Cloudera Data Warehouse on premises 1.5.5

Querying Data

Date published: 2020-08-17
Date modified: 2025-06-06

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Data Warehouse on premises | Contents | iii

(@ 18 Yo F- L= VUSRS 4
SUDMIt QUENTES WItI HUE......coeeee et 4
VAL YA o (UL VA TS (o] YRR 5
Create User-defined fUNCLIONS.........coiiiiieeeesere e 5
SEL UP BV ENVITONMENT......c.eeieieiieee ettt sttt e e e et e s e e s e e st ebe e b e s bt ebeebesbeseese e beseereense e e e eneeneenes 5
CrEAIE UDF ...t e e b e 7

Build project and Upload JAR..........o bbb et e et e ettt h e ae b e e 8
REGISIEN UDF ...ttt ettt h e heeh e e b e bt eE e b e s EeeE et e n b e e e me e st e ae e Rt ebeebesbesbenbeseeseenean 8

(0= I T T e o =W o 0= oSS PR 9
Simplify queries with User-defined fUNCLIONS..........cooiiiiiiiiee s 10
Creating an Impala user-defined FUNCLION.o b st 10

UDF CONCEPLS........eeiueeueeiteetesiee et et sie et st e bt e st et eae e eae e e e saeeaeesaeeaeesheeaeeshe e besae e b e she e b e eme e bt enneabeennesneennas 10

Runtime environmMent fOr UDFS..........ovoiiiiiiesiesee st 14

WWITEING UDFS....cetiiiiee ettt bbbt b et bbbt s bbbt 14

Writing user-defined aggregate funCtions (UDAFS).......co it 18

Building and deploying UDFS.........ccooiieieee et b e bbb st st se e e 19

Performance considerations fOr UDFS........c.ciieiiiiieinieseresrese et 20

Examples of creating and USING UDFS.... ..ottt s 20

Security conSIAerations fOr UDFS.........oiiiiiiiee ettt sbe e s 27

Limitations and restrictions for IMpala UDFS...........cooeer e 27

Start SQL Al ASSISLANT.....cciiiiie et e et e s e re e s ee et e e eae e e re e s rae e reenree e 27
Generate SOQL FrOM NQL ..o ciceeeie ettt te et e e e re et e e re e besaeesreeaeesreensesaeessesseentesseensesseanseeneensennes 28

Edit query in NBEUral [BNQUAGE.......c..ooeeeeereeeeetere ettt sttt et s b e s bbbt seess et et e e e e e e et e e ebennas 29
Explain query in NAtUral 1aNQUBGE..........coeieriiiiriie ettt bbb st aesnesb e e 29
OPLIMIZE SOL QUETYctiiteieietitereestee et et ete ettt ebesbeseesbesbesee s eaeesee e eaeeae e st eaeebeeaesaeebesbesee s enee e e e anseneeneeneebenaesbeas 31

FiXiNG @ QUENY TN HUE. ...ttt bbb et b e e e e et et et e be e b e s bt sbesbesbesee st e beneans 32
Generate COMMENE FOr @ SOL QUETY .. .c.veueeeieieieeeeieecee ettt st et e e re e et se b e sesae st e sbesaesbe b seensentenes 32

Multi database SUPPOrt FOr SQL QUENY......coiiiiiriirieiteetesie ettt bbb b se b b et e e e e e ne e 33
Impala workload managemeENt........ ..o 35
Impala workload management table fOrMEL......... ..o e 35
Impala workload management table MaiNtENANCE............ccoeiiriririiire e e 38
Impala workload ManageMENT USE CASES.........cceiirirerieriirtesieseesieee e ettt st saesbesbeseese e b e e e e e e e e e neesesbesaenes 39
Enable Impala Workload management...........c.e oottt sbe b b e b seen 39
Impala coordinator SEArtUP FlaOS.coveerererieiere et st et 40

Running queries on System tables.... ..o e 41
Configuring the only coordinators reqUESE POOL........cc.ciiiiriierie et st 42

HIVE QUENY NISLOMY SEIVICE.....eiiieiieiierteeie ettt st sttt ae b e sneesbeeneesneens 42
QUETY NISLONY TADIE..... .ttt ettt et ae b e s bt s bt eb et seess et et e e e e e ne e e eneenennas 43

Query hisStory table FOMMEL.........coi it sbesb e e e e 44

QUENY NISLONY LUSE CBSE.....cueueeterteitestestesteseet ettt s it eae bt s be bt sb e s beseese et e e e e e e e s e e Rt eaeebeebesbeebesbeseeseenbenee e eneeneeneans 46

Cloudera Data Warehouse on premises Querying datain Cloudera Data Warehouse

This topic describes how to query datain your Virtual Warehouse on Cloudera Data Warehouse.

The Cloudera Data Warehouse service includes the Hue SQL editor that you can use to submit queriesto Virtua
Warehouses. For example, you can use Hue to submit queriesto an Impala Virtual Warehouse.

1. Loginto the Cloudera Data Warehouse service as DWUser.
The Overview page is displayed.
2. Click Hue on the Virtual Warehousetile.
3. Enter your query into the editor and submit it to the Virtual Warehouse.

Y ou can write and edit queries for Hive or Impala Virtual Warehouses in the Cloudera Data Warehouse service by
using Hue.

For detailed information about using Hue, see Using Hue.

Hue uses your LDAP credentials that you have configured for the Cloudera cluster.

1. Loginto the Cloudera Data Warehouse service as DWUSser.

2. GototheVirtual Warehousestab, locate the Virtual Warehouse using which you want to run queries, and click
HUE.

The Hue query editor opensin a new browser tab.
3. Torunaquery:
a) Click adatabase to view the tablesit contains.
When you click adatabase, it setsit as the target of your query in the main query editor panel.

b
) >

Type aquery in the editor panel and click to run the query.

Y ou can aso run multiple queries by selecting them and clicking

IS Note: Use the language reference to get information about syntax in addition to the SQL auto-

complete feature that is built in. To view the language reference, click the book icon tothe
right of the query editor panel.

Advanced Hue configurations (safety valves) in Cloudera Data Warehouse

https://docs.cloudera.com/cdw-runtime/1.5.5/using-hue/topics/hue-using.html
https://docs.cloudera.com/cdw-runtime/1.5.5/administering-hue/topics/dw-hue-configurations.html

Cloudera Data Warehouse on premises Viewing query history in Cloudera Data Warehouse

In Cloudera Data Warehouse, you can view all queriesthat were run against a Database Catalog from Hue, Beeline,
Hive Warehouse Connector (HWC), Tableau, Impala-shell, Impyla, and so on.

Y ou need to set up Query Processor administratorsto view thelist of al queries from all users, or to restrict viewing
of queries.

Log in to the Cloudera web interface and navigate to the Cloudera Data Warehouse service.
In the Cloudera Data Warehouse service, navigate to the Overview page.

From a Virtual Warehouse, launch Hue.

Click on the Jobs icon on the | eft-assist panel.

The Job Browser pageis displayed.

5. Goto the Queriestab to view query history and query details.

> w NP

Viewing Hive query details
Viewing Impala query details
Adding Query Processor Administrator users and groups in Cloudera Data Warehouse

Y ou export user-defined functionality (UDF) to a JAR from a Hadoop- and Hive-compatible Java project and store
the JAR on your cluster. Using Hive commands, you register the UDF based on the JAR, and call the UDF from a
Hive query.

e You must have access rights to upload the JAR to your cluster. Minimum Required Role: Configurator (also
provided by Cluster Administrator, Full Administrator).

e Make sure Hive on Tez or Hive LLAP isrunning on the cluster.

* Make sure that you have installed Java and a Java integrated development environment (IDE) tool on the machine,
or virtual machine, where you want to create the UDF.

