
Cloudera Data Engineering 1.5.4

Managing Cloudera Data Engineering jobs
Date published: 2020-07-30
Date modified: 2024-05-30

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Data Engineering | Contents | iii

Contents

Creating jobs in Cloudera Data Engineering.. 4

CDE example jobs and sample data...7

Using Apache Iceberg in Cloudera Data Engineering..9
Prerequisites and limitations for using Iceberg..9
Accessing Iceberg tables.. 10

Editing a storage handler policy to access Iceberg files on the file system...11
Creating a SQL policy to query an Iceberg table.. 14

Creating Virtual Cluster with Spark 3... 15
Creating and running Spark 3.2.1 Iceberg jobs... 15
Creating a new Iceberg table from Spark 3...16
Configuring Hive Metastore for Iceberg column changes...17
Importing and migrating Iceberg table in Spark 3.. 17
Importing and migrating Iceberg table format v2... 18
Configuring Catalog..20
Loading data into an unpartitioned table... 20
Querying data in an Iceberg table..20
Updating Iceberg table data... 21
Iceberg library dependencies for Spark applications... 21

Creating a Git repository in Cloudera Data Engineering (Technical
Preview)..22

Managing jobs in Cloudera Data Engineering..25

Running Jobs in Cloudera Data Engineering..26

Scheduling jobs in Cloudera Data Engineering.. 26

Deleting Jobs in Cloudera Data Engineering.. 27

Configuring Spark jobs for huge shuffle data...27

Best practices for building Apache Spark applications......................................28

Cloudera Data Engineering Creating jobs in Cloudera Data Engineering

Creating jobs in Cloudera Data Engineering

A job in Cloudera Data Engineering (CDE) consists of defined configurations and resources (including application
code). Jobs can be run on demand or scheduled.

Before you begin

Important: You must create the cluster, initialize each cluster, and configure each user who need to submit
jobs before creating jobs.

In Cloudera Data Engineering (CDE), jobs are associated with virtual clusters. Before you can create a job, you must
create a virtual cluster that can run it. For more information, see Creating virtual clusters.

Procedure

1. In the Cloudera Data Platform (CDP) console, click the Data Engineering tile. The CDE Home page displays.

2. In the left navigation menu click Jobs. The Jobs page is displayed.

3. Click Create Job. The Job Details page is displayed.

4

https://docs.cloudera.com/data-engineering/1.5.4/manage-clusters/topics/cde-private-cloud-create-cluster.html

Cloudera Data Engineering Creating jobs in Cloudera Data Engineering

5

Cloudera Data Engineering Creating jobs in Cloudera Data Engineering

4. Provide the Job Details:

a) Select Spark for the job type. If you are creating the job from the Home page, select the virtual cluster where
you want to create the job.

b) Specify the Name.
c) Select File or URL for your application file, and provide or specify the file. You can upload a new file or select

a file from an existing resource.

If you select the URL option and specify an Amazon AWS S3 URL, add the following configuration to the
job:

config_key: spark.hadoop.fs.s3a.delegation.token.binding

config_value: org.apache.knox.gateway.cloud.idbroker.s3a.IDBDelegationTokenBinding
d) If your application code is a JAR file, specify the Main Class.
e) Specify arguments if required. You can click the Add Argument button to add multiple command arguments as

necessary.
f) Enter Configurations if needed. You can click the Add Configuration button to add multiple configuration

parameters as necessary.

Important: For Spark jobs, setting the spark.app.id property at the Spark job level configuration
or within the Spark application code is not supported in CDE.

g) Optional: Select the name of the data connector from the Data Connector drop-down list. The UI displays the
storage information that is internally overwritten.

h) If your application code is a Python file, select the Python Version, and optionally select a Python
Environment.

5. Click Advanced Configurations to display more customizations, such as additional files, initial executors, executor
range, driver and executor cores, and memory.

By default, the executor range is set to match the range of CPU cores configured for the virtual cluster. This
improves resource utilization and efficiency by allowing jobs to scale up to the maximum virtual cluster resources
available, without manually tuning and optimizing the number of executors per job.

GPU Acceleration (Technical Preview): You can accelerate your Spark jobs using GPUs. Click Enable GPU
Accelerations checkbox to enable the GPU acceleration and configure selectors and tolerations if you want to run
the job on specific GPU nodes. When this job is created and run, this particular job will request GPU resources.

Warning: You must ensure this virtual cluster has been configured with GPU resource quota. Otherwise,
the jobs will be in the Pending state as no GPU resource can be allocated to the pod.

6. Click Schedule to display scheduling options.

You can schedule the application to run periodically using the Basic controls or by specifying a Cron Expression.

7. Click Alerts and provide the email id to receive alerts. Click + to add more email IDs. Optionally, you can select
when you want email alerts whether for job failures or missed job service-level agreements or both.

Note: You must configure the Configure Email Alerting option while creating a virtual cluster to send
your email alerts. For more information about configuring email alerts, see Creating virtual clusters.

8. If you provided a schedule, click Schedule to create the job. If you did not specify a schedule, and you do not
want the job to run immediately, click the drop-down arrow on Create and Run and select Create. Otherwise, click
Create and Run to run the job immediately.

