Cloudera Data Engineering 1.5.4

Accessing the Cloudera Data Engineering

service using the CLI

Date published: 2020-07-30
Date modified: 2024-05-30

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© ClouderaInc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Data Engineering | Contents | iii

Using the Cloudera Data Engineering command lineinterface.............ccoc.......... 5
Downloading the Cloudera Data Engineering command lineinterface.............. 5
(015] i o0 g [60 o) TR 5
Managing Cloudera Data Engineering job resourcesusing the CLI................... 6
Creating a Cloudera Data Engineering resource USINg the CLI........ccoociiiniiineseieese e 6
Uploading files or other assets to a Cloudera Data Engineering resource using the CLI.........ccceoveeneicnenenen. 7
Deleting a Cloudera Data Engineering resource using the CLI ..o 8
Creating and updating DOCKEr CradentialS..........coueirueirieirieerieries et 9
Deleting DOCKES CrEOENLIAIS.........cireeeerieiire ettt ettt b et b bbb e b se b e b s 9
Deleting an ATIOW DAG.......c.oiiieiete ettt bbbt b e bt b e e bt e st bt e st e e b e ens 10
Managing Cloudera Data Engineering jobsusingthe CL1........c..ccccevvveieenene, 10
Creating and updating Apache Spark jobs USING the CLI......ccccvciiiiicecece e s 10
Creating and updating Apache Airflow jobs USING the CLI.....cc.ccvcvcieceeieececeses e e enens 11
Listing jOBS USING the CL1 ..ot se s s s e r et e besnesbestesee e eneenes 12
Submitting a Spark job USING the CLI......c.eiececece e s ene 12
Running raw Scala code in Cloudera Data ENGINEEING.......ccccveiiirerinieseseseseseeseesieseeseeesses e ssesesse e sreseeses 13
Submitting an Airflow jOb USING thE CLI ...t s snen 13
Running a Spark job USING the CLI......ociiee e e re e sresresnennens 14
Running a Airflow job USING the CLI......cciiiieccceeeees et p e s 15
Scheduling SPark JODS.......ooi e 15
Enabling, disabling, and pausing scheduled JODS............ooi e 17
Managing the status of scheduled jOD INSLANCES...........coiiiiriie e 17
Managing Sessionsin Cloudera Data Engineering using the CL I 18
Creating a Session USING the CDE CLI ...t bbb 18
Interacting with a Session USING the CDE CLI.......ccoiiieeerse e 18
Sessions example fOr the CDE CLI ..ottt bbb 19
SeSSIONS COMMEANT HESCHIPLIONS.......veueetieetereetere ettt sb ettt e bbbt b e s bt b e b e b e b e b b e b enennenes 20
CDE Spark job eXample........oooiiiiiiie et 21
CDE CLI command refer @NCe.........ooveviiiiiieceeeese e 22

CDE CLI Spark flag reference........cccevevieeeii e 23

CDE CLI Airflow flag reference

CDE CLI list command syntax r

B O BN ..ottt

Cloudera Data Engineering Using the Cloudera Data Engineering command line interface

Cloudera Data Engineering (CDE) provides a command line interface (CLI) client. You can use the CLI to create and
update jobs, view job details, manage job resources, run jobs, and so on.

Note: The CLI client is not forward compatible. Download the client for the version of the cluster you are
accessing. The Cluster Details page for every virtual cluster includes alink to download the CL1 client for
that cluster version.

The CLI client can also use a password file for non-interactive uses, such as automation frameworks.

Using CLI-API to Automate Access to Cloudera Data Engineering
Using Cloudera Data Engineering CLI

Cloudera Data Engineering (CDE) provides a command line interface (CL1) client.

In addition to the CDE API, you can use the CDE CL I client to access your CDE service. Using the CLI, you can
manage clusters and applications.

Note: The CLI client is not forward compatible. Download the client for the version of the cluster you are
accessing. The Cluster Details page for every virtual cluster includes alink to download the CLI client for
that cluster version.

To download the CLI client:

1. Navigateto the Cloudera Data Engineering Overview page by clicking the Data Engineering tile in the Cloudera
Data Platform (CDP) management console.

2. Inthe CDE web console, select an environment.

Click the Cluster Detailsicon for the virtua cluster you want to access.

4, Click thelink under CLI TOOL to download the CLI client.

w

Learn about some basic concepts behind Cloudera Data Engineering (CDE) service to better understand how you can
use the command lineinterface (CLI).

CDE has three main concepts:

job
A 'job' isadefinition of something that CDE can run. For example, the information required to run a
jar file on Spark with specific configurations.

jobrun
A 'job run' is an execution of ajob. For example, one run of a Spark job on a CDE cluster.

session

A 'session’ is an interactive short-lived development environment for running Spark commands to
help you iterate upon and build your Spark workloads.

5

https://www.cloudera.com/tutorials/cdp-using-cli-api-to-automate-access-to-cloudera-data-engineering.html
https://github.com/curtishoward/CDE_CLI_demo

Cloudera Data Engineering Managing Cloudera Data Engineering job resources using the CLI

resource

A 'resource' refers to ajob dependency that must be available to jobs at runtime. Currently the
following resource types are supported:

» filesisadirectory of filesthat you can upload to CDE pods into a standard location (/app/mou
nt). Thisistypically for application (for example, .jar or .py files) and reference files, and not the
data that the job run will operate on. Multiple files resources can be referenced in asingle job.

« python-env is used to provide custom Python dependencies to the job as a Python virtual
environment which is automatically configured. Up to one python-env resource can be specified
per job definition.

In addition, to support jobs with custom requirements, CDE also allows users to manage credentials which can be
used at job run time. Currently, only custom Docker registry credentials are supported.

