
Cloudera Streams Messaging Operator for Kubernetes 1.6.0

Cloudera Surveyor for Apache Kafka
Configuration
Date published: 2024-06-11
Date modified: 2026-01-27

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2026. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Streams Messaging Operator for Kubernetes | Contents | iii

Contents

Cloudera Surveyor for Apache Kafka configuration overview........................... 4

Registering Kafka clusters in Cloudera Surveyor for Apache Kafka................. 4
Registering secure clusters... 5
Managing sensitive data in client configuration.. 8
Client pools and client configuration hierarchy...9

Configuring external access in Cloudera Surveyor for Apache Kafka............. 11
Configuring external access with Ingress.. 11
Configuring external access with LoadBalancer..12

Cloudera Streams Messaging Operator for Kubernetes Cloudera Surveyor for Apache Kafka configuration overview

Cloudera Surveyor for Apache Kafka configuration
overview

Get started with configuring Cloudera Surveyor. Learn about basic configuration practices using Helm and available
configuration properties.

Cloudera Surveyor is exclusively managed using Helm. You initially configure Cloudera Surveyor during installation.
Typically this involves creating a custom values file (values.yml) that includes configuration properties. The file is
applied during installation when you run the helm install command.

If required, you can make configuration updates following installation. This is done with the helm upgrade command
using the --reuse-values option together with the -f (--values) or --set options.

helm upgrade CLOUDERA-SURVEYOR [***CHART***] \
 --namespace [***NAMESPACE***] \
 (--set '[***KEY***]=[***VALUE***]' | -f [***MY-VALUES.YAML***] | --set-fil
e [***KEY***]=[***FILEPATH***]) \
 --reuse-values

• The string cloudera-surveyor is the Helm release name of the chart installation. This is an arbitrary, user defined
name.

• Ensure that [***CHART***] and [***NAMESPACE***] are the same as the ones you used during installation.
You can use helm list to list currently installed releases and charts.

• Use --set if you want to update properties directly from the command line. Helm supports various --set options
like --set-file, --set-string, and others. You can use any of these options.

• Use -f (--values) if you want to pass a file containing your configuration updates.
• The --reuse-values option instructs Helm to merge existing values with new ones. You use this option when you

want to update an existing configuration.

Configurable properties

Cloudera Surveyor accepts various configuration properties. You can find a comprehensive list of these properties in
the Helm chart configuration reference. Alternatively, you can list available properties with helm show readme.

helm show readme [***CHART***]

Related Information
Cloudera Surveyor Helm chart configuration reference

Helm List | Helm

Helm Upgrade | Helm

Helm Show Readme | Helm

Registering Kafka clusters in Cloudera Surveyor for
Apache Kafka

Learn how to register Kafka clusters. Registering a Kafka cluster enables management and monitoring of the cluster
through Cloudera Surveyor. You can register any Kafka cluster that is compatible with the Apache Kafka 2.4.1 API
or higher.

You register a Kafka cluster with clusterConfigs.* properties. These properties specify the Kafka clusters that
Cloudera Surveyor connects to. After a cluster is registered, you are able to manage and monitor the cluster through

4

https://docs.cloudera.com/csm-operator/1.6/reference/topics/csm-op-surveyor-helm-reference.html
https://helm.sh/docs/helm/helm_list/
https://helm.sh/docs/helm/helm_upgrade/
https://helm.sh/docs/helm/helm_show_readme/

Cloudera Streams Messaging Operator for Kubernetes Registering Kafka clusters in Cloudera Surveyor for Apache Kafka

Cloudera Surveyor. This includes the ability to view cluster information and execute supported management tasks,
such as viewing cluster status and health, as well as managing topics and consumer groups.

Cloudera Surveyor connects to Kafka clusters as any other Kafka client. Therefore, the configuration you specify with
clusterConfigs.* properties will be similar to standard Kafka client configuration.

Specifically clusterConfigs.clusters is an array of connected clusters. Each item in this array is a map that defines the
configuration for a single Kafka cluster, including properties such as clusterName, bootstrapServers, tags, and comm
onClientConfig. Cloudera Surveyor can connect to any Kafka cluster that provides an API compatible with Apache
Kafka 2.4.1 or higher.

The following is a simple clusterConfigs.* example that registers an unsecured Kafka cluster with some tags
configured.

