
Cloudera Data Engineering 1.15.1

Accessing the Cloudera Data Engineering
service using the CLI
Date published: 2020-07-30
Date modified: 2023-06-13

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Data Engineering | Contents | iii

Contents

Using the Cloudera Data Engineering command line interface...........................5

Downloading the Cloudera Data Engineering command line interface.............. 5

Configuring the CLI client.. 5
Cloudera Data Engineering CLI configuration options... 6
Creating and using multiple profiles using CDE CLI... 7
Cloudera Data Engineering CLI authentication...8
Cloudera Data Engineering CLI TLS configuration..10

CDE concepts.. 11

Managing Cloudera Data Engineering job resources using the CLI.................12
Creating a Cloudera Data Engineering resource using the CLI.. 12
Uploading files or other assets to a Cloudera Data Engineering resource using the CLI..................................13
Deleting a Cloudera Data Engineering resource using the CLI.. 14
Creating and updating Docker credentials... 15
Deleting Docker credentials... 15
Deleting an Airflow DAG..16

Managing Cloudera Data Engineering jobs using the CLI................................16
Creating and updating Apache Spark jobs using the CLI... 16
Creating and updating Apache Airflow jobs using the CLI.. 17
Listing jobs using the CLI... 18
Submitting a Spark job using the CLI...18
Running raw Scala code in Cloudera Data Engineering... 19
Submitting an Airflow job using the CLI..19
Running a Spark job using the CLI...20
Running a Airflow job using the CLI..20

Scheduling Spark jobs..21
Enabling, disabling, and pausing scheduled jobs...23
Managing the status of scheduled job instances..23

Managing workload secrets with Cloudera Data Engineering Spark Jobs
using the CLI.. 24

Creating a workload secret for Cloudera Data Engineering Spark Jobs using CLI...24
Updating a workload secret for Cloudera Data Engineering Spark Jobs using CLI..25
Linking a workload secret to the Cloudera Data Engineering Spark Job definitions using CLI....................... 26
Using a workload secret in Spark application code.. 26
Listing an existing workload secret to the Cloudera Data Engineering Spark Job..27

Deleting a workload secret for Cloudera Data Engineering Spark Jobs using CLI...27

Managing Sessions in Cloudera Data Engineering using the CLI.....................28
Creating a Session using the CDE CLI [Technical Preview]..28
Interacting with a Session using the CDE CLI... 28
Sessions example for the CDE CLI...28
Sessions command descriptions... 29

CDE Spark job example.. 30

CDE CLI command reference.. 31

CDE CLI Spark flag reference... 32

CDE CLI Airflow flag reference...33

CDE CLI list command syntax reference.. 33

Cloudera Data Engineering Using the Cloudera Data Engineering command line interface

Using the Cloudera Data Engineering command line
interface

Cloudera Data Engineering (CDE) provides a command line interface (CLI) client. You can use the CLI to create and
update jobs, view job details, manage job resources, run jobs, and so on.

Note: The CLI client is not forward compatible. Download the client for the version of the cluster you are
accessing. The Cluster Details page for every virtual cluster includes a link to download the CLI client for
that cluster version.

The CLI client can also use a password file for non-interactive uses, such as automation frameworks.

Related Information
Using CLI-API to Automate Access to Cloudera Data Engineering

Using Cloudera Data Engineering CLI

Downloading the Cloudera Data Engineering command
line interface

Cloudera Data Engineering (CDE) provides a command line interface (CLI) client.

In addition to the CDE API, you can use the CDE CLI client to access your CDE service. Using the CLI, you can
manage clusters and applications.

Note: The CLI client is not forward compatible. Download the client for the version of the cluster you are
accessing. The Cluster Details page for every virtual cluster includes a link to download the CLI client for
that cluster version.

To download the CLI client:

1. Navigate to the Cloudera Data Engineering Overview page by clicking the Data Engineering tile in the Cloudera
Data Platform (CDP) management console.

2. In the CDE web console, select an environment.
3. Click the Cluster Details icon for the virtual cluster you want to access.
4. Click the link under CLI TOOL to download the CLI client.

Configuring the CLI client

The CDE CLI client uses a configuration file, ~/.cde/config.yaml, to define the default CDE virtual cluster to interact
with, as well as other configuration parameters.

Before you begin

Make sure that you have downloaded the CDE CLI client.

5

https://www.cloudera.com/tutorials/cdp-using-cli-api-to-automate-access-to-cloudera-data-engineering.html
https://github.com/curtishoward/CDE_CLI_demo

Cloudera Data Engineering Configuring the CLI client

Procedure

1. Determine the virtual cluster endpoint URL.

a) Navigate to the Cloudera Data Engineering Overview page.
b) In the Environments column, select the environment containing the virtual cluster you want to access using the

CLI.
c) In the Virtual Clusters column on the right, click the Cluster Details icon for the virtual cluster you want to

access.
d) Click JOBS API URL to copy the URL to your clipboard.

Note: Currently, the URL copied to your clipboard begins with http://, not https://. To use the URL,
you must manually change this to https://.

2. On the host with the CLI client, create or edit the configuration file at ~/.cde/config.yaml. You can create multiple
profiles in the ~/.cde/config.yaml file and can be used while running commands. For more information, see
Creating and using multiple profiles.

Note: You can use a custom file location by setting the CDE_CONFIG environment variable.

3. In the configuration file, specify the CDP user and virtual cluster endpoint as follows:

user: <CDP_user>
vcluster-endpoint: <CDE_virtual_cluster_endpoint>

Important: The CLI in this release does not support TLS validation. You must disable TLS validation by
adding the following lines to the CDE configuration file:

tls-insecure: true

The connection still uses HTTPS, but the TLS certificate is not validated.

The CDP user is your workload username.

4. Save the configuration file.

5. If you have not done so already, make sure that the cde file is executable by running chmod +x /path/to/cde.

6. Run cde job list to verify your configuration. Enter your workload password when prompted.

Note: If the directory containing the cde file is not part of your PATH environment variable, you can
either add it to your PATH environment variable or use the full path when running the command.

You can also configure the CLI to use an access token so that you do not need to enter your password each
time. For more information, see Cloudera Data Engineering CLI authentication.

What to do next
See CDE CLI configuration options for other configuration options.

Cloudera Data Engineering CLI configuration options
The Cloudera Data Engineering (CDE) CLI can be configured using a configuration file, environment variables, or by
command flags.

Configuration Option Configuration File (~/.cde/confi
g.yaml)

Environment Variable Command Flag

User user: <username> CDE_USER=<user> --user <username>

Credentials file credentials-file: </path/to/creden
tials>

CDE_CREDENTIALS_FILE=</p
ath/to/credentials>

--credentials-file </path/to/c
redentials>

6

https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-cli-authentication.html
https://docs.cloudera.com/data-engineering/1.5.1/cli-access/topics/cde-cli-config-options.html

Cloudera Data Engineering Configuring the CLI client

Configuration Option Configuration File (~/.cde/confi
g.yaml)

Environment Variable Command Flag

Skip credentials file detection skip-credentials-file: true CDE_SKIP_CREDENTIALS
_FILE=true

--skip-credentials-file

Password file auth-pass-file:
<password_file>

CDE_AUTH_PASS_FI
LE=<password_file>

--auth-pass-file
<password_file>

Virtual cluster endpoint vcluster-endpoint:
 <virtual_cluster>

CDE_VCLUSTER_ENDPOIN
T=<virtual_cluster>

--vcluster-endpoint
 <virtual_cluster>

Disable authentication token
caching

auth-no-cache: true CDE_AUTH_NO_CACHE=true --auth-no-cache

Authentication token cache file auth-cache-file:
 <token_cache_file>

CDE_AUTH_CACHE_F
ILE=<token_cache_file>

--auth-cach-file
 <token_cache_file>

CDE configuration profile CDE_CONFIG_PROFI
LE=<profile_name>

--config-profile <profile_name>

Creating and using multiple profiles using CDE CLI
You can now add a collection of CDE CLI configurations grouped together as profiles, to the config.yaml file. You
can use these profiles while running commands. You can set the configurations either at a profile level or at a global
level.

