Cloudera Data Engineering 1.15.1

Accessing the Cloudera Data Engineering

service using the CLI

Date published: 2020-07-30
Date modified: 2023-06-13

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© ClouderaInc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Data Engineering | Contents | iii

Using the Cloudera Data Engineering command lineinterface.............ccoc.......... 5
Downloading the Cloudera Data Engineering command lineinterface.............. 5
Configuring the CLI ClIENT.......ocii e 5
Cloudera Data Engineering CLI configuration OPLIONS...........ccueouereeeririerenene sttt sne s 6
Creating and using multiple profiles USING CDE CLI......ccoiiiiiiieeeeeeeeeeeene e e 7
Cloudera Data Engineering CLI aUthentiCaLION..........c.coiiiiireriiiene et 8
Cloudera Data Engineering CLI TLS CONfIQUIBLION..........cieriirieieieieieeeee ettt e 10
CDE CONCEPLS......eeiiiiiiie ettt e st e e s aab e e e e s nr e e e e snseeeeesneeeenes 11
Managing Cloudera Data Engineering job resourcesusing the CLI................. 12
Creating a Cloudera Data Engineering resource Using the CLI.........cccoviviiriiieseseieeeecee s e s 12
Uploading files or other assets to a Cloudera Data Engineering resource using the CLI.........ccccccovevvvieinnnnns 13
Deleting a Cloudera Data Engineering resource USing the CLI.........cccocvveieicieieccececse e 14
Creating and updating DOCKEr CredentialS..........cciievereieiieieeicieeeees st e e neeresnesnens 15
Deleting DOCKEr CrEdENtIAIS......ccuciveeeeeecesi sttt sttt st se e te e se e e e e e n e e eneenenneans 15
Deleting an AIfIOW DAG.......co oottt st s e et e et e e eseeseeseeseesessesnestesteseeseenteneeneens 16
Managing Cloudera Data Engineering jobsusing the CL 1c..cccoveeiiiennenne, 16
Creating and updating Apache Spark jobs USING the CLI ... 16
Creating and updating Apache Airflow jobS USING the CLI ..o 17
Listing JODS USING e CLI.......oiie et e ettt s b e bbb bt see s e e s 18
Submitting a Spark job USING the CLI......oi e e e ea 18
Running raw Scala code in Cloudera Data ENGINEEITNG........ccccrereriierierie e s 19
Submitting an Airflow jOD USING the CLI.....c.ooi e e 19
Running a Spark job USING the CLI......o.iee e bbb e 20
Running a Airflow jOb USING the CLI.....c.oiieee e et 20
Scheduling SPark JODS.......coui i 21
Enabling, disabling, and pausing SCheduled JODS...........cciiiiirireree e s 23
Managing the status of scheduled JOD INSEANCES............cooiiriireere e 23

Managing wor kload secrets with Cloudera Data Engineering Spark Jobs

[0S 1o T 1 g =X I TR 24
Creating aworkload secret for Cloudera Data Engineering Spark Jobs using CLI.........cccceveveevinieececieneneenens 24
Updating a workload secret for Cloudera Data Engineering Spark Jobs using CLI......c.cccccevvrivecenivccnecennen, 25
Linking a workload secret to the Cloudera Data Engineering Spark Job definitionsusing CLI...........c........... 26
Using a workload secret in Spark appliCation COUR..........ceiiiuiierieieeeeere e re e enens 26

Listing an existing workload secret to the Cloudera Data Engineering Spark Job...........ccccevovveveveiicciececiennen, 27

Deleting a workload secret for Cloudera Data Engineering Spark Jobs using CLI........ccocoveeiiinininicncnee, 27

Managing Sessionsin Cloudera Data Engineering using the CL I 28
Creating a Session using the CDE CLI [Technical Preview]..... ..o 28
Interacting with a Session USING the CDE CLI.......cciiiiiee e e 28
Sessions example fOr the CDE CLI ..ottt bbb 28
SESSIONS COMMEANT HESCIIPLIONS......cveueetireetereetert ettt ettt b ettt b bbb b b e b e bt s bt bbb eneneenes 29

CDE Spark job eXample.........oooeiiieiie et 30

CDE CLI comMmMand ref@ ENCE.......ccc et 31

CDE CLI Spark flag reference........ccoeveviceeie e 32

CDE CLI Airflow flag reference.........coooveveeiiie e 33

CDE CLI list command syntax refer enCe.........ccoovvveeneeeieesee e 33

Cloudera Data Engineering Using the Cloudera Data Engineering command line interface

Cloudera Data Engineering (CDE) provides a command line interface (CLI) client. You can use the CLI to create and
update jobs, view job details, manage job resources, run jobs, and so on.

Note: The CLI client is not forward compatible. Download the client for the version of the cluster you are
accessing. The Cluster Details page for every virtual cluster includes alink to download the CL1 client for
that cluster version.

The CLI client can also use a password file for non-interactive uses, such as automation frameworks.

Using CLI-API to Automate Access to Cloudera Data Engineering
Using Cloudera Data Engineering CLI

Cloudera Data Engineering (CDE) provides a command line interface (CL1) client.

In addition to the CDE API, you can use the CDE CL I client to access your CDE service. Using the CLI, you can
manage clusters and applications.

Note: The CLI client is not forward compatible. Download the client for the version of the cluster you are
accessing. The Cluster Details page for every virtual cluster includes alink to download the CLI client for
that cluster version.

To download the CLI client:

1. Navigateto the Cloudera Data Engineering Overview page by clicking the Data Engineering tile in the Cloudera
Data Platform (CDP) management console.

2. Inthe CDE web console, select an environment.

Click the Cluster Detailsicon for the virtua cluster you want to access.

4, Click thelink under CLI TOOL to download the CLI client.

w

The CDE CLI client uses a configuration file, ~/.cde/config.yaml, to define the default CDE virtual cluster to interact
with, aswell as other configuration parameters.

Make sure that you have downloaded the CDE CLI client.

https://www.cloudera.com/tutorials/cdp-using-cli-api-to-automate-access-to-cloudera-data-engineering.html
https://github.com/curtishoward/CDE_CLI_demo

Cloudera Data Engineering Configuring the CLI client

IS

Determine the virtual cluster endpoint URL.

a) Navigate to the Cloudera Data Engineering Overview page.

b) Inthe Environments column, select the environment containing the virtual cluster you want to access using the
CLI.

¢) IntheVirtual Clusters column on the right, click the Cluster Detailsicon for the virtual cluster you want to
access.

d) Click JOBS API URL to copy the URL to your clipboard.

Note: Currently, the URL copied to your clipboard begins with http://, not https://. To use the URL,
you must manually change thisto https://.

On the host with the CLI client, create or edit the configuration file at ~/.cde/config.yaml. Y ou can create multiple
profilesin the ~/.cde/config.yaml file and can be used while running commands. For more information, see
Creating and using multiple profiles.

B Note: You can use a custom file location by setting the CDE_CONFIG environment variable.

In the configuration file, specify the CDP user and virtual cluster endpoint as follows:

user: <CDP_user>
vcl ust er - endpoi nt: <CDE virtual cluster_endpoint>

Important: The CLI in thisrelease does not support TLS validation. Y ou must disable TLS validation by
adding the following lines to the CDE configuration file:

tls-insecure: true

The connection still uses HTTPS, but the TLS certificate is not validated.

The CDP user is your workload username.

Save the configuration file.

If you have not done so already, make sure that the cde file is executable by running chmod +x /path/to/cde.
Run cdejob list to verify your configuration. Enter your workload password when prompted.

Note: If the directory containing the cde file is not part of your PATH environment variable, you can
E either add it to your PATH environment variable or use the full path when running the command.

Y ou can aso configure the CL I to use an access token so that you do not need to enter your password each
time. For more information, see Cloudera Data Engineering CLI| authentication.

