
..

Custom Style Extensions for Javascript and
CSS
Date published: 2020-10-30
Date modified: 2022-09-21

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

 | Contents | iii

Contents

Extension JS API endpoints.. 4

Extension JS API arcapi functions... 6

Extension CSS APIs... 10

Extension JS API endpoints

Extension JS API endpoints

JavaScript module returns an object that may implement one of the endpoints: version() on page 4, supported()
on page 4, settings() on page 5, disableDraw() on page 6, beforeDraw() on page 6, afterDraw()
on page 6, and afterDataRequest() on page 6.

version()

This must exist, and reports on the version of the API that this object implements. Currently supported version strings
is "1". This must be a string, not a number.

supported()

If this member exists, it is expected to be an object that contains a member called visualType. This member must
point to a string with the type of visual supported, or an array of strings that contain the types of visuals supported.

For example,

supported: {
 visualType: "trellis-bars"
},

Table 1: Supported Visual Types

Visual Type Object Name

Table table

Cross Tabulation crosstab

Bars trellis-bars

Lines trellis-lines

Combo combo

Areas trellis-areas

Grouped Bars trellis-groupedbars

KPI kpi

Packed Bubbles packed-bubbles

Scatter scatter

Flow flow

Funnel funnel

Pie pie

Radial radial

Chord chord

Correlation Heatmap correlation

Correlation Flow correlation-flow

Calendar Heatmap calendar-heatmap

Map map

Interactive Map leaflet

Sparklines sparklines

4

Extension JS API endpoints

Visual Type Object Name

External Link link

Histogram histogram

Extension extension

Field Statistics column-stats

Queries rawtable

Rich Text html

Network network

Dendrogram dendrogram

Treemap treemap

Bullet bullet

Gauge gauge

Word Cloud wordcloud

Box Plot boxplot

Timeline timeline

settings()

If a member with this name exists, it is expected to be a function that returns an array. Each array element is then
expected to be an object with the following members:

settings: function() {
 return [
 {
 id: "Column Name"
 },
 {
 id: "Max bar width",
 defaultValue: "50"
 },
 {
 id: "Color",
 defaultValue: "steelblue"
 }
];
},

Table 2: Settings Specifications

Member Name Description Default Value Mandatory

id Column Name The ID of this setting. None Yes

displayName Column Name Name used to display this
setting.

Same as ID No

type String The data type of the
variable. Supported types
include String, and bool
ean.

String No

defaultValue "" The default value for this
setting.

null No

5

Extension JS API arcapi functions

disableDraw()

If a member with this name exists, and it is a function that returns a boolean variable set to true, we disable the
drawing of the visual.

beforeDraw()

If a member with this name exists, it must be a function that executes after receiving data but before the draw event
on the visual.

afterDraw()

If a member with this name exists, it must be a function that executes after the draw event on the underlying visual.

afterDataRequest()

If a member with this name exists, it must be a function that executes after creating the request object, but before
the data request call. This function accepts the current request object in the arguments, adds your modifications, and
returns an updated valid request object. If the function does not return a valid request object, the request is not sent,
and the system returns an error.

Extension JS API arcapi functions

Note:

• There are additional functions currently available on the arcapi object, but we do not list them here. These
functions were developed for internal use only, and we do not warrant them for use by our clients. Arcadia
Data cautions against using them in your customizations because of expected forward compatibility
issues.

The extension JS module has access to an arcapi object. Arcadia Data supports the following functions fully:

Table 3: arcapi Functions

Function Description

arcapi.addScripts() Adds script elements.

arcapi.addStyles() Adds style elements.

arcapi.chartId() Returns the id DOM element.

arcapi.dataResult() Returns the data result object and gives access to the raw data for
plotting the visual.

arcapi.getParameters() Returns information on all current parameters.

arcapi.getSetting() Returns the value of the specified setting.

arcapi.sendParameters() Forwards parameter definitions to other visuals in the app.

arcapi.settings() Returns information on all current settings.

arcapi.addScripts(filepaths, callback)

Adds script elements for the additional styles specified in the filepaths array. The function callback is invoked after
load completes.

Syntax

arcapi.addScripts(
 filepaths,

6

Extension JS API arcapi functions

 callback);

Parameters

• filepaths An array that specifies the additional JS files to load.
• callback Call-back function that is invoked after the load is completed.

Examples

In program code, you can use this API in the following manner:

arcapi.addScripts(
 ['https://cdnjs.cloudflare.com/ajax/libs/highcharts/7.0.1/highc
harts.js'],
 function() {
 console.log('highcharts.js has been loaded');
 }
);

This code embeds the following <script> as the last element of the <head> tag in the HTML file:

<script
 type="text/javascript"
 src="https://cdnjs.cloudflare.com/ajax/libs/highcharts/7.0.1/hi
ghcharts.js"
 data-loaded="true">
</script>

arcapi.addStyles(filepaths, callback)

Adds style elements for the additional styles specified in the filepaths array. The function callback is invoked after
load completes.