The cde spark submit and cde airflow submit commands automatically create a new job and a new resource, submit
the job asajob run, and when the job run terminates they delete the job and resources.

A cdejob run requires ajob and all necessary resources to be created and uploaded to the CDE cluster beforehand.
The advantage of creating resources and jobs ahead of time is that resources can be reused across jobs, and that jobs
can be run using only ajob name.

A resource in Cloudera Data Engineering (CDE) is anamed collection of files or other resources referenced by ajob.
The files can include application code, configuration files, or any other arbitrary files required by ajob. A resource
can also be a Python virtual environment, or a custom Docker container image.

Note: Custom Docker container imagesis a Technical Preview feature. Contact your Cloudera account
Ij representative to enable access to this feature.

Y ou can think of resources as any supporting files, libraries, or images that a CDE job requires to run. Resources can

be created and deleted, and files can be added to and deleted from a resource as needed.

A resource can also be a Python virtual environment specification (as a requirements.txt file), or a custom Docker
container image.

Before continuing, make sure that you have downloaded and configured the CL1 client.

A resource in Cloudera Data Engineering (CDE) is a named collection of files or other assets referenced by ajob,
including application code, configuration files, or any other arbitrary files required by ajob. A resource can also bea
Python virtual environment, or a custom Docker container image.

Note: Custom Docker container imagesis a Technical Preview feature. Contact your Cloudera account
Ij representative to enable access to this feature.

Make sure that you have downloaded and configured the CLI client.

https://docs.cloudera.com/data-engineering/1.5.4/cli-access/topics/cde-private-cloud-download-cli.html
https://docs.cloudera.com/data-engineering/1.5.4/managing-cde-using-cli/topics/cde-configure-cli.html
https://docs.cloudera.com/data-engineering/1.5.4/cli-access/topics/cde-private-cloud-download-cli.html
https://docs.cloudera.com/data-engineering/1.5.4/managing-cde-using-cli/topics/cde-configure-cli.html

Cloudera Data Engineering Managing Cloudera Data Engineering job resources using the CLI

1. Create aresource using the cde resource create command.
The cde resource create syntax is as follows:

cde resource create [fl ags]

You can view the list of flags by running cde resource create --help, or you can view the CDE CL I reference
documentation.

Example: Create afile resource
cde resource create --nane cde-file-resource --type files
Example: Create a Python virtual environment resource

cde resource create --nanme cde-pyt hon-env-resource --type python-env --p
yt hon-ver si on pyt hon3

B Note:
Y ou can specify a PyPi mirror for a Python virtual environment resource using the --pypi-mirror flag.
Note, that this requires network access to the mirror from the CDP environment.

Example: Create a custom Docker container image resource

cde resource create --name cde-container-inmage-resource --type customru
nti me-i mage

2. Verify that the resource was created by running cde resource list.

A resource in Cloudera Data Engineering (CDE) is a named collection of files or other assets referenced by ajab,
including application code, configuration files, or any other arbitrary files required by ajob. A resource can also bea
Python virtual environment, or a custom Docker container image.

Note: Custom Docker container imagesis a Technical Preview feature. Contact your Cloudera account
Ij representative to enable access to this feature.

Make sure that you have downloaded and configured the CLI client.

Make sure that you have created a resource.

https://docs.cloudera.com/data-engineering/1.5.4/cli-access/topics/cde-cli-reference.html
https://docs.cloudera.com/data-engineering/1.5.4/cli-access/topics/cde-private-cloud-download-cli.html
https://docs.cloudera.com/data-engineering/1.5.4/managing-cde-using-cli/topics/cde-configure-cli.html

Cloudera Data Engineering Managing Cloudera Data Engineering job resources using the CLI

1. Upload assets to a resource using the cde resource upload command.
The cde resource upload syntax is as follows:

cde resource upload [fl ags]
You can view the list of flags by running cde resource upload --help, or you can view the CDE CLI reference

documentation.

Note: For Python environment resources, you can only upload a requirements.txt file. Python
environment resources do not support arbitrary file upload. If the local file is named something other than
requirements.txt, you must add the flag --resource-path requirements.txt to the command.

Example: Upload afile resource

cde resource upl oad --nane [***RESOURCE NAME***] --| ocal - pat
h [***LOCAL_PATH***] [--resource-path [***PATH | N RESOURCE***]]

Use repeated local path flags, and/or */?/[a-z] wildcards, to specify multiple files. Use quotes around the local
path when including wildcards, for example, --local-path "* .jar". For a single file --resource-path is used for the
resource filename. For multiple files --resource-path is used for the resource directory.

Example: Upload a Python virtual environment resource

cde resource upl oad --nane cde-python-env-resource --1|ocal -path ${HOVE}/
requi renents.txt

Example: Upload a custom Docker container image resource

cde resource upl oad --nanme cde-contai ner-inmage-resource --type customru
nti me-i mage

Example: Upload afile for afile resource

cde resource upl oad --nane cde-file-resource --1local-path /path/to/l ocal/
file
Example: Upload and extract archive to resource

Currently supported archive file formats are : .zip and .tar.gz

cde resource upl oad-archive --nanme cde-file-resource --1local-path /path/
to/local/file

2. Verify that thefileisincluded in the resource by running cde resource describe --name <resource_name>.

A resource in Cloudera Data Engineering (CDE) is a named collection of files or other resources referenced by ajob,
including application code, configuration files, or any other arbitrary files required by ajob. A resource can also bea
Python virtual environment, or a custom Docker container image. Resources can be deleted using the CLI.

* Make sure that you have downloaded and configured the CLI client.