See CDE CLI configuration options for other configuration options.

The Cloudera Data Engineering (CDE) CLI can be configured using a configuration file, environment variables, or by
command flags.

User user: <username> CDE_USER=<user> --user <username>
Credentiasfile credentials-file: </path/to/creden | CDE_CREDENTIALS FILE=</p | --credentials-file </path/to/c
tids> ath/to/credentials> redentials>

https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-cli-authentication.html
https://docs.cloudera.com/data-engineering/1.5.1/cli-access/topics/cde-cli-config-options.html

Cloudera Data Engineering

Configuring the CLI client

Configuration Option

Configuration File (~/.cde/confi

g.yaml)

Skip credentials file detection

skip-credentias-file: true

Environment Variable Command Flag

CDE_SKIP_CREDENTIALS
_FILE=true

--skip-credentials-file

Password file

auth-passile:
<password_file>

CDE_AUTH_PASS FI
LE=<password_file>

--auth-pass-file
<password_file>

Virtual cluster endpoint

vcluster-endpoint:
<virtual_cluster>

CDE_VCLUSTER_ENDPOIN
T=<virtual_cluster>

--vcluster-endpoint
<virtual_cluster>

<token_cache file>

ILE=<token_cache file>

Disable authentication token auth-no-cache: true CDE_AUTH_NO_CACHE=true | --auth-no-cache
caching
Authentication token cachefile auth-cache-file: CDE_AUTH_CACHE_F --auth-cach-file

<token_cache file>

CDE configuration profile

CDE_CONFIG_PROFI

--config-profile <profile_name>

LE=<profile_name>

Creating and using multiple profiles using CDE CLI

Y ou can now add a collection of CDE CLI configurations grouped together as profiles, to the config.yaml file. You
can use these profiles while running commands. Y ou can set the configurations either at a profile level or at a global
level.

About this task

The CDE CLI client uses ~/.cde/config.yaml configuration file to define the default CDE virtual cluster to interact
with and to define other configuration parameters. CDE CLI now supports the profiling option in the configuration
file. A profileisacoallection of configurations that you can apply to a CLI command. Multiple named profiles can be
stored in the configuration file.

Before you begin
Make sure that you have downloaded the CL1 client. For more information, see Using the Cloudera Data Engineering
command line interface.

Procedure

1. Create or open the ~/.cde/config.yaml file.
2. Add profilesto the config.yaml file based on the following structure:

<d obal Configurations>

profiles:

- name: <Profile Name 1>
<Profile Configurations>

- nanme: <Profile Name 2>
<Profile Configurations>

Example Configuration file:

vcl ust er-endpoint: https://g7f9bnv2. cde. dev. cl dr. wor k/ dex/ api /vl
user: cdpuser

profiles:
- nane: dev
user: cdpuserl
vcl ust er-endpoi nt: https://y86gbhv3. cde. dev. cl dr. wor k/ dex/ api /vl

- nane: test

Cloudera Data Engineering Configuring the CLI client

vcl ust er-endpoint: https://g7f 9bnv2. cde8x. dev. cl dr. wor k/ dex/ api /vl

» Global Configuration: These configurations are set at the global level. The configurations set here are used by
default when a profile nameis not specified or the configuration is not specified in the profile

» Profile Configuration: These configurations are set at the profile level and overrides the respective
configurations set at the global level. Y ou can select the profile either by using the environment variables, or
command flags.

Note: Any profile mentioned under profiles overrides the keys of global configuration and does not
B replace all the configurations.

For example, if there are five parametersin globa and only three are configured in the selected profile, the
final configurations will be three from the selected profile and the remaining from globa . In the above
test profile example, it does not have the user configuration defined, so if the user selects the test profile,
except vcluster-endpoint, which is set in the test profile, all the other configurations are used from global .

Global configuration is accessed as the default profile name. Hence, you cannot create a profile named
default .

3. You can select the profile using the flag or environment variable.
Flag
cde job list --config-profile <PRCFILE NAME>

Environment variable

export CDE_CONFI G PROFI LE=<PRCFI LE NAME>
cde job list

4. [Optional] You can view the active profile in the configuration file.

cde profile show active

The Cloudera Data Engineering (CDE) CLI tool supports both interactive and transparent authentication. For
interactive authentication, if you have configured the CLI with your workload username, you are prompted for a
password. For transparent authentication, the CDE CLI supports a password file, Cloudera Data Platform (CDP)
access keys, and CDP credentialsfile.

The CDE CLI provides the following mechanisms for authentication:

» CDP accesskey stored in a credentiasfile

» CDP access key specified by CLI flag or environment variable

* Interactive prompt for workload password

« Workload password specified by CLI flag or environment variable

In all cases, the CLI usesthe provided credentials to obtain an authentication token for the specified user, and caches

it locally in afile on the machine where the CL1 isrunning. Y ou can disable caching of tokens entirely by using the --
auth-no-cache CLI flag or the CDE_AUTH_NO_CACHE environment variable.

Important: The minimum required roles to obtain an access token are DEUser and EnvironmentUser.
EnvironmentAdmin roleis not required.

The cachefile location is automatically determined based on the default system user cache:

* Linux: 3HOME/.cache/cloudera/cde or $XDG_CACHE_HOME/cloudera/cde/
* macOS: $HOME/Library/Caches/cloudera/cde/
* Windows: %L ocal AppData%e\clouderalcde\

Cloudera Data Engineering Configuring the CLI client

If you want to use a custom location, specify it with the --auth-cache-file flag or the CDE_AUTH_CACHE_FILE
environment variable. Y ou can use the special string $USERCACHE, which is expanded according to the default
system user cache (as listed above, without the /cloudera/cde/ suffix).

Note: If youincludeuser : inyour config.yaml file, the CLI tool will not use the access token and will
IE instead keep prompting for a password. If you want to use a credential file, then you must remove the
specified user from the profile.

When you generate a CDP access key, you can download it to a credentiasfile:

Generate Access Key %

Success

Your access key has been successfully created.

Private Key

To use the access key, download the credentials file into the . cdp directory in your user home directory.
Or run the command cdp configure and enter the access key ID and private key to create a CDP
credentials file in the same directory

4, Download Credentials File

The access key is only displayed and available for download when you first generate it. After you close the dialog,
there is no way to recover the key.

Save or copy the credentials file to SHOME/.cdp/credentials on the machine where you are running the CDE CLI.
Credentials stored in this file are automatically discovered by both the CDE and CDP CLIs. If acredentialsfileis
found, authentication occurs transparently using the discovered CDP access key.

The CDE CLI automatically looks for a CDP access key in the following locations in the order given:

1. J/credentials

2. $HOME/.cde/credentials
3. /etc/cde/credentias

4. $HOME/.cdp/credentials

Y ou can override this by using the --credentials-file </path/to/credentials> CLI flag to specify a different file
location.

Y ou can also skip credential discovery by using the --skip-credentials-file flag.

If you do not want to use the credentialsfile, you can specify the access key using environment variables or command
line flags as follows:

https://docs.cloudera.com/cdp-public-cloud/cloud/cli/topics/mc-cli-generating-an-api-access-key.html

Cloudera Data Engineering Configuring the CLI client

Table 1: CDP access key environment variables and CLI flags

Parameter Environment variable CLI flag

Accesskey ID CDE_ACCESS KEY_|D=<access _key id> --access-key-id <access key id>
Access key secret CDE_ACCESS KEY_SECRE --access-key-secret string
T=<access key secret> <access key secret>

Along with the above flags, CDE CLI| expects CDP endpoint URL to be configured. CDP Endpoint URL is same as
the CDP private cloud console URL. Y ou can configure this using environment variables or command line flags as
follows:

Table 2: CDP endpoint environment variables and CLI flags

Environment variable CLI flag

CDP Endpoint CDE_CDP_ENDPOINT=<cdp_endpoint> --cdp-endpoint <cdp_endpoint>

Workload password prompt

When the CLI requires anew token for avirtual cluster, you are prompted for the password for the workload user,
identified by the --user CL1 flag or the CDE_USER environment variable.