About this task
The CDE CLI client uses ~/.cde/config.yaml configuration file to define the default CDE virtual cluster to interact
with and to define other configuration parameters. CDE CLI now supports the profiling option in the configuration
file. A profile is a collection of configurations that you can apply to a CLI command. Multiple named profiles can be
stored in the configuration file.

Before you begin
Make sure that you have downloaded the CLI client. For more information, see Using the Cloudera Data Engineering
command line interface.

Procedure

1. Create or open the ~/.cde/config.yaml file.

2. Add profiles to the config.yaml file based on the following structure:

<Global Configurations>
profiles:
- name: <Profile Name 1>
 <Profile Configurations>
- name: <Profile Name 2>
 <Profile Configurations>

Example Configuration file:

vcluster-endpoint: https://g7f9bnv2.cde.dev.cldr.work/dex/api/v1
user: cdpuser

profiles:
- name: dev
 user: cdpuser1
 vcluster-endpoint: https://y86gbhv3.cde.dev.cldr.work/dex/api/v1

- name: test

7

Cloudera Data Engineering Configuring the CLI client

 vcluster-endpoint: https://g7f9bnv2.cde8x.dev.cldr.work/dex/api/v1

• Global Configuration: These configurations are set at the global level. The configurations set here are used by
default when a profile name is not specified or the configuration is not specified in the profile

• Profile Configuration: These configurations are set at the profile level and overrides the respective
configurations set at the global level. You can select the profile either by using the environment variables, or
command flags.

Note: Any profile mentioned under profiles overrides the keys of global configuration and does not
replace all the configurations.

For example, if there are five parameters in global and only three are configured in the selected profile, the
final configurations will be three from the selected profile and the remaining from global . In the above
test profile example, it does not have the user configuration defined, so if the user selects the test profile,
except vcluster-endpoint, which is set in the test profile, all the other configurations are used from global .

Global configuration is accessed as the default profile name. Hence, you cannot create a profile named
default .

3. You can select the profile using the flag or environment variable.

Flag

cde job list --config-profile <PROFILE NAME>

Environment variable

export CDE_CONFIG_PROFILE=<PROFILE NAME>
cde job list

4. [Optional] You can view the active profile in the configuration file.

cde profile show-active

Cloudera Data Engineering CLI authentication
The Cloudera Data Engineering (CDE) CLI tool supports both interactive and transparent authentication. For
interactive authentication, if you have configured the CLI with your workload username, you are prompted for a
password. For transparent authentication, the CDE CLI supports a password file, Cloudera Data Platform (CDP)
access keys, and CDP credentials file.

The CDE CLI provides the following mechanisms for authentication:

• CDP access key stored in a credentials file
• CDP access key specified by CLI flag or environment variable
• Interactive prompt for workload password
• Workload password specified by CLI flag or environment variable

In all cases, the CLI uses the provided credentials to obtain an authentication token for the specified user, and caches
it locally in a file on the machine where the CLI is running. You can disable caching of tokens entirely by using the --
auth-no-cache CLI flag or the CDE_AUTH_NO_CACHE environment variable.

Important: The minimum required roles to obtain an access token are DEUser and EnvironmentUser.
EnvironmentAdmin role is not required.

The cache file location is automatically determined based on the default system user cache:

• Linux: $HOME/.cache/cloudera/cde or $XDG_CACHE_HOME/cloudera/cde/
• macOS: $HOME/Library/Caches/cloudera/cde/
• Windows: %LocalAppData%\cloudera\cde\

8

Cloudera Data Engineering Configuring the CLI client

If you want to use a custom location, specify it with the --auth-cache-file flag or the CDE_AUTH_CACHE_FILE
environment variable. You can use the special string $USERCACHE, which is expanded according to the default
system user cache (as listed above, without the /cloudera/cde/ suffix).

Note: If you include user: in your config.yaml file, the CLI tool will not use the access token and will
instead keep prompting for a password. If you want to use a credential file, then you must remove the
specified user from the profile.

CDP credentials file

When you generate a CDP access key, you can download it to a credentials file:

The access key is only displayed and available for download when you first generate it. After you close the dialog,
there is no way to recover the key.

Save or copy the credentials file to $HOME/.cdp/credentials on the machine where you are running the CDE CLI.
Credentials stored in this file are automatically discovered by both the CDE and CDP CLIs. If a credentials file is
found, authentication occurs transparently using the discovered CDP access key.

The CDE CLI automatically looks for a CDP access key in the following locations in the order given:

1. ./credentials
2. $HOME/.cde/credentials
3. /etc/cde/credentials
4. $HOME/.cdp/credentials

You can override this by using the --credentials-file </path/to/credentials> CLI flag to specify a different file
location.

You can also skip credential discovery by using the --skip-credentials-file flag.

CDP access key

If you do not want to use the credentials file, you can specify the access key using environment variables or command
line flags as follows:

9

https://docs.cloudera.com/cdp-public-cloud/cloud/cli/topics/mc-cli-generating-an-api-access-key.html

Cloudera Data Engineering Configuring the CLI client

Table 1: CDP access key environment variables and CLI flags

Parameter Environment variable CLI flag

Access key ID CDE_ACCESS_KEY_ID=<access_key_id> --access-key-id <access_key_id>

Access key secret CDE_ACCESS_KEY_SECRE
T=<access_key_secret>

--access-key-secret string
 <access_key_secret>

Along with the above flags, CDE CLI expects CDP endpoint URL to be configured. CDP Endpoint URL is same as
the CDP private cloud console URL. You can configure this using environment variables or command line flags as
follows:

Table 2: CDP endpoint environment variables and CLI flags

Parameter Environment variable CLI flag

CDP Endpoint CDE_CDP_ENDPOINT=<cdp_endpoint> --cdp-endpoint <cdp_endpoint>

Workload password prompt

When the CLI requires a new token for a virtual cluster, you are prompted for the password for the workload user,
identified by the --user CLI flag or the CDE_USER environment variable.

The workload password, for both human and machine users, can be set using the CDP User Management console. For
more information, see Managing user access and authorization.

Workload password file

If you do not want to be prompted for your workload password, you can provide a password file. A password file is a
file containing your workload password, and nothing else.

Note: When using a password file, the CLI strips one trailing newline character. If your password actually
includes a newline character at the end, add an extra newline at the end of the file.

You can specify the password file by using an environment variable or a command line flag as follows:

Environment variable

CDE_AUTH_PASS_FILE=</path/to/password/file>

Command line flag

--auth-pass-file </path/to/password/file>

Cloudera Data Engineering CLI TLS configuration

Important: The CLI in this release does not support TLS validation. You must disable TLS validation by
adding the following lines to the CDE configuration file (~/.cde/config.yaml):

tls-insecure: true

All CDE virtual cluster endpoints are configured with TLS. In non-production or on-premises environments the
TLS certificates are usually signed by a non-production or non-public certificate authority (CA). In these cases,
without additional configuration, the CLI tool fails as it attempts to validate the API server's TLS certificate. The CLI
provides a TLS configuration when using non-public/non-production CAs.