Y ou can create a Hive UDF in a development environment using IntelliJ, for example, and build the UDF. Y ou define
the Cloudera Maven Repository in your POM, which accesses necessary JARS hadoop-common-<version>.jar and
hive-exec-<version>.jar.

1. Open IntelliJand create a new Maven-based project. Click Create New Project. Select Maven and the supported
Javaversion as the Project SDK. Click Next.

https://docs.cloudera.com/cdw-runtime/1.5.5/using-hue/topics/hue-view-hive-query-details.html
https://docs.cloudera.com/cdw-runtime/1.5.5/using-hue/topics/hue-view-impala-query-details.html
https://docs.cloudera.com/cdw-runtime/1.5.5/administering-hue/topics/hue-adding-query-store-admin-users.html

Cloudera Data Warehouse on premises Creating a user-defined function in Cloudera Data Warehouse on

premises

2. Add archetype information.
For example:

e Groupld: com.mycompany.hiveudf
e Artifactld: hiveudf
3. Click Next and Finish.
The generated pom.xml appears in sample-hiveudf.

4. To the pom.xml, add properties to facilitate versioning.
For example:

<properties>
<hadoop. ver si on>TBD</ hadoop. ver si on>
<hi ve. ver si on>TBD</ hi ve. ver si on>

</ properties>

5. Inthe pom.xml, define the repositories.
Useinternal repositoriesif you do not have internet access.

<repositories>
<r epository>
<r el eases>
<enabl ed>t r ue</ enabl ed>

<updat ePol i cy>al ways</ updat ePol i cy>
<checksunPol i cy>war n</ checksunPol i cy>

</rel eases>
<snapshot s>
<enabl ed>f al se</ enabl ed>

<updat ePol i cy>never </ updat ePol i cy>
<checksunPol i cy>fai | </ checksunPol i cy>

</ snapshot s>
<i d>HDPRel eases</i d>
<nanme>HDP Rel eases</ nane>

<url >http://repo. hortonworks. conf content/repositories/rel eases/</u

ri>
<l ayout >def aul t </ | ayout >
</repository>
<r eposi tory>

<i d>publ i c. repo. hort onwor ks. conx/i d>
<nanme>Publ i ¢ Hort onwor ks Maven Repo</ nanme>
<url >http://repo. hort onwor ks. conf cont ent/ groups/ public/</url >

<snapshot s>
<enabl ed>f al se</ enabl ed>
</ snapshot s>
</repository>
<r epository>
<i d>repository. cl oudera. conx/id>

<url >https://repository.cloudera.conm artifactory/cl oudera-repos/ <

[url >
</repository>
</repositories>

6. Define dependencies.
For example:

<dependenci es>
<dependency>
<gr oupl d>or g. apache. hi ve</ gr oupl d>
<artifactld>hive-exec</artifactld>
<ver si on>${ hi ve. ver si on} </ ver si on>
</ dependency>
<dependency>

Cloudera Data Warehouse on premises Creating a user-defined function in Cloudera Data Warehouse on
premises

<gr oupl d>or g. apache. hadoop</ gr oupl d>
<artifactld>hadoop- cormon</artifactld>
<ver si on>${ hadoop. ver si on} </ ver si on>
</ dependency>
</ dependenci es>

Y ou define the UDF logic in anew class that returns the data type of a selected column in atable.

1. Ininteli], click the vertical project tab, and expand hiveudf: hiveudf src main . Select the java directory, and on
the context menu, select New Java Class, and name the class, for example, TypeOf.

2. Extend the GenericUDF class to include the logic that identifies the data type of a column.
For example:

package com nyconpany. hi veudf;

i mport org. apache. hadoop. hi ve. gl . exec. UDFAr gunrent Except i on;
i mport org.apache. hadoop. hi ve. gl . net adat a. H veExcepti on;
i mport org. apache. hadoop. hi ve. gl . udf . generi c. Generi cUDF;
i mport org. apache. hadoop. hi ve. serde2. obj ecti nspect or. Cbj ect | nspect or;
i mport org. apache. hadoop. hi ve. serde2. obj ecti nspector.primtive.\
PrimtiveQbjectlnspectorFactory;
i mport org.apache. hadoop. i o. Text;
public class TypeOf extends Generi cUDF {
private final Text output = new Text();
@wverride
public Objectlnspector initialize(Qbjectlnspector[] argunents) throws U
DFAr gument Excepti on {
checkArgsSi ze(argunents, 1, 1);
checkArgPrimtive(argunents, 0);
bj ectlnspector outputd = PrinitiveQbjectlnspectorFactory.witableSt
ri ngQObj ect | nspect or;
return outputd;

}

@verride
public Object eval uate(DeferredObject[] argunents) throws Hi veException

Cbj ect obj ;
if ((obj = argunents[0].get()) == null) {
String res = "Type: NULL";
out put . set (res);
} else {
String res = "Type: " + obj.getd ass().get Nane();
out put . set (res);

}
return out put;
}
@verride
public String getDisplayString(String[] children) {
return get St andar dDi spl ayString(" TYPEOF", children, ",");
}

}

Cloudera Data Warehouse on premises Creating a user-defined function in Cloudera Data Warehouse on

premises

Y ou compile the UDF code into a JAR and add the JAR to the classpath on the cluster.

Use the direct reference method to configure the cluster to find the JAR. It is a straight-forward method, but
recommended for development only.

1. Build the Intellid project.

NAPSHOT. j ar

A O B I e
[NFO BU LD SUCCESS

A O B e

[INFO Total tine: 14.820 s

[INFQ Finished at: 2019-04-03T16: 53: 04-07: 00

[INFQ Final Menory: 26M 397M

A O B I e

Process finished with exit code 0

2. InintelliJ, navigate to the JAR in the /target directory of the project.
3. Configurethe cluster so that Hive can find the JAR using the direct reference method.

a) Upload the JAR to HDFS.
b) Movethe JAR into the Hive warehouse. For example, in Cloudera Base on premises:

$ hdfs dfs -put TypeOf-1.0-SNAPSHOT. j ar /war ehouse/t abl espace/ managed/ hi
veudf - 1. 0- SNAPSHOT. | ar

4. InlIntelliJ, click Save.

Click Actions Deploy Client Configuration .

6. Restart the Hive service.

o

In Cloudera Data Warehouse, you run a command from Hue to make the UDF functional in Hive queries. The UDF
persists between HiveServer restarts.

Y ou need to set up UDF access using a Ranger policy as follows:

1. Loginto the Cloudera Data Warehouse service and open Ranger from the Database Catal og associated with your
Hive Virtual Warehouse.

2. Onthe Service Manager page, under the HADOOP SQL section, select the Database Catal og associated with the
Hive Virtual Warehouse in which you want to run the UDFs.

Thelist of policiesis displayed.
3. Sdect theall - database, udf policy and add the users needing access to Hue. To add all users, you can specify
{USER}.

Cloudera Data Warehouse on premises Creating a user-defined function in Cloudera Data Warehouse on
premises

In this task, the registration command differs depending on the method you choose to configure the cluster for finding
the JAR. If you use the Hive aux library directory method that involves a symbolic link, you need to restart the
HiveServer pod after registration. If you use the direct JAR reference method, you do not need to restart HiveServer.
Y ou must recreate the symbolic link after any patch or maintenance upgrades that deploy a new version of Hive.

1. Open Hue from the Hive Virtua Warehouse in Cloudera Data Warehouse.
2. Run the registration command by including the JAR location in the command as follows:

CREATE FUNCTI ON udftypeof AS 'com nyconpany. hi veudf. TypeOf 01' USI NG JAR
"hdfs:///warehouse/t abl espace/ managed/ TypeO 01- 1. 0- SNAPSHOT. j ar ' ;

3. Restart the HiveServer.

Y ou can either delete the hiveserver2-0 pod using Kubernetes, or, you can edit an HS2 related configuration, and
Clouderarestarts the HiveServer pod.

