configuring TLS. TLS can be
configured for the following types of traffic:

• TLS for application traffic (backend/server-side) – Secures traffic between the external access point
(LoadBalancer or Ingress) and Schema Registry. Ensures that even internal traffic within the Kubernetes
cluster remains encrypted, protecting against potential threats inside the cluster network.

• TLS for client traffic – Secures connections from end users (clients) to Schema Registry. Configured on the
Kubernetes Service that provides external access (LoadBalancer or Ingress). Ensures that all data
exchanged with external clients are encrypted.

• TLS for OAuth – Secures connections between Schema Registry and your OAuth provider. Typically, you set
this up when you configure OAuth authentication.

Cloudera recommends that you enable TLS for all of the above listed categories. This ensures that all traffic handled
by Schema Registry is secure.

Configuring TLS channel encryption
Configure TLS with TLS-related properties in your custom values file. TLS for application, client, and OAuth traffic
is configured separately.

TLS for application traffic

TLS for application traffic is configured with the tls.* properties. For example:

#...
tls:
 enabled: true
 keystore:
 secretKeyRef:
 name: [***KEYSTORE SECRET NAME***]
 key: [***KEYSTORE SECRET KEY***]
 password:
 secretKeyRef:
 name: [***KEYSTORE SECRET NAME***]
 key: [***KEYSTORE PASSWORD SECRET KEY***]
 type: PKCS12

• tls.enabled – Enables or disables TLS for Schema Registry.
• tls.keystore.secretKeyRef.* – The Secret name and Secret key that contain the keystore.
• tls.keystore.password.secretKeyRef.* – The Secret name and Secret key that contain the keystore password.

TLS for client traffic

TLS for client traffic is configured on the Service (Ingress or LoadBalancer) that provides access to
Schema Registry.

For Ingress, you configure ingress.tls.* properties. For example:

#...
ingress:
 enabled: true
 className: "nginx"

4

Cloudera Streams Messaging Operator for Kubernetes Channel encryption (TLS) in Schema Registry

 rules:
 path: "/"
 host: "my-domain.example.com"
 tls:
 enabled: true
 secretRef: [***INGRESS TLS CERT SECRET***]
 extraAnnotations:
 nginx.ingress.kubernetes.io/backend-protocol: "HTTPS"

TLS for Ingress is typically configured when you set up external access with Ingress. For a step-by-step guide
see Configuring external access with Ingress.

For LoadBalancers, the actual load balancer is provisioned and managed by your cloud or infrastructure provider.
As a result, TLS settings and certificate management may vary depending on the platform. Refer to vendor-specific
documentation for detailed guidance on configuring TLS.

TLS for OAuth traffic

TLS for OAuth traffic is configured using the authentication.oauth.jwks.tls.* properties. These properties reference
a Kubernetes Secret containing the truststore (PKCS12) of the root Certificate Authority (CA) of the OAuth
certificate chain. You typically configure these properties when you set up OAuth, see Authentication in Schema
Registry.

Related Information
Configuring external access with Ingress

Authentication in Schema Registry

Managing certificates
Learn about managing TLS certificates for Schema Registry. You can manage certificates manually or use cert-
manager to automate certificate management. Cloudera recommends automatic certificate management.

TLS certificates for Schema Registry are stored in various Secrets. The Secrets are specified by the following
properties:

• tls.keystore.secretKeyRef.name – The name of the Secret containing the TLS keystore used by Schema
Registry.

• ingress.tls.secretRef – The name of the Secret containing Ingress TLS certificates.
• authentication.oauth.jwks.tls.truststore.secretKeyRef.name – The name of the Secret that contains the truststore

for accessing the JWKS endpoint.

These Secrets must contain a valid certificate and private key. Cloudera recommends that you use cert-manager to
manage the Secrets and the certificates that they store. Alternatively, you can choose to manage them manually.

Automatic certificate management with cert-manager

cert-manager is a popular Kubernetes add-on for automating the management and issuance of TLS certificates. In
order to manage the certificates used by Schema Registry with cert-manager, you need the following:

• A cert-manager instance in your Kubernetes cluster.
• An Issuer deployed for cert-manager.

The management of the Secrets that Schema Registry uses to store certificates differs.

• tls.keystore.secretKeyRef.name and authentication.oauth.jwks.tls.truststore.secretKeyRef.name – The
Certificate resource for these Secrets must be created manually. When creating a Certificate
resource, set spec.secretName to the names specified in these properties. This way cert-manager saves the
certificates and private keys into the appropriate Secrets that Schema Registry expects.

