
Cloudera Data Engineering 1.15.1

Orchestrating workflows and pipelines with
Apache Airflow in Cloudera Data Engineering
Date published: 2020-07-30
Date modified: 2023-06-13

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Data Engineering | Contents | iii

Contents

Automating data pipelines using Apache Airflow in Cloudera Data
Engineering..4

Managing an Airflow Pipeline using the CDE CLI.. 6
Creating a pipeline using the CDE CLI.. 6

Creating a basic Airflow pipeline using CDE CLI..6
Creating a pipeline with additional Airflow configurations using CDE CLI.. 6
Creating an Airflow pipeline with custom files using CDE CLI [technical preview]............................. 8

Updating a pipeline using the CDE CLI... 9
Updating a DAG file using the CDE CLI... 9
Updating the Airflow job configurations using the CDE CLI...10
Updating the Airflow file mounts using the CDE CLI [technical preview].. 10

Deleting an Airflow pipeline using the CDE CLI...10

Using CDE with an external Apache Airflow deployment................................. 11

Creating a custom Airflow Python environment (Technical Preview).............. 13
Creating a custom Airflow Python environment resource...13

Using credentials for custom pip repositories..14
CDE CLI custom Airflow Python environment flag reference... 14

Uploading the resource to build the Python environment... 14
Activating Python environment resources... 15
Resetting to the default Airflow Python environment...15
Deleting Airflow Python environment resources...15

Cloudera Data Engineering Automating data pipelines using Apache Airflow in Cloudera Data
Engineering

Automating data pipelines using Apache Airflow in
Cloudera Data Engineering

Cloudera Data Engineering (CDE) enables you to automate a workflow or data pipeline using Apache Airflow Python
DAG files. Each CDE virtual cluster includes an embedded instance of Apache Airflow. You can also use CDE with
your own Airflow deployment. CDE on CDP Private Cloud currently supports only the CDE job run operator.

Before you begin

Important: Cloudera provides support for Airflow core operators and hooks, but does not provide support
for Airflow provider packages. Cloudera Support may require you to remove any installed provider packages
during troubleshooting.

About this task

The following instructions are for using the Airflow service provided with each CDE virtual cluster. For instructions
on using your own Airflow deployment, see Using the Cloudera provider for Apache Airflow.

Procedure

1. Create an Airflow DAG file in Python. Import the CDE operator and define the tasks and dependencies.
For example, here is a complete DAG file:

from dateutil import parser
from datetime import datetime, timedelta
from datetime import timezone
from airflow import DAG
from cloudera.cdp.airflow.operators.cde_operator import CDEJobRunOperator

default_args = {
 'owner': 'psherman',
 'retry_delay': timedelta(seconds=5),
 'depends_on_past': False,
 'start_date': parser.isoparse('2021-05-25T07:33:37.393Z').replace(tz
info=timezone.utc)
}

example_dag = DAG(
 'airflow-pipeline-demo',
 default_args=default_args,
 schedule_interval='@daily',
 catchup=False,
 is_paused_upon_creation=False
)

ingest_step1 = CDEJobRunOperator(
 connection_id='cde-vc01-dev',
 task_id='ingest',
 retries=3,
 dag=example_dag,
 job_name='etl-ingest-job'
)

prep_step2 = CDEJobRunOperator(
 task_id='data_prep',
 dag=example_dag,
 job_name='insurance-claims-job'

4

https://airflow.apache.org/docs/apache-airflow/stable/operators-and-hooks-ref.html
https://docs.cloudera.com/data-engineering/1.5.1/orchestrate-workflows/topics/cde-airflow-provider.html

Cloudera Data Engineering Automating data pipelines using Apache Airflow in Cloudera Data
Engineering

)

ingest_step1 >> prep_step2

Here are some examples of things you can define in the DAG file:

CDE job run operator

Use CDEJobRunOperator to specify a CDE job to run. This job must already exist in the virtual
cluster specified by the connection_id. If no connection_id is specified, CDE looks for the job in the
virtual cluster where the Airflow job runs.

from cloudera.cdp.airflow.operators.cde_operator import CDEJobRu
nOperator
...
ingest_step1 = CDEJobRunOperator(
 connection_id='cde-vc01-dev',
 task_id='ingest',
 retries=3,
 dag=example_dag,
 job_name='etl-ingest-job'
)

Email Alerts

Add the following parameters to the DAG default_args to send email alerts for job failures or
missed service-level agreements or both.