Related Information
Generate Access Key

6

https://docs.cloudera.com/data-engineering/1.5.4/manage-clusters/topics/cde-private-cloud-create-cluster.html
https://docs.cloudera.com/data-engineering/1.5.4/manage-clusters/topics/cde-private-cloud-create-cluster.html

Cloudera Data Engineering CDE example jobs and sample data

CDE example jobs and sample data

Cloudera Data Engineering provides a suite of example jobs that operate on example data to showcase its core
capabilities and make the onboarding easier. The example jobs are a combination of Spark and Airflow jobs, which
include scenarios such as reading and writing from object storage, running an Airflow DAG, and expanding on
Python capabilities with custom virtual environments. Once loaded, these jobs can be run on demand or scheduled.
The sample data will be loaded into the environment's default Data Lake location.

Before you begin

In Cloudera Data Engineering (CDE), jobs are associated with virtual clusters. Before you can create a job, you must
create a virtual cluster that can run it. For more information, see Creating virtual clusters.

About this task

You must run the example jobs with a user who is not the Local Administrator, that is, the user must to have been
granted DEUser or DEAdmin privileges in the environment associated with your DE workspace. Also ensure you
have enough resources to run these example jobs. Below is the description of the different example jobs:

Table 1: Example Jobs

Job Description

example-load-data Loads the sample data onto the environment data lake. This job runs only once and is then deleted.

Note: This will need to be run manually first if the sample jobs are loaded in any user defined
virtual clusters.

If the example-load-data job fails, contact Cloudera Support to recreate the example-load-data
job.

example-virtual-env Demonstrates CDE job configuration that utilizes Python Environment resource type to expand pyspark
features via custom virtual env. This example adds pandas support.

Note: You cannot run this job in an air-gapped environment.

example-resources Demonstrates CDE job configuration utilizing file-based resource type. Resources are mounted on Spark
driver and executor pods. This example uses an input file as a data source for a word-count Spark app. The
driver stderr log contains the word count.

example-resources-schedules Demonstrates scheduling functionality for Spark job in CDE. This example schedules a job to run at
5:04am UTC each day.

example-spark-pi Demonstrates how to define a CDE job. It runs a SparkPi using a scala example jar located on a s3 bucket.
The driver stderr log contains the value of pi.

Note: You cannot run this job in an air-gapped environment.

example-cdeoperator Demonstrates job orchestration using Airflow. This example uses a custom CDE Operator to run two Spark
jobs in sequence, mimicking a pipeline composed of data ingestion and data processing.

Note: You cannot run this job in an air-gapped environment.

example-object-store Demonstrates how to access and write data to object store on different form factors: S3, ADLS, and
HDFS. This example reads data already staged to object store and makes changes and then saves back the
transformed data to object store. The output of the query ran on the object store table can be viewed in the
driver stderr log.

7

https://docs.cloudera.com/data-engineering/1.5.4/manage-clusters/topics/cde-private-cloud-create-cluster.html

Cloudera Data Engineering CDE example jobs and sample data

Procedure

1. In the Cloudera Data Platform (CDP) console, click the Data Engineering tile. The CDE Home page displays.

2. Click Jobs on the left navigation menu.

3. Select Load Example Jobs from the two options that appear.

Note: You will see this window only if you have no existing jobs in the virtual cluster.

4. If you have existing jobs in the virtual cluster, click on the jobs page to Load Example Jobs.

8

Cloudera Data Engineering Using Apache Iceberg in Cloudera Data Engineering

5. A dialog box appears explaining the example jobs and sample data. Click Confirm to load example jobs and
sample data.

Results
Example jobs will be loaded in the virtual cluster and sample data will be loaded in the environment’s Data Lake
location.

Using Apache Iceberg in Cloudera Data Engineering

Cloudera Data Engineering (CDE) supports Apache Iceberg which provides a table format for huge analytic datasets
in the cloud. Iceberg enables you to work with large tables, especially on object stores, and supports concurrent reads
and writes on all storage media. You can use Cloudera Data Engineering virtual clusters running Spark 3 to interact
with Apache Iceberg tables.

Prerequisites and limitations for using Iceberg
To use Apache Iceberg in CDE, you'll need the following prerequisites:

• CDE Virtual Cluster with Spark 3.2.1 or higher
• CDP Private Cloud Base 7.1.7 SP2 or 7.1.8

9

Cloudera Data Engineering Using Apache Iceberg in Cloudera Data Engineering

Limitations

Spark streaming is not supported when using Iceberg from Spark.

Iceberg table format version 2

Iceberg table format version 2 (v2) is available starting in Iceberg 0.14. Iceberg table format v2 uses row-level
UPDATE and DELETE operations that add deleted files to encoded rows that were deleted from existing data files.
The DELETE, UPDATE, and MERGE operations function by writing delete files instead of rewriting the affected
data files. Additionally, upon reading the data, the encoded deletes are applied to the affected rows that are read. This
functionality is called merge-on-read.

To use Iceberg table format v2, you'll need the following prerequisites:

• Iceberg 0.14
• Spark 3.2 or higher

With Iceberg table format version 1 (v1), the above-mentioned operations are only supported with copy-on-write
where data files are rewritten in their entirety when rows in the files are deleted. Merge-on-read is more efficient
for writes, while copy-on-write is more efficient for reads.

Note: Unless otherwise indicated, the operations in the subsequent documentation apply to both v1 and
v2 formats.

Iceberg timestamp

• Iceberg supports two timestamp types:

• timestamp (without timezone)
• timestamptz (with timezone)

In Spark 3.3 and earlier, Spark SQL supports a single TIMESTAMP type, which maps to the Iceberg timestamptz
type. However, Impala is unable to write to Iceberg tables with timestamptz columns. To create Iceberg tables
from Spark with timestamp rather than timestamptz columns, set the following configurations to true:

• spark.sql.iceberg.handle-timestamp-without-timezone

• spark.sql.iceberg.use-timestamp-without-timezone-in-new-tables

Configure these properties only on Spark 3.3 and earlier.

