
Cloudera Data Hub

Recipes
Date published: 2019-12-17
Date modified: 2025-08-18

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2026. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Data Hub | Contents | iii

Contents

Recipes..4

Writing recipes..4

Recipe and cluster template parameters..6

Example: Recipe with parameters..9

Registering a recipe.. 9

Updating a recipe..11

Managing recipes from CLI.. 12

Cloudera Data Hub Recipes

Recipes

A recipe is a script that runs on all nodes of a selected host group at a specific time. You can use recipes to create and
run scripts that perform specific tasks on your Cloudera Data Hub, Data Lake, or FreeIPA cluster nodes.

You can use recipes for tasks such as installing additional software or performing advanced cluster configuration. For
example, you can use a recipe to put a JAR file on the Hadoop classpath.

Recipes can be uploaded and managed via the Cloudera web interface or CLI and then selected, when needed, for a
specific cluster and for a specific host group. If selected, they will be executed on a specific host group at a specified
time.

Recipes are stored on the Cloudera Manager server for the lifetime of the master node, and are executed at specific
times of your choosing:

• pre-service-deployment (formerly pre-cloudera-manager-start and pre-cluster-manager-start): During a Data Hub,
Data Lake, or environment deployment, the script will be executed on every node before the CM server starts, and
after node repair or OS upgrade of a cluster.

• post-cloudera-manager-start: During a Cloudera Data Hub or Data Lake deployment, the script will be executed
on every node after the Cloudera Manager server starts, but before cluster installation. post-cluster-manager start
recipes are also executed after node repair or OS upgrade of a cluster. This option is not available for FreeIPA
recipes.

• post-service-deployment (formerly post-cluster-install): The script will be executed on every node after cluster
installation on the CM server is finished.

• pre-termination: The script will be executed on every node before cluster termination.

Note: On the master node, recipes are triggered when the Cloudera Manager server starts; on other nodes,
recipes are triggered when the Cloudera Manager agent starts.

Writing recipes

Refer to these guidelines when creating your recipes.

When using recipes, consider the following guidelines:

• Running bash and python scripts as recipes is supported. We recommend using scripts with Shebang character
sequence, for example:

#!/bin/sh
#!/bin/bash
#!/usr/bin/sh
#!/usr/bin/bash
#!/usr/bin/env sh
#!/usr/bin/env bash
#!/bin/sh -x
#!/usr/bin/python
#!/usr/bin/env python

• The scripts are executed as root. The recipe output is written to /var/log/recipes on each node on which it was
executed.

• Supported parameters can be specified as variables by using mustache kind of templating with "{{{ }}}" syntax.
Once specified in a recipe, these variables are dynamically replaced when the recipe is executed, generating the

4

https://en.wikipedia.org/wiki/Shebang_(Unix)

Cloudera Data Hub Writing recipes

actual values that you provided as part of cluster creation process. For the list of parameters, refer to Recipe and
cluster template parameters. For an example, see Example: Recipe using parameters.

Note: Using variable parameters is not supported for FreeIPA recipes.

For example, if your cluster includes an external LDAP and your recipe includes {{{ldap.connectionURL}}}, as
demonstrated in the following example

#!/bin/bash -e

main() {
 ping {{{ ldap.connectionURL }}}
}
[["$0" == "$BASH_SOURCE"]] && main "$@"

then, when this recipe runs, the {{{ldap.connectionURL}}} is replaced with the actual connection URL specified
as part of cluster creation process, as demonstrated in the following example:

#!/bin/bash -e

main() {
 ping 192.168.59.103
}
[["$0" == "$BASH_SOURCE"]] && main "$@"

• Recipe logs can be found at /var/log/recipes/${RECIPE_TYPE}/${RECIPE_NAME}.log
• The scripts are executed on all nodes of the host groups that you select (such as “master”, “worker”, “compute”).
• In order to be executed, your script must be in a network location which is accessible from the Cloudera

Management Console and the virtual network in which your cluster is located.
• Make sure to follow Linux best practices when creating your scripts. For example, don’t forget to script “Yes”

auto-answers where needed.
• Do not execute yum update –y as it may update other components on the instances (such as salt) – which can

create unintended or unstable behavior.