'email_on_failure': True,
'email': 'abc@example.com',
'email_on_retry': True,
'sla': timedelta(seconds=30)

Task dependencies

After you have defined the tasks, specify the dependencies as follows:

ingest_step1 >> prep_step2

For more information on task dependencies, see Task Dependencies in the Apache Airflow
documentation.

For a tutorial on creating Apache Airflow DAG files, see the Apache Airflow documentation.

2. Create a CDE job.

a) In the Cloudera Data Platform (CDP) console, click the Data Engineering tile. The CDE Home page displays.
b) In the CDE Home page, in Jobs, click Create New under Airflow or click Jobs in the left navigation menu and

then click Create Job.
c) Select the Airflow job type.

If you are creating the job from the Home page, select the virtual cluster where you want to create the job.
d) Name: Provide a name for the job.
e) DAG File: Use an existing file or add a DAG file to an existing resource or create a resource and upload it.

1. Select from Resource: Click Select from Resource to select a DAG file from an existing resource.
2. Upload: Click Upload to upload a DAG file to an existing resource or to a new resource that you can create

by selecting Create a resource from the Select a Resource dropdown list. Specify the resource name and
upload the DAG file to it.

Note: You must configure the Configure Email Alerting option while creating a virtual cluster to send
your email alerts. For more information about configuring email alerts, see Creating virtual clusters.

You can add the email alert parameters to the DAG default_args to get email alerts for job failures and
missed service-level agreements. An example of email alert configurations is listed in Step 1.

5

https://airflow.apache.org/docs/apache-airflow/stable/concepts/dags.html#task-dependencies
https://airflow.apache.org/docs/apache-airflow/stable/tutorial.html
https://docs.cloudera.com/data-engineering/1.5.1/manage-clusters/topics/cde-private-cloud-create-cluster.html

Cloudera Data Engineering Managing an Airflow Pipeline using the CDE CLI

3. Click Create and Run to create the job and run it immediately, or click the dropdown button and select Create to
create the job.

Related Information
Provider packages

Managing Cloudera Data Engineering job resources using the CLI

Managing an Airflow Pipeline using the CDE CLI

Based on your business requirement, you can use Cloudera Data Engineering (CDE) CLI to create basic Airflow
pipelines or multi-step pipelines with a combination of available operators, to enable data-driven decisions. You can
update these Airflow pipelines by updating the DAG files and job configurations.

Creating a pipeline using the CDE CLI
You can update the following properties in an Airflow pipeline:
Related Information
Using the Cloudera Data Engineering CLI

Creating a basic Airflow pipeline using CDE CLI
By creating a basic pipeline in Cloudera Data Engineering (CDE) using the CLI, you can create multi-step pipelines
with a combination of available operators.

About this task

To create a basic pipeline in CDE, you must upload the Airflow (Directed Acyclic Graph) DAG to a CDE resource
and create a CDE Airflow job from this DAG.

Procedure

In the CDE CLI, run the following command:

cde resource create --name my_pipeline_resource
cde resource upload --name my_pipeline_resource --local-path my_pipeline_dag
.py
cde job create --name my_pipeline --type airflow --dag-file my_pipeline_dag.
py --mount-1-resource my_pipeline_resource

Related Information
Using the Cloudera Data Engineering CLI

Creating a pipeline with additional Airflow configurations using CDE CLI
By creating a pipeline with additional Airflow configurations using the Cloudera Data Engineering (CDE) CLI, you
can create multi-step pipelines with a combination of available operators. There are two ways to create this type
of pipeline. The first method detailed below is recommended approach that we highly suggest customers use. The
second is the alternative method that customers have used in the past, but is not recommended.

