Cloudera Data Engineering 1.5.3

Orchestrating workflows and pipelines with

Apache Airflow in Cloudera Data Engineering

Date published: 2020-07-30
Date modified: 2024-03-05

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© ClouderaInc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Data Engineering | Contents | iii

Automating data pipelines using Apache Airflow in Cloudera Data

[Lo TS] o T SRS 4
Creating an Airflow DAG using the Pipeline Ulcccooe v 6
Managing an Airflow Pipeline using the CDE CL 1ccccooiiiiiiinnieenee e 6

Creating a pipeling USING the CDE CLI ..ottt sttt s e e s b b sae e 6
Creating a basic Airflow pipeling USINg CDE CL1 ... e 7

Creating a pipeline with additional Airflow configurations using CDE CLI..........cccccooiviininciencniene 7

Creating an Airflow pipeline with custom files using CDE CLI [technical preview]..........cccocvevennene 9

Updating a pipeling USiNG the CDE CLI........oiiieeeeeeeree et sb et 10
Updating a DAG file USING the CDE CLI ..ot s 10

Updating the Airflow job configurations using the CDE CLI........cccooiviiiieneieinceeeesese s 10

Updating the Airflow file mounts using the CDE CLI [technical preview]........coccoeoeeieininicnienenne, 11

Deleting an Airflow pipeline uSing the CDE CLI.......ccoiiiiiiiii et s 11
Using CDE with an external Apache Airflow deployment...........ccceoveiievnnnee. 11
Supporting Airflow operators and hOOoKS...........cccocceeiiieiie i 13
Creating a custom Airflow Python environment (Technical Preview).............. 14
Creating a custom Airflow Python environment FESOUICE..........ccoueuererererereriestesie e seesie e seeseeee e e e s ssesaesnens 14

Using credentials for CUStOM PiP FEPOSITOMES.civirierierieeeee ettt 15

CDE CLI custom Airflow Python environment flag reference...........cooeeeoeieininnnn e 15

Uploading the resource to build the Python environment.............cocoiiiiriiine e 16
Activating Python enVironNmMeNt FESOUICES...........irterueruirieiereeieeierese et steste e sbesbeseeseeseseeseeses e esessessessesaesseseeseens 16
Resetting to the default Airflow Python environment....... ..o e 16

Cloudera Data Engineering Automating data pipelines using Apache Airflow in Cloudera Data
Engineering

Cloudera Data Engineering (CDE) enables you to automate a workflow or data pipeline using Apache Airflow Python
DAG files. Each CDE virtual cluster includes an embedded instance of Apache Airflow. Y ou can also use CDE with
your own Airflow deployment. CDE on CDP Private Cloud currently supports only the CDE job run operator.

Important: Cloudera provides support for Airflow core operators and hooks, but does not provide support
for Airflow provider packages. Cloudera Support may require you to remove any installed provider packages
during troubleshooting.

The following instructions are for using the Airflow service provided with each CDE virtual cluster. For instructions
on using your own Airflow deployment, see Using the Cloudera provider for Apache Airflow.

1. Create an Airflow DAG file in Python. Import the CDE operator and define the tasks and dependencies.
For example, hereis acomplete DAG file:

fromdateutil inport parser

fromdatetine inport datetime, tinmedelta

fromdatetine inport tinmezone

fromairflowinport DAG

from cl oudera. airfl ow. provi ders. operators. cde i nport CdeRunJobQper at or

default_args = {
"owner': 'psherman',
‘retry_delay': tinedelta(seconds=5),
' depends_on_past': Fal se,
‘start_date':datetinme(2024, 2, 10, tz="UTC'),
}

exanpl e_dag = DAY
“airfl ow pi peline-deno',
defaul t _args=defaul t _args,
schedul e_interval =' @aily',
cat chup=Fal se,
i s_paused_upon_creati on=Fal se