« Make sure that the resource you are deleting is no longer needed for any jobs. (Resources cannot be deleted if they
are referenced in one or more jobs)

https://docs.cloudera.com/data-engineering/1.5.4/cli-access/topics/cde-cli-reference.html
https://docs.cloudera.com/data-engineering/1.5.4/cli-access/topics/cde-private-cloud-download-cli.html
https://docs.cloudera.com/data-engineering/1.5.4/managing-cde-using-cli/topics/cde-configure-cli.html

Cloudera Data Engineering Managing Cloudera Data Engineering job resources using the CLI

1. Run cderesource describe --name <resource_name>. View the output and confirm that the resource you want
to deleteis no longer required, and does not contain any files that you need to retain.

2. Deletethe resource by running cde resource delete --name <resource_name>
3. Verify that the resourceis deleted by running cde resource list and confirming that the resourceis no longer listed.

To alow the use of private Docker registries, Cloudera Data Engineering (CDE) supports the creation and
management of credentials. These are stored securely in the Kubernetes cluster as secrets and cannot be accessed by
end users directly. Credentials are attached to job runs automatically by the CDE backend.

Note: Custom Docker container imagesis a Technical Preview feature. Contact your Cloudera account
Ij representative to enable access to this feature.

1. To create anew Docker credential:

cde credential create --nane <cred _nanme> --type docker-basic --docker-se
rver <registry URL or_hostnane> --docker-username <docker user>
2. Enter the Docker registry password when you are prompted.
An optional --description field allows you to annotate the credential with a human readabl e description.
3. Run cde credential list to verify that the credential was created:

cde credential list [--filter <filter>]

For more information on filtering syntax, see CDE CLI list command syntax reference on page 24.
4. If you want to update a credential, use the cde credential update command.

This command allows you to update the secret content, the credential description, or both.

cde credential update --nanme <cred_nane> [--docker-serve
r <registry URL or_hostnane> --docker-usernane <docker user>] [--descrip
tion "<desc>"]

To allow the use of private Docker registries, Cloudera Data Engineering (CDE) supports the creation and
management of credentials. These are stored securely in the Kubernetes cluster as secrets and cannot be accessed by
end users directly. Credentials are attached to job runs automatically by the CDE backend.

* Make sure that you have downloaded and configured the CLI client.
* Make sure that the credential you are deleting is no longer needed for any jobs.

https://docs.cloudera.com/data-engineering/1.5.4/cli-access/topics/cde-private-cloud-download-cli.html
https://docs.cloudera.com/data-engineering/1.5.4/managing-cde-using-cli/topics/cde-configure-cli.html

Cloudera Data Engineering Managing Cloudera Data Engineering jobs using the CLI

Note: Custom Docker container imagesis a Technical Preview feature. Contact your Cloudera account
E representative to enable access to this feature.

1. Delete the credential by running cde credential delete --name <cred_name>
2. Run cde credential list to verify that the credential was del eted:

cde credential list [--filter <filter>]

For more information on filtering syntax, see CDE CLI list command syntax reference on page 24.

Y ou can delete unused Airflow DA Gs using the Cloudera Data Engineering (CDE) command line interface (CLI).

The default process of removing CDE resourcesis to delete them together with the jobs owning them, using the cde
job delete command. The cde airflow delete-dag command is a fallback for when Airflow getsinto an unexpected
situation and you have to remove a DAG with no associated Airflow jab.

To delete aDAG from Airflow that is not associated with ajob, use the cde airflow delete-dag command:

cde airfl ow del ete-dag --dag-id <DAG | D>

A job in Cloudera Data Engineering (CDE) is a definition of something that CDE can run. For example, the
information required to run a JAR file on Spark with specific configurations. A ‘job run’ is an execution of ajob. For
example, one run of a Spark job on a CDE cluster.

The following example demonstrates how to create a Spark application in Cloudera Data Engineering (CDE) using
the command line interface (CL1).

Make sure that you have downloaded the CLI client. For more information, see Using the Cloudera Data Engineering
command line interface . While creating ajob if you want to use the [--data-connector] flag, you must obtain the
name of the data connector from the CDE Ul by navigating to Administration > click Service Details icon of the CDE
Service > Data Connectors tab.

10

https://docs.cloudera.com/data-engineering/1.5.4/cli-access/topics/cde-cli.html
https://docs.cloudera.com/data-engineering/1.5.4/cli-access/topics/cde-cli.html

Cloudera Data Engineering Managing Cloudera Data Engineering jobs using the CLI

1. Run the cde job create command as follows:

cde job create --application-file <path to _application_jar> --c
| ass <application_class> [--default-variable nane=val ue] [--data-connector
nane] --nane <job_nane> --num executors <num executors> --type spark

To see the full command syntax and supported options, run cde job create --help.
With [--default-variable] flags you can replace strings in job values. Currently the supported fields are:

» Spark application name
e Spark arguments
» Spark configurations

For avariable flag name=value any substring {{{name}}} in the value of the supported field gets replaced with
value. These can be overriden by the [--variabl€] flag during the job run.

Using the [--data-connector] flag, you can specify the name of the data connector. Currently, only the Ozone type
data connector is supported and it must be created before the job run.

2. Run cde job describe to verify that the job was created:

cde job describe --nanme <job_name>

3. If you want to update the job configuration, use the cde job update command.
For example, to change the number of executors:

cde job update --nane test_job --num executors 15

To see the full command syntax and supported options, run cde job update --help.
4. To verify the updated configuration, run cde job describe again:

cde job describe --nane <job_nanme>

The following example demonstrates how to create an Airflow DAG in Cloudera Data Engineering (CDE) using the
command line interface (CLI).