Specify a file containing the PEM encoded public certificate(s) of the signing CA in one of the following ways:

• add the --tls-ca-certs [***/PATH/TO/CA.PEM***] flag on the command line
• define the tls-ca-certs: [***/PATH/TO/CA.PEM***] variable in the ~/.cde/config.yaml configuration file
• set the CDE_TLS_CA_CERTS environment variable

10

https://docs.cloudera.com/management-console/1.5.1/private-cloud-user-management/topics/mc-private-cloud-managing-user-access.html

Cloudera Data Engineering CDE concepts

Replace [***/PATH/TO/CA.PEM***] with the path to a valid ca.pem file.

For public cloud, certificates are issued and signed by LetsEncrypt:

Note: LetsEncrypt Production CA Chain is part of the standard CA bundle therefore you do not need to add
it on Linux or macOS. It is however, mandatory on Windows, where you have to concatenate the following
into a single CA file:

• https://letsencrypt.org/certs/lets-encrypt-x3-cross-signed.pem.txt
• https://letsencrypt.org/certs/trustid-x3-root.pem.txt

For internal or on-premises environments you need to obtain your CA certificates through your internal process.

Note:

If using the CLI on Windows, ensure you use path styles such as C:\Users\janeblogs\.cde\ca.pem when
referencing local files.

CDE concepts

Learn about some basic concepts behind Cloudera Data Engineering (CDE) service to better understand how you can
use the command line interface (CLI).

CDE has three main concepts:

job

A 'job' is a definition of something that CDE can run. For example, the information required to run a
jar file on Spark with specific configurations.

job run

A 'job run' is an execution of a job. For example, one run of a Spark job on a CDE cluster.

resource

A 'resource' refers to a job dependency that must be available to jobs at runtime. Currently the
following resource types are supported:

• files is a directory of files that you can upload to CDE pods into a standard location (/app/mou
nt). This is typically for application (for example, .jar or .py files) and reference files, and not the
data that the job run will operate on. Multiple files resources can be referenced in a single job.

• python-env is used to provide custom Python dependencies to the job as a Python virtual
environment which is automatically configured. Up to one python-env resource can be specified
per job definition.

In addition, to support jobs with custom requirements, CDE also allows users to manage credentials which can be
used at job run time. Currently, only custom Docker registry credentials are supported.

Submitting versus running a job

The cde spark submit and cde airflow submit commands automatically create a new job and a new resource, submit
the job as a job run, and when the job run terminates they delete the job and resources.

A cde job run requires a job and all necessary resources to be created and uploaded to the CDE cluster beforehand.
The advantage of creating resources and jobs ahead of time is that resources can be reused across jobs, and that jobs
can be run using only a job name.

11

https://letsencrypt.org/certs/lets-encrypt-x3-cross-signed.pem.txt
https://letsencrypt.org/certs/trustid-x3-root.pem.txt

Cloudera Data Engineering Managing Cloudera Data Engineering job resources using the CLI

Managing Cloudera Data Engineering job resources using
the CLI

A resource in Cloudera Data Engineering (CDE) is a named collection of files or other resources referenced by a job.
The files can include application code, configuration files, or any other arbitrary files required by a job. A resource
can also be a Python virtual environment, or a custom Docker container image.

Note: Custom Docker container images is a Technical Preview feature. Contact your Cloudera account
representative to enable access to this feature.

You can think of resources as any supporting files, libraries, or images that a CDE job requires to run. Resources can
be created and deleted, and files can be added to and deleted from a resource as needed.

A resource can also be a Python virtual environment specification (as a requirements.txt file), or a custom Docker
container image.

Before continuing, make sure that you have downloaded and configured the CLI client.

Creating a Cloudera Data Engineering resource using the CLI
A resource in Cloudera Data Engineering (CDE) is a named collection of files or other assets referenced by a job,
including application code, configuration files, or any other arbitrary files required by a job. A resource can also be a
Python virtual environment, or a custom Docker container image.

Before you begin

Note: Custom Docker container images is a Technical Preview feature. Contact your Cloudera account
representative to enable access to this feature.

Make sure that you have downloaded and configured the CLI client.

12

https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-download-cli.html
https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-configure-cli.html
https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-download-cli.html
https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-configure-cli.html

Cloudera Data Engineering Managing Cloudera Data Engineering job resources using the CLI

Procedure

1. Create a resource using the cde resource create command.

The cde resource create syntax is as follows:

cde resource create [flags]

You can view the list of flags by running cde resource create --help, or you can view the CDE CLI reference
documentation.

Example: Create a file resource

cde resource create --name cde-file-resource --type files

Example: Create a Python virtual environment resource

cde resource create --name cde-python-env-resource --type python-env --p
ython-version python3

Note:

You can specify a PyPi mirror for a Python virtual environment resource using the --pypi-mirror flag.
Note, that this requires network access to the mirror from the CDP environment.

Example: Create a custom Docker container image resource

cde resource create --name cde-container-image-resource --type custom-ru
ntime-image

2. Verify that the resource was created by running cde resource list.

Uploading files or other assets to a Cloudera Data Engineering resource
using the CLI

A resource in Cloudera Data Engineering (CDE) is a named collection of files or other assets referenced by a job,
including application code, configuration files, or any other arbitrary files required by a job. A resource can also be a
Python virtual environment, or a custom Docker container image.

Before you begin

Note: Custom Docker container images is a Technical Preview feature. Contact your Cloudera account
representative to enable access to this feature.

Make sure that you have downloaded and configured the CLI client.

Make sure that you have created a resource.

13

https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-cli-reference.html
https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-download-cli.html
https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-configure-cli.html

Cloudera Data Engineering Managing Cloudera Data Engineering job resources using the CLI

Procedure

1. Upload assets to a resource using the cde resource upload command.

The cde resource upload syntax is as follows:

cde resource upload [flags]

You can view the list of flags by running cde resource upload --help, or you can view the CDE CLI reference
documentation.

Note: For Python environment resources, you can only upload a requirements.txt file. Python
environment resources do not support arbitrary file upload. If the local file is named something other than
requirements.txt, you must add the flag --resource-path requirements.txt to the command.

Example: Upload a file resource

cde resource upload --name [***RESOURCE_NAME***] --local-pat
h [***LOCAL_PATH***] [--resource-path [***PATH_IN_RESOURCE***]]

Use repeated local path flags, and/or */?/[a-z] wildcards, to specify multiple files. Use quotes around the local
path when including wildcards, for example, --local-path "*.jar". For a single file --resource-path is used for the
resource filename. For multiple files --resource-path is used for the resource directory.

Example: Upload a Python virtual environment resource

cde resource upload --name cde-python-env-resource --local-path ${HOME}/
requirements.txt

Example: Upload a custom Docker container image resource

cde resource upload --name cde-container-image-resource --type custom-ru
ntime-image

Example: Upload a file for a file resource

cde resource upload --name cde-file-resource --local-path /path/to/local/
file

Example: Upload and extract archive to resource

Currently supported archive file formats are : .zip and .tar.gz

cde resource upload-archive --name cde-file-resource --local-path /path/
to/local/file

2. Verify that the file is included in the resource by running cde resource describe --name <resource_name>.

Deleting a Cloudera Data Engineering resource using the CLI
A resource in Cloudera Data Engineering (CDE) is a named collection of files or other resources referenced by a job,
including application code, configuration files, or any other arbitrary files required by a job. A resource can also be a
Python virtual environment, or a custom Docker container image. Resources can be deleted using the CLI.