Note: If you plan to run UDFson LLAP, you must restart the query executor and query coordinator pods
after registering the UDF.

4. Verify whether the UDF is registered.
SHOW FUNCTI ONS;

Y ou scroll through the output and find default.typeof.

After registration of a UDF, you do not need to restart Hive before using the UDF in aquery. In this example, you
call the UDF you created in a SELECT statement, and Hive returns the data type of a column you specify.

» For the example query in thistask, you need to create atable in Hive and insert some data.

This task assumes you have the following example table in Hive:

feccoocococooococooo frccoccocooooocs frccoccocooooocs +
| students. name | students.age | students.gpa |
foccoocococcoococooo foccoccocoooococs foccoccocoooococs +
| fred flintstone | 35 | 1.28 |
| barney rubble | 32 | 2.32 |
Focococococococoocoo Fococcoccoccooooooo Fococcoccoccooooooo +

* Asauser, you need to have permission to call a UDF, which a Ranger policy can provide.

1. Usethe database in which you registered the UDF.

USE def aul t;

Cloudera Data Warehouse on premises Simplify queries with User-defined functions

2. Query Hive using the direct reference method:

SELECT students. nane, udftypeof (students. name) AS type FROM students WHERE
age=35;

Y ou get the data type of the name column in the students table:

O T P P e +
| students. nane | type |
ocococococococoooe ocococococoocoCcoCoCoCSoCoCSoCSCSoCSoCSoCoCSoCoCSCSCSooooooo +
| fred flintstone | Type: org.apache. hadoop. hi ve. serde2.i o. H veVar char Wi
table |

e e e e oo-o--- o o m m o e m o e e o e e o e e o e o e e oo e e e e e e e e e e e e mmmom-o--- +

Learn how to use built-in Hive and Impala functions or create custom user-defined functions (UDFs) for specific
needs.

Register UDFs using Hive commands and incorporate them into queries. Impala supports UDFs, enabling custom
logic for processing column values, complex calculations, and data transformations. These UDFs streamline query
logic and enhance flexibility in data processing.

User-defined functions (frequently abbreviated as UDFs) let you code your own application logic for processing
column values during an Impala query. For example, a UDF could perform calculations using an external

math library, combine several column valuesinto one, do geospatial calculations, or other kinds of tests and
transformations that are outside the scope of the built-in SQL operators and functions.

Y ou can use UDFsto simplify query logic when producing reports, or to transform datain flexible ways when
copying from one table to another with the INSERT ... SELECT syntax.

Y ou might be familiar with this feature from other database products, under names such as stored functions or stored
routines.

Impala support for UDFsis available in Impala 1.2 and higher:

* InlImpalal.l, using UDFsin aquery required using the Hive shell. (Because Impala and Hive share the same
metastore database, you could switch to Hive to run just those queries requiring UDFs, then switch back to
Impala.)

e Starting in Impala 1.2, Impala can run both high-performance native code UDFs written in C++, and Java-based
Hive UDFs that you might already have written.

* Impalacan run scalar UDFsthat return a single value for each row of the result set, and user-defined aggregate
functions (UDAFs) that return a value based on a set of rows. Currently, Impala does not support user-defined
table functions (UDTFs) or window functions.

Depending on your use case, you might write all-new functions, reuse Java UDFs that you have already written for
Hive, or port Hive Java UDF code to higher-performance native Impala UDFsin C++. Y ou can code either scalar
functions for producing results one row at atime, or more complex aggregate functions for doing analysis across. The
following sections discuss these different aspects of working with UDFs.

UDFsand UDAFs

10

Cloudera Data Warehouse on premises Simplify queries with User-defined functions

Depending on your use case, the user-defined functions (UDFs) you write might accept or produce
different numbers of input and output values:

» Themost general kind of user-defined function (the one typically referred to by the abbreviation
UDF) takes a single input value and produces a single output value. When used in aquery, itis
called once for each row in the result set. For example:

sel ect custoner_name, is_frequent_custoner(custoner_id) from
cust omer s;
sel ect obfuscate(sensitive columm) from sensitive_dat a;

» A user-defined aggregate function (UDAF) accepts a group of values and returns asingle value.
Y ou use UDAFs to summarize and condense sets of rows, in the same style as the built-in
COUNT, MAX(), SUM(), and AVG() functions. When called in a query that uses the GROU
P BY clause, the function is called once for each combination of GROUP BY values. For
example:

-- Evaluates multiple rows but returns a single val ue.
sel ect closest_restaurant(latitude, |ongitude) from places;

-- Eval uates batches of rows and returns a separate val ue for
each bat ch.

sel ect nost _profitable | ocation(store id, sales, expenses, tax
_rate, depreciation) fromfranchi se_data group by year;

« Currently, Impala does not support other categories of user-defined functions, such as user-
defined table functions (UDTFs) or window functions.

Native Impala UDFs

Impala supports UDFs written in C++, in addition to supporting existing Hive UDFs written in
Java. Cloudera recommends using C++ UDFs because the compiled native code can yield higher
performance, with UDF execution time often 10x faster for a C++ UDF than the equivalent Java
UDF.

Using Hive UDFswith Impala

Impala can run Java-based user-defined functions (UDFs), originally written for Hive, with no
changes, subject to the following conditions:

» The parameters and return value must all use scalar data types supported by Impala. For
example, complex or nested types are not supported.

» HivelJava UDFs must extend org.apache.hadoop.hive.ql.exec.UDF class.

e Currently, Hive UDFsthat accept or return the TIMESTAMP type are not supported.

» Prior to Impala 2.5 the return type must be a“Writable” type such as Text or IntWritable, rather
than a Java primitive type such as String or int. Otherwise, the UDF returns NULL. In Impala
2.5 and higher, thisrestriction is lifted, and both UDF arguments and return values can be Java
primitive types.

* Hive UDAFsand UDTFs are not supported.

* Typicaly, aJava UDF will run several times slower in Impala than the equivalent native UDF
writtenin C++,

e InImpala2.5 and higher, you can transparently call Hive Java UDFs through Impala, or call
Impala Java UDFs through Hive. This feature does not apply to built-in Hive functions. Any
Impala Java UDFs created with older versions must be re-created using new CREATE FUNCT
ION syntax, without any signature for arguments or the return value.

To take full advantage of the Impala architecture and performance features, you can also write
Impala-specific UDFsin C++.

For background about Java-based Hive UDFs, see the Hive documentation for UDF. For examples
or tutorials for writing such UDFs, search the web for related blog posts.

11

Cloudera Data Warehouse on premises Simplify queries with User-defined functions

Theideal way to understand how to reuse Java-based UDFs (originally written for Hive) with
Impalaisto take some of the Hive built-in functions (implemented as Java UDFs) and take the
applicable JAR files through the UDF deployment process for Impala, creating new UDFs with
different names:

1. Takeacopy of the Hive JAR file containing the Hive built-in functions.

2. Usejar tf JAR_FILE to see alist of the classesinside the JAR. Y ou will see names like org/apac
he/hadoop/hive/gl/udf/UDFL ower.class and org/apache/hadoop/hive/gl/udf/UDFOPNegative.
class. Make a note of the names of the functions you want to experiment with. When you specify
the entry points for the Impala CREATE FUNCTION statement, change the slash charactersto
dots and strip off the .class suffix, for example org.apache.hadoop.hive.ql.udf.UDFL ower and
org.apache.hadoop.hive.gl.udf. UDFOPNegative.

3. Copy that file to an HDFS location that Impala can read. (In the examples here, we renamed the
fileto hive-builtinsjar in HDFS for simplicity.)