About this task

Airflow DAGs can be defined with parameters at the DAG-level or Task-level. These parameters can be overridden
in the case of a manual run. A manual run is triggered explicitly by the user. It is recommended to use the Params
approach so that default values can be used by the scheduled job instances as well.

6

https://airflow.apache.org/docs/apache-airflow-providers/index.html
https://docs.cloudera.com/data-engineering/1.5.1/cli-access/topics/cde-cli-manage-resource.html
https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-cli.html
https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-cli.html

Cloudera Data Engineering Managing an Airflow Pipeline using the CDE CLI

For Params (Recommended)

An example of a DAG definition with additional Airflow configuration is as follows:

1. Create a configuration such as the example shown below:

from airflow import DAG
from airflow.models.param import Param

with DAG(
 "my_dag",
 params={
 # an int with a default value
 "int_param": Param(10, type="integer", minimum=0, maximum
=20),

 # a required param which can be of multiple types
 # a param must have a default value
 "dummy": Param(5, type=["null", "number", "string"]),

 # an enum param, must be one of three values
 "enum_param": Param("foo", enum=["foo", "bar", 42]),

 # a param which uses json-schema formatting
 "email": Param(
 default="example@example.com",
 type="string",
 format="idn-email",
 minLength=5,
 maxLength=255,
),
 },
):
 # prints <class 'str'> by default
 # prints <class 'int'> if render_template_as_native_obj=True
 my_operator = PythonOperator(
 task_id="template_type",
 op_args=[
 "{{ params.int_param }}",
],
 python_callable=(
 lambda x: print(type(x))
),
)

In this case, nothing needs to be done on the cde job create step. Values can be additionally
overridden in a manual run, through the --config flag of the cde job run command. For example:

cde job run --name my_pipeline --config key1=my_new_value1

For Dag run conf (Not recommended)

Note: This is an alternative method to create a pipeline with additional Airflow configurations, but it is
not recommended.

For historical reasons CDE supports the {{ dag_run.conf }} object as well. In this case, the option, --config
key=value in the cde job create command, is used to define default values whenever the user triggers a manual run
using cde job run without specifying these parameters in the run command. This config option can be repeated to
define multiple parameters.

7

Cloudera Data Engineering Managing an Airflow Pipeline using the CDE CLI

1. Create a configuration such as the example shown below:

cde resource create --name my_pipeline_resource
cde resource upload --name my_pipeline_resource --local-path my_pipeline
_dag.py
cde job create --name my_pipeline --type airflow --dag-file my_pipeline_
dag.py --mount-1-resource my_pipeline_resource -–config key1=value1 —-co
nfig key2=value2

The configuration can be used in a DAG as shown below:

my_bash_task = BashOperator(
 task_id="my_bash_task",
 bash_command="echo key1_value: {{ dag_run.conf[‘key1’] }} key2_value:
 {{ dag_run.conf[‘key2’] }}",
 dag=dag,
)

The configuration can also be overridden for manual runs in the same manner as described in the
Recommended section on this page.

Related Information
Params

Using the Cloudera Data Engineering CLI

Creating an Airflow pipeline with custom files using CDE CLI [technical preview]
By creating a pipeline in CDE using the CLI, you can add custom files that are available for tasks. This is a technical
preview.

Before you begin
This feature is available in CDE 1.19 and above in new Virtual Cluster installations only.

About this task

For use cases where custom files need to be accessed within an Airflow task, you need to first upload the custom
files to a CDE resource, and then specify it in the job creation parameter using the --airflow-file-mount-<n>-resource
option. These files are available only to the jobs in which they are linked.