Spark still handles the timestamp column as a timestamp with local timezone. Inconsistent results occur unless
Spark is running in UTC.

Accessing Iceberg tables
CDP uses Apache Ranger to provide centralized security administration and management. The Ranger Admin UI is
the central interface for security administration. You can use Ranger to create two policies that allow users to query
Iceberg tables.

How you open the Ranger Admin UI differs from one CDP service to another. In Management Console, you can
select your environment, and then click Environment Details Quick Links Ranger .

You log into the Ranger Admin UI, and the Ranger Service Manager appears.

10

Cloudera Data Engineering Using Apache Iceberg in Cloudera Data Engineering

Policies for accessing tables on HDFS

The default policies that appear differ from service to service. You need to set up two Hadoop SQL policies to query
Iceberg tables:

• One to authorize users to access the Iceberg files

Follow steps in "Editing a policy to access Iceberg files" below.
• One to authorize users to query Iceberg tables

Follow steps in "Creating a policy to query an Iceberg table" below.

Prerequisites

• Obtain the RangerAdmin role.
• Get the user name and password your Administrator set up for logging into the Ranger Admin.

The default credentials for logging into the Ranger Admin Web UI are admin/admin123.

Editing a storage handler policy to access Iceberg files on the file system
You learn how to edit the existing default Hadoop SQL Storage Handler policy to access files. This policy is one of
the two Ranger policies required to use Iceberg.

About this task
The Hadoop SQL Storage Handler policy allows references to Iceberg table storage location, which is required for
creating or altering a table. You use a storage handler when you create a file stored as Iceberg on the file system or
object store.

In this task, you specify Iceberg as the storage-type and allow the broadest access by setting the URL to *.

The Hadoop SQL Storage Handler policy supports only the RW Storage permission. A user having the required RW
Storage permission on a resource, such as Iceberg, that you specify in the storage-type properties, is allowed only
to reference the table location (for create/alter operations) in Iceberg. The RW Storage permission does not provide
access to any table data. You need to create the Hadoop SQL policy described in the next topic in addition to this
Hadoop SQL Storage Handler policy to access data in tables.

For more information about these policy settings, see Ranger Storage Handler documentation.

11

https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/security-ranger-authorization/topics/security-ranger-resource-policy-storage-handler.html

Cloudera Data Engineering Using Apache Iceberg in Cloudera Data Engineering

Procedure

1. Log into Ranger Admin Web UI.
The Ranger Service Manager appears:

2. In Policy Name, enable the all - storage-type, storage-url policy.

3.
In Service Manager, in Hadoop SQL, select Edit and edit the all storage-type, storage-url policy.

4. Below Policy Label, select storage-type, and enter iceberg..

12

Cloudera Data Engineering Using Apache Iceberg in Cloudera Data Engineering

5. In Storage URL, enter the value *, enable Include.

For more information about these policy settings, see Ranger storage handler documentation.

6. In Allow Conditions, specify roles, users, or groups to whom you want to grant RW storage permissions.

You can specify PUBLIC to grant access to Iceberg tables permissions to all users. Alternatively, you can grant
access to one user. For example, add the systest user to the list of users who can access Iceberg:

For more information about granting permissions, see Configure a resource-based policy: Hadoop-SQL.

7. Add the RW Storage permission to the policy.

8. Save your changes.

13

https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/security-ranger-authorization/topics/security-ranger-resource-policy-storage-handler.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/security-ranger-authorization/topics/security-ranger-resource-policy-configure-hive.html

Cloudera Data Engineering Using Apache Iceberg in Cloudera Data Engineering

Creating a SQL policy to query an Iceberg table
You learn how to set up the second required policy for using Iceberg. This policy manages SQL query access to
Iceberg tables.

About this task

You create a Hadoop SQL policy to allow roles, groups, or users to query an Iceberg table in a database. In this task,
you see an example of just one of many ways to configure the policy conditions. You grant (allow) the selected roles,
groups, or users the following add or edit permissions on the table: Select, Update, Create, Drop, Alter, and All. You
can also deny permissions.

For more information about creating this policy, see Ranger documentation.

Procedure

1. Log into Ranger Admin Web UI.
The Ranger Service Manager appears.

2. Click Add New Policy.

3. Fill in required fields.
For example, enter the following required settings:

• In Policy Name, enter the name of the policy, for example IcebergPolicy1.
• In database, enter the name of the database controlled by this policy, for example icedb.
• In table, enter the name of the table controlled by this policy, for example icetable.
• In columns, enter the name of the column controlled by this policy, for example enter the wildcard asterisk (*)

to allow access to all columns of icetable.
• Accept defaults for other settings.

4. Scroll down to Allow Conditions, and select the roles, groups, or users you want to access the table.

You can use Deny All Other Accesses to deny access to all other roles, groups, or users other than those specified
in the allow conditions for the policy.

14

https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/security-ranger-authorization/topics/security-ranger-resource-policy-configure-hive.html

Cloudera Data Engineering Using Apache Iceberg in Cloudera Data Engineering

5. Select permissions to grant.
For example, select Create, Select, and Alter. Alternatively, to provide the broadest permissions, select All.

Ignore RW Storage and other permissions not named after SQL queries. These are for future implementations.