Before you begin

• Make sure that you have downloaded and configured the CLI client.
• Make sure that the resource you are deleting is no longer needed for any jobs. (Resources cannot be deleted if they

are referenced in one or more jobs)

14

https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-cli-reference.html
https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-download-cli.html
https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-configure-cli.html

Cloudera Data Engineering Managing Cloudera Data Engineering job resources using the CLI

Procedure

1. Run cde resource describe --name <resource_name>. View the output and confirm that the resource you want
to delete is no longer required, and does not contain any files that you need to retain.

2. Delete the resource by running cde resource delete --name <resource_name>

3. Verify that the resource is deleted by running cde resource list and confirming that the resource is no longer listed.

Creating and updating Docker credentials
To allow the use of private Docker registries, Cloudera Data Engineering (CDE) supports the creation and
management of credentials. These are stored securely in the Kubernetes cluster as secrets and cannot be accessed by
end users directly. Credentials are attached to job runs automatically by the CDE backend.

About this task

Note: Custom Docker container images is a Technical Preview feature. Contact your Cloudera account
representative to enable access to this feature.

Procedure

1. To create a new Docker credential:

cde credential create --name <cred_name> --type docker-basic --docker-se
rver <registry_URL_or_hostname> --docker-username <docker_user>

2. Enter the Docker registry password when you are prompted.

An optional --description field allows you to annotate the credential with a human readable description.

3. Run cde credential list to verify that the credential was created:

cde credential list [--filter <filter>]

For more information on filtering syntax, see CDE CLI list command syntax reference on page 33.

4. If you want to update a credential, use the cde credential update command.

This command allows you to update the secret content, the credential description, or both.

cde credential update --name <cred_name> [--docker-serve
r <registry_URL_or_hostname> --docker-username <docker_user>] [--descrip
tion "<desc>"]

Deleting Docker credentials
To allow the use of private Docker registries, Cloudera Data Engineering (CDE) supports the creation and
management of credentials. These are stored securely in the Kubernetes cluster as secrets and cannot be accessed by
end users directly. Credentials are attached to job runs automatically by the CDE backend.

Before you begin

• Make sure that you have downloaded and configured the CLI client.
• Make sure that the credential you are deleting is no longer needed for any jobs.

15

https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-download-cli.html
https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-configure-cli.html

Cloudera Data Engineering Managing Cloudera Data Engineering jobs using the CLI

About this task

Note: Custom Docker container images is a Technical Preview feature. Contact your Cloudera account
representative to enable access to this feature.

Procedure

1. Delete the credential by running cde credential delete --name <cred_name>

2. Run cde credential list to verify that the credential was deleted:

cde credential list [--filter <filter>]

For more information on filtering syntax, see CDE CLI list command syntax reference on page 33.

Deleting an Airflow DAG
You can delete unused Airflow DAGs using the Cloudera Data Engineering (CDE) command line interface (CLI).

About this task
The default process of removing CDE resources is to delete them together with the jobs owning them, using the cde
job delete command. The cde airflow delete-dag command is a fallback for when Airflow gets into an unexpected
situation and you have to remove a DAG with no associated Airflow job.

Procedure

To delete a DAG from Airflow that is not associated with a job, use the cde airflow delete-dag command:

cde airflow delete-dag --dag-id <DAG_ID>

Managing Cloudera Data Engineering jobs using the CLI

A job in Cloudera Data Engineering (CDE) is a definition of something that CDE can run. For example, the
information required to run a JAR file on Spark with specific configurations. A 'job run' is an execution of a job. For
example, one run of a Spark job on a CDE cluster.

Creating and updating Apache Spark jobs using the CLI
The following example demonstrates how to create a Spark application in Cloudera Data Engineering (CDE) using
the command line interface (CLI).

Before you begin
Make sure that you have downloaded the CLI client. For more information, see Using the Cloudera Data Engineering
command line interface . While creating a job if you want to use the [--data-connector] flag, you must obtain the
name of the data connector from the CDE UI by navigating to Administration > click Service Details icon of the CDE
Service > Data Connectors tab.

16

https://docs.cloudera.com/data-engineering/1.5.1/cli-access/topics/cde-cli.html
https://docs.cloudera.com/data-engineering/1.5.1/cli-access/topics/cde-cli.html

Cloudera Data Engineering Managing Cloudera Data Engineering jobs using the CLI

Procedure

1. Run the cde job create command as follows:

cde job create --application-file <path_to_application_jar> --c
lass <application_class> [--default-variable name=value] [--data-connector
 name] --name <job_name> --num-executors <num_executors> --type spark

To see the full command syntax and supported options, run cde job create --help.

With [--default-variable] flags you can replace strings in job values. Currently the supported fields are:

• Spark application name
• Spark arguments
• Spark configurations

For a variable flag name=value any substring {{{name}}} in the value of the supported field gets replaced with
value. These can be overriden by the [--variable] flag during the job run.

Using the [--data-connector] flag, you can specify the name of the data connector. Currently, only the Ozone type
data connector is supported and it must be created before the job run.

2. Run cde job describe to verify that the job was created:

cde job describe --name <job_name>

3. If you want to update the job configuration, use the cde job update command.
For example, to change the number of executors:

cde job update --name test_job --num-executors 15

To see the full command syntax and supported options, run cde job update --help.

4. To verify the updated configuration, run cde job describe again:

cde job describe --name <job_name>

Creating and updating Apache Airflow jobs using the CLI
The following example demonstrates how to create an Airflow DAG in Cloudera Data Engineering (CDE) using the
command line interface (CLI).

Before you begin
Make sure that you have downloaded the CLI client. For more information, see Using the Cloudera Data Engineering
command line interface.

About this task

17

https://docs.cloudera.com/data-engineering/1.5.1/cli-access/topics/cde-cli-run-job.html
https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-cli.html
https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-cli.html

Cloudera Data Engineering Managing Cloudera Data Engineering jobs using the CLI

Procedure

1. Run the cde job create command as follows:

cde job create --name <job_name> --type airflow --dag-file <DAG_file> --m
ount-1-resource <your_DAG_resource> [other Airflow flags...]

<DAG_file>

is a reference to a file within a CDE resource

To see the full command syntax and supported options, run cde job create --help.

Note: Airflow DAGs manage their own schedules and so their schedules cannot be set through the CLI.

2. Run cde job describe to verify that the job was created:

cde job describe --name <job_name>

3. If you want to update the job configuration, use the cde job update command.
For example, to change the number of executors:

cde job update --name test_job

To see the full command syntax and supported options, run cde job update --help.

4. To verify the updated configuration, run cde job describe again:

cde job describe --name <job_name>

Listing jobs using the CLI
To view existing applications, run cde job list. To view details for a specific application, run cde job describe --name
 <job_name>

Submitting a Spark job using the CLI
The following example demonstrates how to submit a JAR or Python file to run on CDE Spark in Cloudera Data
Engineering (CDE) using the command line interface (CLI).

About this task

Using the cde spark submit command is a quick and efficient way of testing a spark job, as it spares you the task of
creating and uploading resources and job definitions before running the job, and cleaning up after running the job.

This command is recommended only for JAR or Python files that need to be run just once, because the the file
is removed from Spark at the end of the run. To manage jobs that need to be run more than once, or that contain
schedules, use cde job run instead of this command.

Procedure

To submit a JAR or Python file to run on CDE Spark, use the CLI command:

cde spark submit <JAR/Python file> [args...] [Spark flags...] [--job-name <j
ob name>] [--hide-logs]

You can use [--job-name <job name>] to specify the same CDE job name for consecutive cde spark submit
commands. To see the full command syntax and supported options, run cde spark submit --help.