Make sure that you have downloaded the CL1 client. For more information, see Using the Cloudera Data Engineering
command line interface.

11

https://docs.cloudera.com/data-engineering/1.5.4/cli-access/topics/cde-cli-run-job.html
https://docs.cloudera.com/data-engineering/1.5.4/cli-access/topics/cde-cli.html
https://docs.cloudera.com/data-engineering/1.5.4/cli-access/topics/cde-cli.html

Cloudera Data Engineering Managing Cloudera Data Engineering jobs using the CLI

1. Run the cde job create command as follows:

cde job create --name <job_nanme> --type airflow --dag-file <DAG file> --m
ount - 1-resour ce <your_DAG resource> [other Airflow flags...]

<DAG file>
is areference to afile within a CDE resource

To see the full command syntax and supported options, run cde job create --help.

E Note: Airflow DAGs manage their own schedules and so their schedules cannot be set through the CLI.

2. Run cde job describe to verify that the job was created:

cde job describe --nane <job_name>

3. If you want to update the job configuration, use the cde job update command.
For example, to change the number of executors:

cde job update --nane test _job

To see the full command syntax and supported options, run cde job update --help.
4. To verify the updated configuration, run cde job describe again:

cde job describe --nanme <job_name>

To view existing applications, run cde job list. To view details for a specific application, run cde job describe --name
<job_name>

The following example demonstrates how to submit a JAR or Python file to run on CDE Spark in Cloudera Data
Engineering (CDE) using the command line interface (CL1).

Using the cde spark submit command is a quick and efficient way of testing a spark job, asit spares you the task of
creating and uploading resources and job definitions before running the job, and cleaning up after running the job.

This command is recommended only for JAR or Python files that need to be run just once, because the the file
is removed from Spark at the end of the run. To manage jobs that need to be run more than once, or that contain
schedules, usecde job run instead of this command.

To submit a JAR or Python file to run on CDE Spark, use the CLI command:

cde spark submit <JAR/ Python file> [args...] [Spark flags...] [--]job-name <j
ob nanme>] [--hide-Iogs]

Y ou can use [--job-name <job name>] to specify the same CDE job name for consecutive cde spark submit
commands. To see the full command syntax and supported options, run cde spark submit --help.

12

Cloudera Data Engineering Managing Cloudera Data Engineering jobs using the CLI

For example:

To submit ajob with alocal JAR file:

cde spark subnit ny-spark-app-0.1.0.jar 100 1000 --class com conmpany. app. spa
rk. Mai n

The CLI displaysthejob run ID followed by the driver logs, unless you specified the --hide-logs option. The script
returns an exit code of O for success or 1 for failure.

Cloudera Data Engineering (CDE) supports running raw Scala code from the command line, without compiling it into
aJAR file. You can use the cde spark submit command to run a.scalafile. CDE recognizes the file as Scala code and
runsit using spark-shell in batch mode rather than spark-submit.

Limitations:

* When setting the Log Level from the user interface, the setting is not applied to the raw Scala
jobs.

» Do not use package <something> in the raw Scalajob file as Raw Scala File is used for
Scripting and not for Jar development and packaging.

B Note: CDE does not currently support interactive sessions. The Scala code runs in batch mode spark-shell.

Run cde spark submit as followsto run a Scalafile:

cde spark submit filenane.scala --jar <jar_dependency_1> --j
ar <jar_dependency_2> ...

The following example demonstrates how to submit a DAG file to immediately run on CDE Airflow in Cloudera
Data Engineering (CDE) using the command line interface (CLI).

Using the cde airflow submit command is a quick and efficient way of testing an Airflow job, asit spares you the task
of creating and uploading resources and job definitions before running the job, and cleaning up after running the job.

This command is recommended only for Airflow DAGs that need to be run just once, because the DAG isremoved
from Airflow at the end of the run. To manage Airflow DAGs that need to be run more than once, or that contain
schedules, usecde job run instead of this command.

To submit a DAG fileto run on CDE Airflow, use the CLI command:

cde airflow subnit <DAG python file> [--config-json <json-string>]* [--job-n
ane <j ob nane>]

To see the full command syntax and supported options, run cde airflow submit --help.
For example:
To submit ajob with alocal DAG file:

cde airflow submt ny-dag. py

13

Cloudera Data Engineering Managing Cloudera Data Engineering jobs using the CLI

When the job has been submitted the CLI displaysthe job run ID, waits for the job to terminate, and returns an exit
code of O for success or 1 for failure.

The following example demonstrates how to run a Cloudera Data Engineering (CDE) Spark job using the command
line interface (CLI).

Make sure that the Spark job has been created and all necessary resources have been created and upl oaded.

Note: Custom Docker container imagesis a Technical Preview feature. Contact your Cloudera account
Ij representative to enable access to this feature.

Using the cde job run requires more preparation on the target environment compared to the cde spark submit
command. Whereas cde spark submit isaquick and efficient way of testing a Spark job during development, cde job
run is suited for production environments where ajob is to be run multiple times, therefore removing resources and
job definitions after every job run is neither necessary, nor viable.

To run a Spark job, run the following command:

cde job run --name <job nanme> [Spark flags...] [--wait] [--variabl e name=val
ue. ..]

» With [Spark flags...] you can override the corresponding job values. Spark flags that can be repeated replace the
original list, except for --conf which only adds or replaces values for the given keys.
« With [--variable] flags you can replace strings in job values. Currently the supported fields are:

e Spark application name
e Spark arguments
» Spark configurations

For avariable flag name=value any substring {{{ name}}} in the value of the supported field gets replaced with
value.