)

i ngest _stepl = CDEJobRunQper at or (
connection_i d=' cde-vc01l-dev',
task _id="ingest',
retries=3,
dag=exanpl e_dag,

j ob_nane="'et| -i ngest - ob’

)

prep_step2 = CdeRunJobQper at or (
task_id='"data_prep',
j ob_name="i nsur ance- cl ai ns-j ob’

https://airflow.apache.org/docs/apache-airflow/stable/operators-and-hooks-ref.html
https://docs.cloudera.com/data-engineering/1.5.3/orchestrate-workflows/topics/cde-airflow-provider.html

Cloudera Data Engineering Automating data pipelines using Apache Airflow in Cloudera Data
Engineering

i ngest _stepl >> prep_step2

Here are some examples of things you can define in the DAG file:

CDE job run operator

Use CDEJobRunQOper at or to specify a CDE job to run. Thisjob must already exist in the virtual
cluster specified by the connection_id. If no connection_id is specified, CDE looks for the job in the
virtual cluster where the Airflow job runs.

from cl oudera. cdp. ai rfl ow. operat ors. cde_operator inport CDEJobRu
nQper at or

i ngest _stepl = CDEJobRunQper at or (
connection_i d='cde-vc01-dev',
task_id="ingest",
retries=3,
dag=exanpl e_dag,

j ob_nane='etl -i ngest -j ob'

)

Email Alerts

Add the following parameters to the DAG default_argsto send email alertsfor job failures or
missed service-level agreements or both.

"email _on_failure': True,
"emai |l ': 'abc@xanpl e. com
"email _on_retry': True,
"sla': tinedelta(seconds=30)

Task dependencies
After you have defined the tasks, specify the dependencies as follows:

i ngest _stepl >> prep_step2

For more information on task dependencies, see Task Dependencies in the Apache Airflow
documentation.

For atutorial on creating Apache Airflow DAG files, see the Apache Airflow documentation.
2. Createa CDE job.
a) Inthe Cloudera Data Platform (CDP) console, click the Data Engineering tile. The CDE Home page displays.
b) Inthe left navigation menu click Jobs. The Jobs page is displayed.
¢) Click Create Job. The Job Details page is displayed.
d) Select the Airflow job type.
€) Name: Provide a name for the job.
f) DAG File: Usean existing file or add a DAG file to an existing resource or create a resource and upload it.

1. Select from Resource: Click Select from Resource to select a DAG file from an existing resource.

2. Upload: Click Upload to upload a DAG file to an existing resource or to a new resource that you can create
by selecting Create aresource from the Select a Resource dropdown list. Specify the resource name and
upload the DAG filetoit.

Note: You must configure the Configure Email Alerting option while creating avirtual cluster to send
IE your email aerts. For more information about configuring email alerts, see Creating virtual clusters.

Y ou can add the email alert parameters to the DAG default_args to get email alertsfor job failures and
missed service-level agreements. An example of email alert configurationsislisted in Sep 1.

https://airflow.apache.org/docs/apache-airflow/stable/concepts/dags.html#task-dependencies
https://airflow.apache.org/docs/apache-airflow/stable/tutorial.html
https://docs.cloudera.com/data-engineering/1.5.3/manage-clusters/topics/cde-private-cloud-create-cluster.html

Cloudera Data Engineering Creating an Airflow DAG using the Pipeline Ul

3. Click Create and Run to create the job and run it immediately, or click the dropdown button and select Create to
create the jab.

Provider packages
Managing Cloudera Data Engineering job resources using the CLI

With the CDE Pipeline Ul, you can create multi-step pipelines with a combination of available operators.

Note: Cloudera supports al major browsers (Google Chrome, Firefox and Safari) for thisfeature. If you are
IE using a browser in incognito mode, you have to alow all cookiesin your browser settings so that you can
view Pipelines, Spark, and Airflow pages.

1. Goto Jobs Creste Job .

Under Job details, select Airflow.