18

Cloudera Data Engineering Managing Cloudera Data Engineering jobs using the CLI

For example:

To submit a job with a local JAR file:

cde spark submit my-spark-app-0.1.0.jar 100 1000 --class com.company.app.spa
rk.Main

The CLI displays the job run ID followed by the driver logs, unless you specified the --hide-logs option. The script
returns an exit code of 0 for success or 1 for failure.

Running raw Scala code in Cloudera Data Engineering
Cloudera Data Engineering (CDE) supports running raw Scala code from the command line, without compiling it into
a JAR file. You can use the cde spark submit command to run a .scala file. CDE recognizes the file as Scala code and
runs it using spark-shell in batch mode rather than spark-submit.
Limitations:

• When setting the Log Level from the user interface, the setting is not applied to the raw Scala
jobs.

• Do not use package <something> in the raw Scala job file as Raw Scala File is used for
Scripting and not for Jar development and packaging.

Note: CDE does not currently support interactive sessions. The Scala code runs in batch mode spark-shell.

Run cde spark submit as follows to run a Scala file:

cde spark submit filename.scala --jar <jar_dependency_1> --j
ar <jar_dependency_2> ...

Submitting an Airflow job using the CLI
The following example demonstrates how to submit a DAG file to immediately run on CDE Airflow in Cloudera
Data Engineering (CDE) using the command line interface (CLI).

About this task

Using the cde airflow submit command is a quick and efficient way of testing an Airflow job, as it spares you the task
of creating and uploading resources and job definitions before running the job, and cleaning up after running the job.

This command is recommended only for Airflow DAGs that need to be run just once, because the DAG is removed
from Airflow at the end of the run. To manage Airflow DAGs that need to be run more than once, or that contain
schedules, use cde job run instead of this command.

Procedure

To submit a DAG file to run on CDE Airflow, use the CLI command:

cde airflow submit <DAG python file> [--config <key=value>]* [--job-name <jo
b name>]

To see the full command syntax and supported options, run cde airflow submit --help.

For example:

To submit a job with a local DAG file:

cde airflow submit my-dag.py

19

Cloudera Data Engineering Managing Cloudera Data Engineering jobs using the CLI

When the job has been submitted the CLI displays the job run ID, waits for the job to terminate, and returns an exit
code of 0 for success or 1 for failure.

Running a Spark job using the CLI
The following example demonstrates how to run a Cloudera Data Engineering (CDE) Spark job using the command
line interface (CLI).

Before you begin

Make sure that the Spark job has been created and all necessary resources have been created and uploaded.

Note: Custom Docker container images is a Technical Preview feature. Contact your Cloudera account
representative to enable access to this feature.

About this task

Using the cde job run requires more preparation on the target environment compared to the cde spark submit
command. Whereas cde spark submit is a quick and efficient way of testing a Spark job during development, cde job
run is suited for production environments where a job is to be run multiple times, therefore removing resources and
job definitions after every job run is neither necessary, nor viable.

Procedure

To run a Spark job, run the following command:

cde job run --name <job name> [Spark flags...] [--wait] [--variable name=val
ue...]

• With [Spark flags...] you can override the corresponding job values. Spark flags that can be repeated replace the
original list, except for --conf which only adds or replaces values for the given keys.

• With [--variable] flags you can replace strings in job values. Currently the supported fields are:

• Spark application name
• Spark arguments
• Spark configurations

For a variable flag name=value any substring {{{name}}} in the value of the supported field gets replaced with
value.

• A custom runtime Docker image can be specified for the job using the --runtime-image-resource-name flag, which
has to refer to the name of a custom image resource that has already been created.

By default the command returns the job run ID as soon as the job has been submitted.

Optionally, you can use the --wait switch to wait until the job run ends and returns a non-zero exit code if the job run
was not successful.

Running a Airflow job using the CLI
The following example demonstrates how to run a Cloudera Data Engineering (CDE) Airflow job using the command
line interface (CLI).

Before you begin

Make sure that the job has been created and all necessary resources have been created and uploaded.

20

Cloudera Data Engineering Scheduling Spark jobs

Note: Custom Docker container images is a Technical Preview feature. Contact your Cloudera account
representative to enable access to this feature.

About this task

Using the cde job run requires more preparation on the target environment compared to the cde airflow submit
command. Whereas cde airflow submit is a quick and efficient way of testing an Airflow job during development,
cde job run is suited for production environments where a job is to be run multiple times, therefore removing
resources and job definitions after every job run is neither necessary, nor viable.

Procedure

To run an Airflow job, run the following command:

cde job run --name <job name> [--config <key=value>]* [--wait]

Airflow configs provided at job run time will override the corresponding job configs.

By default the command returns the job run ID as soon as the job has been submitted.

Optionally, you can use the --wait switch to wait until the job run ends and returns a non-zero exit code if the job run
was not successful.

Scheduling Spark jobs

Spark jobs can optionally be scheduled so that they are automatically run on an interval. Cloudera Data Engineering
uses the Apache Airflow scheduler to create the schedule instances.

About this task

Note:

Airflow DAGs manage their own schedules, therefore Airflow job schedules cannot be set in this way, other
than by using the operational commands pause, unpause, clear, mark-success.

Before you begin

Make sure that the Spark job has been created and all necessary resources have been created and uploaded.

Note: Custom Docker container images is a Technical Preview feature. Contact your Cloudera account
representative to enable access to this feature.

21

Cloudera Data Engineering Scheduling Spark jobs

Procedure

1. Define a running interval for your Spark job:

The schedule interval is defined by a cron expression. Intervals can be regular, such as daily at 3 a.m., or irregular,
such as hourly but only between 2 a.m. and 6 a.m. and only on weekdays. You can provide the cron expression
directly or you can generate it using flags.

Note: Scheduled job runs start at the end of the first full schedule interval after the start date, at the end of
the scheduled period. For example, if you schedule a job with a daily interval with a start_date of 14:00,
the first scheduled run is triggered at the end of the next day, after 23:59:59. However if the start_date is
set to 00:00, it is triggered at the end of the same day, after 23:59:59.

Available schedule interval flags are:

--cron-expression

A cron expression that is provided directly to the scheduler. For example, 0 */1 * * *

--every-minutes

Running frequency in minutes. Valid values are 0-59. Only a single value is allowed.

--every-hours

Running frequency in hours. Valid values are 0-23. Only a single value is allowed.

--every-days

Running frequency in days. Valid values are 1-31. Only a single value is allowed.

--every-months

Running frequency in months. Valid values are 1-12. Only a single value is allowed.

--for-minutes-of-hour

The minutes of the hour to run on. Valid values are 0-59. Single value, range (e.g.: 1-5), or list (e.g.:
5,10) are allowed.

--for-hours-of-day

The hours of the day to run on. Valid values are 0-23. Single value, range (e.g.: 1-5), or list (e.g.:
5,10) are allowed.

--for-days-of-month

The days of the month to run on. Valid values are 1-31. Single value, range (e.g.: 1-5), or list (e.g.:
5,10) are allowed.

--for-months-of-year

The months of the year to run on. Valid values are 1-12 and JAN-DEC. Single value, range (e.g.:
1-5), or list (e.g.: APR,SEP) are allowed.

--for-days-of-week

The days of the week to run on. Valid values are SUN-SAT and 0-6. Single value, range (e.g.: 1-5),
or list (e.g. TUE,THU) are allowed.