Procedure

Run the following commands to upload the custom files to a CDE resource, and then create the job:

cde resource create --name my_pipeline_resource
cde resource upload --name my_pipeline_resource --local-path my_pipeline_dag
.py
cde resource create --name my_file_resource
cde resource upload --name my_file_resource --local-path my_file.conf

cde job create --name my_pipeline --type airflow --dag-file my_pipeline_dag.
py --mount-1-resource my_pipeline_resource --airflow-file-mount-1-resource m
y_file_resource

Example

The files can be reached in Airflow DAGs with the following pattern: /app/mount/<resource_name or resource_al
ias>/<file_name>, like in the following example:

read_conf = BashOperator(
 task_id=read_conf,

8

https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/params.html
https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-cli.html

Cloudera Data Engineering Managing an Airflow Pipeline using the CDE CLI

 bash_command=”cat /app/mount/my_file_resource/my_file.conf”
)

Note: It is possible to change the mount path by specifying the --airflow-file-mount-N-prefix my_custom_
prefix option in the job creation command, like in the following example:

cde job create --name my_pipeline --type airflow --dag-file my_pipeline_dag.
py --mount-1-resource my_pipeline_resource --airflow-file-mount-1-resource m
y_file_resource --airflow-file-mount-1-prefix my_custom_prefix

In this case, the file is available at:

read_conf = BashOperator(
 task_id=read_conf,
 bash_command=”cat /app/mount/my_custom_prefix/my_file.conf”
)

Note: As a best practice, Cloudera recommends to use the same resource name because it is simpler to follow
the DAG without having to look at the job definition. Also, it is possible to use “/” as a value to mount to /
app/mount if there is only one Airflow file mounted in the job definition; however, this is not recommended.

Related Information
Using the Cloudera Data Engineering CLI

Updating a pipeline using the CDE CLI
You can update the following properties in an Airflow pipeline:

Updating a DAG file using the CDE CLI
You can update a Directed Acyclic Graph (DAG) file using the CDE CLI for instances where the DAG needs to be
overridden. For use cases where the DAG needs to be overridden, first the DAG needs to be uploaded to the resource
to override the previous version, then you must update the job.

About this task
Unlike a Spark job, the Airflow job does not automatically pull in the updated resource. Airflow jobs require a
forced update by calling the job update command, such that the required files are uploaded to Airflow server for
processing.

Choose one of the following options in step 1:

Procedure

Updating a DAG file that needs to be overridden:

• Run the following command in the CDE CLI:

cde resource upload --name my_pipeline_resource --local-path my_pipeline_dag
.py
cde job update --name my_pipeline --dag-file my_pipeline_dag.py --mount-1-r
esource my_pipeline_resource

Updating a DAG in the case where the DAG needs to be set to a different one, first upload the DAG to any resource
and then the job needs to be updated:

9

https://docs.cloudera.com/data-engineering/cloud/cli-access/topics/cde-cli.html

Cloudera Data Engineering Managing an Airflow Pipeline using the CDE CLI

• Run the following command in the CDE CLI:

cde resource upload --name my_other_pipeline_resource --local-path my_other_
pipeline_dag.py
cde job update --name my_pipeline --dag-file my_other_pipeline_dag.py --mou
nt-1-resource my_other_pipeline_resource

Updating the Airflow job configurations using the CDE CLI
In the case where the Airflow job was created with the --config option, the Airflow job configuration can be updated
with the following command below. For more information, see Creating a pipeline using the CDE CLI linked below.

Procedure

Run the following command in the CDE CLI:

cde job update --name my_pipeline -–config key1=new_value1 —-config key2=new
_value2

The new configuration is merged with the existing job configuration.

Related Information
Creating a pipeline using the CDE CLI

Updating the Airflow file mounts using the CDE CLI [technical preview]
You can update or delete an existing file mount, or add new Airflow file mounts for your pipeline with these
commands.

Changing an existing file mount

cde job update --name my_pipeline --airflow-file-mount-1-resource my_new_pip
eline_resource

Changing a file mount prefix

cde job update --name my_pipeline --airflow-file-mount-1-prefix my_new_pipel
ine_resource_prefix

Adding a new file mount

Add a new file mount when one already exists:

cde job update --name my_pipeline --airflow-file-mount-2-resource my_new_pip
eline_resource

Removing an existing file mount

cde job update --name my_pipeline --unset-airflow-file-mount-index 2

Note: You can only delete one mount at a time. After the mount is deleted, they will be re-indexed.