#...
clusterConfigs:
 clusters:
 - clusterName: "[***CLUSTER NAME***]"
 bootstrapServers: "[***BOOTSTRAP SERVERS***]"
 tags:
 - "[***TAG1***]"
 - "[***TAG2***]"
 commonClientConfig:
 security.protocol: PLAINTEXT

• clusterConfigs.clusters[*] – An array of Kafka clusters and their configuration. Each entry defines the
configuration for a single Kafka cluster.

• clusterConfigs.clusters[*].clustername – The name of the cluster. This name is displayed on the UI.
• clusterConfigs.clusters[*].bootstrapServers – A comma-separated list of the bootstrap servers for the Kafka cluster

that Cloudera Surveyor connects to. Specify multiple servers for highly available connections.
• clusterConfigs.clusters[*].tags – User defined tags. Used for organization and filtering.
• clusterConfigs.cluster[*].commonClientConfig – Kafka client configuration properties applied to all clients for

this cluster. Must contain upstream Kafka client properties as a map.

In addition to standard upstream Kafka client properties, clusterConfigs.* also accepts various properties that are
specific to Cloudera Surveyor. These properties allow you to configure tags, snapshot intervals, alert thresholds, and
more on a per-cluster basis. For a full list, see Cloudera Surveyor Helm chart configuration reference.

Note: When using helm upgrade, clusterConfigs properties are overridden and not merged, even if the --
reuse-values option is specified. Always provide the full configuration for clusterConfigs during updates.
Otherwise, previously set configuration might be lost. As a best practice, save a values file containing your
complete clusterConfigs configuration. If you need to make changes, update this file and specify it with --va
lues when running helm upgrade. Additionally use the --reuse-values option to retain other properties.

Related Information
Cloudera Surveyor Helm chart configuration reference

Registering secure clusters
When registering a Kafka cluster that has security enabled, you must provide security-related client properties in your
configuration. The exact Kafka client properties you specify depend on the security configuration of the Kafka cluster
you want to register.

The following example snippets demonstrate various clusterConfigs.* examples for Kafka clusters that have some of
the most commonly used security setups.

In these examples, sensitive data is mounted to the filesystem from Kubernetes Secrets. Sensitive data is then
specified in the configuration using references. The references are resolved by Cloudera Surveyor with the Kafka
DirectoryConfigProvider. This way, sensitive data is not stored in the configuration file, but rather in a

5

https://docs.cloudera.com/csm-operator/1.6/reference/topics/csm-op-surveyor-helm-reference.html

Cloudera Streams Messaging Operator for Kubernetes Registering Kafka clusters in Cloudera Surveyor for Apache Kafka

secure location that can be referenced at runtime. For more information on handling sensitive data in configurations,
see Managing sensitive data in client configuration on page 8.

For PLAIN with TLS

#...
clusterConfigs:
 clusters:
 - clusterName: "[***CLUSTER NAME***]"
 tags:
 - "[***TAG1***]"
 - "[***TAG2***]"
 bootstrapServers: "[***BOOTSTRAP SERVERS***]"
 commonClientConfig:
 security.protocol: "SASL_SSL"
 sasl.mechanism: PLAIN
 ssl.truststore.type: "pkcs12"
 ssl.truststore.location: "/opt/secrets/[***TRUSTSTORE
 SECRET***]/[***TRUSTSTORE FILE***]"
 ssl.truststore.password: "\\${dir:/opt/secrets/[***TRUSTSTORE
 SECRET***]:[***TRUSTSTORE PASSWORD FILE***]}"
 sasl.jaas.config: "\\${dir:/opt/secrets/[***JAAS.CONF
 SECRET***]:[***JAAS.CONF***]}"
secretsToMount:
 - create: false
 secretRef: "[***TRUSTSTORE SECRET***]"
 items:
 - key: "[***TRUSTSTORE PASSWORD KEY***]"
 path: "[***TRUSTSTORE PASSWORD FILE***]"
 - key: "[***TRUSTSTORE KEY***]"
 path: "[***TRUSTSTORE FILE***]"
 - create: false
 secretRef: "[***JAAS.CONF SECRET***]"
 items:
 - key: "[***JAAS.CONF KEY***]"
 path: "[***JAAS.CONF***]"