For example, to set the interval as hourly but only between 2 a.m. and 6 a.m. and only on weekdays, use the
command:

cde job create --name test_job --schedule-enabled=true --every-hours 1 --
for-minutes-of-hour 0 --for-hours-of-day 2-6 --for-days-of-week MON-FRI --
schedule-start 2021-03-09T00:00:00Z

Or, equivalently, using a single cron expression:

cde job create --name test_job --schedule-enabled=true --cron-expression
 '0 2-6/1 * * MON-FRI' --schedule-start 2021-03-09T00:00:00Z

22

Cloudera Data Engineering Scheduling Spark jobs

2. Define a time range for your Spark job:

The schedule also defines the range of time that instances can be created for. The mandatory --schedule-start flag
timestamp tells the scheduler the date and time from which the scheduling begins. The optional --schedule-end
flag timestamp tells the scheduler the last date and time at which the schedule is active. If --schedule-end is not
specified, the job runs at the scheduled interval until it is stopped manually.

Note: Timestamps must be specified in ISO-8601 UTC format ('yyyy-MM-ddTHH:mm:ssZ'). UTC
offsets are not supported.

For example, to create a schedule that runs at midnight for each day of a single week, use the following command:

cde job create --name test_job --schedule-enabled=true --every-days 1 --
for-minutes-of-hour 0 --for-hours-of-day 0 --schedule-start 2021-03-09T0
0:00:00Z --schedule-end 2021-03-15T00:00:00Z

Enabling, disabling, and pausing scheduled jobs
Using the Cloudera Data Engineering (CDE) command line interface (CLI), you can enable, disable, or pause
scheduled job runs.

Before you begin

Note:

Disabling the schedule removes all record of prior schedule instances.

Note:

Pausing and unpausing the schedule does not remove the record of prior schedule instances.

Procedure

• To enable or disable a job schedule, use the following command:

cde job (create | update) --name <job name> --schedule-enabled=(true | f
alse) ...

• To pause a job schedule upon schedule creation:

cde job (create | update) --name <job name> --schedule-enabled=true --sc
hedule-paused=true ...

• To pause an existing job schedule:

cde job schedule pause --name <job name>

• To unpause an existing job schedule:

cde job schedule unpause --name <job name>

Managing the status of scheduled job instances
Using the Cloudera Data Engineering (CDE) command line interface (CLI), you can clear the statuses of a range of
scheduled instances or mark a scheduled job instance as successful.

23

Cloudera Data Engineering Managing workload secrets with Cloudera Data Engineering Spark
Jobs using the CLI

Procedure

• To clear the status of a range of scheduled instances, run the following command:

cde job schedule clear [--schedule-start <start of clear period>] [--sch
edule-end <end of clear period>]

• To mark a single scheduled instance as successful, run the following command:

cde job schedule mark-success --execution-date <execution date of schedu
led instance>

where <execution date of scheduled instance> is the timestamp that the instance was scheduled for, not when it
actually ran.

Managing workload secrets with Cloudera Data
Engineering Spark Jobs using the CLI

Cloudera Data Engineering (CDE) provides a secure way to create and store workload secrets for CDE Spark Jobs.
This is a more secure alternative to storing credentials in plain text embedded in your application or job configuration.

Creating a workload secret for Cloudera Data Engineering Spark Jobs
using CLI

You can create workload secrets using interactive mode or using a JSON file. You can use the --workload-
cred-json-file and the --workload-cred-key flags along with the --type flag supporting workload-
credential.

Before you begin

Make sure that you have downloaded the CLI client. For more information, see Using the Cloudera Data Engineering
command line interface .

For Interactive mode

• Specify --workload-cred-key when prompted for secret values multiple times. The values which are sensitive
are read as a hidden password field interactively from the CLI.

./cde credential create --name <workload-credential-name> --type workloa
d-credential --workload-cred-key <workload-credential_key> --workload-cr
ed-key <workload-credential_key>

For example:

./cde credential create --name workload-cred-1 --type workload-credentia
l --workload-cred-key db-pass --workload-cred-key aws-secret

Enter Secret value for Workload Cred key "db-pass" :
Re-enter Secret value for Workload Cred key "db-pass" :
Enter Secret value for Workload Cred key "aws-secret" :
Re-enter Secret value for Workload Cred key "aws-secret" :

For JSON file

24

https://docs.cloudera.com/data-engineering/1.5.1/cli-access/topics/cde-cli.html
https://docs.cloudera.com/data-engineering/1.5.1/cli-access/topics/cde-cli.html

Cloudera Data Engineering Managing workload secrets with Cloudera Data Engineering Spark
Jobs using the CLI

1. Create a JSON file with workload secret keys.

sample.json file

{
 "<workload-credential-key>": "<secret_value_of_key>",
 "<workload-credential-key>": "<secret_value_of_key>"
 }

For example:

sample.json file

{
 "aws-secret": "secret123",
 "db-pass": "dbpass123"
 }

2. Run the following command to create the workload secret:

./cde credential create --name <workload-credential-name> --type worklo
ad-credential --workload-cred-json-file <workload-credential-json-file-n
ame>

For example:

./cde credential create --name workload-cred-1 --type workload-credenti
al --workload-cred-json-file sample.json

Updating a workload secret for Cloudera Data Engineering Spark Jobs
using CLI

You can update an existing secret to use it with the Cloudera Data Engineering (CDE) Spark Jobs.

For Interactive mode

• Specify --workload-cred-key when prompted for secret values multiple times. The values which are sensitive
are read as a hidden password field interactively from the CLI.

./cde credential update --name <workload-credential-name> --workload-cre
d-key <workload-credential_key> --workload-cred-key <workload-credential
_key>

For example:

./cde credential update --name workload-cred-1 --workload-cred-key db-pa
ss --workload-cred-key aws-secret --workload-cred-key api-token
Enter Secret value for Workload Cred key "dbPassword" :
Re-enter Secret value for Workload Cred key "dbPassword" :
Enter Secret value for Workload Cred key "aws-secret" :
Re-enter Secret value for Workload Cred key "aws-secret" :

For JSON file

1. Update the JSON file with workload secret keys.

For example:

sample.json file – file name

25

Cloudera Data Engineering Managing workload secrets with Cloudera Data Engineering Spark
Jobs using the CLI

{
 "aws-secret": "secret123",
 "db-pass": "dbpass123"
 }

2. Run the following command to create the workload secret with updated parameters:

./cde credential update --name <workload-credential-name> --type workloa
d-credential --workload-cred-json-file <workload-credential-json-file-na
me>

For example:

./cde credential update --name workload-cred-2 --workload-cred-json-file
 sample.json

Linking a workload secret to the Cloudera Data Engineering Spark Job
definitions using CLI

After you create a workload secret, you can link it to the Cloudera Data Engineering (CDE) Spark Job definitions that
you created using CLI.

./cde job create --name <workload-credential-name> --type <workload-credenti
al_type> --application-file <application-file-name> --workload-credential <w
orkload-credential-1> --workload-credential <workload-credential-2>

For example:

./cde job create --name test-workload-job --type spark --mount-1-resource te
st-workload --application-file test-workload-cred.py --workload-credential w
orkload-cred-1 --workload-credential workload-cred-2

Using a workload secret in Spark application code
To use the workload secret credentials, you can read the credentials that are mounted into the Spark drivers and
executors as read-only files.

The workload secrets are mounted into the Spark drivers and executors in this path:

/etc/dex/secrets/<workload-credential-name>/<credential-key-1> /etc/dex/secr
ets/<workload-credential-name>/<credential-key-2>

Example workload credentials to use in the application code:

The workload credential is created with the command below.