4. For each Java-based UDF that you want to call through Impala, issue a CREATE FUNCT
ION statement, with aLOCATION clause containing the full HDFS path of the JAR file,
and a SYMBOL clause with the fully qualified name of the class, using dots as separators
and without the .class extension. Remember that user-defined functions are associated with a
particular database, so issue a USE statement for the appropriate database first, or specify the
SQL function name as DB NAME.FUNCTION_NAME. Use completely new names for the SQL
functions, because Impala UDFs cannot have the same name as Impala built-in functions.

5. Cadll the function from your queries, passing arguments of the correct type to match the function
signature. These arguments could be references to columns, arithmetic or other kinds of
expressions, the results of CAST functions to ensure correct data types, and so on.

B Note:
In Impala 2.9 and higher, you can refresh the user-defined functions (UDFs) that
Impalarecognizes, at the database level, by running the REFRESH FUNCTIONS
statement with the database name as an argument. Java-based UDFs can be added to
the metastore database through Hive CREATE FUNCTION statements, and made
visible to Impala by subsequently running REFRESH FUNCTIONS. For example:

CREATE DATABASE shar ed udfs;
USE shar ed_udf s;
...use CREATE FUNCTION statenents in Hive to create so
me Java- based UDFs
that Inpala is not initially aware of...
REFRESH FUNCTI ONS shar ed_udf s;
SELECT udf _created_by_hive(cl) FROM...

Java UDF example: Reusing lower () function

For example, the followingi npal a- shel | session creates an Impala UDF my_lower() that
reuses the Java code for the Hive lower(): built-in function. We cannot call it lower() because
Impala does not alow UDFs to have the same name as built-in functions. From SQL, we call the
function in a basic way (in a query with no WHERE clause), directly on a column, and on the
results of a string expression:

[l ocal host:21000] > create database udfs;

[l ocal host:21000] > use udfs;

| ocal host: 21000] > create function lower(string) returns string

| ocation '/user/hive/udfs/hive.jar' synbol = org. apache. hadoop. h

ve. gl . udf . UDFLower ' ;

ERROR: Anal ysi sException: Function cannot have the sane name as a
builtin: |ower

[l ocal host:21000] > create function ny_ lower(string) returns s

tring location '/user/hive/udfs/hive.jar' synbol = org. apache. had

oop. hi ve. gl . udf . UDFLower " ;

12

Cloudera Data Warehouse on premises Simplify queries with User-defined functions

[l ocal host:21000] > select nmy_lower (' Sone String NOT ALREADY LONE

RCASE') ;

foccooccococcoccococococcococoocoocooocococooocoocooooooooc +
| udfs.my_lower('sonme string not already | owercase') |
fcccocccooccooccooccooccocoocoocoocoocoocoococoocoocoocoooc +
| some string not already |owercase |
ccooococococoooococooooocooooooCooocoocooScocoooooooooc +

Returned 1 row(s) in 0.11s
[l ocal host:21000] > create table t2 (s string);
[l ocal host:21000] > insert into t2 values ('lower'), (' UPPER), ('
nit cap'), (' Canel Case');
Inserted 4 rows in 2.28s
[l ocal host:21000] > select * fromt2;
+

| |
| UPPER |

| Init cap |

| Canel Case |

foccooococooc +

Returned 4 row(s) in 0.47s

[l ocal host:21000] > select nmy_lower(s) fromt2;

Foocococcooocoooooooe +
| udfs.my_lower(s) |
feccoococcccooococooc +
| | ower |
| upper |
| init cap |
| canel case |
feccoococcoccooococooc +

Returned 4 row(s) in 0.54s
[l ocal host:21000] > select nmy_|lower(concat('ABC ',s,' XYZ')) f

romt2;

ocococococococococococococococococococoooc +
| udfs.my_|lower(concat('abc ', s, ' xyz')) |
o m e e e e e e e e e e e e e eomemm-om-o--oa-- +

| abc | ower xyz |
| abc upper xyz |
| abc init cap xyz |
| abc canel case xyz |

Returned 4 row(s) in 0.22s

Java UDF example: Reusing negative() function

Hereis an example that reuses the Hive Java code for the negative() built-in function. This example
demonstrates how the data types of the arguments must match precisely with the function signature.
At first, we create an Impala SQL function that can only accept an integer argument. Impala cannot
find amatching function when the query passes a floating-point argument, although we can cal the
integer version of the function by casting the argument. Then we overload the same function name
to also accept afloating-point argument.

[l ocal host:21000] > create table t (x int);
[l ocal host:21000] > insert intot values (1), (2), (4), (100);
Inserted 4 rows in 1.43s
[l ocal host:21000] > create function ny_neg(bigint) returns bigin
t location '/user/hive/udfs/hive.jar' synbol =" org. apache. hadoop
hi ve. gl . udf . UDFOPNegat i ve'
[l ocal host:21000] > select nmy_neg(4);

+

13

Cloudera Data Warehouse on premises Simplify queries with User-defined functions

| -4 |
feccoococccooooooe +
[l ocal host:21000] > select nmy_neg(x) fromt;
feccocococooccoocooe +
| udfs.nmy_neg(x) |
Fococococococoooc +
| -2 |
-4 |
| -100 |
feccocococooccoocooe +

Returned 3 row(s) in 0.60s

[l ocal host:21000] > select ny_neg(4.0);

ERROR: Anal ysi sException: No matching function with signature:
udf s. my_neg(FLQOAT) .

[l ocal host:21000] > select my_neg(cast(4.0 as int));

Frocoocoocoocoocooccococcococooooooo oo +
| udfs.nmy_neg(cast(4.0 as int)) |
oococooccooocoooooCooCcoCoooooonDoe +
| -4 |
o mmm e e e e e e e e e e e oeooa-o-o-- +

Returned 1 row(s) in 0.11s

[l ocal host:21000] > create function ny_neg(double) returns doubl e
| ocation '/user/hive/udfs/hive.jar' synbol = org. apache. hadoop. h

i ve. gl . udf . UDFOPNegat i ve' ;

[l ocal host:21000] > sel ect my_neg(4.0);

feccoococcccooococooc +
| udfs.my_neg(4.0) |
feccococcooccoocoooos +
| -4 |
Focococococococoooe +

Returned 1 row(s) in 0.11s

Y ou can find the sample files mentioned here in the Impala github repo.

By default, Impala copies UDFs into /tmp, and you can configure this location through the --local_library_dir startup
flag for thei npal ad daemon.

Before starting UDF development, make sure to install the devel opment package and download the UDF code

samples.

When writing UDFs:

Keep in mind the data type differences as you transfer values from the high-level SQL to your lower-level UDF
code. For example, in the UDF code you might be much more aware of how many bytes different kinds of
integers require.

Use best practices for function-oriented programming: choose arguments carefully, avoid side effects, make each
function do asingle thing, and so on.

Getting started with UDF coding

To understand the layout and member variables and functions of the predefined UDF data types,
examine the header file /usr/include/impala_udf/udf.h:

/1 This is the only |Inpala header required to devel op UDFs and U
DAs. Thi s header

/1 contains the types that need to be used and the Functi onCont
ext object. The context

14

https://github.com/cloudera/impala-udf-samples

Cloudera Data Warehouse on premises Simplify queries with User-defined functions

/1l object serves as the interface object between the UDF/ UDA and
t he i npal a process.

For the basic declarations needed to write a scalar UDF, see the header file udf-sample.h within the
sample build environment, which defines a simple function named AddUdf():

#i f ndef | MPALA_UDF_SAMPLE_UDF_H
#def i ne | MPALA_UDF_SAMPLE_UDF_H
#i ncl ude <i npal a_udf/ udf. h>

usi ng namespace i npal a_udf;

I nt Val AddUdf (Functi onContext* context, const |IntVal & argl, const
I nt Val & arg2);
#endi f

For sample C++ code for a simple function named AddUdf(), see the source file udf-sample.cc
within the sample build environment:

#i ncl ude "udf-sanple. h"
/1 In this sanple we are declaring a UDF that adds two ints and
returns an int.
I nt Val AddUdf (Functi onContext* context, const |ntVal & argl, const
I ntVal & arg2) {
if (argl.is_null || arg2.is_null) return IntVal::null();
return IntVal (argl.val + arg2.val);

}
/1 Multiple UDFs can be defined in the sane file

Data typesfor function argumentsand return values

Each value that a user-defined function can accept as an argument or return as a result value must
map to a SQL data type that you could specify for atable column.