For Kerberos with TLS

#...
clusterConfigs:
 clusters:
 - clusterName: "[***CLUSTER NAME***]"
 tags:
 - "[***TAG1***]"
 - "[***TAG2***]"
 bootstrapServers: "[***BOOTSTRAP SERVERS***]"
 commonClientConfig:
 security.protocol: "SASL_SSL"
 sasl.mechanism: GSSAPI
 sasl.kerberos.service.name: [***KAFKA SERVICE NAME***]
 ssl.truststore.type: "pkcs12"
 ssl.truststore.location: "/opt/secrets/[***TRUSTSTORE
 SECRET***]/[***TRUSTSTORE FILE***]"
 ssl.truststore.password: "\\${dir:/opt/secrets/[***TRUSTSTORE
 SECRET***]:[***TRUSTSTORE PASSWORD FILE***]}"
 sasl.jaas.config: "\\${dir:/opt/secrets/[***JAAS & KEYTAB
 SECRET***]:[***JAAS.CONF***]}"
secretsToMount:
 - create: false
 secretRef: "[***TRUSTSTORE SECRET***]"
 items:

6

Cloudera Streams Messaging Operator for Kubernetes Registering Kafka clusters in Cloudera Surveyor for Apache Kafka

 - key: "[***TRUSTSTORE PASSWORD KEY***]"
 path: "[***TRUSTSTORE PASSWORD FILE***]"
 - key: "[***TRUSTSTORE KEY***]"
 path: "[***TRUSTSTORE FILE***]"
 - create: false
 secretRef: "[***JAAS & KEYTAB SECRET***]"
 items:
 - key: "[***JAAS.CONF KEY***]" # the keytab in the jaas.conf must
 point to /opt/secrets/[***JAAS & KEYTAB SECRET***]/[***KAFKA.KEYTAB***]
 path: "[***JAAS.CONF***]"
 - key: "[***KAFKA.KEYTAB KEY***]"
 path: "[***KAFKA.KEYTAB***]"

For OAUTH2 with TLS

#...
clusterConfigs:
 clusters:
 - clusterName: "[***CLUSTER NAME***]"
 tags:
 - "[***TAG1***]"
 - "[***TAG2***]"
 bootstrapServers: "[***BOOTSTRAP SERVERS***]"
 commonClientConfig:
 security.protocol: "SASL_SSL"
 sasl.mechanism: OAUTHBEARER
 sasl.login.callback.handler.class: "org.apache.kafka.common.securi
ty.oauthbearer.secured.OAuthBearerLoginCallbackHandler"
 sasl.oauthbearer.token.endpoint.url: "[***OAUTH TOKEN ENDPOINT
 URL***]"
 ssl.truststore.type: "pkcs12"
 ssl.truststore.location: "/opt/secrets/[***TRUSTSTORE
 SECRET***]/[***TRUSTSTORE FILE***]"
 ssl.truststore.password: "\\${dir:/opt/secrets/[***TRUSTSTORE
 SECRET***]:[***TRUSTSTORE PASSWORD FILE***]}"
 sasl.jaas.config: "\\${dir:/opt/secrets/[***JAAS.CONF
 SECRET***]:[***JAAS.CONF***]}"
secretsToMount:
 - create: false
 secretRef: "[***TRUSTSTORE SECRET***]"
 items:
 - key: "[***TRUSTSTORE PASSWORD SECRET***]"
 path: "[***TRUSTSTORE PASSWORD FILE***]"
 - key: "[***TRUSTSTORE KEY***]"
 path: "[***TRUSTSTORE FILE***]"
 - create: false
 secretRef: "[***JAAS.CONF SECRET***]"
 items:
 - key: "[***JAAS.CONF KEY***]"
 path: "[***JAAS.CONF***]"

Bootstrap servers for Kafka deployed in Kubernetes

If Cloudera Surveyor for Apache Kafka and the Kafka cluster you want to register are deployed in the same
Kubernetes cluster, you can use the DNS name of the Kubernetes Service that provides access to the Kafka cluster
as the bootstrap server.

7

Cloudera Streams Messaging Operator for Kubernetes Registering Kafka clusters in Cloudera Surveyor for Apache Kafka

For example, the DNS name of the default ClusterIP Service for a Kafka cluster that was deployed with the
Strimzi Cluster Operator is similar to the following example.

my-cluster-kafka-bootstrap.my-namespace.svc.cluster.local

Where my-cluster is the name of the Kafka cluster, kafka-bootstrap is a fixed affix, my-namespace is the namespace
of the cluster, and svc.cluster.local is the domain name used internally by the Kubernetes cluster.