./cde credential create --name workload-cred-1 --type workload-credential --
workload-cred-key db-pass --workload-cred-key aws-secret

The secrets can be read as local files from the paths below within the Spark drivers and executors:

/etc/dex/secrets/workload-cred-1/aws-secret
/etc/dex/secrets/workload-cred-1/db-pass

26

Cloudera Data Engineering Managing workload secrets with Cloudera Data Engineering Spark
Jobs using the CLI

Example of a PySpark application code to read a secret:

from pyspark.sql import SparkSession

spark = SparkSession \
 .builder \
 .appName("Sample DB Connection") \
 .getOrCreate()

read the password from the local file
dbPass=open("/etc/dex/secrets/workload-cred-1/db-pass").read()

use the password in a jdbc connection
jdbcDF= spark.read \
 .jdbc("jdbc:postgresql:dbserver", "schema.tablename",
 properties={"user": "username", "password": dbPass})

Listing an existing workload secret to the Cloudera Data Engineering
Spark Job

You can list an existing secret for Cloudera Data Engineering (CDE) Spark Jobs using CLI.

./cde credential list --filter 'type[eq]workload-credential'

Example output:

[
 {
 "name": "workload-cred-1",
 "type": "workload-credential",
 "description": "workload credential description",
 "created": "2022-12-18T07:26:41Z",
 "modified": "2022-12-18T07:26:41Z"
 }
]

Deleting a workload secret for Cloudera Data Engineering Spark Jobs
using CLI

You can delete an existing secret for Cloudera Data Engineering (CDE) Spark Jobs using CLI.

About this task

./cde credential delete --name <workload-credential-name>

For example:

./cde credential delete --name workload-cred-1

27

Cloudera Data Engineering Managing Sessions in Cloudera Data Engineering using the CLI

Managing Sessions in Cloudera Data Engineering using
the CLI

A Cloudera Data Engineering (CDE) Session is an interactive short-lived development environment for running
Spark commands to help you iterate upon and build your Spark workloads.

Creating a Session using the CDE CLI [Technical Preview]
The cde session create command allows you to create a new Session.

Procedure

Run the following command in the CDE CLI:

cde session create --name <session-name> --type <pyspark/spark-scala>

Interacting with a Session using the CDE CLI
Once your Session has been created, you can interact with it using the cde sessions interact command.

About this task
Below is an example that demonstrates how to interact with a PySpark or Scala Session in CDE using the CLI.

Procedure

Run the following command in the CDE CLI:

cde session interact --name <session-name>

Sessions example for the CDE CLI
In this example, a Session is created using the Cloudera Data Engineering (CDE) CLI.

> cde session create --name cli-submission-6 --type spark-scala --conf "key=
value"
> cde session list
+-------------------+-----------+-------------+-------------+-------------
---------+----------------------+-------------------------+
| NAME | STATE | TYPE | DESCRIPTION | CREATED
 | LAST UPDATED | CREATOR |
+-------------------+-----------+-------------+-------------+-------------
---------+----------------------+-------------------------+
| cli-submission-1 | preparing | spark-scala | | 2023-02-15T08:
47:41Z | 2023-02-15T08:47:41Z | csso_surya.balakrishnan |
| cli-submission-19 | preparing | spark-scala | | 2023-02-15T0
7:50:08Z | 2023-02-15T07:50:08Z | csso_surya.balakrishnan |
+-------------------+-----------+-------------+-------------+---------------
-------+----------------------+-------------------------+
> cde session describe --name techf-run-1
{
 "name": "techf-run-1",
 "state": "idle",
 "type": "pyspark",

28

Cloudera Data Engineering Managing Sessions in Cloudera Data Engineering using the CLI

 "created": "2023-02-15T13:19:22Z",
 "lastStateUpdated": "2023-02-15T13:19:43Z",
 "creator": "csso_surya.balakrishnan",
 "interactiveSpark": {
 "submitID": "95",
 "kind": "pyspark",
 "driverMemory": "1g",
 "driverCores": 1,
 "executorMemory": "1g",
 "executorCores": 1,
 "numExecutors": 1,
 "conf": {
 "spark.kubernetes.driver.annotation.sidecar.istio.io/inject": "false",
 "spark.kubernetes.executor.annotation.sidecar.istio.io/inject": "false
",
 "spark.pyspark.python": "python3"
 }
 }
}
> cde session connect --name tech-forum
Starting REPL...
Connected to Cloudera Data engineering...
Welcome to
 ____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /___/ .__/_,_/_/ /_/_\ version 3.3.0
 /_/
Using Scala version 2.12.15 (OpenJDK 64-Bit Server VM, Java 11.0.16.1)
Type in expressions to have them evaluated.
>>> spark.sql("show tables").show()
+--------+---------+-----------+
|database|tableName|isTemporary|
+--------+---------+-----------+
+--------+---------+-----------+
>>> testDF = spark.createDataFrame([(1,"111"), (2,"111"), (3,"222"), (4,"2
22"), (5,"222"), (6,"111"), (7,"333"), (8,"444")], ["id", "d_id"])
>>> ^C
> cde session delete --name tech-forum

Sessions command descriptions
The Cloudera Data Engineering (CDE) command reference is shown below.

Command Definition

cde session create Creates a CDE session. Sessions are identified by a user-specified
name. Sessions have a type that defines the engine that the Session will
run on. The 'spark-scala'[Scala REPL] and 'pyspark'[Python REPL]
types are currently supported.

cde session interact Connects to a running session in a Spark shell similar to the interface
and submit statements.

cde session kill Ends a session. The Spark driver and executor processes are stopped.

cde session delete Deletes a session and removes all references to the session. Logs will
no longer be accessible.

cde session list Lists all sessions. The --output flag can be used to control the output
format. You can use the `--output string output format ("table" or
"json") (default "table")` flag to specify whether the Session’s output
must be in a table or JSON format

29

Cloudera Data Engineering CDE Spark job example

Command Definition

cde session statements Lists session statements. The --output flag can be used to control the
output format.

cde sessions describe –name <session_name> Describes the session. The command is used as an input to name the
session.

CDE Spark job example

In this example there is a local Spark jar my-app-0.1.0.jar, and a local reference file my-ref.conf that the Spark job
opens locally as part of its execution. The Spark job reads data from the location in the first argument and writes data
to the location in the second argument. There is also a custom Spark configuration for tuning performance.

1. Make your job available for running in one of the following ways:

You can submit the job directly to CDE and have it run the job once, using the spark submit command. In this
case no permanent resources are created on CDE subsequently no cleanup is necessary after the job run. This is
ideal when testing a job.

cde spark submit my-app-0.1.0.jar \
 --file my-ref.conf \
 --conf spark.sql.shuffle.partitions=1000

If you plan to run the same job several times it is is a good idea to create and upload the resource and job and then
run it on CDE using the job run command. This is the preferable method in production environments.