Currently, Impala UDFs cannot accept arguments or return values of the Impala complex types
(STRUCT, ARRAY, or MAP).

Each data type has a corresponding structure defined in the C++ and Java header files, with two
member fields and some predefined comparison operators and constructors:

* is_null indicates whether the valueisNULL or not. val holds the actual argument or return value
when it isnon-NULL.

» Each struct also defines anull() member function that constructs an instance of the struct with
theis null flag set.

* Thebuilt-in SQL comparison operators and clauses such as <, >=, BETWEEN, and ORDER BY
all work automatically based on the SQL return type of each UDF. For example, Impala knows
how to evaluate BETWEEN 1 AND udf_returning_int(col1) or ORDER BY udf_returni
ng_string(col2) without you declaring any comparison operators within the UDF itself.

For convenience within your UDF code, each struct defines == and ! = operators for comparisons
with other structs of the same type. These are for typical C++ comparisons within your own
code, not necessarily reproducing SQL semantics. For example, if theis_null flag is set in both
structs, they compare as equal. That behavior of null comparisonsis different from SQL (where
NULL == NULL isNULL rather than true), but more in line with typical C++ behavior.

» Each kind of struct has one or more constructors that define afilled-in instance of the struct,
optionally with default values.

» Impala cannot process UDFs that accept the composite or nested types as arguments or return
them as result values. This limitation applies both to Impala UDFs written in C++ and Java-
based Hive UDFs.

15

https://github.com/cloudera/impala-udf-samples/blob/master/udf-sample.h

Cloudera Data Warehouse on premises Simplify queries with User-defined functions

* You can overload functions by creating multiple functions with the same SQL name but
different argument types. For overloaded functions, you must use different C++ or Java entry
point names in the underlying functions.

The data types defined on the C++ side (in /usr/include/impala_udf/udf.h) are:

e IntVa representsan INT column.

* BigintVal representsa BIGINT column. Even if you do not need the full range of aBIGINT
value, it can be useful to code your function arguments as BigintVal to make it convenient to
call the function with different kinds of integer columns and expressions as arguments. Impala
automatically casts smaller integer typesto larger ones when appropriate, but does not implicitly
cast large integer typesto smaller ones.

e SmallntVal representsa SMALLINT column.

e TinylntVal representsa TINYINT column.

» StringVal represents a STRING column. It has alen field representing the length of the string,
and a ptr field pointing to the string data. It has constructors that create a new StringVal struct
based on a null-terminated C-style string, or a pointer plus alength; these new structs still
refer to the origina string data rather than allocating a new buffer for the data. It also has a
constructor that takes a pointer to a FunctionContext struct and alength, that does all ocate space
for anew copy of the string data, for usein UDFs that return string values.

» BooleanVa representsa BOOLEAN column.

e FloatVal representsa FLOAT column.

e DoubleVal represents a DOUBLE column.

* TimestampVal representsa TIMESTAMP column. It has adate field, a 32-bit integer
representing the Gregorian date, that is, the days past the epoch date. It also hasatime_of day
field, a 64-bit integer representing the current time of day in nanoseconds.

Variable-length argument lists

UDFstypically take a fixed number of arguments, with each one named explicitly in the signature
of your C++ function. Y our function can also accept additional optional arguments, all of the same
type. For example, you can concatenate two strings, three strings, four strings, and so on. Or you
can compare two numbers, three numbers, four numbers, and so on.

To accept avariable-length argument list, code the signature of your function like this:

StringVal Concat (FunctionContext* context, const StringVal & sepa
rator,
int numvar_args, const StringVal* args);

Inthe CREATE FUNCTION statement, after the type of the first optional argument, include ...
to indicate it could be followed by more arguments of the same type. For example, the following
function accepts a STRING argument, followed by one or more additional STRING arguments:

[l ocal host:21000] > create function ny_concat(string, string ...
) returns string | ocation '/user/test_user/udfs/sanple.so synbo
| =" Concat ' ;

The call from the SQL query must pass at least one argument to the variable-length portion of the
argument list.

When Impala callsthe function, it fillsin the initial set of required arguments, then passes the
number of extra arguments and a pointer to the first of those optional arguments.

Handling NULL values

For correctness, performance, and reliability, it isimportant for each UDF to handle all situations
where any NULL values are passed to your function. For example, when passed aNULL, UDFs
typically also return NULL. In an aggregate function, which could be passed a combination of real

16

Cloudera Data Warehouse on premises Simplify queries with User-defined functions

and NULL values, you might make the final valueinto aNULL (asin CONCATY()), ignore the
NULL value (asin AVG()), or treat it the same as anumeric zero or empty string.

Each parameter type, such asIntVal or StringVal, has an is_null Boolean member. Test thisflag
immediately for each argument to your function, and if it is set, do not refer to the val field of the
argument structure. The val field is undefined when the argument is NULL, so your function could
go into an infinite loop or produce incorrect resultsif you skip the special handling for NULL.

If your function returns NULL when passed a NULL value, or in other cases such as when a search
string is not found, you can construct a null instance of the return type by using its null() member
function.

Memory allocation for UDFs

By default, memory allocated within a UDF is deallocated when the function exits, which could be
before the query is finished. The input arguments remain allocated for the lifetime of the function,
so you can refer to them in the expressions for your return values. If you use temporary variables
to construct all-new string values, use the StringVal () constructor that takes an initial FunctionCont
ext* argument followed by alength, and copy the datainto the newly allocated memory buffer.

Thread-safework area for UDFs

One way to improve performance of UDFsisto specify the optional PREPARE_FN and CLOS
E_FN clauses on the CREATE FUNCTION statement. The “prepare” function sets up a thread-
safe data structure in memory that you can use as awork area. The “close” function deallocates
that memory. Each subsequent call to the UDF within the same thread can access that same
memory area. There might be several such memory areas allocated on the same host, as UDFs are
parallelized using multiple threads.

Within thiswork area, you can set up predefined lookup tables, or record the results of complex
operations on data types such as STRING or TIMESTAMP. Saving the results of previous
computations rather than repeating the computation each time is an optimization known as
Memoization. For example, if your UDF performs a regular expression match or date manipulation
on a column that repeats the same value over and over, you could store the last-computed value

or a hash table of already-computed values, and do afast lookup to find the result for subsequent
iterations of the UDF.

Each such function must have the signature:

voi d FUNCTI ON_NAME(i nmpal a_udf:: Functi onContext*, inpala udf::F
uncti onCont ext : : Functi onScope)

Currently, only THREAD_SCOPE isimplemented, not FRAGMENT_SCOPE. See udf.h for details
about the scope values.
Error handling for UDFs

To handle errorsin UDFs, you call functions that are members of the initial FunctionContext*
argument passed to your function.

A UDF can record one or more warnings, for conditions that indicate minor, recoverable problems
that do not cause the query to stop. The signature for this functioniis:

bool AddWar ni ng(const char* warni ng_nsgq) ;

For a serious problem that requires cancelling the query, a UDF can set an error flag that prevents
the query from returning any results. The signature for this function is:

void SetError(const char* error_nsg);

17

Cloudera Data Warehouse on premises Simplify queries with User-defined functions

User-defined aggregate functions (UDAFs or UDAS) are a powerful and flexible category of user-defined functions.
If aquery processes N rows, calling a UDAF during the query condenses the result set, anywhere from asingle value
(such as with the SUM or MAX functions), or some number less than or equal to N (asin queries using the GROUP
BY or HAVING clause).