Managing sensitive data in client configuration
Learn about storing, managing, and referencing sensitive data in the Kafka client properties you configure for
Cloudera Surveyor.

When you register a secure Kafka cluster, you must provide Cloudera Surveyor with Kafka client properties that
make connection to the cluster possible. If the Kafka cluster is secure, the properties that you specify include sensitive
data such as credentials, authentication tokens, certificates, and others.

Instead of hard-coding sensitive data in your configuration, Cloudera Surveyor supports mounting data from
Secrets that are in the same namespace. Data mounted this way can be referenced in your configuration.
References are resolved with the Kafka DirectoryConfigProvider.

Mounting Secrets

Use the secretsToMount property to specify which Secrets and keys from a Secret you want to mount. The
Secret must be in the same namespace where Cloudera Surveyor is installed. The following example mounts a
single key from a single Secret.

#...
secretsToMount:
 - create: false
 secretRef: "[***SECRET NAME***]"
 items:
 - key: "[***SECRET KEY***]"
 path: "[***PATH TO MOUNT DATA***]"

Each item inside secretsToMount must have a secretRef property, which specifies the name of the Secret to mount.
Optionally, you can include an items array, which maps Secret keys to paths. If not present, all keys from the
Secret are mounted as is.

Data is mounted to /opt/secrets/[***SECRET NAME***]/ in the Cloudera Surveyor Container. This means that
the value you specify in secretsToMount[*].items[*].path is relative to /opt/secrets/[***SECRET NAME***]/.

Referencing mounted data

All Kafka clients used by Cloudera Surveyor use the Kafka DirectoryConfigProvider. Use the following
syntax to reference mounted data as the value for a client property.

${dir:[***FULL DIR PATH***]:[***FILENAME***]}

For example, assume you have a Secret named my-kafka-jaas-secret. This Secret contains a single key named
jaas-key. The key contains a JAAS configuration. To mount the Secret and reference its data, you pass the
following configuration.

#...
clusterConfigs:
 clusters:
 - clusterName: "my-kafka"
 commonClientConfig:

8

Cloudera Streams Messaging Operator for Kubernetes Registering Kafka clusters in Cloudera Surveyor for Apache Kafka

 sasl.jaas.config: "\\${dir:/opt/secrets/my-kafka-jaas-secret/jaas.c
onf}"
secretsToMount:
 - create: false
 secretRef: "my-kafka-jaas-secret"
 items:
 - key: "jaas-key"
 path: "jaas.conf"

In this example, the value of the jaas-key key in the Secret is mounted to /opt/secrets/my-kafka-jaas-
secret/jaas.conf. This file is referenced as the value for the sasl.jaas.config Kafka client property using
DirectoryConfigProvider syntax. As a result, the Kafka client in Cloudera Surveyor that connects to the my-
kafka cluster uses the specified JAAS configuration for authentication.

Note: References in the client configurations must be escaped because Cloudera Surveyor itself uses the
same syntax for references.

Creating Secrets

If a Secret that you want to mount does not exist, you can create it by setting the secretsToMount[*].create
property to true. In this case, the specified Secret is created and managed by Helm. The content for each item in the
items array is set through the secretsToMount[*].items[*].content property.

Because the content property must include your actual data in plaintext, Cloudera recommends that you do not set this
property directly in your custom values file (values.yaml). Instead, pass the contents of your Secrets with the --se
t-file option when you run a helm install or helm upgrade command. This allows you to reference the contents of the
Secrets from a file. This way, sensitive data is not made available in shell history or stored directly in your values
file.

For example, assume you specify the following in your values file.

#...
secretsToMount:
 - create: true
 secretRef: "my-kafka-jaas-secret"
 items:
 - key: "jaas-key"
 path: "jaas.conf"

Notice that content is not specified. When applying this configuration with helm, you pass the contents of jaas-key in
my-kafka-jaas-secret using --set-file.

helm upgrade CLOUDERA-SURVEYOR [***CHART***] \
 --namespace [***NAMESPACE***] \
 --values [***MY-VALUES.YAML***] \
 --set-file secretsToMount[0].items[0].content=[***FILEPATH***] \
 --reuse-values

• Ensure that you use correct numeric indices ([0]) to target specific list items. secretsToMount can have multiple
Secrets, and each Secret can have multiple keys.

• [***FILEPATH***] in this case points to a file containing the JAAS configuration.