Syntax

arcapi.addStyles(
 filepaths,
 callback);

Parameters

• filepaths An array that specifies the additional CSS files to load.
• callback Callback function that is invoked after the load is completed.

Examples

In program code, you can use this API in the following manner:

arcapi.addStyles(
 ['https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/4
.2.1/css/bootstrap.css'],
 function() {
 console.log('Twitter Bootstrap has been loaded');
 }
);

This code embeds the following <link> as the last element of the <head> tag in the HTML file:

<link
 type="text/css"
 rel="stylesheet"

7

Extension JS API arcapi functions

 href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstr
ap/4.2.1/css/bootstrap.css"
 data-loaded="true"
>

arcapi.chartId()

Returns the id attribute of the DOM element used to draw the visual.

Syntax

arcapi.chartId();

Usage

$("#" + arcapi.chartId())

Returns

A jquery selector to the DOM element.

arcapi.dataResult()

Returns the dataResult object that gives the extension access to the raw data used to plot the visual. This object
supports the arc.data.result interface.

Syntax

arcapi.dataResult();

This example shows the result of the arcapi.dataResult() call:

f (){return"arc.data.result"}

arcapi.getParameters()

Returns a hash object that contains key-value mappings for all current parameters. The key is the parameter name.

Syntax

arcapi.getParameters();

Example

The following is a typical result of the arcapi.getParameters() command:

{
 "productCategory": "Analytics",
 "year": "2019",
 "companies.data": "'Apple', 'Google', 'Arcadia'",
 "companies.exclude": "in"
}

See Also

arcapi.sendParameters(params_hash) on page 9

arcapi.getSetting(settingName)

Returns the value of the specified setting of the current JS extension.

8

Extension JS API arcapi functions

Syntax

arcapi.getSetting(settingName);

Parameters

• settingName Name of setting.

Example

The following command retrieves the "Color" setting:

arcapi.getSetting("Color");

Our example's result follows:

"red"

See Also

arcapi.settings() on page 9

arcapi.sendParameters(params_hash)

Accepts a hash definition, and sends out the keys and values of the hash as parameters to other visuals in the app.

Syntax

arcapi.sendParameters(params_hash);

Parameters

• params_hash Hash definition.

Example

To pass a parameter with name 'company' and value 'Arcadia Data' to all visuals and filters in the
dashboard, issue the following command:

arcapi.sendParameters({"company": "'Arcadia Data'"});

See Also

arcapi.getParameters() on page 8

arcapi.settings()

Returns information on all current settings for the custom style: an array of objects, with id of a setting, and value of
that setting.

The JS extension's settings() function specifies the order of the array.

Syntax

arcapi.settings();

Example

A typical example output after running the arcapi.settings() function looks similar to this:

 [
 {
 id: "Column Name",
 value: "",

9

Extension CSS APIs

 },
 {
 id: "Max bar width",
 defaultValue: "50",
 value: "50",
 },
 {
 id: "Color",
 defaultValue: "steelblue",
 value: "red",
 }
];

Extension CSS APIs

Best practice guidelines for CSS customizations:

• Always use a custom selector at the beginning of every rule.
• Can use any class name.
• Can use native DOM element selections.
• Avoid using !important to override existing rules.

Table 4: CSS Classes

Class Description

arc-dashboard-title-container Container for the title of the dashboard.

arc-dashboard-title The title of the dashboard.

arc-dashboard-subtitle-container Container for the subtitle of the dashboard.

arc-dashboard-subtitle The subtitle of the dashboard.

arc-app-container Container class for dashboards. One exists on the page when rendering the
dashboard.

arc-viz-container Container class for visuals. One exists on the page for each visual.

arc-viz-type-visualtype Container class for a specific visual type. For example, tables have an arc-viz-type
-table class.

arc-viz-title-container Container class for a div that surrounds the title of the visual. Commonly used to
center the title within this container.

arc-viz-subtitle-container Container class for a div that surrounds the subtitle of the visual. Commonly used
to center the subtitle within this container.

arc-viz-title Class applied to the title of the visual.

arc-viz-subtitle Class applied to the subtitle of the visual.

arc-viz-axis Class applied to the axis of the visual.

arc-viz-legend Class applied to the color or mark legend of the visual.

arc-viz-axis-label Class applied to the axis label of the visual.

10

	Contents
	Extension JS API endpoints
	Extension JS API arcapi functions
	Extension CSS APIs