Example Python script

#!/usr/bin/python
print("An example of a python script")
import sys
print(sys.version_info)

Example bash script for yum proxy settings

#!/bin/bash
cat >> /etc/yum.conf
<<ENDOF
proxy=http://10.0.0.133:3128
ENDOF

Example recipe including variables

Original recipe:

#!/bin/bash -e

function setupAtlasServer() {

5

https://docs.cloudera.com/data-hub/cloud/recipes/topics/mc-recipe-parameters.html
https://docs.cloudera.com/data-hub/cloud/recipes/topics/mc-recipe-parameters.html
https://docs.cloudera.com/data-hub/cloud/recipes/topics/dh-parameters-recipe.html

Cloudera Data Hub Recipe and cluster template parameters

 curl -iv -u {{{ general.userName }}}:{{{ general.password }}} -H "X-Re
quested-By: ambari" -X POST -d '{"RequestInfo":{"command":"RESTART","context
":"Restart all components required ATLAS","operation_level":{"level":"SERVIC
E","cluster_name":"{{{ general.clusterName }}}","service_name":"ATLAS"}},"Re
quests/resource_filters":[{"hosts_predicate":"HostRoles/stale_configs=false&
HostRoles/cluster_name={{{ general.clusterName }}}"}]}' http://$(hostname -f
):8080/api/v1/clusters/{{{ general.clusterName }}}/requests
}

main() {
 setupAtlasServer
}

[["$0" == "$BASH_SOURCE"]] && main "$@"

Generated recipe (to illustrate how the variables from the original recipe were replaced during cluster creation):

#!/bin/bash -e

function setupAtlasServer() {
 curl -iv -u admin:admin123 -H "X-Requested-By: ambari" -X POST -d '{"R
equestInfo":{"command":"RESTART","context":"Restart all components required
ATLAS","operation_level":{"level":"SERVICE","cluster_name":"super-cluster","
service_name":"ATLAS"}},"Requests/resource_filters":[{"hosts_predicate":"Hos
tRoles/stale_configs=false&HostRoles/cluster_name=super-cluster"}]}' http://
$(hostname -f):8080/api/v1/clusters/super-cluster/requests
}

main() {
 setupAtlasServer
}

[["$0" == "$BASH_SOURCE"]] && main "$@"

Recipe and cluster template parameters

The following supported parameters can be specified as variables/dynamic parameters in recipes or cluster templates
by using mustache formatting with "{{{ }}}" syntax.

Note: Using variable parameters is not supported for FreeIPA recipes.

The parameter keys listed below follow the following general conventions:

• { } indicates that the parameter key has multiple supported values, which are provided in this documentation. For
example {fileSystemType} can be one of the following: s3, adls_gen_2, or wasb.

• [index] indicates that the parameter includes an index value for example sharedService.datalakeComponents.[in
dex] can be "sharedService.datalakeComponents.[0]", "sharedService.datalakeComponents.[1]", and so on. There
is no easy way to find out what the index will be, but you may still be able to use these parameters (for example
by creating a condition to filter them).

For information on how to set these parameters dynamically in a cluster template, refer to Setting custom properties.

Custom properties

Any custom property specified in the cluster template can be used as a recipe parameter. Refer to Custom properties
documentation.

6

https://docs.cloudera.com/data-hub/cloud/custom-properties/topics/dh-custom-properties-setting.html
https://docs.cloudera.com/data-hub/cloud/custom-properties/index.html

Cloudera Data Hub Recipe and cluster template parameters

General

The general parameter group includes parameters related to general cluster configuration.

Description Example key Example value

Name of stack general.stackName teststack

UUID of cluster general.uuid 9aab7fdb-8940-454b-bc0a-62f04bce6519

Cloudera Manager user name general.cmUserName

Cloudera Manager password general.cmPassword

Cloudera Manager IP general.clusterManagerIp 127.0.0.1

Number of nodes general.nodeCount 5

FQDN of primary gateway instance general.primaryGatewayInstanceDiscoveryFQDNip-10-0-88-28.example.com

Number indicating the Kafka replication factor
(3 or 1)

general.kafkaReplicationFactor 1

Blueprint

The blueprint parameter group includes parameters related to cluster template configuration.