Client pools and client configuration hierarchy
Learn about the Kafka client pools used by Cloudera Surveyor and the configuration hierarchy that determines how
client properties are applied.

Cloudera Surveyor uses two separate pools of Kafka clients to interact with Kafka clusters. The pools are as follows.

9

Cloudera Streams Messaging Operator for Kubernetes Registering Kafka clusters in Cloudera Surveyor for Apache Kafka

• Snapshot pool – Used for periodic read operations. These clients collect cluster state, topic metadata, and
consumer group information from clusters.

• Admin pool – Used for administrative tasks, such as creating, deleting, or updating topics and consumer groups.

You can configure each pool of clients separately and on multiple configuration levels using various properties.

Configuration levels and hierarchy

Kafka client configuration is applied in a hierarchical order, from the least specific to most specific. Configurations
are also merged. If duplicate keys exist, the value from the more specific configuration overrides the value from the
less specific one.

This configuration hierarchy provides granular control over each client that Cloudera Surveyor uses. In addition, it
enables you to specify common properties at higher levels, reducing redundancy and simplifying management in
configuration.

The order from least to most specific levels is as follows.

• Global common – Client configuration applied to all Kafka clients that Cloudera Surveyor uses. Configured with
surveyorConfig.surveyor.commonClientConfig.

• Global pool – Client configuration applied to all Kafka clients belonging to the specified pool. Configured with
surveyorConfig.surveyor.snapshotClientPool.clientConfig and surveyorConfig.surveyor.adminClientPool.clientCo
nfig.

• Cluster common – Client configuration applied to Kafka clients used for the specified cluster. Configured with
clusterConfigs.clusters[*].commonClientConfig.

• Cluster pool – Client configuration applied to all Kafka clients belonging to the specified pool that connect to the
specified cluster. Configured with clusterConfigs.clusters[*].snapshotClientPool.clientConfig and clusterConfigs.c
lusters[*].adminClientPool.clientConfig

For example, assume you pass the following configuration to Cloudera Surveyor.

#...
surveyorConfig:
 surveyor:
 commonClientConfig:
 security.protocol: SASL_SSL
 sasl.mechanism: PLAIN
 snapshotClientPool:
 clientConfig:
 request.timeout.ms: 30000
 adminClientPool:
 clientConfig:
 retries: 5

clusterConfigs:
 clusters:
 - clusterName: "[***CLUSTER NAME***]"
 tags:
 - "[***TAG1***]"
 - "[***TAG2***]"
 bootstrapServers: "[***BOOTSTRAP SERVERS***]"
 commonClientConfig:
 security.protocol: "PLAINTEXT"
 snapshotClientPool:
 clientConfig:
 request.timeout.ms: 10000

The resulting client configuration used by the clients is as follows.

10

Cloudera Streams Messaging Operator for Kubernetes Configuring external access in Cloudera Surveyor for Apache Kafka

• For the snapshot clients connecting to the [***CLUSTER NAME***] cluster:

• security.protocol is PLAINTEXT (cluster common override).
• request.timeout.ms is 10000 (cluster pool override).

• For the admin clients connecting to the [***CLUSTER NAME***] cluster:

• security.protocol is PLAINTEXT (cluster common override).
• retries is 5 (no override).

Configuring external access in Cloudera Surveyor for
Apache Kafka

Learn how you can configure Cloudera Surveyor to provide secure external access to its UI.

Cloudera Surveyor provides a web-based UI that users access externally. By default the UI is exposed using a
NodePort type Kubernetes Service that is unsecured.

To further configure and secure external access, you can configure a Kubernetes Ingress on top of the NodePort.
Alternatively, you can deploy a LoadBalancer type Service instead of the Nodeport. Both methods
allow you to provide external users with secure (TLS) access to the UI. The choice between Ingress and
LoadBalancer depends on your infrastructure, security requirements, and need for advanced routing or certificate
management.

Note: While both methods allow for both encrypted (TLS) and unencrypted communication. Cloudera
recommends that you always enable encrypted communications with TLS for external access.

Configuring external access with Ingress
Learn how to configure external access to the Cloudera Surveyor UI with a Kubernetes Ingress.

Before you begin

• An Ingress controller is required. Ensure that you have one deployed in your Kubernetes cluster. For example,
you can use the Ingress-Nginx controller.

• Optional: cert-manager is installed in your Kubernetes cluster.