The Ul refreshes, only Airflow-specific options remain.
2. Specify aname for the job.
3. Under DAG File select the Editor option.

4. Click Create.
Y ou are redirected to the job Editor tab.

5. Build your Airflow pipeline.

» Drag and drop operators to the canvas from the left hand pane.
« When selecting an operator, you can configure it in the editor pane that opens up.

On the Configure tab you can provide operator-specific settings. The Advanced tab allows you to make
generic settings that are common to all operators, for example execution timeout or retries.

» Create dependencies between tasks by selecting them and drawing an arrow from one of the four nodes
on their edges to another task. If the dependency is valid the task is highlighted in green. If invalid, itis
highlighted in red.

* To modify DAG-level configuration, select Configurations on the upper right.
6. When you are done with building your pipeline, click Save.

Based on your business requirement, you can use Cloudera Data Engineering (CDE) CLI to create basic Airflow
pipelines or multi-step pipelines with a combination of available operators, to enable data-driven decisions. Y ou can
update these Airflow pipelines by updating the DAG files and job configurations.

Y ou can update the following propertiesin an Airflow pipeline:

Using the Cloudera Data Engineering CLI

https://airflow.apache.org/docs/apache-airflow-providers/index.html
https://docs.cloudera.com/data-engineering/1.5.3/cli-access/topics/cde-cli-manage-resource.html
https://docs.cloudera.com/data-engineering/1.5.3/cli-access/topics/cde-cli.html

Cloudera Data Engineering Managing an Airflow Pipeline using the CDE CLI

By creating abasic pipeline in Cloudera Data Engineering (CDE) using the CLI, you can create multi-step pipelines
with a combination of available operators.

To create abasic pipeline in CDE, you must upload the Airflow (Directed Acyclic Graph) DAG to a CDE resource
and create a CDE Airflow job from this DAG.

In the CDE CLI, run the following command:

cde resource create --name ny_pi peline_resource
cde resource upl oad --nane ny_pipeline_resource --1ocal-path ny_pipeline_dag

- Py
cde job create --nane ny_pipeline --type airflow --dag-file ny_pipeline_dag.
py --nount-1-resource ny_pipeline_resource

Using the Cloudera Data Engineering CLI

By creating a pipeline with additional Airflow configurations using the Cloudera Data Engineering (CDE) CLI, you
can create multi-step pipelines with a combination of available operators. There are two waysto create this type

of pipeline. The first method detailed below is recommended approach that we highly suggest customers use. The
second is the alternative method that customers have used in the past, but is not recommended.

Airflow DAGs can be defined with parameters at the DAG-level or Task-level. These parameters can be overridden
in the case of amanual run. A manual run istriggered explicitly by the user. It is recommended to use the Params
approach so that default values can be used by the scheduled job instances as well.

An example of aDAG definition with additional Airflow configuration is asfollows:

1. Create a configuration such as the example shown below:

fromairflowinport DAG
from airfl ow nodel s. param i nport Param

with DAY
"ny_dag”,
par ans={
an int with a default val ue
"int_parant: Paran(10, type="integer", m ninum=0, mnmaxi num
=20),
a required param which can be of multiple types
a param nust have a default val ue
"dumy": Param(5, type=["null", "nunber", "string"]),

an enum param nust be one of three val ues
"enum parant': Param("foo", enune["foo", "bar", 42]),

a param whi ch uses json-schenma formatting

https://docs.cloudera.com/data-engineering/1.5.3/cli-access/topics/cde-cli.html

Cloudera Data Engineering Managing an Airflow Pipeline using the CDE CLI

"emai |l ": Paramn(
def aul t =" exanpl e@xanpl e. cont',
type="string",
format="idn-email",
m nLengt h=5,
maxLengt h=255,
)
Iy
) _
prints <class 'str'> by default
prints <class 'int'> if render_tenplate_as_native_obj =True
my_operat or = Pyt honQper at or (
task_id="tenpl ate_type",
op_args=[
"{{ parans.int_param}}",

p;/t hon_cal | abl e=(
| anbda x: print(type(x))
))

)

In this case, nothing needs to be done on the cde job create step. Vaues can be additionally
overridden in amanual run, through the --config flag of the cde job run command. For example:

cde job run --nanme ny_pipeline --config keyl=ny new val uel

Note: Thisis an alternative method to create a pipeline with additional Airflow configurations, but it is
B not recommended.