* A custom runtime Docker image can be specified for the job using the --runtime-image-resource-name flag, which
has to refer to the name of a custom image resource that has already been created.

e GPU Acceleration (Technical Preview): Using [--enable-gpu-acceleration] you can accel erate your Spark jobs
using GPUs. Y ou can use [--executor-node-sel ector "nvidia.com/gpu=A100"] and [--executor-node-tol erat
ion "nvidia.com/gpu=true"] options to configure selectors and tolerations if you want to run the job on specific
GPU nodes. When thisjob is run, this particular job will request GPU resources.

Warning: You must ensure this virtual cluster has been configured with GPU resource quota. Otherwise,
the jobs will bein the Pending state as no GPU resource can be allocated to the pod.

cde job run --nane exanple-pi \

--enabl e- gpu-accel eration \

- -execut or - node- sel ector "nvi di a. conf gpu=A100" \
--execut or-node-tol eration "nvidia. com gpu=true"

By default the command returns the job run ID as soon as the job has been submitted.

Optionally, you can use the --wait switch to wait until the job run ends and returns a non-zero exit code if the job run
was hot successful.

14

Cloudera Data Engineering Scheduling Spark jobs

The following example demonstrates how to run a Cloudera Data Engineering (CDE) Airflow job using the command
line interface (CLI).

Make sure that the job has been created and all necessary resources have been created and uploaded.

Note: Custom Docker container imagesis a Technical Preview feature. Contact your Cloudera account
Ij representative to enable access to this feature.

Using the cde job run requires more preparation on the target environment compared to the cde airflow submit
command. Whereas cde airflow submit is aquick and efficient way of testing an Airflow job during development,
cdejob runis suited for production environments where ajob is to be run multiple times, therefore removing
resources and job definitions after every job run is neither necessary, nor viable.

To run an Airflow job, run the following command:
cde job run --name <job nane> [--config <key=value>]* [--wait]

Airflow configs provided at job run time will override the corresponding job configs.
By default the command returns the job run ID as soon as the job has been submitted.

Optionally, you can use the --wait switch to wait until the job run ends and returns a non-zero exit code if the job run
was not successful.

Spark jobs can optionally be scheduled so that they are automatically run on an interval. Cloudera Data Engineering
uses the Apache Airflow scheduler to create the schedule instances.

Note:
E Airflow DAGs manage their own schedules, therefore Airflow job schedules cannot be set in thisway, other
than by using the operational commands pause, unpause, clear, mark-success.

Make sure that the Spark job has been created and all necessary resources have been created and uploaded.

Note: Custom Docker container imagesis a Technical Preview feature. Contact your Cloudera account
B representative to enable accessto this feature.

15

Cloudera Data Engineering Scheduling Spark jobs

1. Definearunninginterval for your Spark job:

The scheduleinterval is defined by a cron expression. Intervals can be regular, such as daily at 3 am., or irregular,
such as hourly but only between 2 am. and 6 am. and only on weekdays. Y ou can provide the cron expression
directly or you can generate it using flags.

Note: Scheduled job runs start at the end of the first full scheduleinterval after the start date, at the end of

E the scheduled period. For example, if you schedule ajob with adaily interval with astart_date of 14:00,
the first scheduled run istriggered at the end of the next day, after 23:59:59. However if the start_dateis
set to 00:00, it istriggered at the end of the same day, after 23:59:59.

Available schedule interval flags are:
--Cron-expression
A cron expression that is provided directly to the scheduler. For example, 0 */1* * *
--every-minutes
Running frequency in minutes. Valid values are 0-59. Only asingle valueis allowed.
--every-hours
Running frequency in hours. Valid values are 0-23. Only asingle valueis allowed.
--every-days
Running frequency in days. Valid values are 1-31. Only asingle valueis allowed.
--every-months
Running frequency in months. Valid values are 1-12. Only asingle value is allowed.
--for-minutes-of-hour
The minutes of the hour to run on. Valid values are 0-59. Single value, range (e.g.: 1-5), or list (e.g.:
5,10) are alowed.
--for-hour s-of-day
The hours of the day to run on. Valid values are 0-23. Single value, range (e.g.: 1-5), or list (e.g.:
5,10) are alowed.
--for-days-of-month
The days of the month to run on. Valid values are 1-31. Single value, range (e.g.: 1-5), or list (e.g.:
5,10) are alowed.
--for-months-of-year
The months of the year to run on. Valid values are 1-12 and JAN-DEC. Single value, range (e.g.:
1-5), or list (e.g.: APR,SEP) are allowed.
--for-days-of-week
The days of the week to run on. Valid values are SUN-SAT and 0-6. Single value, range (e.g.: 1-5),
or list (e.g. TUE, THU) are allowed.

For example, to set the interval as hourly but only between 2 am. and 6 am. and only on weekdays, use the
command:

cde job create --nane test job --schedul e-enabl ed=true --every-hours 1 --
for-m nutes-of-hour 0 --for-hours-of-day 2-6 --for-days-of-week MON-FRI --
schedul e-start 2021-03-09T00: 00: 00Z

Or, equivalently, using a single cron expression:

cde job create --nane test_job --schedul e-enabl ed=true --cron-expression
"0 2-6/1 * * MONNFRI' --schedul e-start 2021-03-09T00: 00: 00Z

16

Cloudera Data Engineering Scheduling Spark jobs

2. Define atime range for your Spark job:

The schedule also defines the range of time that instances can be created for. The mandatory --schedule-start flag
timestamp tells the schedul er the date and time from which the scheduling begins. The optional --schedule-end
flag timestamp tells the scheduler the last date and time at which the schedule is active. If --schedule-end is not
specified, the job runs at the scheduled interval until it is stopped manually.