The underlying functionsfor a UDA

A UDAF must maintain a state value across subsequent calls, so that it can accumulate aresult
across a set of calls, rather than derive it purely from one set of arguments. For that reason, a UDAF
is represented by multiple underlying functions:

e Aninitiaization function that sets any counters to zero, creates empty buffers, and does any
other one-time setup for aquery.

» An update function that processes the arguments for each row in the query result set and
accumulates an intermediate result for each node. For example, this function might increment a
counter, append to a string buffer, or set flags.

* A merge function that combines the intermediate results from two different nodes.

» A serialize function that flattens any intermediate values containing pointers, and frees any
memory allocated during the init, update, and merge phases.

« A finaize function that either passes through the combined result unchanged, or does one final
transformation.

In the SQL syntax, you create a UDAF by using the statement CREATE AGGREGATE FUN
CTION. Y ou specify the entry points of the underlying C++ functions using the clauses INIT_FN,
UPDATE_FN, MERGE_FN, SERIALIZE_FN, and FINALIZE_FN.

For convenience, you can use a naming convention for the underlying functions and Impala
automatically recognizes those entry points. Specify the UPDATE_FN clause, using an entry point
name containing the string update or Update. When you omit the other _FN clauses from the SQL
statement, Impalalooks for entry points with names formed by substituting the update or Update
portion of the specified name.

uda-sample.h:

Seethisfile online at: uda-sample.h

uda-sample.cc:

Seethisfile online at: uda-sample.cc
Intermediate resultsfor UDAs

A user-defined aggregate function might produce and combine intermediate results during some
phases of processing, using adifferent data type than the final return value. For example, if you
implement a function similar to the built-in AV G() function, it must keep track of two values, the
number of values counted and the sum of those values. Or, you might accumul ate a string value
over the course of a UDA, then in the end return a numeric or Boolean result.

In such a case, specify the data type of the intermediate results using the optional INTERMEDIATE
TYPE_NAME clause of the CREATE AGGREGATE FUNCTION statement. If the intermediate
datais atypeless byte array (for example, to represent a C++ struct or array), specify the type name
as CHAR(N), with N representing the number of bytes in the intermediate result buffer.

For an example of this technique, see the trunc_sum() aggregate function, which accumulates
intermediate results of type DOUBLE and returns BIGINT at the end. View the appropriate CREA
TE FUNCTION statement and the implementation of the underlying TruncSum* () functions on
Github.

e test udfs.py
e test-udas.cc

18

https://github.com/cloudera/impala-udf-samples/blob/master/uda-sample.h
https://github.com/cloudera/impala-udf-samples/blob/master/uda-sample.cc
https://github.com/cloudera/Impala/blob/cdh5-trunk/tests/query_test/test_udfs.py
https://github.com/Cloudera/Impala/blob/cdh5-trunk/be/src/testutil/test-udas.cc

Cloudera Data Warehouse on premises Simplify queries with User-defined functions

This section explains the steps to compile Impala UDFs from C++ source code, and deploy the resulting libraries for
usein Impala queries.

Impala UDF devel opment package ships with a sample build environment for UDFs, that you can study, experiment
with, and adapt for your own use.

The cnake configuration command reads the file CMakeL ists.txt and generates a Makefile customized for your
particular directory paths. Then the nake command runs the actual build steps based on the rulesin the Makefile.

Impalaloads the shared library from an HDFS location. After building a shared library containing one or more UDFs,
use hdfs dfs or hadoop fs commands to copy the binary file to an HDFS location readable by Impala.

Thefina step in deployment isto issuea CREATE FUNCTION statement in thei npal a- shel | interpreter to
make Impala aware of the new function. Because each function is associated with a particular database, aways issue
a USE statement to the appropriate database before creating a function, or specify afully qualified name, that is,
CREATE FUNCTION DB_NAME.FUNCTION_NAME.

Asyou update the UDF code and redeploy updated versions of a shared library, use DROP FUNCTION and CREA
TE FUNCTION to let Impala pick up the latest version of the code.

Note:

IE In Impala 2.5 and higher, Impala UDFs and UDAs written in C++ are persisted in the metastore database.
JavaUDFs are also persisted, if they were created with the new CREATE FUNCTION syntax for Java UDFs,
where the Java function argument and return types are omitted. Java-based UDFs created with the old CREA
TE FUNCTION syntax do not persist across restarts because they are held in the memory of the cat al ogd
daemon. Until you re-create such Java UDFs using the new CREATE FUNCTION syntax, you must reload
those Java-based UDFs by running the original CREATE FUNCTION statements again each time you restart
the cat al ogd daemon. Prior to Impala 2.5 the requirement to reload functions after arestart applied to both
C++ and Javafunctions.

See CREATE FUNCTION statement and DROP FUCNTION statement for the new syntax for the persistent
Java UDFs.

Prerequisites for the build environment are:

1. Install the packages using the appropriate package installation command for your Linux distribution.

sudo yuminstall gcc-c++ crmake boost - devel
sudo yum install inpal a-udf-devel
The package nane on Ubuntu and Debian is i npal a- udf -dev.

2. Download the UDF sample code:

git clone https://github. coni cl oudera/inpal a-udf - sanpl es
cd inpal a- udf - sanpl es &anp; &np; crmake . &anp; &anp; make

3. Unpack the sample code in udf _samples.tar.gz and use that as a template to set up your build environment.

To build the original samples:

Process CMakelLists.txt and set up appropriate Makefil es.
cmake .

Cenerate shared libraries from UDF and UDAF sanpl e code,

udf _sanpl es/ | i budf sanpl e. so and udf _sanpl es/|i budasanpl e. so
make

The sample code to examine, experiment with, and adapt isin these files:
» udf-sample.h: Header file that declares the signature for a scalar UDF (AddUDF).

19

https://docs.cloudera.com/cdw-runtime/1.5.5/impala-sql-reference/topics/impala-create-function.html
https://docs.cloudera.com/cdw-runtime/1.5.5/impala-sql-reference/topics/impala-drop-function.html

Cloudera Data Warehouse on premises Simplify queries with User-defined functions

» udf-sample.cc: Sample source for a simple UDF that adds two integers. Because Impala can reference multiple
function entry points from the same shared library, you could add other UDF functionsin this file and add their
signatures to the corresponding header file.

* udf-sample-test.cc: Basic unit tests for the sample UDF.

» uda-sample.h: Header file that declares the signature for sample aggregate functions. The SQL functions will be
called COUNT, AVG, and STRINGCONCAT. Because aggregate functions require more elaborate coding to
handle the processing for multiple phases, there are severa underlying C++ functions such as Countlnit, AvguU
pdate, and StringConcatFinalize.

e uda-sample.cc: Sample source for simple UDAFs that demonstrate how to manage the state transitions as the
underlying functions are called during the different phases of query processing.

e The UDAF that imitates the COUNT function keeps track of a single incrementing number; the merge
functions combine the intermediate count values from each Impala node, and the combined number is returned
verbatim by the finalize function.

e The UDAF that imitates the AV G function keeps track of two numbers, a count of rows processed and the sum
of values for a column. These numbers are updated and merged as with COUNT, then the finalize function
divides them to produce and return the final average value.

« The UDAF that concatenates string values into a comma-separated list demonstrates how to manage storage
for astring that increasesin length as the function is called for multiple rows.

* uda-sample-test.cc: basic unit tests for the sample UDAFs.

Because a UDF typically processes each row of atable, potentially being called billions of times, the performance of
each UDF isacritical factor in the speed of the overall ETL or ELT pipeline. Tiny optimizations you can make within
the function body can pay off in abig way when the function is called over and over when processing a huge result
Set.