For historical reasons CDE supports the {{ dag_run.conf }} object aswell. In this case, the option, --config
key=value in the cde job create command, is used to define default values whenever the user triggers a manual run
using cde job run without specifying these parameters in the run command. This config option can be repeated to
define multiple parameters.

1. Create a configuration such as the example shown below:

cde resource create --nanme ny_pipeline_resource

cde resource upl oad --nane ny_pipeline_resource --local-path ny_pipeline
_dag. py

cde job create --nane ny_pipeline --type airflow --dag-file nmy_pipeline_
dag. py --nount-1-resource mny_pipeline resource -—config keyl=val uel —co
nfig key2=val ue2

The configuration can be used in a DAG as shown below:

ny_bash_task = BashQperat or (
task i d="my_bash_task",
bash_conmand="echo keyl value: {{ dag run.conf[‘'keyl'] }} key2 val ue:
{{ dag_run.conf[‘key2'] }}",
dag=dag,

The configuration can also be overridden for manual runs in the same manner as described in the
Recommended section on this page.

Params
Using the Cloudera Data Engineering CLI

https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/params.html
https://docs.cloudera.com/data-engineering/1.5.3/cli-access/topics/cde-cli.html

Cloudera Data Engineering Managing an Airflow Pipeline using the CDE CLI

By creating a pipelinein CDE using the CLI, you can add custom filesthat are available for tasks. Thisis atechnical
preview.

Thisfeatureis available in CDE 1.19 and above in new Virtual Cluster installations only.

For use cases where custom files need to be accessed within an Airflow task, you need to first upload the custom
filesto a CDE resource, and then specify it in the job creation parameter using the --airflow-file-mount-<n>-resource
option. These files are available only to the jobs in which they are linked.

Run the following commands to upload the custom files to a CDE resource, and then create the job:

cde resource create --name ny_pi peline_resource

cde resource upl oad --name ny_pipeline_resource --1ocal-path ny_pipeline_dag
- Py

cde resource create --nane ny _file resource

cde resource upload --nane ny file resource --local-path ny _file.conf

cde job create --nane ny_pipeline --type airflow --dag-file ny_pipeline_dag.
py --nmount-1-resource ny_pipeline resource --airflowfile-nmount-1-resource m
y_file_resource

Thefiles can be reached in Airflow DAGs with the following pattern: /app/mount/<resource hameor resource a
ias>/<file_name>, like in the following example:

read_conf = BashOper at or (
task_id=read_conf,
bash_command="cat /app/nount/my file resource/ny file.conf”

)

Note: Itispossible to change the mount path by specifying the --airflow-file-mount-N-prefix my_custom_
IE prefix option in the job creation command, like in the following example:

cde job create --nane ny_pipeline --type airflow --dag-file ny_pipeline_dag.
py --nount-1-resource ny_pipeline_resource --airflowfile-nmount-1-resource m
y file resource --airflowfile-munt-1-prefix my_custom prefix

In this case, thefileis available at:

read_conf = BashOper at or (
task_id=read_conf,
bash_command="cat /app/nount/my_custom prefix/ny _file.conf”

)

Note: Asabest practice, Cloudera recommends to use the same resource name because it is simpler to follow
E the DAG without having to look at the job definition. Also, it is possibleto use “/” asavalue to mount to /
app/mount if thereis only one Airflow file mounted in the job definition; however, thisis not recommended.