Parameter key Description Example key Example value

blueprint.blueprintText Blueprint text in JSON format blueprint.blueprintText

blueprint.version Version of blueprint blueprint.version 7.2.8

Cloud storage

The fileSystemConfigs parameter group includes parameters related to cloud storage configuration.

When forming the parameter keys, the {fileSystemType} should be replaced with an actual cloud storage type such as
"s3", "adls_gen_2", or "wasb".

Parameter key Description Example key Example value

File system common configurations

fileSystemConfigs.
{fileSystemType}.storageContainer

Name of container in Azure
storage account (Cloudbreak +
stackId)

fileSystemConfigs.s3.storageContainercloudbreak123

fileSystemConfigs.
{fileSystemType}.type

Type of filesystem fileSystemConfigs.s3.type S3

fileSystemConfigs.
{fileSystemType}.locations.
[index].configFile

Configuration file used to
configure the filesystem

fileSystemConfigs.s3.locations.
[0].configFile

hbase-site

fileSystemConfigs.
{fileSystemType}.locations.
[index].property

Property key of filesystem path in
defined config

fileSystemConfigs.s3.locations.
[0].property

hbase.rootdir

fileSystemConfigs.
{fileSystemType}.locations.
[index].value

Value of filesystem path in
defined config

fileSystemConfigs.s3.locations.
[0].value

s3a://testranger/testrecipe2/apps/
hbase/data

Amazon S3 configurations

fileSystemConfigs.s3.storageContainerGenerated name (cloudbreak +
stack id number)

fileSystemConfigs.s3.storageContainercloudbreak7941

fileSystemConfigs.s3.locations.
[index].configFile

Hadoop component configuration
file

fileSystemConfigs.s3.locations.
[0].configFile

zeppelin-site

fileSystemConfigs.s3.locations.
[index].property

Component property name fileSystemConfigs.s3.locations.
[0].property

zeppelin.notebook.dir

7

Cloudera Data Hub Recipe and cluster template parameters

Parameter key Description Example key Example value

fileSystemConfigs.s3.locations.
[index].value

Component property value fileSystemConfigs.s3.locations.
[0].value

s3a://storagename/clustername/
zeppelin/notebook

ADLS Gen2 configurations

fileSystemConfigs.adls_gen_2.accountNameName of the corresponding Azure
storage account

fileSystemConfigs.adls_gen_2.accountNameteststorageaccount

fileSystemConfigs.adls_gen_2.storageContainerNameName of container in Azure
storage account

fileSystemConfigs.adls_gen_2.storageContainerNametestcontainer

External database

The rds parameter group includes parameters related to external database configuration.

When forming the parameter keys, the {rdsType} should be replaced with the actual database type such as
"cloudera_manager", "beacon", "druid", "hive", "oozie", "ranger", "superset", or some other user-defined type.

Parameter key Description Example key Example value

rds.{rdsType}.connectionURL JDBC connection URL rds.hive.connectionURL Value is specified in the following
format: jdbc:postgresql://
host:port/database

rds.{rdsType}.connectionDriver JDBC driver used for connection rds.hive.connectionDriver org.postgresql.Driver

rds.
{rdsType}.connectionUserName

Username used for the JDBC
connection

rds.hive.connectionUserName testuser

rds.
{rdsType}.connectionPassword

Password used for the JDBC
connection

rds.hive.connectionPassword TestPssword123

rds.{rdsType}.databaseName Target database of the JDBC
connection

rds.hive.databaseName myhivedb

rds.{rdsType}.host Host of the JDBC connection rds.hive.host mydbhost

rds.
{rdsType}.hostWithPortWithJdbc

Host of JDBC connection with
port and JDBC prefix

rds.hive.hostWithPortWithJdbc Value is specified in the following
format: jdbc:postgresql://host:port