The workload password, for both human and machine users, can be set using the CDP User Management console. For
more information, see Managing user access and authorization.

Workload password file

If you do not want to be prompted for your workload password, you can provide a password file. A password fileisa
file containing your workload password, and nothing else.

Note: When using a password file, the CLI strips one trailing newline character. If your password actually
E includes a newline character at the end, add an extra newline at the end of thefile.
Y ou can specify the password file by using an environment variable or acommand line flag as follows:

Environment variable

CDE_AUTH_PASS FILE=</path/to/password/file>
Command lineflag

--auth-pass-file </path/to/password/file>

Cloudera Data Engineering CLI TLS configuration

Important: The CLI in this release does not support TLS validation. Y ou must disable TL S validation by
adding the following lines to the CDE configuration file (~/.cde/config.yaml):

tls-insecure: true

All CDE virtual cluster endpoints are configured with TLS. In non-production or on-premises environments the

TLS certificates are usually signed by a non-production or non-public certificate authority (CA). In these cases,
without additional configuration, the CLI tool fails asit attempts to validate the API server's TLS certificate. The CLI
provides a TLS configuration when using non-public/non-production CAs.

Specify afile containing the PEM encoded public certificate(s) of the signing CA in one of the following ways:

* add the --tls-ca-certs [***/PATH/TO/CA.PEM***] flag on the command line
o definethetls-ca-certs: [***/PATH/TO/CA.PEM***] variable in the ~/.cde/config.yaml configuration file
e setthe CDE_TLS CA_CERTS environment variable

10

https://docs.cloudera.com/management-console/1.5.1/private-cloud-user-management/topics/mc-private-cloud-managing-user-access.html

Cloudera Data Engineering CDE concepts

Replace [***/PATH/TO/CA.PEM***] with the path to avalid ca.pem file.
For public cloud, certificates are issued and signed by L etsEncrypt:

Note: LetsEncrypt Production CA Chain is part of the standard CA bundle therefore you do not need to add
E it on Linux or macOS. It is however, mandatory on Windows, where you have to concatenate the following
into asingle CA file:

* https://letsencrypt.org/certs/lets-encrypt-x3-cross-signed.pem.txt
* https://letsencrypt.org/certs/trustid-x3-root.pem.txt

For internal or on-premises environments you need to obtain your CA certificates through your internal process.

Note:
E If using the CLI on Windows, ensure you use path styles such as C:\Users\janeblogs\.cde\ca.pem when
referencing local files.

Learn about some basic concepts behind Cloudera Data Engineering (CDE) service to better understand how you can
use the command lineinterface (CLI).

CDE has three main concepts:

job
A 'job' is adefinition of something that CDE can run. For example, the information required to run a
jar file on Spark with specific configurations.

jobrun
A 'job run' is an execution of ajob. For example, one run of a Spark job on a CDE cluster.

resource

A 'resource' refers to ajob dependency that must be available to jobs at runtime. Currently the
following resource types are supported:

» filesisadirectory of filesthat you can upload to CDE pods into a standard location (/app/mou
nt). Thisistypically for application (for example, .jar or .py files) and reference files, and not the
data that the job run will operate on. Multiple files resources can be referenced in asingle job.

« python-env is used to provide custom Python dependencies to the job as a Python virtual
environment which is automatically configured. Up to one python-env resource can be specified
per job definition.

In addition, to support jobs with custom requirements, CDE also allows users to manage credentials which can be
used at job run time. Currently, only custom Docker registry credentials are supported.

The cde spark submit and cde airflow submit commands automatically create a new job and a new resource, submit
the job asajob run, and when the job run terminates they delete the job and resources.

A cdejob run requires ajob and all necessary resources to be created and uploaded to the CDE cluster beforehand.
The advantage of creating resources and jobs ahead of time is that resources can be reused across jobs, and that jobs
can be run using only ajob name.

11

https://letsencrypt.org/certs/lets-encrypt-x3-cross-signed.pem.txt
https://letsencrypt.org/certs/trustid-x3-root.pem.txt

Cloudera Data Engineering Managing Cloudera Data Engineering job resources using the CLI

A resource in Cloudera Data Engineering (CDE) is a named collection of files or other resources referenced by ajob.
The files can include application code, configuration files, or any other arbitrary files required by ajob. A resource
can also be a Python virtual environment, or a custom Docker container image.

Note: Custom Docker container imagesis a Technical Preview feature. Contact your Cloudera account
E representative to enable access to this feature.

Y ou can think of resources as any supporting files, libraries, or images that a CDE job requires to run. Resources can

be created and deleted, and files can be added to and deleted from a resource as needed.

A resource can also be a Python virtual environment specification (as a requirements.txt file), or a custom Docker
container image.

Before continuing, make sure that you have downloaded and configured the CLI client.

A resource in Cloudera Data Engineering (CDE) is anamed collection of files or other assets referenced by ajob,
including application code, configuration files, or any other arbitrary files required by ajob. A resource can also bea
Python virtual environment, or a custom Docker container image.

Note: Custom Docker container imagesis a Technical Preview feature. Contact your Cloudera account
E representative to enable access to this feature.

Make sure that you have downloaded and configured the CLI client.

12

https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-download-cli.html
https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-configure-cli.html
https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-download-cli.html
https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-configure-cli.html

Cloudera Data Engineering Managing Cloudera Data Engineering job resources using the CLI

1. Create aresource using the cde resource create command.
The cde resource create syntax is as follows:

cde resource create [fl ags]

You can view the list of flags by running cde resource create --help, or you can view the CDE CL I reference
documentation.

Example: Create afile resource
cde resource create --nane cde-file-resource --type files
Example: Create a Python virtual environment resource

cde resource create --nanme cde-pyt hon-env-resource --type python-env --p
yt hon-ver si on pyt hon3

B Note:
Y ou can specify a PyPi mirror for a Python virtual environment resource using the --pypi-mirror flag.
Note, that this requires network access to the mirror from the CDP environment.

Example: Create a custom Docker container image resource

cde resource create --name cde-container-inmage-resource --type customru
nti me-i mage

2. Verify that the resource was created by running cde resource list.

A resource in Cloudera Data Engineering (CDE) is a named collection of files or other assets referenced by ajab,
including application code, configuration files, or any other arbitrary files required by ajob. A resource can also bea
Python virtual environment, or a custom Docker container image.

Note: Custom Docker container imagesis a Technical Preview feature. Contact your Cloudera account
Ij representative to enable access to this feature.

Make sure that you have downloaded and configured the CLI client.

Make sure that you have created a resource.

13

https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-cli-reference.html
https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-download-cli.html
https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-configure-cli.html

Cloudera Data Engineering Managing Cloudera Data Engineering job resources using the CLI

1. Upload assets to a resource using the cde resource upload command.
The cde resource upload syntax is as follows:

cde resource upload [fl ags]
You can view the list of flags by running cde resource upload --help, or you can view the CDE CLI reference

documentation.

Note: For Python environment resources, you can only upload a requirements.txt file. Python
environment resources do not support arbitrary file upload. If the local file is named something other than
requirements.txt, you must add the flag --resource-path requirements.txt to the command.

Example: Upload afile resource

cde resource upl oad --nane [***RESOURCE NAME***] --| ocal - pat
h [***LOCAL_PATH***] [--resource-path [***PATH | N RESOURCE***]]

Use repeated local path flags, and/or */?/[a-z] wildcards, to specify multiple files. Use quotes around the local
path when including wildcards, for example, --local-path "* .jar". For a single file --resource-path is used for the
resource filename. For multiple files --resource-path is used for the resource directory.