Deleting an Airflow pipeline using the CDE CLI
You can delete a pipeline in CDE using the CLI.

10

https://docs.cloudera.com/data-engineering/1.5.1/orchestrate-workflows/topics/cde-cli-create-airflow-pipelines.html

Cloudera Data Engineering Using CDE with an external Apache Airflow deployment

Procedure

To delete a pipeline, give the job name to the delete command:

cde job delete --name my_pipeline

Using CDE with an external Apache Airflow deployment

The Cloudera provider for Apache Airflow, available at the Cloudera GitHub repository, provides two Airflow
operators for running Cloudera Data Engineering (CDE) and Cloudera Data Warehouse (CDW) jobs. You can install
the provider on your existing Apache Airflow deployment to integrate.

Before you begin

Important: CDE on CDP Private Cloud currently supports only the CDE job run operator.

• The Cloudera provider for Apache Airflow is for use with existing Airflow deployments. If you want to use the
embedded Airflow service provided by CDE, see Automating data pipelines with CDE and CDW using Apache
Airflow.

• The provider requires Python 3.6 or higher.
• The provider requires the Python cryptography package version 3.3.2 or higher to address CVE-2020-36242. If an

older version is installed, the plugin automatically updates the cryptography library.

About this task

This component provides two Airflow operators to be integrated in your DAGs:

• CDEJobRunOperator, for running Cloudera Data Engineering jobs.
• CDWOperator, for accessing Cloudera Data Warehouse

Procedure

Install Cloudera Airflow provider on your Airflow servers

1. Run the following pip command on each Airflow server: pip install cloudera-airflow-provider

Create a connection using the Airflow UI

Before you can run a CDE job from your Airflow deployment, you must configure a connection using the Airflow UI.

2. In the Cloudera Data Platform (CDP) console, click the Data Engineering tile. The CDE Home page displays.

3. Click Administration in the left navigation menu. The Administration page displays.

4. In the Virtual Clusters column, click the Cluster Details icon.

5. Click JOBS API URL to copy the URL.

6. Go to your Airflow web console (where you installed the Cloudera provider).

7. Go to Admin Connection .

8. Click + Add a new record.

11

https://airflow.apache.org/docs/apache-airflow-providers/
https://github.com/cloudera/cloudera-airflow-plugins/
https://docs.cloudera.com/data-engineering/1.5.1/orchestrate-workflows/topics/cde-airflow-dag-pipeline.html
https://docs.cloudera.com/data-engineering/1.5.1/orchestrate-workflows/topics/cde-airflow-dag-pipeline.html

Cloudera Data Engineering Using CDE with an external Apache Airflow deployment

9. Fill in connection details:

Conn Id

Create a unique connection identifier.

Conn Type

The type of the connection. From the drop-down, select

• HTTP (if you are using Apache Airflow version 1)
• HTTP or Cloudera Data engineering (if you are using Apache Airflow version 2)

Host/Virtual API Endpoint

URL of the host where you want the job to run. Paste here the JOBS API URL you copied in a
previous step.

Login/CDP Access Key

Provide the CDP access key of the account for running jobs on the CDE VC.

Password/CDP Private Key

Provide the CDP private key of the account for running jobs on the CDE VC.

10. Click Save.

11. In the CDE Home page, click Jobs in the left navigation menu, and then click Create a Job.

12. Fill in the Job Details:

Job Type

Select the option matching your use case.

Name

Specify a name for the job.

DAG File

Provide a DAG file.

Use the CDEJobRunOperator to specify a CDE job to run. The job definition in the DAG file
must contain:
connection_id

The Conn Id you specified on the Airflow UI when creating the connection.

task_id

The ID that identifies the job within the DAG.

dag

The variable containing the dag object

job_name

The name of the CDE job to run. This job must exist in the CDE virtual cluster you are connecting
to.