rds.{rdsType}.subprotocol Sub-protocol from the JDBC URL rds.hive.subprotocol postgresql

rds.{rdsType}.connectionString URL of JDBC the connection.
In case of Ranger, this does not
contain the port

rds.hive.connectionString Value is specified in the following
format: jdbc:postgresql://
host:port/database

rds.{rdsType}.databaseVendor Database vendor rds.hive.databaseVendor POSTGRES

rds.{rdsType}.withoutJDBCPrefix URL of the JDBC connection
without JDBC prefix

rds.hive.withoutJDBCPrefix Value is specified in the following
format: host:port/database

Gateway

The gateway parameter group includes parameters related to Knox gateway configuration.

Parameter key Description Example key Example value

gateway.ssoProvider Path to the SSO provider gateway.ssoProvider /test/sso/api/v1/websso

gateway.signKey Base64 encoded signing key gateway.signKey

gateway.signPub Signing certificate (x509 format) gateway.signPub

gateway.signCert Public SSH key used for signing
(standard public key format)

gateway.signCert

Shared services

The sharedService parameter group includes parameters related to Data Lake configuration.

8

Cloudera Data Hub Example: Recipe with parameters

Parameter key Description Example key Example value

sharedService.rangerAdminPasswordAdmin password of the Ranger
component

sharedService.rangerAdminPasswordAdmin1234!

sharedService.datalakeCluster Flag indicating that the cluster is a
data lake cluster

sharedService.datalakeCluster true

sharedService.datalakeClusterManagerIpCloudera Manager IP of data lake
cluster

sharedService.datalakeClusterManagerIp127.0.0.1

sharedService.datalakeClusterManagerFqdnCloudera Manager FQDN of data
lake cluster (or the IP if FQDN
cannot be found)

sharedService.datalakeClusterManagerFqdnip-10-0-88-28.example.com

Related Information
Example: Recipe with parameters

Example: Recipe with parameters

If you pass the supported parameters in a recipe, their values are dynamically fetched and replaced.

Note: Using variable parameters is not supported for FreeIPA recipes.

Example recipe template (the {{{general.clusterName}}} is included as a template):

#!/bin/bash -e

function setupDefaultClusterFolder() {
 mkdir -p /var/log/{{{general.clusterName}}}
}

main() {
 setupDefaultClusterFolder
}

[["$0" == "$BASH_SOURCE"]] && main "$@"

Example recipe after {{{general.clusterName}}} is set to my-super-cluster based on the actual cluster name:

#!/bin/bash -e

function setupDefaultClusterFolder() {
 mkdir -p /var/log/my-super-cluster
}

main() {
 setupDefaultClusterFolder
}
[["$0" == "$BASH_SOURCE"]] && main "$@"

Related Information
Recipe and cluster template parameters

Registering a recipe

In order to use your recipe for clusters, you must first register it with the Cloudera Management Console.

9

Cloudera Data Hub Registering a recipe

About this task
Required role: EnvironmentCreator can create a shared resource and then assign users to it.

SharedResourceUser or Owner of the shared resource can use the resource.

Before you begin
If you are using Cloudera with a proxy, note that the Cloudera proxy settings do not apply to cluster recipes. If you
planning to use the recipes, then you can set the proxy settings manually. You can find the proxy settings in the /etc/
cdp/proxy.env file.

Procedure

1. Place your script in a network location accessible from Cloudera Management Console and from the virtual
network in which your clusters are located.

2. Log in to the Cloudera web interface.

3. Navigate to Shared ResourcesRecipes and click Register Recipe.

4. Provide the following:

Parameter Value

Name Enter a name for your recipe.

Description (Optional) Enter a description for your recipe.

Execution Type Select one of the following options:

• pre-service-deployment (formerly pre-cluster-manager-start):
During a Cloudera Data Hub, Data Lake, or environment
deployment, the script will be executed on every node (in the
host group where you assigned the recipe) before the Cloudera
Manager server starts.