Note: Timestamps must be specified in 1SO-8601 UTC format ('yyyy-MM-ddTHH:mm:ssZ'). UTC
E offsets are not supported.

For example, to create a schedule that runs at midnight for each day of a single week, use the following command:

cde job create --nane test_job --schedul e-enabl ed=true --every-days 1 --
for-m nutes-of-hour O --for-hours-of-day 0 --schedul e-start 2021-03-09T0
0: 00: 00Z - -schedul e-end 2021- 03- 15T00: 00: 00Z

Using the Cloudera Data Engineering (CDE) command line interface (CL1I), you can enable, disable, or pause
scheduled job runs.

Note:
B Disabling the schedule removes all record of prior schedule instances.

Ij Note:
Pausing and unpausing the schedule does not remove the record of prior schedule instances.

* Toenableor disable ajob schedule, use the following command:

cde job (create | update) --nane <job nane> --schedul e-enabl ed=(true | f
al se)

» To pause ajob schedule upon schedule creation:

cde job (create | update) --nane <job nanme> --schedul e-enabl ed=true --sc
hedul e- paused=true ...

e To pause an existing job schedule;
cde job schedul e pause --nane <job nane>
or

cde job schedul e pause-all

» To unpause an existing job schedule:

cde job schedul e unpause --nane <job nanme>

Using the Cloudera Data Engineering (CDE) command line interface (CLI), you can clear the statuses of a range of
scheduled instances or mark a scheduled job instance as successful.

17

Cloudera Data Engineering Managing Sessions in Cloudera Data Engineering using the CLI

* Toclear the status of arange of scheduled instances, run the following command:

cde job schedule clear [--schedul e-start <start of clear period>] [--sch
edul e-end <end of clear period>]

« To mark asingle scheduled instance as successful, run the following command:

cde job schedul e mark-success --execution-date <execution date of schedu
| ed i nstance>

where <execution date of scheduled instance> is the timestamp that the instance was scheduled for, not when it
actually ran.

A Cloudera Data Engineering (CDE) Session is an interactive short-lived development environment for running
Spark commands to help you iterate upon and build your Spark workloads.

The cde session create command allows you to create a new Session.

Run the following command in the CDE CLI:
cde session create --name <session-name> --type <pyspar k/ spar k-scal a>
* You can enable the GPU acceleration using the[--enable-gpu-accel eration] flag during the spark session creation.

cde session create --nanme test-session --type spark-scala \
- -enabl e- gpu- accel erati on

» To accelerate session queries on specific hardware, you can use [--executor-node-sel ector "nvidia.com/
gpu=A100"] and [--executor-node-toleration "nvidia.com/gpu=true"] options to configure selectors and
tolerations if you want to run the job on specific GPU nodes. Y ou can only provide executor node selectors
and tolerations, as GPUs are used by executors only. The selector and tolerations CLI options are optional.
Y ou can use either one or both in congestion with --enable-gpu-accel eration flag.

For example:
cde session create --name test-session --type spark-scala \
- -enabl e- gpu- accel erati on \

- -execut or - node- sel ector "nvi di a. conf gpu=A100" \
--execut or-node-tol erati on "nvidi a. com gpu=true"

Once your Session has been created, you can interact with it using the cde sessions interact command.

18

Cloudera Data Engineering Managing Sessions in Cloudera Data Engineering using the CLI

Below is an example that demonstrates how to interact with a PySpark or Scala Session in CDE using the CL1I.

Run the following command in the CDE CLI:

cde session interact --nane <sessi on- nanme>

In this example, a Session is created using the Cloudera Data Engineering (CDE) CLI with resources specified during
creation. In this example, python environment, files, Git repository, and workload credentials resources are used.

B Note: Access files from the /app/mount after they are mounted. Access Secrets from /etc/dex/secrets/<secret
-name>.

> cde session create --nane resources --type pyspark --python-env-resource-n
ane exanpl e-virtual -env --runti nme-inage-resource-nane docker-inmage --nount-1
-resource octocat --nount-2-resource exanple-files --nount-3-resource exanpl
e-data --workl oad-credential workload-cred --workload-credential workl oad-cr

ed- 2
{
"nanme": "resources",
"type": n pyspar k",
"creator": "csso_surya. bal akri shnan",

"created": "2023-10-06T03:13: 032",
"mount s": [

{
“dirPrefix": "/",
"resourceName": "octocat"
I
U, _
"dirPrefix": "/",
"resourceNane": "exanple-files"
L
U, .
"dirPrefix": "/",
"resourceNane": "exanpl e-data"
| }
"| ast St at eUpdat ed": "2023-10-06T03: 13: 032",
"state": "starting",
"interactiveSpark": {
“id'r 1,

"driverCores": 1,
"executor Cores": 1,
"driverMenory": "1g",

"execut or Menory": "1g",
"nunExecut ors": 1,
"pyt honEnvResour ceNane": "exanpl e-virtual -env"

"wor k|l oadCr edent i al s": [
"wor kl oad-cred",
"wor kl oad- cr ed- 2"

]

}

> .,/ cde session interact --nane resources

unt i mel nageResour ceNanme": "docker-i mage"

19

Cloudera Data Engineering

Managing Sessions in Cloudera Data Engineering using the CLI

Starting REPL...

Waiting for the session to go into an avail able state...
Connected to O oudera Data Engi neering...

Press Ctrl+D (i.e. EOF) to exit
Wl cone to
I Il
RYRY \/ A B |
R R B W N A A A W
!/

Type in expressions to have them eval uat ed.