For example:

from cloudera.cdp.airflow.operators.cde_operator import CDEJobRunOperator
...
t1 = CDEJobRunOperator(
 connection_id='cde-vc01-dev',
 task_id='ingest',
 dag=example_dag,
 job_name='etl-ingest-job'
)

13. Click Create and Run to create the job and run it immediately, or click the dropdown button and select Create to
create the job.

12

Cloudera Data Engineering Creating a custom Airflow Python environment (Technical Preview)

Creating a custom Airflow Python environment (Technical
Preview)

To manage job dependencies, Cloudera Data Engineering (CDE) supports creating custom Python environments
dedicated to Airflow using the airflow-python-env resource type. With this option, you can install custom libraries for
running your Directed Acyclic Graphs (DAGs). The supported version is Python 3.8.

A resource is a named collection of files or other resources referenced by a job. The airflow-python-env
resource type allows you to specify a requirements.txt file that defines an environment that you can then activate
globally for airflow deployments in a virtual cluster. You can specify any Python package which is compatible with
the Airflow python constraints. These constraints can be found at https://raw.githubusercontent.com/apache/airflow/
constraints-${AIRFLOW_VERSION}/constraints-${PYTHON_VERSION}.txt. The Airflow and Python versions
depend on your CDE version.

Related Information
Resource

requirements.txt

Creating a custom Airflow Python environment resource
Create the custom Airflow Python environment resource. You can specify the pip repositories if required.

Before you begin
Download and configure the CDE CLI.

Procedure

Create a custom Airflow Python environment resource.

cde resource create --name $RESOURCE_NAME --type airflow-python-env

For example:

cde resource create --name airflow-1 --type airflow-python-env

• [Optional] You can specify the custom pip repository using the --pip-repository-url <custom-pip-
repository-url> --pip-repository-cert <path-to-pem-file> option in the create resource
command.

• [Optional] You can specify one or more extra custom pip repositories using the --extra-pip-repository-
<number>-url --<custom-pip-repository-url>-<number>-cert <path-to-pem-file>
option in the create resource command. You can specify up to 10 extra pip repositories.

Example of command with pip repository and extra pip repository:

cde resource create --name airflow-custom-pip-repos --type airflow-python-en
v --pip-repository-url https://pypi.example.com/simple --pip-repository-cert
 cert.pem --extra-pip-repository-1-url https://extra-pypi.example.com/simple
 --extra-pip-repository-1-cert extra-cert.pem

CDE builds the environment according to the requirements.txt file. During this build time, you cannot run a job
associated with the environment. You can check the status of the environment by running the cde resource
list-events --name $RESOURCE_NAME command.

13

https://docs.cloudera.com/data-engineering/1.5.1/overview/topics/cde-private-cloud-resources.html
https://packaging.python.org/discussions/install-requires-vs-requirements/#requirements-files

Cloudera Data Engineering Creating a custom Airflow Python environment (Technical Preview)

Using credentials for custom pip repositories
You can use specific credentials for your custom pip repositories. You can create a credential of type basic and use
it when creating a Python environment resource. You must use this credential name to authenticate against the pip
repository for the python-env or airflow-python-env resource.

cde credential create --type basic --name <user-credential> --username <user
-name>

When prompted, provide the password for the specified user name.

Example to create and use the credential with the pip repository.

cde credential create --type basic --name testuser-cred --username userdemo
cde resource create --name test-airflow-pyenv-with-cred --type airflow-pyth
on-env --pip-repository-url https://pypi.example.com/simple --pip-repository
-cred testuser-cred --pip-repository-cert ~/Downloads/cert.pem

CDE CLI custom Airflow Python environment flag reference
You use the following optional flags when creating an Airflow Python environment.

Table 1:

Flag Description

--pip-repository-url Index URL of the pip repository to override the default public pip
repository for the python-env or airflow-python-env
resource. This option maps to the --index-url flag of the pip install
process. If not specified, the public pip repository is used.