This section demonstrates how to create and use all kinds of user-defined functions (UDFs).

For downloadable examples that you can experiment with, adapt, and use as templates for your own functions, see the
Cloudera sample UDF github. Y ou must have already installed the appropriate header files, as explained in Building
and deploying UDFs.

Sample C++ UDFs. HasVowels, CountVowels, StripVowels

This example shows 3 separate UDFs that operate on strings and return different data types. In the
C++ code, the functions are HasVowels() (checksiif a string contains any vowels), CountVowels()
(returns the number of vowelsin astring), and StripVowels() (returns anew string with vowels
removed).

First, we add the signatures for these functions to udf-sample.h in the demo build environment:

Bool eanVal HasVowel s(Functi onCont ext* context, const StringVal &

i nput) ;

I nt Val Count Vowel s(Functi onCont ext* context, const StringVal & ar

g1);

StringVal StripVowel s(FunctionContext* context, const StringVal &
argl);

Then, we add the bodies of these functions to udf-sample.cc:

Bool eanVal HasVowel s(Functi onCont ext* context, const StringVal &
i nput)

if (input.is_null) return BooleanVal::null();

20

Cloudera Data Warehouse on premises

Simplify queries with User-defined functions

i nt index;
uint8 t *ptr;

for (ptr = input.ptr, index = 0; index <= input.len; i
ndex++, ptr++)
{
uint8_t ¢ = tolower(*ptr);
if (C::'a' || == "'g' || == U0 {0 || == "'Q'
Il c=="u)
{
return Bool eanVal (true);
}
return Bool eanVal (fal se);
}
I nt Val Count Vowel s(Functi onCont ext* context, const StringVal &
argl)
if (argl.is_null) return IntVal::null();
int count;
i nt index;
uint8 t *ptr;
for (ptr = argl.ptr, count = 0, index = 0; index <= argl
| en; index++, ptr++)
uint8 t ¢ = tolower(*ptr)
if (C::'a'll ::'e'llc::'|'|| == "0
Il c=="u)
{
count ++;
}
return IntVal (count);
}
StringVal StripVowel s(FunctionContext* context, const StringVal &
argl)

if (argl.is_null)

i nt index;

return StringVval::null();

std::string original ((const char *)argl.ptr,argl.len);

std::string shorter("");

i ndex++)

for (index = 0; index < original.length();
uint8_t c¢ = original[index];
uint8 t I = tol ower(c);
if (I =="a || | =="¢e || |
1 o="u)
{ .
}
el se
shorter. append(1, (char)c);
}

/1 The nodified string is stored in 'shorter',
when this function ends.

which i s destroyed

W need to make a string va

21

Cloudera Data Warehouse on premises Simplify queries with User-defined functions

/1 and copy the contents.
StringVal result(context, shorter.size()); // Only the ve
rsion of the ctor that takes a context object allocates new neno

ry
mencpy(result.ptr, shorter.c_str(), shorter.size());
return result;
}
We build a shared library, libudfsample.so, and put the library file into HDFS where Impala can
read it:
$ make

0% Generating udf_sanpl es/ uda-sanple. ||l
1694 Built target uda-sanple-ir
33% Built target udasanple
5094 Built target uda-sanple-test
5094 Generating udf_sanpl es/ udf -sanpl e. ||
6694 Built target udf-sanple-ir
Scanni ng dependenci es of target udfsanple
[83% Building CXX object CMakeFil es/ udfsanpl e. dir/udf-sanple.o
Li nki ng CXX shared |ibrary udf_sanpl es/|i budf sanpl e. so
[83% Built target udfsanple
Li nki ng CXX execut abl e udf _sanpl es/ udf - sanpl e-t est
[10094 Built target udf-sanple-test
$ hdfs dfs -put ./udf_sanpl es/Iibudfsanple.so /user/hive/udfs/li
budf sanpl e. so

——————

Finaly, wegointothei npal a- shel | interpreter where we set up some sample data, issue
CREATE FUNCTION statements to set up the SQL function names, and call the functionsin
some queries:

[l ocal host:21000] > create database udf_testing;
[l ocal host:21000] > use udf_testing;

[l ocal host:21000] > create function has_vowels (string) returns b
ool ean |l ocation '/user/hive/udfs/Ilibudfsanple.so" synbol="HasVow

els';

[l ocal host:21000] > sel ect has_vowel s('abc');
FoocococcooccoococoooooooDooe +

| udfs.has_vowel s('abc')
feccoccoccoccococococooocooooe +

| true |
frocococococococococoooooe +

Returned 1 row(s) in 0.13s
[l ocal host:21000] > sel ect has_vowel s('zxcvbnm);

Feccoococccocoocooccocoocoocooooc +
| udfs.has_vowel s(' zxcvbnm) |
foccoococccocooccococoocoocooooe +
| fal se |
foocccoccoccoccoocccoocooocooooc +

Returned 1 row(s) in 0.12s
[l ocal host:21000] > sel ect has_vowel s(null);

feccoococcccoococcooooooe +
| udfs.has_vowel s(null) |
eccocoococooccooccoocoocooos +
| NULL |
Focococococococococoocooooe +

Returned 1 row(s) in 0.11s
[l ocal host:21000] > select s, has_vowel s(s) fromt2;

Cloudera Data Warehouse on premises Simplify queries with User-defined functions

	ower	true
UPPER	true	
Init cap	true	
Canel Case	true	
+ +

Returned 4 row(s) in 0.24s

[l ocal host:21000] > create function count_vowels (string) retur
ns int location '/user/hive/udfs/libudfsanple.so synbol="CountV
owel s';

[l ocal host:21000] > select count_vowel s('cat in the hat');
feoccococcooccoccooccoococoococooccoocoocooooe +

| udfs.count_vowel s('cat in the hat')
ccoococcoccoococcocooococcocoococcooooooe +

| 4 |
foccoococcccoccoccocoococcocoococccooooooc +

Returned 1 row(s) in 0.12s
[l ocal host:21000] > select s, count_vowel s(s) fromt2;

Focococooooe Fococococococococoocoooa +
| s | udfs.count_vowel s(s)
feccooococooc feccoccoccoccosccocooooooc +
| | ower | 2

| UPPER | 2

| Init cap | 3

| Canel Case | 4

feccooococooc feccooccoccccocococooooooc +

Returned 4 row(s) in 0.23s
[l ocal host:21000] > sel ect count_vowel s(null);

Frcocococoocooccococococosoo o +
| udfs.count_vowel s(null)

Fooccoococooooococococoooooooe +
| NULL |
oo m e e e e e e e ooa-oa-o-- +

Returned 1 row(s) in 0.12s

[l ocal host:21000] > create function strip_vowels (string) returns
string location '/user/hive/udfs/I|ibudfsanple.so" synbol="Strip

Vowel s' ;

[l ocal host:21000] > select strip_vowel s('abcdefg');
foccoococccocoococccocoococcooooooc +

| udfs.strip_vowels('abcdefg')
foocccoccoccoccococcoococoocoocoooc +

| bcdfg

eccoococcoccoococccooococcooooooe +

Returned 1 row(s) in 0.11s
[l ocal host:21000] > select strip_vowel s(' ABCDEFG) ;
+

e
| udfs.strip_vowel s('abcdefg')

FoocoococcooocoooooocooCcoooooooDoc +
| BCDFG I
o mm e e e e e e e e e ooa-oa-o--- +

Returned 1 row(s) in 0.12s
[l ocal host:21000] > select strip _vowel s(null);

fecccoccoccocococcooccoocooe +
| udfs.strip_vowel s(null)

o e e eeeeeeaaaao +
| NULL I
S S S S +

Returned 1 row(s) in 0.16s
[l ocal host:21000] > select s, strip_vowels(s) fromt2;

Focococooooe Fococococococococoocoooa +
| s | udfs.strip_vowel s(s)
feccooococooc feccoccoccoccosccocooooooc +
| | ower | 1w

| UPPER | PPR

23

Cloudera Data Warehouse on premises Simplify queries with User-defined functions

| Init cap | nt cp |
| Canel Case | Cm Cs |

Returned 4 row(s) in 0.24s
Sample C++ UDA: SumOfSquares

[l ocal host:21000] > insert overwite sos values (1, 1), (2, 0),
(3, 1), (4, 0);
Inserted 4 rows in 1.24s

[l ocal host:21000] > -- Conpute 1 squared + 3 squared, and 2 sq
uared + 4 squar ed;
[l ocal host:21000] > select y, sumof_squares(x) from sos group by

Yi
feccdmococccocoocooccooocoocoonoe +
| v | udfs.sum of squares(x) |
foccdmoocccocoocoococoocoocooooe +
| 1] 10 |
| 0] 20 |
Focodfrcococoococococococooco oo +

Returned 2 row(s) in 0.43s

This example demonstrates a user-defined aggregate function (UDA) that produces the sum of the
squares of itsinput values.