6. Click Add.

Creating Virtual Cluster with Spark 3
Create a virtual cluster with Spark 3 as the Spark version.

For more information on creating virtual clusters, see Creating virtual clusters.

Creating and running Spark 3.2.1 Iceberg jobs
Create and run a spark job which uses iceberg tables.

Before you begin

Important: You must complete the manual steps to prepare the cluster for each user who need to submit
jobs.

If your application code directly uses Iceberg APIs, you need to build it against the Iceberg dependencies. For
more information, see Iceberg library dependencies for Spark applications on page 21.

In Cloudera Data Engineering (CDE), jobs are associated with virtual clusters. Before you can create a job, you must
create a virtual cluster that can run it. For more information, see Creating virtual clusters.

Procedure

1. In the Cloudera Data Platform (CDP) console, click the Data Engineering tile. The CDE Home page displays.

2. In the CDE Home page, in Jobs, click Create New under Spark or click Jobs in the left navigation menu and then
click Create Job.

3. Provide the Job Details:

a) Select Spark for the job type. If you are creating the job from the Home page, select the virtual cluster where
you want to create the job.

b) Specify the Name.
c) Select File or URL for your application file, and provide or specify the file. You can upload a new file or select

a file from an existing resource.
d) If your application code is a JAR file, specify the Main Class.
e) Click the Add Configuration button to add the following configuration parameters:

config_key: cde.iceberg.enabled

15

https://docs.cloudera.com/data-engineering/1.5.4/manage-clusters/topics/cde-private-cloud-create-cluster.html
https://docs.cloudera.com/data-engineering/1.5.4/configuring-users-to-create-jobs/topics/cde-private-cloud-configure-users.html
https://docs.cloudera.com/data-engineering/1.5.4/manage-clusters/topics/cde-private-cloud-create-cluster.html

Cloudera Data Engineering Using Apache Iceberg in Cloudera Data Engineering

config_value: true

f) If your application code is a Python file, select the Python Version, and optionally select a Python
Environment.

4. Click Advanced Configurations to display more customizations, such as additional files, initial executors, executor
range, driver and executor cores, and memory.

By default, the executor range is set to match the range of CPU cores configured for the virtual cluster. This
improves resource utilization and efficiency by allowing jobs to scale up to the maximum virtual cluster resources
available, without manually tuning and optimizing the number of executors per job.

5. Click Schedule to display scheduling options.

You can schedule the application to run periodically using the Basic controls or by specifying a Cron Expression.

6. Click Alerts and provide the email id to receive alerts. Click + to add more email IDs. Optionally, you can select
when you want email alerts whether for job failures or missed job service-level agreements or both.

Note: You must configure the Configure Email Alerting option while creating a virtual cluster to send
your email alerts. For more information about configuring email alerts, see Creating virtual clusters.

7. If you provided a schedule, click Schedule to create the job. If you did not specify a schedule, and you do not
want the job to run immediately, click the drop-down arrow on Create and Run and select Create. Otherwise, click
Create and Run to run the job immediately.

Creating a new Iceberg table from Spark 3
You can create an Iceberg table using Spark SQL.

Note: By default, Iceberg tables are created in the v1 format.

An example Spark SQL creation command to create a new Iceberg table is as follows:

spark.sql("""CREATE EXTERNAL TABLE ice_t (idx int, name string, state string
)
USING iceberg
PARTITIONED BY (state)""")

For information about creating tables, see the Iceberg documentation.

Creating an Iceberg table format v2

To use the Iceberg table format v2, set the format-version property to 2 as shown below:

CREATE TABLE logs (app string, lvl string, message string, event_ts timestam
p) USING iceberg TBLPROPERTIES ('format-version' = '2')

<delete-mode> <update-mode> and <merge-mode> can be specified during table creation for modes of the respective
operation. If unspecified, they default to merge-on-read.

Unsupported Feature: CREATE TABLE … LIKE

The CREATE TABLE ... LIKE feature is not supported in Spark:

CREATE TABLE <target> LIKE <source> USING iceberg

Here, <source> is an existing Iceberg table. This operation may appear to succeed and does not display errors and
only warnings, but the resulting table is not a usable table.

16

https://docs.cloudera.com/data-engineering/1.5.4/manage-clusters/topics/cde-private-cloud-create-cluster.html
https://iceberg.apache.org/docs/latest/spark-ddl/

Cloudera Data Engineering Using Apache Iceberg in Cloudera Data Engineering

Configuring Hive Metastore for Iceberg column changes
To make schema changes to an existing column of an Iceberg table, you must configure the Hive Metastore of the
Data Lake.

Procedure

1. In Cloudera Manager, select the service for the Hive Metastore.

2. Click the Configuration tab.

3. Search for safety valve and find the Hive Metastore Server Advanced Configuration Snippet (Safety Valve) for
hive-site.xml safety valve.

4. Add the following property:

• Name: hive.metastore.disallow.incompatible.col.type.changes
• Value: false

5. Click Save Changes.

6. Restart the service to apply the configuration change.

Importing and migrating Iceberg table in Spark 3
Importing or migrating tables are supported only on existing external Hive tables. When you import a table to
Iceberg, the source and destination remain intact and independent. When you migrate a table, the existing Hive table
is converted into an Iceberg table. You can use Spark SQL to import or migrate a Hive table to Iceberg.