Example: Upload a Python virtual environment resource

cde resource upl oad --nane cde-python-env-resource --1|ocal -path ${HOVE}/
requi renents.txt

Example: Upload a custom Docker container image resource

cde resource upl oad --nanme cde-contai ner-inmage-resource --type customru
nti me-i mage

Example: Upload afile for afile resource

cde resource upl oad --nane cde-file-resource --1local-path /path/to/l ocal/
file
Example: Upload and extract archive to resource

Currently supported archive file formats are : .zip and .tar.gz

cde resource upl oad-archive --nanme cde-file-resource --1local-path /path/
to/local/file

2. Verify that thefileisincluded in the resource by running cde resource describe --name <resource_name>.

A resource in Cloudera Data Engineering (CDE) is a named collection of files or other resources referenced by ajob,
including application code, configuration files, or any other arbitrary files required by ajob. A resource can also bea
Python virtual environment, or a custom Docker container image. Resources can be deleted using the CLI.

* Make sure that you have downloaded and configured the CLI client.

« Make sure that the resource you are deleting is no longer needed for any jobs. (Resources cannot be deleted if they
are referenced in one or more jobs)

14

https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-cli-reference.html
https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-download-cli.html
https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-configure-cli.html

Cloudera Data Engineering Managing Cloudera Data Engineering job resources using the CLI

1. Run cderesource describe --name <resource_name>. View the output and confirm that the resource you want
to deleteis no longer required, and does not contain any files that you need to retain.

2. Deletethe resource by running cde resource delete --name <resource_name>
3. Verify that the resourceis deleted by running cde resource list and confirming that the resourceis no longer listed.

To alow the use of private Docker registries, Cloudera Data Engineering (CDE) supports the creation and
management of credentials. These are stored securely in the Kubernetes cluster as secrets and cannot be accessed by
end users directly. Credentials are attached to job runs automatically by the CDE backend.

Note: Custom Docker container imagesis a Technical Preview feature. Contact your Cloudera account
Ij representative to enable access to this feature.

1. To create anew Docker credential:

cde credential create --nane <cred _nanme> --type docker-basic --docker-se
rver <registry URL or_hostnane> --docker-username <docker user>
2. Enter the Docker registry password when you are prompted.
An optional --description field allows you to annotate the credential with a human readabl e description.
3. Run cde credential list to verify that the credential was created:

cde credential list [--filter <filter>]

For more information on filtering syntax, see CDE CLI list command syntax reference on page 33.
4. If you want to update a credential, use the cde credential update command.

This command allows you to update the secret content, the credential description, or both.

cde credential update --nanme <cred_nane> [--docker-serve
r <registry URL or_hostnane> --docker-usernane <docker user>] [--descrip
tion "<desc>"]

To allow the use of private Docker registries, Cloudera Data Engineering (CDE) supports the creation and
management of credentials. These are stored securely in the Kubernetes cluster as secrets and cannot be accessed by
end users directly. Credentials are attached to job runs automatically by the CDE backend.

* Make sure that you have downloaded and configured the CLI client.
* Make sure that the credential you are deleting is no longer needed for any jobs.

15

https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-download-cli.html
https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-configure-cli.html

Cloudera Data Engineering Managing Cloudera Data Engineering jobs using the CLI

Note: Custom Docker container imagesis a Technical Preview feature. Contact your Cloudera account
E representative to enable access to this feature.

1. Delete the credential by running cde credential delete --name <cred_name>
2. Run cde credential list to verify that the credential was del eted:

cde credential list [--filter <filter>]

For more information on filtering syntax, see CDE CLI list command syntax reference on page 33.

Y ou can delete unused Airflow DA Gs using the Cloudera Data Engineering (CDE) command line interface (CLI).

The default process of removing CDE resourcesis to delete them together with the jobs owning them, using the cde
job delete command. The cde airflow delete-dag command is a fallback for when Airflow getsinto an unexpected
situation and you have to remove a DAG with no associated Airflow jab.

To delete aDAG from Airflow that is not associated with ajob, use the cde airflow delete-dag command:

cde airfl ow del ete-dag --dag-id <DAG | D>

A job in Cloudera Data Engineering (CDE) is a definition of something that CDE can run. For example, the
information required to run a JAR file on Spark with specific configurations. A ‘job run’ is an execution of ajob. For
example, one run of a Spark job on a CDE cluster.

The following example demonstrates how to create a Spark application in Cloudera Data Engineering (CDE) using
the command line interface (CL1).

Make sure that you have downloaded the CLI client. For more information, see Using the Cloudera Data Engineering
command line interface . While creating ajob if you want to use the [--data-connector] flag, you must obtain the
name of the data connector from the CDE Ul by navigating to Administration > click Service Details icon of the CDE
Service > Data Connectors tab.

16

https://docs.cloudera.com/data-engineering/1.5.1/cli-access/topics/cde-cli.html
https://docs.cloudera.com/data-engineering/1.5.1/cli-access/topics/cde-cli.html

Cloudera Data Engineering Managing Cloudera Data Engineering jobs using the CLI

1. Run the cde job create command as follows:

cde job create --application-file <path to _application_jar> --c
| ass <application_class> [--default-variable nane=val ue] [--data-connector
nane] --nane <job_nane> --num executors <num executors> --type spark

To see the full command syntax and supported options, run cde job create --help.
With [--default-variable] flags you can replace strings in job values. Currently the supported fields are:

» Spark application name
e Spark arguments
» Spark configurations

For avariable flag name=value any substring {{{name}}} in the value of the supported field gets replaced with
value. These can be overriden by the [--variabl€] flag during the job run.

Using the [--data-connector] flag, you can specify the name of the data connector. Currently, only the Ozone type
data connector is supported and it must be created before the job run.

2. Run cde job describe to verify that the job was created:

cde job describe --nanme <job_name>

3. If you want to update the job configuration, use the cde job update command.
For example, to change the number of executors:

cde job update --nane test_job --num executors 15

To see the full command syntax and supported options, run cde job update --help.
4. To verify the updated configuration, run cde job describe again:

cde job describe --nane <job_nanme>

The following example demonstrates how to create an Airflow DAG in Cloudera Data Engineering (CDE) using the
command line interface (CLI).

Make sure that you have downloaded the CL1 client. For more information, see Using the Cloudera Data Engineering
command line interface.

17

https://docs.cloudera.com/data-engineering/1.5.1/cli-access/topics/cde-cli-run-job.html
https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-cli.html
https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-cli.html

Cloudera Data Engineering Managing Cloudera Data Engineering jobs using the CLI

1. Run the cde job create command as follows:

cde job create --name <job_nanme> --type airflow --dag-file <DAG file> --m
ount - 1-resour ce <your_DAG resource> [other Airflow flags...]

<DAG file>
is areference to afile within a CDE resource

To see the full command syntax and supported options, run cde job create --help.

E Note: Airflow DAGs manage their own schedules and so their schedules cannot be set through the CLI.

2. Run cde job describe to verify that the job was created:

cde job describe --nane <job_name>

3. If you want to update the job configuration, use the cde job update command.
For example, to change the number of executors:

cde job update --nane test _job

To see the full command syntax and supported options, run cde job update --help.
4. To verify the updated configuration, run cde job describe again:

cde job describe --nanme <job_name>

To view existing applications, run cde job list. To view details for a specific application, run cde job describe --name
<job_name>

The following example demonstrates how to submit a JAR or Python file to run on CDE Spark in Cloudera Data
Engineering (CDE) using the command line interface (CL1).

Using the cde spark submit command is a quick and efficient way of testing a spark job, asit spares you the task of
creating and uploading resources and job definitions before running the job, and cleaning up after running the job.