> cde resource create --name my-resource
> cde resource upload --name my-resource --local-path my-app-0.1.0.jar
 109.7MB/109.7MB 100% [==] my-
app-0.1.0.jar
> cde resource upload --name my-resource --local-path my-ref.conf
 135.0b/135.0b 100% [==] my-
ref.conf
> cde job create \
 --name my-job \
 --type spark \
 --mount-1-resource my-resource \
 --application-file my-app-0.1.0.jar \
 --conf spark.sql.shuffle.partitions=1000 \
> cde job run --name my-job
{
 "id": 1
}
> cde run describe --id 1 | jq -r '.status'
starting
...
> cde run describe --id 1 | jq -r '.status'
finished

2. Schedule your job:

As the above created job stays in CDE permanently until you delete it, you can schedule it to run regularly at a
predefined time. This example schedules your job to run daily at midnight, starting from January 1, 2021:

> cde job update \
 --name my-job \
 --schedule-enabled=true \
 --schedule-start 2021-01-01T00:00:00Z \
 --every-days 1 \

30

Cloudera Data Engineering CDE CLI command reference

 --for-minutes-of-hour 0 \
 --for-hours-of-day 0

CDE CLI command reference

The Cloudera Data Engineering (CDE) command line syntax is shown below. You can view additional syntax help by
adding --help after any command.

cde command

Usage:
 cde [command]

Available Commands:
 help Help about any command
 job Manage CDE jobs
 resource Manage CDE resources
 run Manage CDE runs
 spark Spark commands

Flags:
 --auth-cache-file string token file cache location (default "$USE
RCACHE/token-cache")
 --auth-no-cache do not cache authentication tokens
 --auth-pass-file string authentication password file location
 -h, --help help for cde
 --hide-progress-bars hide progress bars for file uploads
 --insecure API does not require authentication
 --tls-ca-certs string additional PEM-encoded CA certificates
 --tls-insecure skip verification of API server TLS certi
ficate
 --user string CDP user to authenticate as
 --vcluster-endpoint string CDE virtual cluster endpoint
 -v, --verbose verbose logging
 --version version for cde
Use "cde [command] --help" for more information about a command.

cde job command

Usage:
 cde job [command]

Available Commands:
 create Create a job
 delete Delete a job
 describe Describe a job
 import Import a job
 list List jobs
 run Run a job
 schedule Operate CDE job schedules
 update Update a job

cde resource command

Usage:
 cde resource [command]
Available Commands:

31

Cloudera Data Engineering CDE CLI Spark flag reference

 create Create a resource
 delete Delete a resource
 delete-file Delete a file from a resource
 describe Describe resource
 download Download a file from a resource
 list List resources
 upload Upload a file to resource

cde run command

Usage:
 cde run [command]

Available Commands:
 describe Describe a run
 kill Kill a run
 list List runs
 logs Retrieve logs for a run
 ui Open a run in the default browser

cde spark command

Usage:
 cde spark [command]

Available Commands:
 submit Run a jar/py file on CDE Spark

CDE CLI Spark flag reference

The Cloudera Data Engineering (CDE) command Spark flag reference is shown below.

--application-file: application main file
--class: application main class
--arg: Spark argument
--conf: Spark configuration (format key=value) (can be repeated)
--min-executors: minimum number of executors
--max-executors: maximum number of executors
--initial-executors: initial number of executors
--executor-cores: number of cores per executor
--executor-memory: memory per executor
--driver-memory: memory for driver
--driver-cores: number of driver cores
--spark-name: Spark application name
--file: additional file additional file (can be repeated) (will be merged w
ith --files, if provided)
--files: additional files (comma-separated list) (will be merged with all --
file)
--jar: additional jar (can be repeated) (will be merged with --jars, if prov
ided)
--jars: additional jars (comma-separated list) (will be merged with all --
jar)
--py-file: additional Python file (can be repeated) (will be merged with --
py-file, if provided)
--py-files: additional Python files (comma-separated list) (will be merged
 with all --py-file)
--packages: additional dependencies as comma-separated list of Maven coordi
nates

32

Cloudera Data Engineering CDE CLI Airflow flag reference

--repositories: additional repositories/resolvers for retrieving the --pac
kages dependencies
--python-env-resource-name: Python environment resource name
--python-version: Python version ("python3" or "python2")
--log-level: log level for Spark containers (TRACE, DEBUG, INFO, WARN, ERR
OR, FATAL, OFF)
--enable-analysis: enables Spark analysis (see 'Analysis' UI tab for a job r
un)

CDE CLI Airflow flag reference

The Cloudera Data Engineering (CDE) command Airflow flag reference is shown below.

--dag-file: DAG filename
--config: DAG configuration (can be repeated). Use in DAG using templates.
For example,
for --config hello=world, use in DAG as {{ dag_run.conf['hello'] }} to be
replaced with world.

CDE CLI list command syntax reference

You can include flags with the Cloudera Data Engineering (CDE) command line interface (CLI) list command calls to
filter the result set.

cde [credential|job|resource|run|...] list [--filter [fieldname[operator]argument]] [--filter [fieldname[operator]argume
nt]] ...

A list command call can include multiple filter flags, where all filters must match for the entry to be returned. You
have to enclose filters in quotes.

fieldname

is selected from the top-level fields of the returned entries. Filtering of fields nested within other
fields is supported using MySQL 8 JSON path expressions.

operator

is one of: eq, noteq, lte, lt, gte, gt, in, notin, like, rlike. The in and notin operators work on an
argument of comma-separated values. The like operator matches using SQL LIKE syntax, e.g. %test
%. The rlike operator matches using the SQL REGEXP regular expression syntax.

argument

is the value, list, or expression to match with the operator. If the argument contains commas the
filter has to be enclosed in a second set of quotes, for example: '"id[in]12,14,16"'.

Note:

Timestamps must be formatted as MySQL date time literals.

For example:

cde run list --filter 'spark.spec.file[rlike]jar'

33

https://dev.mysql.com/doc/refman/8.0/en/json.html#json-path-syntax
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-literals.html

	Contents
	Using the Cloudera Data Engineering command line interface
	Downloading the Cloudera Data Engineering command line interface
	Configuring the CLI client
	Cloudera Data Engineering CLI configuration options
	Creating and using multiple profiles using CDE CLI
	Cloudera Data Engineering CLI authentication
	Cloudera Data Engineering CLI TLS configuration

	CDE concepts
	Managing Cloudera Data Engineering job resources using the CLI
	Creating a Cloudera Data Engineering resource using the CLI
	Uploading files or other assets to a Cloudera Data Engineering resource using the CLI
	Deleting a Cloudera Data Engineering resource using the CLI
	Creating and updating Docker credentials
	Deleting Docker credentials
	Deleting an Airflow DAG

	Managing Cloudera Data Engineering jobs using the CLI
	Creating and updating Apache Spark jobs using the CLI
	Creating and updating Apache Airflow jobs using the CLI
	Listing jobs using the CLI
	Submitting a Spark job using the CLI
	Running raw Scala code in Cloudera Data Engineering
	Submitting an Airflow job using the CLI
	Running a Spark job using the CLI
	Running a Airflow job using the CLI

	Scheduling Spark jobs
	Enabling, disabling, and pausing scheduled jobs
	Managing the status of scheduled job instances

	Managing workload secrets with Cloudera Data Engineering Spark Jobs using the CLI
	Creating a workload secret for Cloudera Data Engineering Spark Jobs using CLI
	Updating a workload secret for Cloudera Data Engineering Spark Jobs using CLI
	Linking a workload secret to the Cloudera Data Engineering Spark Job definitions using CLI
	Using a workload secret in Spark application code
	Listing an existing workload secret to the Cloudera Data Engineering Spark Job
	Deleting a workload secret for Cloudera Data Engineering Spark Jobs using CLI

	Managing Sessions in Cloudera Data Engineering using the CLI
	Creating a Session using the CDE CLI [Technical Preview]
	Interacting with a Session using the CDE CLI
	Sessions example for the CDE CLI
	Sessions command descriptions

	CDE Spark job example
	CDE CLI command reference
	CDE CLI Spark flag reference
	CDE CLI Airflow flag reference
	CDE CLI list command syntax reference