>>> os.listdir("/app/ mount")
['.git', ' README',
ccess-logs.txt', 'cdeoperator.py',
t.py', 'spark-I|oad-data.py',
txt',
e-t xckdpxp. yam ']

'access- | ogs- ETL-i ceberg. py',
' pyspar k- bat ch-j ob. py',
"word_count _tenplates.txt',
' dex-spark-driver-tenpl at e-t xckdpxp. yam ',

'access-1logs-ETL.py', 'a

' pyspar k_wor dcoun
"wordcount i nput 1.
' dex- spar k- execut or - t enpl at

>>> sec_path = "/etc/dex/secrets/workl oad-cred/ keyl"

>>> with open(sec_path) as f:
. for line in f:
print(line)
val uel

>>> sec_path = "/etc/dex/secrets/workl oad-cred-2/ key2"

>>> with open(sec_path) as f:
for line in f:
print(line)

val ue2
>>> jnport pandas

>>> dat es = pandas. date_range("20130101", peri ods=6)
>>> dat es
Dat eti nel ndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04",
'2013-01-05', '2013-01-06'],
dtype='dateti me64[ns]', freq="D)

The Cloudera Data Engineering (CDE) command reference is shown below.

cde session create

cde session interact

cde session kill

cde session delete

cde session list

cde session statements

Creates a CDE session. Sessions are identified by a user-specified
name. Sessions have atype that defines the engine that the Session will
run on. The 'spark-scala[Scala REPL] and 'pyspark'[Python REPL]
types are currently supported.

Connects to arunning session in a Spark shell similar to the interface
and submit statements.

Ends a session. The Spark driver and executor processes are stopped.

Deletes a session and removes all references to the session. Logs will
no longer be accessible.

Listsall sessions. The --output flag can be used to control the output
format. Y ou can use the “--output string output format (“table" or
"json") (default "table")" flag to specify whether the Session’s output
must be in atable or JSON format

Lists session statements. The --output flag can be used to control the
output format.

20

Cloudera Data Engineering CDE Spark job example

cde sessions describe —name <session_name> Describes the session. The command is used as an input to name the
session.

In this example thereisalocal Spark jar my-app-0.1.0.jar, and alocal reference file my-ref.conf that the Spark job
opens locally as part of its execution. The Spark job reads data from the location in the first argument and writes data
to the location in the second argument. There is also a custom Spark configuration for tuning performance.

1. Makeyour job available for running in one of the following ways:

Y ou can submit the job directly to CDE and have it run the job once, using the spark submit command. In this
case no permanent resources are created on CDE subsequently no cleanup is necessary after the job run. Thisis
ideal when testing ajob.

cde spark subnmit ny-app-0.1.0.jar \
--file ny-ref.conf \
--conf spark.sql.shuffle.partiti ons=1000

If you plan to run the same job several timesit isisagood ideato create and upload the resource and job and then
run it on CDE using thejob run command. Thisis the preferable method in production environments.

> cde resource create --nanme ny-resource

> cde resource upload --nanme ny-resource --local-path my-app-0.1.0.jar
109. 7MB/ 109. 7MB 100% [] ny-
app-0.1.0.jar
> cde resource upload --nane ny-resource --1local-path ny-ref.conf
135. 0b/ 135. 0b 100% [] ny-
ref. conf

> cde job create \
--nane ny-job \
--type spark \
--nmount - 1-resource ny-resource \
--application-file ny-app-0.1.0.jar \
--conf spark.sql.shuffle.partitions=1000 \

> cde job run --name ny-job
{
"id': 1
} . . .
> cde run describe --id 1| jg -r '.status
starting
;.éde run describe --id 1 | jq -r '.status
fini shed

2. Schedule your job:

Asthe above created job staysin CDE permanently until you delete it, you can scheduleit to run regularly at a
predefined time. This example schedules your job to run daily at midnight, starting from January 1, 2021:

> cde job update \
--nane ny-job \
--schedul e- enabl ed=true \
--schedul e-start 2021-01-01T00: 00: 00Z \
--every-days 1\
--for-m nutes-of-hour 0\
--for-hours-of-day 0

21

Cloudera Data Engineering

CDE CLI command reference

The Cloudera Data Engineering (CDE) command line syntax is shown below. Y ou can view additional syntax help by

adding --help after any command.

Usage:
cde [conmand]

Avai | abl e Commands:

hel p Hel p about any command
j ob Manage CDE j obs
resource Manage CDE resources
run Manage CDE runs
spar k Spar k commands

Fl ags:

--aut h-cache-file string
RCACHE/ t oken- cache")
- -aut h-no- cache
--aut h-pass-file string
-h, --help
- - hi de- progress-bars
--insecure
--tls-ca-certs string
--tls-insecure
ficate
--user string
--vcl uster-endpoint string
-v, --verbose
--version
Use "cde [command]

Usage:
cde job [command]

Avai | abl e Commands:

token file cache | ocation (default "$USE
do not cache authentication tokens

aut henti cati on password file |l ocation
hel p for cde

hi de progress bars for file uploads

APl does not require authentication
addi ti onal PEM encoded CA certificates
skip verification of APl server TLS certi

CDP user to authenticate as
CDE virtual cluster endpoint
ver bose | oggi ng
version for cde

--hel p" for nore information about a command.

create Create a job
del ete Del ete a job
descri be Describe a job
i mport | nport a job
list Li st jobs
run Run a job
schedul e Operate CDE job schedul es
updat e Update a job
Usage:

cde resource [command]
Avai | abl e Conmands:

create Create a resource

del et e Del ete a resource

delete-file Delete a file froma resource

22

Cloudera Data Engineering CDE CLI Spark flag reference

descri be Descri be resource

downl oad Downl oad a file froma resource

list Li st resources

upl oad Upload a file to resource
Usage:

cde run [command]

Avai | abl e Commands:

descri be Describe a run

kill Kill a run

list Li st runs

| ogs Retrieve logs for a run

ui Open a run in the default browser
Usage:

cde spark [command]

Avai | abl e Commands:
submi t Run a jar/py file on CDE Spark

The Cloudera Data Engineering (CDE) command Spark flag reference is shown below.