This command is recommended only for JAR or Python files that need to be run just once, because the the file
is removed from Spark at the end of the run. To manage jobs that need to be run more than once, or that contain
schedules, usecde job run instead of this command.

To submit a JAR or Python file to run on CDE Spark, use the CLI command:

cde spark submit <JAR/ Python file> [args...] [Spark flags...] [--]job-name <j
ob nanme>] [--hide-Iogs]

Y ou can use [--job-name <job name>] to specify the same CDE job name for consecutive cde spark submit
commands. To see the full command syntax and supported options, run cde spark submit --help.

18

Cloudera Data Engineering Managing Cloudera Data Engineering jobs using the CLI

For example:

To submit ajob with alocal JAR file:

cde spark subnit ny-spark-app-0.1.0.jar 100 1000 --class com conmpany. app. spa
rk. Mai n

The CLI displaysthejob run ID followed by the driver logs, unless you specified the --hide-logs option. The script
returns an exit code of O for success or 1 for failure.

Cloudera Data Engineering (CDE) supports running raw Scala code from the command line, without compiling it into
aJAR file. You can use the cde spark submit command to run a.scalafile. CDE recognizes the file as Scala code and
runsit using spark-shell in batch mode rather than spark-submit.

Limitations:

* When setting the Log Level from the user interface, the setting is not applied to the raw Scala
jobs.

» Do not use package <something> in the raw Scalajob file as Raw Scala File is used for
Scripting and not for Jar development and packaging.

B Note: CDE does not currently support interactive sessions. The Scala code runs in batch mode spark-shell.

Run cde spark submit as followsto run a Scalafile:

cde spark submit filenane.scala --jar <jar_dependency_1> --j
ar <jar_dependency_2> ...

The following example demonstrates how to submit a DAG file to immediately run on CDE Airflow in Cloudera
Data Engineering (CDE) using the command line interface (CLI).

Using the cde airflow submit command is a quick and efficient way of testing an Airflow job, asit spares you the task
of creating and uploading resources and job definitions before running the job, and cleaning up after running the job.

This command is recommended only for Airflow DAGs that need to be run just once, because the DAG isremoved
from Airflow at the end of the run. To manage Airflow DAGs that need to be run more than once, or that contain
schedules, usecde job run instead of this command.

To submit a DAG fileto run on CDE Airflow, use the CLI command:

cde airflow subnit <DAG python file> [--config <key=value>]* [--job-nane <jo
b nane>]

To see the full command syntax and supported options, run cde airflow submit --help.
For example:
To submit ajob with alocal DAG file:

cde airflow submt ny-dag. py

19

Cloudera Data Engineering Managing Cloudera Data Engineering jobs using the CLI

When the job has been submitted the CLI displaysthe job run ID, waits for the job to terminate, and returns an exit
code of O for success or 1 for failure.

The following example demonstrates how to run a Cloudera Data Engineering (CDE) Spark job using the command
line interface (CLI).

Make sure that the Spark job has been created and all necessary resources have been created and upl oaded.

Note: Custom Docker container imagesis a Technical Preview feature. Contact your Cloudera account
Ij representative to enable access to this feature.

Using the cde job run requires more preparation on the target environment compared to the cde spark submit
command. Whereas cde spark submit isaquick and efficient way of testing a Spark job during development, cde job
run is suited for production environments where ajob is to be run multiple times, therefore removing resources and
job definitions after every job run is neither necessary, nor viable.

To run a Spark job, run the following command:

cde job run --name <job nanme> [Spark flags...] [--wait] [--variabl e name=val
ue. ..]

» With [Spark flags...] you can override the corresponding job values. Spark flags that can be repeated replace the
original list, except for --conf which only adds or replaces values for the given keys.

« With [--variable] flags you can replace strings in job values. Currently the supported fields are:

e Spark application name
e Spark arguments
» Spark configurations

For avariable flag name=value any substring {{{ name}}} in the value of the supported field gets replaced with
value.

* A custom runtime Docker image can be specified for the job using the --runtime-image-resource-name flag, which
has to refer to the name of a custom image resource that has already been created.

By default the command returnsthe job run ID as soon as the job has been submitted.

Optionally, you can use the --wait switch to wait until the job run ends and returns a non-zero exit code if the job run
was hot successful.

The following example demonstrates how to run a Cloudera Data Engineering (CDE) Airflow job using the command
line interface (CL1).

Make sure that the job has been created and all necessary resources have been created and uploaded.

20

Cloudera Data Engineering Scheduling Spark jobs

Note: Custom Docker container imagesis a Technical Preview feature. Contact your Cloudera account
E representative to enable access to this feature.

Using the cde job run requires more preparation on the target environment compared to the cde airflow submit
command. Whereas cde airflow submit isaquick and efficient way of testing an Airflow job during development,
cdejob runis suited for production environments where ajob is to be run multiple times, therefore removing
resources and job definitions after every job run is neither necessary, nor viable.

To run an Airflow job, run the following command:
cde job run --nanme <job name> [--config <key=value>]* [--wait]

Airflow configs provided at job run time will override the corresponding job configs.
By default the command returns the job run ID as soon as the job has been submitted.

Optionally, you can use the --wait switch to wait until the job run ends and returns a non-zero exit code if the job run
was not successful.

Spark jobs can optionally be scheduled so that they are automatically run on an interval. Cloudera Data Engineering
uses the Apache Airflow scheduler to create the schedule instances.

Note:
E Airflow DAGs manage their own schedules, therefore Airflow job schedules cannot be set in this way, other
than by using the operational commands pause, unpause, clear, mark-success.

Make sure that the Spark job has been created and all necessary resources have been created and uploaded.

Note: Custom Docker container imagesis a Technical Preview feature. Contact your Cloudera account
IE representative to enable access to this feature.

21

Cloudera Data Engineering Scheduling Spark jobs

1. Definearunninginterval for your Spark job:

The scheduleinterval is defined by a cron expression. Intervals can be regular, such as daily at 3 am., or irregular,
such as hourly but only between 2 am. and 6 am. and only on weekdays. Y ou can provide the cron expression
directly or you can generate it using flags.

Note: Scheduled job runs start at the end of the first full scheduleinterval after the start date, at the end of

E the scheduled period. For example, if you schedule ajob with adaily interval with astart_date of 14:00,
the first scheduled run istriggered at the end of the next day, after 23:59:59. However if the start_dateis
set to 00:00, it istriggered at the end of the same day, after 23:59:59.

Available schedule interval flags are:
--Cron-expression
A cron expression that is provided directly to the scheduler. For example, 0 */1* * *
--every-minutes
Running frequency in minutes. Valid values are 0-59. Only asingle valueis allowed.
--every-hours
Running frequency in hours. Valid values are 0-23. Only asingle valueis allowed.
--every-days
Running frequency in days. Valid values are 1-31. Only asingle valueis allowed.
--every-months
Running frequency in months. Valid values are 1-12. Only asingle value is allowed.
--for-minutes-of-hour
The minutes of the hour to run on. Valid values are 0-59. Single value, range (e.g.: 1-5), or list (e.g.:
5,10) are alowed.
--for-hour s-of-day
The hours of the day to run on. Valid values are 0-23. Single value, range (e.g.: 1-5), or list (e.g.:
5,10) are alowed.
--for-days-of-month
The days of the month to run on. Valid values are 1-31. Single value, range (e.g.: 1-5), or list (e.g.:
5,10) are alowed.
--for-months-of-year
The months of the year to run on. Valid values are 1-12 and JAN-DEC. Single value, range (e.g.:
1-5), or list (e.g.: APR,SEP) are allowed.
--for-days-of-week
The days of the week to run on. Valid values are SUN-SAT and 0-6. Single value, range (e.g.: 1-5),
or list (e.g. TUE, THU) are allowed.