Although not required, cert-manager enables you to manage certificates automatically. Without cert-manager
you must manage your certificate manually through Secrets. The following steps assume that cert-manager is
available.

Procedure

1. Deploy an Issuer resource for cert-manager.

Take note of the name of the Issuer you deploy. You provide the name of the Issuer to the Ingress in a
following step. Deploying a Certificate resource is not needed, it is automatically requested and created by
the Ingress once it is deployed.

2. Configure ingress properties in a valiues file (values.yaml).

#...
ingress:
 enabled: true
 className: "nginx"
 rules:
 host: MY-APP.EXAMPLE.CLOUDERA.COM
 port: 443
 tls:

11

https://kubernetes.github.io/ingress-nginx/

Cloudera Streams Messaging Operator for Kubernetes Configuring external access in Cloudera Surveyor for Apache Kafka

 enabled: true
 secretRef: "[***INGRESS TLS CERT SECRET***]"
 extraAnnotations:
 cert-manager.io/issuer: "[***ISSUER NAME***]"

• ingress.enabled – Enables or disables Ingress.
• ingress.className – The class name of the Ingress controller. This example configures the Ingress-Nginx

controller.
• ingress.rules.host – Specifies the DNS hostname that the Ingress controller should match for incoming

HTTP/HTTPS requests.
• ingress.rules.port – The port of the Ingress rule. This is the port of the Kubernetes Service that the

Ingress forwards requests to.
• ingress.tls.enabled – Enables TLS for the Ingress.
• ingress.tls.secretRef –The name of the Secret that contains the Ingress TLS certificates. When using cert-

manager and the cert-manager.io/issuer annotation is set in the ingress.extraAnnotations property, a certificate
is requested automatically and saved to the Secret specified here.

• ingress.extraAnnotations.* – Extra annotations to apply to the Ingress.

The cert-manager.io/issuer annotation configures the name of the cert-manager Issuer. When set, a
certificate is automatically requested by the Ingress.

3. Apply configuration changes.

helm upgrade CLOUDERA-SURVEYOR [***CHART***] \
 --namespace [***NAMESPACE***] \
 --values [***VALUES.YAML***] \
 --reuse-values

4. Access the UI.

The UI is accessible from the Hostname/IP of the Ingress.

kubectl get ingress --namespace [***NAMESPACE***]

NAME CLASS HOSTS ADDRESS PORTS
#...
cloudera-surveyor-ingress nginx my-app.example.cloudera.com 10.14.
91.1 80, 443

In this example, the UI will be accessible on my-app.cloudera.com:443.

Configuring external access with LoadBalancer
Learn how to configure external access to the Cloudera Surveyor UI with a LoadBalancer type Service.

Before you begin

When deploying a LoadBalancer type Service, the actual load balancer is provisioned and managed by your
cloud or infrastructure provider. As a result, TLS settings and certificate management may vary depending on the
platform. Refer to vendor-specific documentation for detailed guidance on configuring TLS.

Procedure

1. Set service.type to LoadBalancer in a custom values file (values.yaml).

#...
service:
 type: LoadBalancer

12

Cloudera Streams Messaging Operator for Kubernetes Configuring external access in Cloudera Surveyor for Apache Kafka

 port: 8080
 tlsPort: 8443

Note: Ensure that Ingress is disabled (ingress.enabled: false). Ingress is disabled by default.

2. Apply configuration changes.

helm upgrade CLOUDERA-SURVEYOR [***CHART***] \
 --namespace [***NAMESPACE***] \
 --values [***VALUES.YAML***] \
 --reuse-values

3. Access the UI.

The UI is accessible from the Hostname/IP of the load balancer.

kubectl get service SURVEYOR-service --namespace [***NAMESPACE***]

Look at the IP listed in the EXTERNAL-IP column as well as the port in the PORT(S) column. You can access
the UI through this IP and port.

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT
(S)
cloudera-surveyor-service LoadBalancer 10.103.58.116 104.198.205.71
 8080:30219/TCP

In this example, the UI will be accessible on 104.198.205.71:30219.

13

	Contents
	Cloudera Surveyor for Apache Kafka configuration overview
	Registering Kafka clusters in Cloudera Surveyor for Apache Kafka
	Registering secure clusters
	Managing sensitive data in client configuration
	Client pools and client configuration hierarchy

	Configuring external access in Cloudera Surveyor for Apache Kafka
	Configuring external access with Ingress
	Configuring external access with LoadBalancer