--application-file: application main file

--class: application nmain class

--arg: Spark argunent

--conf: Spark configuration (format key=val ue) (can be repeated)

--m n-executors: m ni rum nunber of executors

- -max- execut ors: maxi mum nunber of executors

--initial-executors: initial nunmber of executors

--executor-cores: nunber of cores per executor

--executor-nmenory: nenory per executor

--driver-nenory: nenory for driver

--driver-cores: nunber of driver cores

--spar k-name: Spark application name

--file: additional file additional file (can be repeated) (will be nerged w
ith --files, if provided)

--files: additional files (comua-separated list) (will be nerged with all --

file)

--jar: additional jar (can be repeated) (will be merged with --jars, if prov
i ded)

--jars: additional jars (comma-separated list) (will be nerged with all --
jar)

--py-file: additional Python file (can be repeated) (will be nerged with --
py-file, if provided)
--py-files: additional Python files (comm-separated list) (will be nmerged

with all --py-file)
- - packages: additional dependenci es as comma-separated |list of Maven coord
nat es

--repositories: additional repositories/resolvers for retrieving the --pac
kages dependenci es
- - pyt hon- env-resour ce- nane: Python environnment resource nane

23

Cloudera Data Engineering CDE CLI Airflow flag reference

--python-version: Python version ("python3" or "python2")

--log-level: log | evel for Spark containers (TRACE, DEBUG | NFO WARN, ERR
OR, FATAL, OFF)

--enabl e-anal ysi s: enabl es Spark analysis (see 'Analysis' U tab for a jobr
un)

The Cloudera Data Engineering (CDE) command Airflow flag reference is shown below.

cde airflow submt --help
Usage:
cde airflow subnmit [flags]

Exanpl es:
For a local DAG file 'my-airflowjob.py':
> cde airflow submit ny-airflowjob.py

Fl ags:
--airflowfile-munt-Nprefix string mount directory prefix for
airflow file nmount N (defaults to "/airflowfile-nount-N-resource-nane")
--airflowfile-nmunt-Nresource string resource nanme for airflow fi

| e mount N

--config stringArray DEPRECATED - DAG confi gura
tion (format key=val ue) (can be repeated). Use --config-json option instead.

--config-json string DAG configuration in JSON st
ring fornat

--config-json-file string DAG configuration file | ocati
on in JSON for mat

--dag-file string DAG fil enane, path to the DAG
wi thin the resource

-h, --help hel p for submt
--j ob-nane string nane of the generated job

Y ou can include flags with the Cloudera Data Engineering (CDE) command line interface (CLI) list command callsto
filter the result set.

cde [credential|job|resourceruny...] list [--filter [fieldname[operator]argument]] [--filter [fieldname]operator]argume
nt]] ...

A list command call can include multiple filter flags, where al filters must match for the entry to be returned. Y ou
have to enclose filtersin quotes.

fieldname

is selected from the top-level fields of the returned entries. Filtering of fields nested within other
fieldsis supported using MySQL 8 JSON path expressions.

operator
isone of: eq, noteq, Ite, It, gte, gt, in, notin, like, rlike. The in and notin operators work on an
argument of comma-separated values. The like operator matches using SQL LIKE syntax, e.g. %otest
%. Therlike operator matches using the SQL REGEXP regular expression syntax.

argument

24

https://dev.mysql.com/doc/refman/8.0/en/json.html#json-path-syntax

Cloudera Data Engineering CDE CLI list command syntax reference

isthevalue, list, or expression to match with the operator. If the argument contains commas the
filter has to be enclosed in a second set of quotes, for example: ™id[in]12,14,16"".

E Note:
Timestamps must be formatted as MySQL date time literals.

For example:

cde run list --filter 'spark.spec.file[rlike]jar’

25

https://dev.mysql.com/doc/refman/8.0/en/date-and-time-literals.html

	Contents
	Using the Cloudera Data Engineering command line interface
	Downloading the Cloudera Data Engineering command line interface
	CDE concepts
	Managing Cloudera Data Engineering job resources using the CLI
	Creating a Cloudera Data Engineering resource using the CLI
	Uploading files or other assets to a Cloudera Data Engineering resource using the CLI
	Deleting a Cloudera Data Engineering resource using the CLI
	Creating and updating Docker credentials
	Deleting Docker credentials
	Deleting an Airflow DAG

	Managing Cloudera Data Engineering jobs using the CLI
	Creating and updating Apache Spark jobs using the CLI
	Creating and updating Apache Airflow jobs using the CLI
	Listing jobs using the CLI
	Submitting a Spark job using the CLI
	Running raw Scala code in Cloudera Data Engineering
	Submitting an Airflow job using the CLI
	Running a Spark job using the CLI
	Running a Airflow job using the CLI

	Scheduling Spark jobs
	Enabling, disabling, and pausing scheduled jobs
	Managing the status of scheduled job instances

	Managing Sessions in Cloudera Data Engineering using the CLI
	Creating a Session using the CDE CLI
	Interacting with a Session using the CDE CLI
	Sessions example for the CDE CLI
	Sessions command descriptions

	CDE Spark job example
	CDE CLI command reference
	CDE CLI Spark flag reference
	CDE CLI Airflow flag reference
	CDE CLI list command syntax reference