For example, to set the interval as hourly but only between 2 am. and 6 am. and only on weekdays, use the
command:

cde job create --nane test job --schedul e-enabl ed=true --every-hours 1 --
for-m nutes-of-hour 0 --for-hours-of-day 2-6 --for-days-of-week MON-FRI --
schedul e-start 2021-03-09T00: 00: 00Z

Or, equivalently, using a single cron expression:

cde job create --nane test_job --schedul e-enabl ed=true --cron-expression
"0 2-6/1 * * MONNFRI' --schedul e-start 2021-03-09T00: 00: 00Z

22

Cloudera Data Engineering Scheduling Spark jobs

2. Define atime range for your Spark job:

The schedule also defines the range of time that instances can be created for. The mandatory --schedule-start flag
timestamp tells the schedul er the date and time from which the scheduling begins. The optional --schedule-end
flag timestamp tells the scheduler the last date and time at which the schedule is active. If --schedule-end is not
specified, the job runs at the scheduled interval until it is stopped manually.

Note: Timestamps must be specified in 1SO-8601 UTC format ('yyyy-MM-ddTHH:mm:ssZ'). UTC
E offsets are not supported.

For example, to create a schedule that runs at midnight for each day of a single week, use the following command:

cde job create --nane test_job --schedul e-enabl ed=true --every-days 1 --
for-m nutes-of-hour O --for-hours-of-day 0 --schedul e-start 2021-03-09T0
0: 00: 00Z - -schedul e-end 2021- 03- 15T00: 00: 00Z

Using the Cloudera Data Engineering (CDE) command line interface (CL1I), you can enable, disable, or pause
scheduled job runs.

Note:
B Disabling the schedule removes all record of prior schedule instances.

Ij Note:
Pausing and unpausing the schedule does not remove the record of prior schedule instances.

* Toenableor disable ajob schedule, use the following command:

cde job (create | update) --nane <job nane> --schedul e-enabl ed=(true | f
al se)

» To pause ajob schedule upon schedule creation:

cde job (create | update) --nane <job nanme> --schedul e-enabl ed=true --sc
hedul e- paused=true ...

e To pause an existing job schedule;

cde job schedul e pause --nane <job nane>

» To unpause an existing job schedule:

cde job schedul e unpause --nanme <job name>

Using the Cloudera Data Engineering (CDE) command line interface (CL1I), you can clear the statuses of a range of
scheduled instances or mark a scheduled job instance as successful.

23

Cloudera Data Engineering Managing workload secrets with Cloudera Data Engineering Spark
Jobs using the CLI

* Toclear the status of arange of scheduled instances, run the following command:

cde job schedule clear [--schedul e-start <start of clear period>] [--sch
edul e-end <end of clear period>]

« To mark asingle scheduled instance as successful, run the following command:

cde job schedul e mark-success --execution-date <execution date of schedu
| ed i nstance>

where <execution date of scheduled instance> is the timestamp that the instance was scheduled for, not when it
actually ran.

Cloudera Data Engineering (CDE) provides a secure way to create and store workload secrets for CDE Spark Jobs.
Thisisamore secure alternative to storing credentials in plain text embedded in your application or job configuration.

Y ou can create workload secrets using interactive mode or using a JSON file. Y ou can use the - - wor k| oad-
cred-json-fil eandthe--workl oad- cr ed- key flagsaong with the - -t ype flag supporting workload-
credential.

Before you begin

Make sure that you have downloaded the CLI client. For more information, see Using the Cloudera Data Engineering
command line interface .

e Specify --workload-cred-key when prompted for secret values multiple times. The values which are sensitive
are read as a hidden password field interactively from the CLI.

./cde credential create --nanme <workl oad-credenti al -nane> --type workl oa
d-credential --workl oad-cred-key <workl oad-credential key> --workl oad-cr
ed- key <workl oad-credenti al _key>

For example:

./ cde credential create --name workl oad-cred-1 --type workl oad-credenti a
| --workl oad-cred-key db-pass --workl oad-cred-key aws-secr et

Enter Secret value for Wrkl oad Cred key "db-pass"
Re-enter Secret value for Wrkload Cred key "db-pass"
Enter Secret value for Wrkload Cred key "aws-secret"
Re-enter Secret value for Wrkload Cred key "aws-secret"

24

https://docs.cloudera.com/data-engineering/1.5.1/cli-access/topics/cde-cli.html
https://docs.cloudera.com/data-engineering/1.5.1/cli-access/topics/cde-cli.html

Cloudera Data Engineering Managing workload secrets with Cloudera Data Engineering Spark

Jobs using the CLI
1. Create a JSON file with workload secret keys.
sanmple.json file
"<wor kl oad- credenti al -key>": "<secret val ue of key>",
"<wor kl oad- credenti al - key>": "<secret_val ue_of key>"
}
For example:
sanmple.json file
{
"aws-secret": "secret123",
"db- pass”: "dbpass123"
2. Run the following command to create the workload secret:
./cde credential create --nane <workl oad-credential -nane> --type workl o
ad-credential --workload-cred-json-file <workl oad-credential-json-file-n
anme>
For example:
./cde credential create --nane workload-cred-1 --type workl oad-credenti
al --workl oad-cred-json-file sanple.json

Y ou can update an existing secret to use it with the Cloudera Data Engineering (CDE) Spark Jobs.

e Specify --workload-cred-key when prompted for secret values multiple times. The values which are sensitive
are read as a hidden password field interactively from the CLI.

./ cde credential update --name <workl oad-credenti al - name> --workl oad-cre
d- key <wor kl oad-credential key> --workl oad-cred-key <workl oad-credenti al
_key>

For example:

./ cde credential update --nanme workl oad-cred-1 --workl oad-cred-key db-pa
ss --wor kl oad- cred- key aws-secret --workl oad-cred-key api-token

Enter Secret value for Wrkload Cred key "dbPassword"

Re-enter Secret value for Wrkload Cred key "dbPassword"

Enter Secret value for Wrkload Cred key "aws-secret"

Re-enter Secret value for Wrkload Cred key "aws-secret"

1. Update the JSON file with workload secret keys.

For example:

sample.json file — file name

25

Cloudera Data Engineering Managing workload secrets with Cloudera Data Engineering Spark
Jobs using the CLI

"aws-secret": "secret123",
"db- pass": "dbpass123"

}

2. Run the following command to create the workload secret with updated parameters:

./ cde credential update --name <workl oad-credenti al - name> --type workl oa
d-credential --workload-cred-json-file <workl oad-credential-json-file-na
nme>

For example:

./ cde credential update --name workl oad-cred-2 --workload-cred-json-file
sampl e. j son

After you create aworkload secret, you can link it to the Cloudera Data Engineering (CDE) Spark Job definitions that
you created using CLI.

./cde job create --nane <workl oad-credenti al -nane> --type <workl oad-credenti
al type> --application-file <application-file-nane> --workl oad-credential <w
or kl oad-credenti al -1> --workl oad-credenti al <workl oad-credenti al - 2>

For example:

./cde job create --nane test-workl oad-job --type spark --nount-1-resource te
st-workl oad --application-file test-workload-cred. py --workload-credential w
orkl oad-cred-1 --workl oad-credenti al workl oad- cred-2

To use the workload secret credentials, you can read the credentials that are mounted into the Spark drivers and
executors as read-only files.

The workload secrets are mounted into the Spark drivers and executors in this path:

/ et c/ dex/ secr et s/ <wor kl oad- credenti al - name>/ <cr edenti al - key-1> /et c/ dex/ secr
et s/ <wor kl oad- cr edent i al - nane>/ <cr edenti al - key- 2>

Example workload credentialsto usein the application code:

The workload credential is created with the command below.