5

https://docs.cloudera.com/csm-operator/1.6/schema-registry-configure/topics/csm-op-schema-registry-configuring-external-access.html
https://docs.cloudera.com/csm-operator/1.6/schema-registry-security/topics/csm-op-schema-registry-oauth-overview.html

Cloudera Streams Messaging Operator for Kubernetes Authentication in Schema Registry

• ingress.tls.secretRef – The Certificate resource for this Secret is created automatically when the cert-man
ager.io/issuer: [***ISSUER NAME***] annotation is set in the ingress.extraAnnotations property.

Specifically, the Ingress requests a certificate from cert-manager using the Issuer name from the annotation.
This triggers the creation of the Certificate resource and saves the certificate file and private key to the
Secret defined in ingress.tls.secretRef.

Manual certificate management

When managing certificates manually, you must create the Secrets that contain the certificates and private keys
manually. Ensure that you create and update the appropriate Secrets.

Authentication in Schema Registry

Get started with OAuth authentication in Schema Registry. OAuth is the only supported authentication mechanism in
Schema Registry.

Schema Registry supports OAuth authentication to integrate with an external identity provider. When OAuth is
enabled, clients connecting to Schema Registry must present a valid Bearer JSON Web Token (JWT) for access.
Incoming JWTs are verified by Schema Registry using a JSON Web Key Set (JWKS) which provides public keys
required to validate signatures.

OAuth is enabled by default and is the only supported authentication mechanism. As a result, you must configure
OAuth properties during or after installation unless you choose to explicitly disable OAuth. However, Cloudera does
not recommend that you deploy Schema Registry with authentication disabled.

Tokens and authorization

OAuth JWTs presented by clients are also used for authorization. Schema Registry extracts the principal (the
username) from a configured JWT claim, validates the token audience, and enforces authorization using a built-in
authorizer. Because of this, configuring OAuth authentication is required for authorization. For more information, see
Authorization in Schema Registry.

Related Information
Authorization in Schema Registry

Configuring OAuth authentication
Learn how to configure OAuth authentication in Schema Registry.

Before you begin

• An OAuth server is available that has TLS enabled.
• The server is accessible from the Kubernetes cluster where Schema Registry is deployed.
• At least one client must be configured in your realm that supports Client Credentials flow (sometimes referred to

as Machine-to-Machine (M2M), Service Account, or Application Permissions).
• Identify if your OAuth server issues tokens that contain a value in the aud claim. If a value is present, note it down

as you will need to provide it in your configuration. Referred to as [***OAUTH EXPECTED AUDIENCE***] in
the following steps.

• Get the JWKS endpoint URL of your OAuth server. You will need to provide it in your configuration. Schema
Registry requires this endpoint to validate the signatures of incoming tokens. Referred to as [***OAUTH JWKS
URL***] in the following steps.

6

Cloudera Streams Messaging Operator for Kubernetes Authentication in Schema Registry

Procedure

1. Generate a Java truststore (PKCS12) containing the TLS certificate of the root Certificate Authority (CA) of the
OAuth certificate chain.

keytool -import -trustcacerts -file [***OAUTH ROOT CA***] \
 -keystore [***TRUSTSTORE NAME***] \
 -storepass [***TRUSTSTORE PASSWORD***] \
 -storetype PKCS12

2. Create a Secret containing the truststore and its password.

kubectl create secret generic [***OAUTH TRUSTSTORE SECRET NAME***] \
 --namespace [***NAMESPACE***] \
 --from-file=[***OAUTH TRUSTSTORE SECRET KEY***]=[***TRUSTSTORE NAME***]
 \
 --from-file=[***OAUTH TRUSTSTORE PASSWORD SECRET KEY***]=[***PATH TO
 TRUSTSTORE PW FILE***]

Take note of [***OAUTH TRUSTSTORE SECRET NAME***], [***OAUTH TRUSTSTORE SECRET KEY***],
and [***OAUTH TRUSTSTORE PASSWORD SECRET KEY***].