--pip-repository-cert Certificate file associated with the pip repository for the python-env
or airflow-python-env resource.

--pip-repository-cred CDE credential name used to authenticate against the pip repository for
the python-env or airflow-python-env resource.

--pip-repository-skip-cert-validation Skips the certificate validation for the pip repository for the python-
env or airflow-python-env resource.

--extra-pip-repository-N-url Index URL of the N-th extra pip repository for the python-env
or airflow-python-env resource. You can specify up to 100
extra repositories. Maps to the extra-index-url field of the pip install
command.

--extra-pip-repository-N-cert Certificate file associated with the N-th extra pip repository for the
python-env or airflow-python-env resource.

--extra-pip-repository-N-cred CDE credential name used to authenticate against the N-th extra
pip repository for the python-env or airflow-python-env
resource.

--extra-pip-repository-N-skip-cert-validation Skips the certificate validation for the N-th extra pip repository for the
python-env or airflow-python-env resource.

Uploading the resource to build the Python environment
After you create the resource, you have to upload the resource to build your environment.

Before you begin
Create a requirements.txt file specifying the Python package and version dependencies required by your CDE job.

14

Cloudera Data Engineering Creating a custom Airflow Python environment (Technical Preview)

Procedure

Upload the requirements.txt file to the resource.

cde resource upload --name $RESOURCE_NAME --local-path requirements.txt

Results
This launches a job that builds the Python environment from the requirement.txt file. You can check the status of this
job using the cde resource list-events --name $RESOURCE_NAME command. The Python resource
must be in the Ready state after you upload and before you activate it.

Activating Python environment resources
Airflow-related deployments must be configured to use the new Python environment and have to be restarted to use
the newly created Python environment.

Note: Only one Python environment can be active at one time. This command restarts the Airflow services.
You must ensure that no jobs are running when activating the Python environment.

Before you begin
The Python resource must be in the Ready state after you upload. You can check the resource status using the cde
resource list-events --name $RESOURCE_NAME command.

Procedure

After you upload the resource, activate the environment to use it in the Airflow jobs.

cde airflow activate-pyenv --pyenv-resource-name $RESOURCE_NAME

You can check if the resource is activated using the cde airflow get-active-pyenv command.

Resetting to the default Airflow Python environment
You can reset the Python environment to the default Airflow Python environment resources.

Note: This resets the Airflow services. You must ensure that no jobs are running when resetting the Python
environment.

Procedure

Reset your Python environment to use the default environment.

cde airflow reset-pyenv

Deleting Airflow Python environment resources
You can delete the custom Python environment resources when it is not active and if not needed.

15

Cloudera Data Engineering Creating a custom Airflow Python environment (Technical Preview)

Procedure

Delete the custom Airflow Python environment resource.

cde resource delete --name $RESOURCE_NAME

16

	Contents
	Automating data pipelines using Apache Airflow in Cloudera Data Engineering
	Managing an Airflow Pipeline using the CDE CLI
	Creating a pipeline using the CDE CLI
	Creating a basic Airflow pipeline using CDE CLI
	Creating a pipeline with additional Airflow configurations using CDE CLI
	Creating an Airflow pipeline with custom files using CDE CLI [technical preview]

	Updating a pipeline using the CDE CLI
	Updating a DAG file using the CDE CLI
	Updating the Airflow job configurations using the CDE CLI
	Updating the Airflow file mounts using the CDE CLI [technical preview]

	Deleting an Airflow pipeline using the CDE CLI

	Using CDE with an external Apache Airflow deployment
	Creating a custom Airflow Python environment (Technical Preview)
	Creating a custom Airflow Python environment resource
	Using credentials for custom pip repositories
	CDE CLI custom Airflow Python environment flag reference

	Uploading the resource to build the Python environment
	Activating Python environment resources
	Resetting to the default Airflow Python environment
	Deleting Airflow Python environment resources