./ cde credential create --nanme workl oad-cred-1 --type workl oad-credential --
wor kl oad- cr ed- key db-pass --workl oad-cred-key aws-secret

The secrets can be read aslocal files from the paths below within the Spark drivers and executors:

[et ¢/ dex/ secr et s/ wor kl oad-cred- 1/ aws- secr et
/ et c/ dex/ secr et s/ wor kl oad- cr ed- 1/ db- pass

26

Cloudera Data Engineering Managing workload secrets with Cloudera Data Engineering Spark
Jobs using the CLI

Example of a PySpark application code to read a secret:

from pyspark.sqgl inport SparkSession

spark = SparkSession \
. bui I der \
. appName(" Sanpl e DB Connection") \
.getOrCreate()

read the password fromthe local file
dbPass=open("/ et c/ dex/ secr et s/ wor kl oad- cr ed- 1/ db- pass") . read()

use the password in a jdbc connection

j dbcDF= spark.read \
.jdbc("jdbc: postgresql : dbserver”, "schenan.tabl enane",
properties={"user": "usernanme", "password": dbPass})

You can list an existing secret for Cloudera Data Engineering (CDE) Spark Jobs using CLI.

./cde credential list --filter 'type[eq]workload-credential'
Example output:
[
{
"nanme": "wor k|l oad-cred-1",
"type": "workl oad-credential ",
"description": "workload credential description",

"created": "2022-12-18T07:26:417",
"nodi fied": "2022-12-18T07: 26: 412"

}
]

Y ou can delete an existing secret for Cloudera Data Engineering (CDE) Spark Jobs using CLI.

./cde credential delete --nanme <workl oad-credenti al - nane>
For example:

./cde credential delete --name workl oad-cred-1

27

Cloudera Data Engineering Managing Sessions in Cloudera Data Engineering using the CLI

A Cloudera Data Engineering (CDE) Session is an interactive short-lived development environment for running
Spark commands to help you iterate upon and build your Spark workloads.

The cde session create command allows you to create a new Session.

Run the following command in the CDE CLI:

cde session create --name <session-name> --type <pyspar k/ spar k-scal a>

Once your Session has been created, you can interact with it using the cde sessions interact command.

Below is an example that demonstrates how to interact with a PySpark or Scala Session in CDE using the CLI.

Run the following command in the CDE CLI:

cde session interact --nane <sessi on-name>

In this example, a Session is created using the Cloudera Data Engineering (CDE) CLI.

> cde session create --nane cli-subm ssion-6 --type spark-scala --conf "key=

val ue"

> cde session |ist

Focococcccoccococooooe Fococcoccooooe Fococcoccoccooooe Fococcoccoccooooe Fococcoccoccooooe

--------- foocccocccocccocccococodmocooocooocooocooocao0s oo

| NAVE | STATE | TYPE | DESCRI PTI ON | CREATED
[LAST UPDATED [CREATOR [

fecccoococoococooccoocooe fecococoococooas feccocoococoooooc feccocoococoooooc feccocoococoooooc

--------- fococococcoccooccoccoccoococdmocooccooccoccoocoocoooooaody

| cli-submission-1 | preparing | spark-scala | | 2023-02-15T08

47: 417 | 2023-02-15T08:47:41Z | csso_surya. bal akri shnan |

| cli-submission-19 | preparing | spark-scala | | 2023-02-15T0

7:50:08Z | 2023-02-15T07:50:08Z | csso_surya. bal akri shnan |

fecccoococoococooccoocooe fecococoococooas feccocoococoooooc feccocoococoooooc fecococoococooocoooos

------- fococococcoccooccoccoccoococdmocooccooccoccoocoocoooooaody

> cde session describe --nane techf-run-1

"nanme": "techf-run-1",
"state": "idle",

"type": "pyspark",

28

Cloudera Data Engineering Managing Sessions in Cloudera Data Engineering using the CLI

"created": "2023-02-15T13:19: 227",
"| ast St at eUpdat ed": "2023-02-15T13: 19: 432",
"creator": "csso_surya. bal akri shnan",
"interactiveSpark": {

"submtID': "95",

"kind": "pyspark",

"driverMenory": "1g",

"driverCores": 1,

"execut or Menory": "1g",

"executor Cores": 1,

"nunExecut ors": 1,

"conf": {
"spar k. kuber net es. dri ver. annot ati on. si decar.istio.io/inject": "false",
"spar k. kuber net es. execut or. annot ati on. si decar.istio.io/inject": "fal se

"spar k. pyspar k. pyt hon": "python3"

}
}

> cde session connect --nane tech-forum
Starting REPL...

Connected to O oudera Data engi neering...
Wel cone to

, /1 1 _/_\ version 3.3.0

Usi ng Scal a version 2.12.15 (OpenJDK 64-Bit Server VM Java 11.0.16.1)
Type in expressions to have them eval uat ed.
>>> spar k. sql ("show t abl es"). show()

feccoococac feccoocooc feccoococooc +
| dat abase| t abl eNane| i sTenpor ar y|
fooocooooc feocococooooc fecococoococooas +
fooococoooc feoococooooc feocococooccooac +

>>> test DF = spark. createDataFrame([(21, "2111"), (2,"111"), (3,"222"), (4,"2
22") , (5, n 222") , (6, n 111") , (7, n 333") , (8, n 444")] , [lli dll, n d_i dll])

>>> AC

> cde session delete --nane tech-forum

The Cloudera Data Engineering (CDE) command reference is shown below.

cde session create Creates a CDE session. Sessions are identified by a user-specified
name. Sessions have atype that defines the engine that the Session will
run on. The 'spark-scala[Scala REPL] and 'pyspark'[Python REPL]

types are currently supported.
cde session interact Connects to a running session in a Spark shell similar to the interface
and submit statements.
cde session kill Ends a session. The Spark driver and executor processes are stopped.
cde session delete Deletes a session and removes all references to the session. Logs will

no longer be accessible.

cde session list Listsall sessions. The --output flag can be used to control the output
format. Y ou can use the *--output string output format (“table" or
"json") (default "table")" flag to specify whether the Session’ s output
must be in atable or JSON format

29

Cloudera Data Engineering CDE Spark job example

cde session statements Lists session statements. The --output flag can be used to control the
output format.

cde sessions describe —name <session_name> Describes the session. The command is used as an input to name the
session.

In this example thereis aloca Spark jar my-app-0.1.0.jar, and alocal reference file my-ref.conf that the Spark job
opens locally as part of its execution. The Spark job reads data from the location in the first argument and writes data
to the location in the second argument. There is also a custom Spark configuration for tuning performance.

1. Makeyour job available for running in one of the following ways:

Y ou can submit the job directly to CDE and have it run the job once, using the spark submit command. In this
case no permanent resources are created on CDE subsequently no cleanup is necessary after the job run. Thisis
ideal when testing ajob.

cde spark subnmit ny-app-0.1.0.jar \
--file my-ref.conf \
--conf spark.sql.shuffle.partiti ons=1000

If you plan to run the same job several timesit isisagood ideato create and upload the resource and job and then
run it on CDE using thejob run command. Thisis the preferable method in production environments.

> cde resource create --nane ny-resource

> cde resource upload --nanme ny-resource --local-path my-app-0.1.0.jar

109. 7MB/ 109. 7MB 100% [] ny-
app-0.1.0.jar
> cde resource upload --nane ny-resource --|ocal-path ny-ref.conf

135. 0b/ 135. Ob 100% [] ny-
ref . conf
> cde job create \
--nane ny-job \

--type spark \

--nount-1-resource ny-resource \
--application-file ny-app-0.1.0.jar \
--conf spark.sql.shuffle.partitions=1000 \

> cde job run --name ny-job
{
"id' 1
} . . .
> cde run describe --id 1| jg -r '.status
starting
> cde run describe --id 1 | jg -r '.status
fini shed

2. Schedule your job:

Asthe above created job staysin CDE permanently until you delete it, you can scheduleit to run regularly at a
predefined time. This example schedules your job to run daily at midnight, starting from January 1, 2021

> cde job update \
--nane ny-job \
--schedul e- enabl ed=t rue \
--schedul e-start 2021-01-01TO00: 00: 00Z \
--every-days 1\

30

Cloudera Data Engineering

CDE CLI command reference

--for-mnutes-of-hour 0\
--for-hours-of-day 0

The Cloudera Data Engineering (CDE) command line syntax is shown below. Y ou can view additional syntax help by

adding --help after any command.