Importing

Call the snapshot procedure to import a Hive table into Iceberg using a Spark 3 application.

spark.sql("CALL
<catalog>.system.snapshot('<src>', '<dest>')")

Definitions:

• <src> is the qualified name of the Hive table
• <dest> is the qualified name of the Iceberg table to be created
• <catalog> is the name of the catalog, which you pass in a configuration file. For more information, see

Configuring Catalog linked below.

For example:

spark.sql("CALL
spark_catalog.system.snapshot('hive_db.hive_tbl',
'iceberg_db.iceberg_tbl')")

For information on compiling Spark 3 application with Iceberg libraries, see Iceberg library dependencies for Spark
applications linked below.

Migrating

When you migrate a Hive table to Iceberg, a backup of the table, named <table_name>_backup_, is created.

Ensure that the TRANSLATED_TO_EXTERNAL property, that is located in TBLPROPERTIES, is set to false
before migrating the table. This ensures that a table backup is created by renaming the table in Hive metastore (HMS)
instead of moving the physical location of the table. Moving the physical location of the table would entail copying
files in Amazon s3.

We recommend that you refrain from dropping the backup table, as doing so will invalidate the newly migrated table.

17

Cloudera Data Engineering Using Apache Iceberg in Cloudera Data Engineering

If you want to delete the backup table, set the following:

 'external.table.purge'='FALSE'

Note: For PVC CDE 1.5.2 and above, the property will be set automatically.

Deleting the backup table in the manner above will prevent underlying data from being deleted, therefore, only the
table will be deleted from the metastore.

To undo the migration, drop the migrated table and restore the Hive table from the backup table by renaming it.

Call the migrate procedure to migrate a Hive table to Iceberg.

spark.sql("CALL
<catalog>.system.migrate('<src>')")

Definitions:

• <src> is the qualified name of the Hive table
• <catalog> is the name of the catalog, which you pass in a configuration file. For more information, see

Configuring Catalog linked below.

For example:

spark.sql(“CALL
spark_catalog.system.migrate(‘hive_db.hive_tbl’)”)

Related Concepts
Configuring Catalog

Related reference
Iceberg library dependencies for Spark applications

Importing and migrating Iceberg table format v2
Importing or migrating Hive tables Iceberg table formats v2 are supported only on existing external Hive tables.
When you import a table to Iceberg, the source and destination remain intact and independent. When you migrate a
table, the existing Hive table is converted into an Iceberg table. You can use Spark SQL to import or migrate a Hive
table to Iceberg.

Importing

Call the snapshot procedure to import a Hive table into Iceberg table format v2 using a Spark 3 application.

spark.sql("CALL
<catalog>.system.snapshot(source_table => '<src>',
table => '<dest>',
properties => map('format-version', '2', 'write.delete.mode', '<delete-mo
de>',
'write.update.mode', '<update-mode>',
'write.merge.mode', '<merge-mode>'))")

Definitions:

• <src> is the qualified name of the Hive table
• <dest> is the qualified name of the Iceberg table to be created
• <catalog> is the name of the catalog, which you pass in a configuration file. For more information, see

Configuring Catalog linked below.

18

Cloudera Data Engineering Using Apache Iceberg in Cloudera Data Engineering

• <delete-mode> <update-mode> and <merge-mode> are the modes that shall be used to perform the respective
operation. If unspecified, they default to 'merge-on-read'

For example:

spark.sql("CALL
spark_catalog.system.snapshot('hive_db.hive_tbl',
'iceberg_db.iceberg_tbl')")

For information on compiling Spark 3 application with Iceberg libraries, see Iceberg library dependencies for Spark
applications linked below.

Migrating

Call the migrate procedure to migrate a Hive table to Iceberg.

spark.sql("CALL
<catalog>.system.migrate('<src>',
map('format-version', '2',
'write.delete.mode', '<delete-mode>',
'write.update.mode', '<update-mode>',
'write.merge.mode', '<merge-mode>'))")

Definitions:

• <src> is the qualified name of the Hive table
• <catalog> is the name of the catalog, which you pass in a configuration file. For more information, see

Configuring Catalog linked below.
• <delete-mode> <update-mode> and <merge-mode> are the modes that shall be used to perform the respective

operation. If unspecified, they default to 'merge-on-read'

For example:

spark.sql("CALL
spark_catalog.system.migrate('hive_db.hive_tbl',
map('format-version', '2',
'write.delete.mode', 'merge-on-read',
'write.update.mode', 'merge-on-read',
'write.merge.mode', 'merge-on-read'))")

Upgrading Iceberg table format v1 to v2

To upgrade an Iceberg table format from v1 to v2, run an ALTER TABLE command as follows:

spark.sql("ALTER TABLE <table_name> SET TBLPROPERTIES('merge-on-read', '
2')")

<delete-mode>,<update-mode>, and <merge-mode> can be specified as the modes that shall be used to perform the
respective operation. If unspecified, they default to ‘merge-on-read'

Related Concepts
Configuring Catalog

Related reference
Iceberg library dependencies for Spark applications

19

Cloudera Data Engineering Using Apache Iceberg in Cloudera Data Engineering

Configuring Catalog
When using Spark SQL to query an Iceberg table from Spark, you refer to a table using the following dot notation:

<catalog_name>.<database_name>.<table_name>

The default catalog used by Spark is named spark_catalog. When referring to a table in a database known to spark_ca
talog, you can omit <catalog_name>. .