Using the Cloudera Data Engineering CL |

https://docs.cloudera.com/data-engineering/1.5.3/cli-access/topics/cde-cli.html

Cloudera Data Engineering Managing an Airflow Pipeline using the CDE CLI

Y ou can update the following propertiesin an Airflow pipeline:

Y ou can update a Directed Acyclic Graph (DAG) file using the CDE CLI for instances where the DAG needs to be
overridden. For use cases where the DAG needs to be overridden, first the DAG needs to be uploaded to the resource
to override the previous version, then you must update the job.

Unlike a Spark job, the Airflow job does not automatically pull in the updated resource. Airflow jobs require a
forced update by calling thej ob updat e command, such that the required files are uploaded to Airflow server for
processing.

Choose one of the following optionsin step 1.

Important: Before updating a DAG, it is recommended to ensure the DAG is paused and is not currently
& running when the update is being done.

Run the following command in the CDE CLI:

cde resource upl oad --name ny_pipeline_resource --1ocal-path ny_pipeline_dag

- Py
cde job update --nane ny_pipeline --dag-file nmy_pipeline _dag.py --mount-1-r
esource ny_pi peline_resource

First upload the DAG to any resource and then the job needs to be updated. Run the following command in the CDE
CLI:

cde resource upl oad --nanme ny_other_pipeline_resource --1|ocal-path ny_other _
pi pel i ne_dag. py

cde job update --nane ny_pipeline --dag-file ny_other_pipeline_dag.py --nou
nt-1-resource ny_ot her pipeline_resource

In the case where the Airflow job was created with the --config option, the Airflow job configuration can be updated
with the following command below. For more information, see Creating a pipeline using the CDE CL1 linked below.

Run the following command in the CDE CLI:

cde job update --nane ny_pipeline -—config keyl=new val uel —config key2=new
_val ue2

The new configuration is merged with the existing job configuration.

Creating a pipeline using the CDE CLI

10

https://docs.cloudera.com/data-engineering/1.5.3/orchestrate-workflows/topics/cde-cli-create-airflow-pipelines.html

Cloudera Data Engineering Using CDE with an external Apache Airflow deployment

Y ou can update or delete an existing file mount, or add new Airflow file mounts for your pipeline with these
commands.

cde job update --nane ny_pipeline --airflowfile-nmount-1-resource ny_new pip
el i ne_resource

cde job update --nane ny_pipeline --airflowfile-nmount-1-prefix ny_new pi pel
i ne_resource_prefix

Add anew file mount when one aready exists:

cde job update --nane ny_pipeline --airflowfile-nount-2-resource ny_new pip
el ine_resource

cde job update --nane ny_pipeline --unset-airflowfile-nount-index 2

B Note: You can only delete one mount at atime. After the mount is deleted, they will be re-indexed.

Y ou can delete apipelinein CDE using the CLI.

To delete a pipeline, give the job name to the delete command:

cde job del ete --nane ny_pipeline

The Cloudera provider for Apache Airflow, available at the Cloudera GitHub repository, provides two Airflow
operators for running Cloudera Data Engineering (CDE) and Cloudera Data Warehouse (CDW) jobs. Y ou can install
the provider on your existing Apache Airflow deployment to integrate.

f Important: CDE on CDP Private Cloud currently supports only the CDE job run operator.

11

https://airflow.apache.org/docs/apache-airflow-providers/
https://github.com/cloudera/cloudera-airflow-plugins/

Cloudera Data Engineering Using CDE with an external Apache Airflow deployment

The Cloudera provider for Apache Airflow is for use with existing Airflow deployments. If you want to use the
embedded Airflow service provided by CDE, see Automating data pipelines with CDE and CDW using Apache
Airflow.

The provider requires Python 3.6 or higher.

The provider requires the Python cryptography package version 3.3.2 or higher to address CVE-2020-36242. If an
older version isinstalled, the plugin automatically updates the cryptography library.