3. Configure OAuth properties in a custom values file (values.yaml).

#...
authentication:
 oauth:
 enabled: true
 jwt:
 expectedAudience: [***OAUTH EXPECTED AUDIENCE***]
 jwks:
 url: [***OAUTH JWKS URL***]
 tls:
 truststore:
 secretKeyRef:
 name: [***OAUTH TRUSTSTORE SECRET NAME***]
 key: [***OAUTH TRUSTSTORE SECRET KEY***]
 password:
 secretKeyRef:
 name: [***OAUTH TRUSTSTORE SECRET NAME***]
 key: [***OAUTH TRUSTSTORE PASSWORD SECRET KEY***]
 type: PKCS12

• authentication.oauth.enabled – Enables OAuth authentication for the Schema Registry server.
• authentication.oauth.jwt.expectedAudience – The expected audience value. If the JWT token contains an aud

claim, it must match this value, otherwise the token is considered invalid.
• authentication.oauth.jwks.url – The URL to the JWKS endpoint.
• authentication.oauth.jwks.tls.truststore.secretKeyRef.name – The name of the Secret that contains the

truststore for accessing the JWKS endpoint. Configure this property if the backend of your JWKS has self-
signed certificates.

• authentication.oauth.jwks.tls.truststore.secretKeyRef.key – The key in the Secret specified by authenticati
on.oauth.jwks.tls.truststore.secretKeyRef.name that contains the truststore for accessing the JWKS endpoint.

• authentication.oauth.jwks.tls.truststore.password.secretKeyRef.name – The name of the Secret that contains
the truststore password for accessing the JWKS endpoint.

• authentication.oauth.jwks.tls.truststore.password.secretKeyRef.key – The key in the Secret specified by
authentication.oauth.jwks.tls.truststore.password.secretKeyRef.name that contains the truststore password for
accessing the JWKS endpoint.

4. Apply your configuration.

helm upgrade SCHEMA-REGISTRY [***CHART***] \

7

Cloudera Streams Messaging Operator for Kubernetes Authorization in Schema Registry

 --namespace [***NAMESPACE***] \
 --values [***VALUES.YML***] \
 --reuse-values

Results
OAuth authentication is enabled. Users are required to present a valid token to Schema Registry for access.

Authorization in Schema Registry

Get started with Schema Registry authorization. Learn how to enable authorization and configure users, and how to
configure which JWT (JSON Web Token) claim the server uses for principal mapping.

Schema Registry includes a built-in basic authorizer that enforces access using OAuth and JWTs. The authorizer
defines two user types: admin (full privileges) and read-only (read-only privileges). By default Schema Registry uses
the sub JWT claim as the principal. The server reads the configured principal claim from each token and compares its
exact string value to entries in authorization.simple.adminUsers and authorization.simple.readOnlyUsers, so the claim
value must exactly match a configured entry.

• If the principal is in adminUsers, all access is granted.
• Else if the principal is in readOnlyUsers, read access is granted.
• Else access is denied.

Requirements

• OAuth authentication must be enabled. See Authentication in Schema Registry on page 6.

Configuring authorization and users
Configure authorization and authorized users using authorization.simple.* properties. Set
authorization.simple.enabled to true and provide lists for authorization.simple.adminUsers and
authorization.simple.readOnlyUsers.

#...
authorization:
 simple:
 enabled: true
 adminUsers:
 - 1234567890
 readOnlyUsers:
 - 0987654321

• authorization.simple.enabled – Enables or disables authorization.
• authorization.simple.adminUsers – A list of admin usernames. Admin users can perform any operation in Schema

Registry.
• authorization.simple.readOnlyUsers – A list of read-only usernames. Read-only users can only perform read

operations in Schema Registry.

Configuring principal mapping
Configure the principal claim used for authorization with authentication.oauth.jwt.principalClaimName

By default Schema Registry uses the sub JWT claim as the principal. The default sub claim often contains an opaque
identifier (numeric id or UUID). If your principals are provided in a different claim, set authentication.oauth.jwt.pri

8

Cloudera Streams Messaging Operator for Kubernetes Authorization in Schema Registry

ncipalClaimName to that claim (for example, email or preferred_username) and ensure those claim values appear
exactly in authorization.simple.adminUsers or authorization.simple.readOnlyUsers.

#...
authentication:
 oauth:
 jwt:
 principalClaimName: email

authorization:
 simple:
 enabled: true
 adminUsers:
 - ALICE@EXAMPLE.COM
 readOnlyUsers:
 - BOB@EXAMPLE.COM

• authentication.oauth.jwt.principalClaimName – JWT claim name used to identify the principal. Default: sub.
• authorization.simple.adminUsers – A list of admin usernames. Admin users can perform any operation in Schema

Registry.
• authorization.simple.readOnlyUsers – A list of read-only usernames. Read-only users can only perform read

operations in Schema Registry.

9

	Contents
	Channel encryption (TLS) in Schema Registry
	Configuring TLS channel encryption
	Managing certificates

	Authentication in Schema Registry
	Configuring OAuth authentication

	Authorization in Schema Registry
	Configuring authorization and users
	Configuring principal mapping