Iceberg provides a SparkCatalog property that understands Iceberg tables, and a SparkSessionCatalog property that
understands both Iceberg and non-Iceberg tables. The following are configured by default:

spark.sql.catalog.spark_catalog=org.apache.iceberg.spark.SparkSessionCatalog
spark.sql.catalog.spark_catalog.type=hive

This replaces Spark’s default catalog by Iceberg’s SparkSessionCatalog and allows you to use both Iceberg and non-
Iceberg tables out of the box.

There is one caveat when using SparkSessionCatalog. Iceberg supports CREATE TABLE … AS SELECT (CTAS)
and REPLACE TABLE … AS SELECT (RTAS) as atomic operations when using SparkCatalog. Whereas, the CTAS
and RTAS are supported but are not atomic when using SparkSessionCatalog. As a workaround, you can configure
another catalog that uses SparkCatalog. For example, to create the catalog named iceberg_catalog, set the following:

spark.sql.catalog.iceberg_catalog=org.apache.iceberg.spark.SparkCatalog
spark.sql.catalog.iceberg_catalog.type=hive

You can configure more than one catalog in the same Spark job. For more information, see the Iceberg
documentation.

Related Information
Iceberg documentation

Loading data into an unpartitioned table
You can insert data into an unpartitioned table. The syntax to load data into an iceberg table:

INSERT INTO table_identifier [(column_list)]
 VALUES ({ value | NULL } [, ...]) [, (...)]

Or

INSERT INTO table_identifier [(column_list)]
 query

Example:

INSERT INTO students VALUES
 ('Amy Smith', '123 Park Ave, San Jose', 111111)
INSERT INTO students VALUES
 ('Bob Brown', '456 Taylor St, Cupertino', 222222),
 ('Cathy Johnson', '789 Race Ave, Palo Alto', 333333)

Querying data in an Iceberg table
To read the Iceberg table, you can use SparkSQL to query the Iceberg tables.

20

https://iceberg.apache.org/docs/latest/spark-configuration/#catalogs

Cloudera Data Engineering Using Apache Iceberg in Cloudera Data Engineering

Example:

spark.sql("select * from ice_t").show(1000, false)

Important: When querying Iceberg tables in HDFS, CDS disables locality by default. Because enabling
locality generally leads to increased Spark planning time for queries on such tables and often the increase is
quite significant. If you wish to enable locality, set the spark.cloudera.iceberg.locality.enabled to true . For
example, you can do it by passing --conf spark.cloudera.iceberg.locality.enabled=true to your spark3-submit
command.

Updating Iceberg table data
Iceberg table data can be updated using copy-on-write or merge-on-read. The table version you are using will
determine how you can update the table data.

v1 format

Iceberg supports bulk updates through MERGE, by defaulting to copy-on-write deletes when using v1 table format.

v2 format

Iceberg table format v2 supports efficient row-level updates and delete operations leveraging merge-on-read.

For more details, refer to Position Delete Files linked below.

For updating data examples, see Spark Writes linked below.

Related Information
Position Delete Fies

Spark Writes

Iceberg library dependencies for Spark applications
If your Spark application only uses Spark SQL to create, read, or write Iceberg tables, and does not use any Iceberg
APIs, you do not need to build it against any Iceberg dependencies. The runtime dependencies needed for Spark to
use Iceberg are in the Spark classpath by default. If your code uses Iceberg APIs, then you need to build it against
Iceberg dependencies.

Cloudera publishes Iceberg artifacts to a Maven repository with versions matching the Iceberg in CDE.

Cloudera publishes Iceberg artifacts to a Maven repository with versions matching the Iceberg in CDS.

Note: For CDH-7.1.x, there are no iceberg jars in the maven repository. Use 0.14.1.1.17.7215.0-27 iceberg
version for compilation. The below iceberg dependencies should only be used for compilation. Including
iceberg jars within a Spark application fat jar must be avoided.

Note: Use 1.3.0.7.1.9.0-387 iceberg version for compilation. The below iceberg dependencies should only be
used for compilation. Including iceberg jars within a Spark application fat jar must be avoided.

<dependency>
 <groupId>org.apache.iceberg</groupId>
 <artifactId>iceberg-core</artifactId>
 <version>${iceberg.version}</version>
 <scope>provided</scope>
</dependency>
<!-- for org.apache.iceberg.hive.HiveCatalog -->
<dependency>

21

https://iceberg.apache.org/spec/#position-delete-files
https://iceberg.apache.org/docs/latest/spark-writes/#spark-writes
https://archive.cloudera.com/p/cdp-public/7.2.11.4/maven-repository/
https://archive.cloudera.com/p/cdp-public/7.2.11.4/maven-repository/

Cloudera Data Engineering Creating a Git repository in Cloudera Data Engineering (Technical
Preview)

 <groupId>org.apache.iceberg</groupId>
 <artifactId>iceberg-hive-metastore</artifactId>
 <version>${iceberg.version}</version>
 <scope>provided</scope>
</dependency>
<!-- for org.apache.iceberg.spark.* classes if used -->
<dependency>
 <groupId>org.apache.iceberg</groupId>
 <artifactId>iceberg-spark</artifactId>
 <version>${iceberg.version}</version>
 <scope>provided</scope>
</dependency>

Alternatively, the following dependency can be used:

<dependency>
 <groupId>org.apache.iceberg</groupId>
 <artifactId>iceberg-spark3-runtime</artifactId>
 <version>${iceberg.version}</version>
 <scope>provided</scope>
</dependency>

Alternatively, the following dependency can be used:

<dependency>
 <groupId>org.apache.iceberg</groupId>
 <artifactId>iceberg-spark-runtime-3.3_2.12</artifactId>
 <version>${iceberg.version}</version>
 <scope>provided</scope>
</dependency>

The iceberg-spark3-runtime JAR contains the necessary Iceberg classes for Spark runtime support, and includes the
classes from the dependencies above.