• post-cluster-manager-start: During a Cloudera Data Hub or Data
Lake deployment, the script will be executed on every node (in
the host group where you assigned the recipe) after the Cloudera
Manager server starts, but before cluster installation. This option
is not available for FreeIPA recipes.

• post-service-deployment (formerly post-cluster-install):: The
script will be executed on every node (in the host group where
you assigned the recipe) after cluster installation on the Cloudera
Manager server is finished.

• pre-termination: The script will be executed on every node (in
the host group where you assigned the recipe) before cluster
termination.

Script Select one of:

• File: Point to a file on your machine that contains the recipe.
• Text: Paste the script.

5. Click Register.

What to do next

• When you create a Cloudera Data Hub cluster, you can select a previously added recipe on the advanced Cluster
Extensions page of the create cluster wizard.

• When you create an environment, you can select a previously added recipe on the Data Access and Data Lake
Scaling page of the environment creation wizard, under Advanced Options > Cluster Extensions > Recipes.

• When you create an environment, you can select a previously added FreeIPA recipe on the Region, Networking,
and Security page of the environment creation wizard, under Advanced OptionsCluster ExtensionsRecipes.

• You can also attach recipes to Cloudera Data Hub or Data Lake clusters when you create an environment/Data
Lake or Cloudera Data Hub cluster through the CDP CLI.

10

Cloudera Data Hub Updating a recipe

Updating a recipe

You can attach or detach recipes to/from existing Cloudera Data Hub clusters. Using this capability, you can update a
recipe by removing it from the cluster, replacing the old recipe with a modified recipe of the same type, and attaching
the new modified recipe to the cluster.

About this task
Attaching or detaching a recipe will not execute the recipe. The next execution of the recipe will take place based on
the type of the recipe. After an upscale, a newly attached recipe runs only on the new hosts.

Required role (one of the following):

• PowerUser on Cloudera tenant
• Owner of the environment
• EnvironmentAdmin
• Owner of the Cloudera Data Hub cluster
• DataHubAdmin

Procedure

1. Create a new recipe (with updated/modified content) of the same type as the old recipe that you want to replace.

2. Click Data Hub Clusters <Cluster Name> Recipes and find the recipe that you want to remove in the list of
recipes for the cluster.

3. Click Remove Recipe next to the name of the recipe that you want to remove, then click Yes in the confirmation
window.

11

Cloudera Data Hub Managing recipes from CLI

4. Once you have removed the old recipe, click on the Add Recipe button for the cluster and select the same host
group that you previously used for the old recipe. Then select the name of the new recipe that contains the
modified content and click Add.

Results
You should see the new recipe appear for the same host group. After this change, the next recipe execution will
execute the new script.

Managing recipes from CLI

You can manage recipes from CLI using cdp datahub commands.

Required role: EnvironmentCreator can create a shared resource and then assign users to it.

SharedResourceUser or Owner of the shared resource can use the resource. The Owner of the shared resource can
delete it.

Note: Currently, recipes use cdp datahub commands regardless of whether the recipe is intended to run on
Cloudera Data Hub, Data Lake, or FreeIPA cluster nodes.

• Register a new recipe: cdp datahub create-recipe --recipe-name <value> --recipe-content <value> --type <value>

Supported types:

• PRE_SERVICE_DEPLOYMENT (formerly PRE_CLOUDERA_MANAGER_START)
• POST_CLOUDERA_MANAGER_START (this option is not available for FreeIPA recipes)
• POST_SERVICE_DEPLOYMENT (formerly POST_CLUSTER_INSTALL)
• PRE_TERMINATION

• List all available recipes: cdp datahub list-recipes
• Describe a specific recipe: cdp datahub describe-recipe --recipe-name <value>

12

Cloudera Data Hub Managing recipes from CLI

• Delete one or more existing recipes: cdp datahub delete-recipes --recipe-name <value>

13

	Contents
	Recipes
	Writing recipes
	Recipe and cluster template parameters
	Example: Recipe with parameters
	Registering a recipe
	Updating a recipe
	Managing recipes from CLI

