Cloudera Data Engineering service

Cloudera Data Engineering is a service for Cloudera Data Services on premises that allows you to submit jobs to auto-scaling virtual clusters.

Cloudera Data Engineering allows you to create, manage, and schedule Apache Spark jobs without the overhead of creating and maintaining Spark clusters. With Cloudera Data Engineering, you define virtual clusters with a range of CPU and memory resources, and the virtual cluster scales up and down as needed to run your Spark workloads.

The Cloudera Data Engineering service involves several components:

Environment
A logical subset of your on premises deployment, including a datalake and multiple compute resources. For more information, see Environments.
Cloudera Data Engineering Service
A logical subset of the long-running Kubernetes cluster and services that manage the virtual clusters. The Cloudera Data Engineering service must be enabled on an environment before you can create any virtual clusters.
Virtual Cluster
An individual auto-scaling cluster with defined CPU and memory ranges. Virtual Clusters in Cloudera Data Engineering can be created and deleted on demand. Jobs are associated with clusters.
Job
Application code along with defined configurations and resources. Jobs can be run on demand or scheduled. An individual job execution is called a job run.
Resource
A defined collection of files such as a Python file or application JAR, dependencies, and any other reference files required for a job.
Job run
An individual job run.