After compiling the job, you can create and run CDE jobs. For more information see, Creating Spark jobs and
Running a Spark job.

Creating a Git repository in Cloudera Data Engineering
(Technical Preview)

Git repositories allow teams to collaborate, manage project artifacts, and promote applications from lower to higher
environments. Cloudera currently supports Git providers such as GitHub, GitLab, and Bitbucket. Learn how to use
Cloudera Data Engineering (CDE) with version control service.

About this task
Repository files can be accessed when you create a Spark or Airflow job. You can then deploy the job and use CDE's
centralized monitoring and troubleshooting capabilities to tune and adjust your workloads. CDE automatically clones
the project files and folders when a repository is created. Metadata such as file size and hash are also available. These
files display as a read-only view in the CDE UI and users cannot delete or modify the files. This ensures a single
source of truth and simplifies promotions.

Before you begin
To use a non-public Git repository, you must first create repository credentials using a workload secret for CDE using
the CDE CLI as follows:

cde credential create --type basic --username myuser --name my-credential

22

https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/developing-spark-applications/topics/spark-building.html
https://docs.cloudera.com/data-engineering/1.5.4/cli-access/topics/cde-create-job-cli.html
https://docs.cloudera.com/data-engineering/1.5.4/cli-access/topics/cde-cli-run-job.html

Cloudera Data Engineering Creating a Git repository in Cloudera Data Engineering (Technical
Preview)

The command above prompts you for a password where you can either provide your Personal Access Token (PAT) or
provide a password for your Git repository account, for example, Github.

Note: When using the password based authentication, make sure your two factor authentication (2FA)
for your Github account is turned off. Cloudera recommends turning it off because the 2FA doesn't get the
authentication requests when the source is an API.

Procedure

1. In the Cloudera Data Platform (CDP) console, click the Data Engineering tile. The Home page displays.

2. Click Repositories in the left navigation menu.The Repositories page displays.

23

Cloudera Data Engineering Creating a Git repository in Cloudera Data Engineering (Technical
Preview)

3. Click Create Repository. The Create A Repository dialog box displays. Enter the following fields for the
repository:

24

Cloudera Data Engineering Managing jobs in Cloudera Data Engineering

a) Repository Name - Enter a name for the repository.
b) URL - Enter the repository URL (https only).
c) Branch - Enter the name of the git branch.
d) Select a credential from the Select Credential drop-down list. The credentials can be created using the CDE

API.
e) Select Skip TLS. Select this option if the server uses a self-signed CA certificate that CDE does not trust. This

allows CDE to skip the security check and clone the repository.

4. Click Create.

Managing jobs in Cloudera Data Engineering

It is often necessary to modify your Cloudera Data Engineering (CDE) jobs. CDE makes it easy to modify most
aspects of your jobs, including replacing the application code and any supplemental files, as well as modifying
configuration parameters and the schedule.

Before you begin

Procedure

1. In the Cloudera Data Platform (CDP) console, click the Data Engineering tile. The CDE Home page displays.

2. Click Job Runs on the left navigation menu.

3. Using the dropdown menu, select the virtual cluster containing the application you want to manage.

4. Click othe job that you want to modify.

5. The Run History tab lists the recent job executions for the application. Click the Configuration tab to display the
job configuration.

6. Click Edit to change the application configuration.

25

Cloudera Data Engineering Running Jobs in Cloudera Data Engineering

7. Edit the configuration parameters you want to change, including uploading a modified JAR or Python file if
necessary.

8. Click Update and Run to update and run the job or click the drowpdown and select Update to change
configurations.

Running Jobs in Cloudera Data Engineering

Jobs in CDE can be run on demand, or scheduled to run on an ongoing basis. The following instructions demonstrate
how to run a job in CDE.

Before you begin

Procedure

1. In the Cloudera Data Platform (CDP) console, click the Data Engineering tile. The CDE Home page displays.

2. Click Jobs on the left navigation menu. The Jobs page displays.

3. To run a job immediately, click in the Actions column next to the job, and then click Run Now.

You can cancel a running job by clicking Cancel in the same Actions menu.

Job Run Notices:The running jobs provide notifications, in the form of a Bell icon next to the job Run ID, when
certain conditions are met, without having to parse low level logs, or navigating away to a cloud provider or
Kubernetes interface. This will help you to identify why certain job is running slow or stuck, and take actions to
rectify this.

Scheduling jobs in Cloudera Data Engineering

Jobs in Cloudera Data Engineering (CDE) can be run on demand, or scheduled to run on an ongoing basis. The
following instructions demonstrate how to create or modify a schedule for an existing job.

Before you begin

Procedure

1. In the Cloudera Data Platform (CDP) console, click the Data Engineering tile. The CDE Home page displays.

2. Click Jobs on the left navigation menu. The Jobs page displays.

3. Click in the Actions column next to the job, and then click Add Schedule.

4. In the Schedule tab, click Create a Schedule.

5. Set the Start time, End time, and Cron expression.

The start and end times designate the time frame for which the schedule is active. The Cron expression uses the
cron scheduling syntax to specify when the application should run within the start and end times. For information
and examples of the cron syntax, see the Cron entry on Wikipedia.