This component provides two Airflow operators to be integrated in your DAGs:

CDEJobRunOperator, for running Cloudera Data Engineering jobs.
CDWOperator, for accessing Cloudera Data Warehouse

Install Cloudera Airflow provider on your Airflow servers

1

Run the following pip command on each Airflow server: pi p i nstall cl oudera-airfl ow provider

Create a connection using the Airflow Ul

Before you can run a CDE job from your Airflow deployment, you must configure a connection using the Airflow UI.

© © N ok WD

In the Cloudera Data Platform (CDP) console, click the Data Engineering tile. The CDE Home page displays.
Click Administration in the left navigation menu. The Administration page displays.
In the Virtua Clusters column, click the Cluster Detailsicon.
Click JOBS API URL to copy the URL.
Go to your Airflow web console (where you installed the Cloudera provider).
Goto Admin Connection .
Click + Add a new record.
Fill in connection details:
Conn Id
Create a unique connection identifier.
Conn Type
The type of the connection. From the drop-down, select
e HTTP (if you are using Apache Airflow version 1)
e HTTP or Cloudera Data engineering (if you are using Apache Airflow version 2)
Host/Virtual APl Endpoint
URL of the host where you want the job to run. Paste here the JOBS APl URL you copiedin a
previous step.
Login/CDP AccessK ey
Provide the CDP access key of the account for running jobs on the CDE VC.
Password/CDP Private Key

Provide the CDP private key of the account for running jobs on the CDE VC.

10. Click Save.
11. In the CDE Home page, click Jobs in the left navigation menu, and then click Create Job.

12

https://docs.cloudera.com/data-engineering/1.5.3/orchestrate-workflows/topics/cde-airflow-dag-pipeline.html
https://docs.cloudera.com/data-engineering/1.5.3/orchestrate-workflows/topics/cde-airflow-dag-pipeline.html

Cloudera Data Engineering Supporting Airflow operators and hooks

12. Fill in the Job Details:
Job Type

Name

Select the option matching your use case.

Specify a name for the job.

DAG File

Provide aDAG file.

Use the CDEJobRunQper at or to specify a CDE job to run. The job definition in the DAG file
must contain:
connection_id

The Conn Id you specified on the Airflow Ul when creating the connection.
task_id

The ID that identifies the job within the DAG.

dag

The variable containing the dag object

job_name

The name of the CDE job to run. Thisjob must exist in the CDE virtual cluster you are connecting
to.

For example:

from cl oudera. cdp. ai rfl ow. operat ors. cde_operator inport CDEJobRunOperat or

t1

)

= CDEJobRunQper at or (

connecti on_i d=' cde-vcO1l-dev',
task_id="ingest',

dag=exanpl e_dag,

j ob_nane='et| -i ngest - ob'

13. Click Create and Run to create the job and run it immediately, or click the dropdown button and select Create to
create the jab.

Apache Airflow Python DAG files can be used to automate workflows or data pipelinesin Cloudera Data
Engineering (CDE). CDE currently supports a specified list of Airflow operators and hooks that can be used.

CDE supports the following Airflow operators:

 airflow.operators.bash

« airflow.operators.branch

» airflow.operators.datetime
 airflow.operators.dummy

« airflow.operators.email

« airflow.operators.generic_transfer
« airflow.operators.latest_only
 airflow.operators.python

» arflow.operators.sql

13

Cloudera Data Engineering Creating a custom Airflow Python environment (Technical Preview)

» airflow.operators.subdag
» airflow.operators.trigger_dagrun

CDE supports the following Airflow hooks:

 airflow.hooks.filesystem
» airflow.hooks.subprocess

Automating data pipelines using Apache Airflow in Cloudera Data Engineering

To manage job dependencies, Cloudera Data Engineering (CDE) supports creating custom Python environments
dedicated to Airflow using the airflow-python-env resource type. With this option, you can install custom libraries for
running your Directed Acyclic Graphs (DAGS). The supported version is Python 3.8.