Usage:
cde [conmand]

Avai | abl e Conmands:

hel p Hel p about any conmand
j ob Manage CDE j obs
resource Manage CDE resources
run Manage CDE runs
spar k Spar k commands

Fl ags:

--aut h-cache-file string
RCACHE/ t oken- cache")

- -aut h-no-cache

--auth-pass-file string

-h, --help

--hi de- progress-bars

--insecure

--tls-ca-certs string

--tls-insecure

ficate
--user string
--vcl uster-endpoint string
-v, --verbose

--version
Use "cde [command]

Usage:
cde job [command]

Avai | abl e Commands:

token file cache |l ocation (default "$USE
do not cache authentication tokens

aut henti cati on password file location
hel p for cde

hi de progress bars for file uploads

APl does not require authentication
addi ti onal PEM encoded CA certificates
skip verification of APl server TLS certi

CDP user to authenticate as
CDE virtual cluster endpoint
ver bose | oggi ng
version for cde

--hel p" for nore informati on about a command.

create Create a job
del ete Del ete a job
descri be Describe a job
i mport I mport a job
list Li st j obs
run Run a job
schedul e Operate CDE job schedul es
updat e Update a job
Usage:

cde resource [command]
Avai | abl e Comands:

31

Cloudera Data Engineering

CDE CLI Spark flag reference

create
del et e

del ete-file
descri be
downl oad

i st

upl oad

Usage:
cde run [co

Create a resource

Del ete a resource

Delete a file froma resource
Descri be resource

Downl oad a file froma resource
Li st resources

Upload a file to resource

nmrand]

Avai | abl e Commands:

descri be
kill

list

| ogs

ui

Usage:
cde spark [

Descri be a run

Kill a run

Li st runs

Retrieve logs for a run

Open a run in the default browser

commrand]

Avai | abl e Commands:

subm t

Run a jar/py file on CDE Spark

The Cloudera Data Engineering (CDE) command Spark flag reference is shown below.

--application
--class: appl
--arg: Spark
--conf:
--m n-executo
- - max- execut o
--initial-exe
- -executor-co
- - execut or - me
--driver-neno
--driver-core
- - spar k- nane:

-file: application main file
i cation main class
ar gunent

rs: mninmm nunber of executors
rs: nmaxi mum nunber of executors
cutors: initia
res: nunber of cores per executor
nory: menory per executor

ry: menory for driver

s: nunber of driver cores

Spark application name

nunber of executors

file (can be repeated) (will

be nmerged with --jars,

Spark configuration (format key=val ue) (can be repeated)

be nerged w
be merged with all --
if prov
be nerged with all --
be merged with --

be nerged

--file: additional file additiona

ith --files, if provided)

--files: additional files (comma-separated list) (wll

file)

--jar: additional jar (can be repeated) (will

i ded)

--jars: additional jars (comm-separated list) (wll

jar)

--py-file: additional Python file (can be repeated) (will
py-file, if provided)

--py-files: additional Python files (comma-separated list) (wll
with all --py-file)

--packages: additional dependenci es as conma-separated |ist of Maven coord
nat es

32

Cloudera Data Engineering CDE CLI Airflow flag reference

--repositories: additional repositories/resolvers for retrieving the --pac
kages dependenci es

- - pyt hon- env-resour ce- name: Pyt hon environment resource name

--pyt hon-versi on: Python version ("python3" or "python2")

--log-level: log | evel for Spark containers (TRACE, DEBUG |NFO WARN, ERR
OR, FATAL, OFF)

--enabl e-anal ysi s: enabl es Spark analysis (see 'Analysis' U tab for a job r
un)

The Cloudera Data Engineering (CDE) command Airflow flag reference is shown below.

--dag-file: DAG fil enane

--config: DAG configuration (can be repeated). Use in DAG using tenplates.
For exanpl e,

for --config hello=world, use in DAG as {{ dag run.conf["hello'] }} to be
replaced with worl d.

Y ou can include flags with the Cloudera Data Engineering (CDE) command line interface (CLI) list command callsto
filter the result set.

cde [credential|jobjresourceruny...] list [--filter [fieldname[operator]argument]] [--filter [fieldname]operator]argume
nt]] ...

A list command call can include multiple filter flags, where al filters must match for the entry to be returned. You
have to enclose filtersin quotes.

fieldname

is selected from the top-level fields of the returned entries. Filtering of fields nested within other
fieldsis supported using MySQL 8 JSON path expressions.

oper ator

isone of: eg, noteq, lte, It, gte, gt, in, notin, like, rlike. The in and notin operators work on an
argument of commarseparated values. The like operator matches using SQL LIKE syntax, e.g. %otest
%. The rlike operator matches using the SQL REGEXP regular expression syntax.

argument

isthe value, list, or expression to match with the operator. If the argument contains commas the
filter has to be enclosed in a second set of quotes, for example: "id[in]12,14,16"".

Ij Note:
Timestamps must be formatted as MySQL date time literals.

For example:

cde run list --filter 'spark.spec.file[rlike]jar'

33

https://dev.mysql.com/doc/refman/8.0/en/json.html#json-path-syntax
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-literals.html

	Contents
	Using the Cloudera Data Engineering command line interface
	Downloading the Cloudera Data Engineering command line interface
	Configuring the CLI client
	Cloudera Data Engineering CLI configuration options
	Creating and using multiple profiles using CDE CLI
	Cloudera Data Engineering CLI authentication
	Cloudera Data Engineering CLI TLS configuration

	CDE concepts
	Managing Cloudera Data Engineering job resources using the CLI
	Creating a Cloudera Data Engineering resource using the CLI
	Uploading files or other assets to a Cloudera Data Engineering resource using the CLI
	Deleting a Cloudera Data Engineering resource using the CLI
	Creating and updating Docker credentials
	Deleting Docker credentials
	Deleting an Airflow DAG

	Managing Cloudera Data Engineering jobs using the CLI
	Creating and updating Apache Spark jobs using the CLI
	Creating and updating Apache Airflow jobs using the CLI
	Listing jobs using the CLI
	Submitting a Spark job using the CLI
	Running raw Scala code in Cloudera Data Engineering
	Submitting an Airflow job using the CLI
	Running a Spark job using the CLI
	Running a Airflow job using the CLI

	Scheduling Spark jobs
	Enabling, disabling, and pausing scheduled jobs
	Managing the status of scheduled job instances

	Managing workload secrets with Cloudera Data Engineering Spark Jobs using the CLI
	Creating a workload secret for Cloudera Data Engineering Spark Jobs using CLI
	Updating a workload secret for Cloudera Data Engineering Spark Jobs using CLI
	Linking a workload secret to the Cloudera Data Engineering Spark Job definitions using CLI
	Using a workload secret in Spark application code
	Listing an existing workload secret to the Cloudera Data Engineering Spark Job
	Deleting a workload secret for Cloudera Data Engineering Spark Jobs using CLI

	Managing Sessions in Cloudera Data Engineering using the CLI
	Creating a Session using the CDE CLI [Technical Preview]
	Interacting with a Session using the CDE CLI
	Sessions example for the CDE CLI
	Sessions command descriptions

	CDE Spark job example
	CDE CLI command reference
	CDE CLI Spark flag reference
	CDE CLI Airflow flag reference
	CDE CLI list command syntax reference