Note: Timestamps must be specified in ISO-8601 UTC format ('yyyy-MM-ddTHH:mm:ssZ'). UTC
offsets are not supported.

Note: Scheduled job runs start at the end of the first full schedule interval after the start date, at the end of
the scheduled period. For example, if you schedule a job with a daily interval with a start_date of 14:00,
the first scheduled run is triggered at the end of the next day, after 23:59:59. However if the start_date is
set to 00:00, it is triggered at the end of the same day, after 23:59:59.

26

https://en.wikipedia.org/wiki/Cron

Cloudera Data Engineering Deleting Jobs in Cloudera Data Engineering

6. Select optional scheduling configurations:

a) Select Enable Catchup to kick off job runs for any data interval that has not been run since the last data
interval. If this option is not selected, only the runs that start after the time that the job was created will be
included.

b) Select Depends on Previous to ensure that each job run is preceeded by a successful job run.

7. Click Schedule.

Deleting Jobs in Cloudera Data Engineering

If you no longer need a job, you can delete it. Deleting a job does not delete the job run history.

Before you begin

Procedure

1. In the Cloudera Data Platform (CDP) console , click the Data Engineering tile. The CDE Home page displays.

2. Click Jobs on the left navigation menu. The Jobs page displays.

3. Click in the Actions column next to the job, and then click Delete.

Configuring Spark jobs for huge shuffle data

You can configure the Spark jobs to use the persistent volumes for shuffle data to improve the performance or handle
the huge shuffle data.

About this task

By default, Cloudera Data Engineering (CDE) service does not use any PersistentVolume for shuffle data causing the
shuffle data to spill over to the local disks. If the local disk space is not sufficient or local disk performance decreases,
you must configure the Spark jobs to use a persistent volume for shuffle data at the job level.

Note: You can choose any storage class for the local volume depending on your requirement and the storage
classes available in your Kubernetes cluster.

Before you begin

Make sure that you have a compatible storage class that supports local volumes.

Procedure

When creating a new job or editing an exisiting job, add the required configurations in the Job details Configurations
field.

For example, If you have the local volume storage class local-path and need a volume size of maximum 10 Gi, then
add the following configurations:

config_key config_value

spark.kubernetes.executor.volumes.persistentVolumeClaim.spark-
local-dir-1.mount.path

/data

spark.kubernetes.executor.volumes.persistentVolumeClaim.spark-
local-dir-1.mount.readOnly

false

spark.kubernetes.executor.volumes.persistentVolumeClaim.spark-
local-dir-1.options.claimName

OnDemand

27

Cloudera Data Engineering Best practices for building Apache Spark applications

config_key config_value

spark.kubernetes.executor.volumes.persistentVolumeClaim.spark-
local-dir-1.options.sizeLimit

10Gi

spark.kubernetes.executor.volumes.persistentVolumeClaim.spark-
local-dir-1.options.storageClass

local-path

Related Information
Creating jobs in Cloudera Data Engineering

Best practices for building Apache Spark applications

Follow these best practices when building Apache Spark Scala and Java applications:

• Refrain from using withColumn in chain, loop, and calling it multiple times in a single query. Doing so may
cause performance issues. To avoid issues, use select() with multiple columns at once. See the Apache Spark API
reference linked below for more information.

• Compile your applications against the same version of Spark that you are running.
• Build a single assembly JAR ("Uber" JAR) that includes all dependencies. In Maven, add the Maven assembly

plug-in to build a JAR containing all dependencies:

<plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <configuration>
 <descriptorRefs>
 <descriptorRef>jar-with-dependencies</descriptorRef>
 </descriptorRefs>
 </configuration>
 <executions>
 <execution>
 <id>make-assembly</id>
 <phase>package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 </execution>
 </executions>
</plugin>

This plug-in manages the merge procedure for all available JAR files during the build. Exclude Spark, Hadoop,
and Kafka classes from the assembly JAR, because they are already available on the cluster and contained in the
runtime classpath. In Maven, specify Spark, Hadoop, and Kafka dependencies with scope provided. For example:

<dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-core_2.11</artifactId>
 <version>2.4.0.7.0.0.0</version>
 <scope>provided</scope>
</dependency>

28

https://docs.cloudera.com/data-engineering/1.5.4/manage-jobs/topics/cde-private-cloud-create-job.html

	Contents
	Creating jobs in Cloudera Data Engineering
	CDE example jobs and sample data
	Using Apache Iceberg in Cloudera Data Engineering
	Prerequisites and limitations for using Iceberg
	Accessing Iceberg tables
	Editing a storage handler policy to access Iceberg files on the file system
	Creating a SQL policy to query an Iceberg table

	Creating Virtual Cluster with Spark 3
	Creating and running Spark 3.2.1 Iceberg jobs
	Creating a new Iceberg table from Spark 3
	Configuring Hive Metastore for Iceberg column changes
	Importing and migrating Iceberg table in Spark 3
	Importing and migrating Iceberg table format v2
	Configuring Catalog
	Loading data into an unpartitioned table
	Querying data in an Iceberg table
	Updating Iceberg table data
	Iceberg library dependencies for Spark applications

	Creating a Git repository in Cloudera Data Engineering (Technical Preview)
	Managing jobs in Cloudera Data Engineering
	Running Jobs in Cloudera Data Engineering
	Scheduling jobs in Cloudera Data Engineering
	Deleting Jobs in Cloudera Data Engineering
	Configuring Spark jobs for huge shuffle data
	Best practices for building Apache Spark applications