A resource is a named collection of files or other resources referenced by ajob. Theai r f | ow pyt hon- env
resource type alows you to specify arequirements.txt file that defines an environment that you can then activate
globally for airflow deploymentsin avirtual cluster. Y ou can specify any Python package which is compatible with
the Airflow python constraints. These constraints can be found at https://raw.githubuser content.convapache/airflow/
constraints-${ AIRFLOW_VERS ON}/constraints-${PYTHON_VERS ON}.txt. The Airflow and Python versions
depend on your CDE version.

f Important:

Deprecation notice for Spark Python environments
For improved maintainability and extendable API, the following change is made in CDE Resource API:

« For al /resources endpoint, pyt honEnv. pyPi M rr or isdeprecated. You must use
pyt honEnv. pi pReposi tory. url instead.

Resource
requirements.txt

Create the custom Airflow Python environment resource. Y ou can specify the pi p repositoriesif required.

Download and configure the CDE CLI.

Create a custom Airflow Python environment resource.
cde resource create --nanme $RESOURCE _NAME --type airfl ow pyt hon-env
For example:

cde resource create --nane airflow1 --type airfl ow python-env

14

https://docs.cloudera.com/data-engineering/1.5.3/overview/topics/cde-private-cloud-resources.html
https://packaging.python.org/discussions/install-requires-vs-requirements/#requirements-files

Cloudera Data Engineering Creating a custom Airflow Python environment (Technical Preview)

» [Optional] You can specify the custom pip repository using the - - pi p-reposi tory-url <cust om pi p-
repository-url> --pip-repository-cert <path-to-pemfile>optioninthe createresource

command.
« [Optional] You can specify one or more extra custom pip repositories using the - - ext r a- pi p- r eposi t ory-
<number >-url --<custom pi p-repository-url>-<nunber>-cert <path-to-pemfile>

option in the create resource command. Y ou can specify up to 10 extra pip repositories.

Example of command with pip repository and extra pip repository:

cde resource create --nane airfl ow custompip-repos --type airfl ow python-en

V --pip-repository-url https://pypi.exanple.confsinple --pip-repository-cert
cert.pem--extra-pip-repository-1-url https://extra-pypi.exanple.conisinple
--extra-pip-repository-1-cert extra-cert.pem

CDE builds the environment according to the requirements.txt file. During this build time, you cannot run ajob
associated with the environment. Y ou can check the status of the environment by running thecde r esour ce
list-events --name $RESOURCE_NAME command.

Y ou can use specific credentials for your custom pip repositories. Y ou can create a credential of typebasi ¢ and use
it when creating a Python environment resource. Y ou must use this credential name to authenticate against the pip
repository for the pyt hon- env or ai r f | ow pyt hon- env resource.

cde credential create --type basic --nanme <user-credential > --usernane <user
- name>

When prompted, provide the password for the specified user name.

Example to create and use the credential with the pip repository.

cde credential create --type basic --nane testuser-cred --usernane userdenp
cde resource create --nane test-airfl ow pyenv-with-cred --type airfl ow pyth
on-env --pip-repository-url https://pypi.exanple.con sinple --pip-repository
-cred testuser-cred --pip-repository-cert ~/ Downl oads/cert.pem

Y ou use the following optional flags when creating an Airflow Python environment.

--pip-repository-url Index URL of the pip repository to override the default public pip
repository for the pyt hon- env or ai r f | ow pyt hon- env
resource. This option maps to the --index-url flag of the pip install
process. If not specified, the public pip repository is used.

--pip-repository-cert Certificate file associated with the pip repository for the pyt hon- env
orairfl ow pyt hon- env resource.

--pip-repository-cred CDE credential name used to authenticate against the pip repository for
thepyt hon- env orai r f | ow pyt hon- env resource.

--pip-repository-skip-cert-validation Skips the certificate validation for the pip repository for the pyt hon-
env orai rfl ow pyt hon- env resource.

--extra-pip-repository-N-url Index URL of the N-th extra pip repository for the pyt hon- env
orairfl ow pyt hon- env resource. You can specify up to 100
extrarepositories. Maps to the extra-index-url field of the pip install
command.

--extra-pip-repository-N-cert Certificate file associated with the N-th extra pip repository for the
pyt hon-env or ai r f | ow pyt hon- env resource.

15

Cloudera Data Engineering Creating a custom Airflow Python environment (Technical Preview)

Flag Description

--extra-pip-repository-N-cred CDE credential name used to authenticate against the N-th extra
pip repository for the pyt hon- env or ai r f | ow pyt hon- env
resource.

--extra-pip-repository-N-skip-cert-validation Skips the certificate validation for the N-th extra pip repository for the
pyt hon-env orai r f | ow pyt hon- env resource.

Uploading the resource to build the Python environment

After you create the resource, you have to upload the resource to build your environment.

Before you begin
Create a requirements.txt file specifying the Python package and version dependencies required by your CDE job.

Procedure

Upload the requirements.txt file to the resource.

cde resource upload --name $RESOURCE_NAME - -1l ocal - path requirenents. txt

Results

Thislaunches ajob that builds the Python environment from the requirement.txt file. Y ou can check the status of this
jobusingthecde resource list-events --nanme $RESCURCE_NAME command. The Python resource
must be in the Ready state after you upload and before you activate it.

Activating Python environment resources

Airflow-related deployments must be configured to use the new Python environment and have to be restarted to use
the newly created Python environment.

Note: Only one Python environment can be active at one time. This command restarts the Airflow services.
Y ou must ensure that no jobs are running when activating the Python environment.

Before you begin
The Python resource must be in the Ready state after you upload. Y ou can check the resource status using the cde
resource list-events --name $RESOURCE_NAME command.

Procedure

After you upload the resource, activate the environment to use it in the Airflow jobs.
cde airflow activate-pyenv --pyenv-resource-nanme $RESOURCE NAME

Y ou can check if the resourceis activated usingthecde ai rfl ow get - acti ve- pyenv command.

Resetting to the default Airflow Python environment

Y ou can reset the Python environment to the default Airflow Python environment resources.

16

Cloudera Data Engineering Creating a custom Airflow Python environment (Technical Preview)

Note: Thisresetsthe Airflow services. Y ou must ensure that no jobs are running when resetting the Python
environment.

Reset your Python environment to use the default environment.

cde airfl ow reset-pyenv

Y ou can delete the custom Python environment resources when it is not active and if not needed.

Delete the custom Airflow Python environment resource.

cde resource del ete --nane $RESOURCE NAME

17

	Contents
	Automating data pipelines using Apache Airflow in Cloudera Data Engineering
	Creating an Airflow DAG using the Pipeline UI
	Managing an Airflow Pipeline using the CDE CLI
	Creating a pipeline using the CDE CLI
	Creating a basic Airflow pipeline using CDE CLI
	Creating a pipeline with additional Airflow configurations using CDE CLI
	Creating an Airflow pipeline with custom files using CDE CLI [technical preview]

	Updating a pipeline using the CDE CLI
	Updating a DAG file using the CDE CLI
	Updating the Airflow job configurations using the CDE CLI
	Updating the Airflow file mounts using the CDE CLI [technical preview]

	Deleting an Airflow pipeline using the CDE CLI

	Using CDE with an external Apache Airflow deployment
	Supporting Airflow operators and hooks
	Creating a custom Airflow Python environment (Technical Preview)
	Creating a custom Airflow Python environment resource
	Using credentials for custom pip repositories
	CDE CLI custom Airflow Python environment flag reference

	Uploading the resource to build the Python environment
	Activating Python environment resources
	Resetting to the default Airflow Python environment
	Deleting Airflow Python environment resources