The coding for aUDA isalittle more involved than a scalar UDF, because the processing is
split into several phases, each implemented by a different function. Each phaseis relatively
straightforward: the “update” and “merge” phases, where most of the work is done, read an input
value and combine it with some accumulated intermediate value.

Asin our sample UDF from the previous example, we add function signatures to a header file (in
this case, uda-sample.h). Because thisis a math-oriented UDA, we make two versions of each
function, one accepting an integer value and the other accepting a floating-point value.

voi d Sunf Squar esl ni t (Functi onCont ext* context, BiglntVal* val);
voi d SunOf Squar esl nit (Functi onCont ext* context, DoubleVal* val);

voi d SunOf Squar esUpdat e(Functi onCont ext * cont ext, const Bi gl ntVal
& input, BiglntVal* val);

voi d SunmOf Squar esUpdat e(Functi onCont ext * context, const Doubl e
Val & i nput, Doubl eVal * val);

voi d SunOf Squar esMer ge(Funct i onCont ext * cont ext, const BiglntV
al & src, BiglntVval* dst);
voi d SumOf Squar esMer ge(Functi onCont ext * cont ext, const Doubl eV
al & src, Doubl eVal * dst);

Bi gl nt Val SunOf Squar esFi nal i ze(Functi onCont ext* context, const Bi
gl ntVval & val) ;
Doubl eVal SunOf Squar esFi nal i ze(Functi onCont ext* context, const Do
ubl eVal & val) ;

We add the function bodies to a C++ source file (in this case, uda-sample.cc):

voi d Sunf Squar esl ni t (Functi onContext* context, BiglntVal* val) {
val ->is_null = fal se;
val ->val = 0;

}

voi d SunOf Squar esl nit (Functi onCont ext* context, DoubleVal* val) ({
val->is null = fal se;
val ->val = 0.0;

24

Cloudera Data Warehouse on premises Simplify queries with User-defined functions

}

voi d SunOf Squar esUpdat e(Functi onCont ext* context, const Bi gl ntVal
& input, BiglntVval* val) {

if (input.is_null) return;

val ->val += input.val * input.val;

voi d SunmOf Squar esUpdat e(Functi onCont ext* context, const Doubl eVal
& i nput, DoubleVal* val) {

if (input.is_null) return;

val ->val += input.val * input.val;

}

voi d SumOf Squar esMer ge(Funct i onCont ext* cont ext, const Bi gl ntVal &
src, BiglntVal* dst) {
dst->val += src.val;

}
voi d SumOf Squar esMer ge(Functi onCont ext * cont ext, const Doubl eV
al & src, Doubl eVal * dst) {

dst->val += src.val;

Bi gl nt Val SunOf Squar esFi nal i ze(Functi onCont ext* context, const
Bi gl ntVal & val) {
return val;

Doubl eVal SunOf Squar esFi nal i ze(Functi onCont ext* cont ext, const
Doubl eVal & val) {
return val;

}

Aswith the sample UDF, we build a shared library and put it into HDFS:

$ make

[0% Cenerating udf_ sanpl es/uda-sanple. |l

[1694 Built target uda-sanple-ir

Scanni ng dependenci es of target udasanpl e

[339 Buil ding CXX object CMvakeFil es/ udasanpl e. di r/ uda-sanpl e. o
Li nki ng CXX shared |ibrary udf_sanpl es/|i budasanpl e. so

[3394 Built target udasanple

Scanni ng dependenci es of target uda-sanpl e-test

[5094 Building CXX object CvakeFil es/uda-sanpl e-test.dir/uda-s

anpl e-test.o

Li nki ng CXX execut abl e udf sanpl es/ uda- sanpl e-t est

[5094 Built target uda-sanple-test

[509 Cenerating udf_ sanpl es/ udf-sanple.ll

[669 Built target udf-sanmple-ir

[83%4 Built target udfsanple

[100%4 Built target udf-sanple-test

$ hdfs dfs -put ./udf_sanpl es/I|ibudasanpl e.so /user/hive/udfs/li
budasanpl e. so

To create the SQL function, we issue aCREATE AGGREGATE FUNCTION statement and
specify the underlying C++ function names for the different phases:

[l ocal host:21000] > use udf_testing;

[l ocal host:21000] > create table sos (x bigint, y double);

[l ocal host:21000] > insert into sos values (1, 1.1), (2, 2.2),
(3, 3.3), (4, 4.4);

Inserted 4 rows in 1.10s

[l ocal host:21000] > create aggregate functi on sum of squares(b
igint) returns bigint

25

Cloudera Data Warehouse on premises Simplify queries with User-defined functions

> | ocation '/user/hive/udfs/I|ibudasanpl e. so'

> init_fn=" SumOf Squaresinit'

> updat e_f n=" Suntf Squar esUpdat e'

> mer ge_f n=' SuntX Squar esMer ge'

> finalize_fn=" SuntX Squar esFi nal i ze' ;
[l ocal host:21000] > -- Conpute the same value using literals or
t he UDA;
[l ocal host:21000] > select 1*1 + 2*2 + 3*3 + 4*4;
foccooccoccoccoccococococococooooocooe +
| 1 *1+2* 2+ 3* 3+ 4* 4|
foocccoccoccoccooccocoococoocoocoooos +
| 30 |
feccoccoccococococococoocoocoooococooe +

Returned 1 row(s) in 0.12s
[l ocal host:21000] > sel ect sum of squares(x) from sos;

frocococococococococoooooe +
| udfs.sum of _squares(x) |
FoocococcooccoococoooooooDooe +
| 30 |
oo e m e e e e eooa-oaoo +

Returned 1 row(s) in 0.35s

Until we create the overloaded version of the UDA, it can only handle a single data type. To allow
it to handle DOUBLE aswell as BIGINT, we issue another CREATE AGGREGATE FUNCTION
statement:

[l ocal host:21000] > sel ect sum of squares(y) from sos;
ERROR: Anal ysi sexception: No matching function with signature: ud
fs.sum of _squar es(DOUBLE) .

[l ocal host:21000] > create aggregate function sum of squares(dou
bl e) returns double
> | ocation '/user/hivel/udfs/l|ibudasanpl e. so'
i nit_fn="SunmOf Squareslnit'’
updat e_f n=" Suntf Squar esUpdat e’
nmer ge_f n=" SumOf Squar esMer ge'
finalize_fn="Sunf Squar esFi nal i ze';

VVVYV

[l ocal host:21000] > -- Conpute the sane value using literals or t
he UDA;
[l ocal host:21000] > select 1.1*1.1 + 2.2%2.2 + 3.3*3.3 + 4.4*4. 4;

Returned 1 row(s) in 0.12s
[l ocal host:21000] > sel ect sum of squares(y) from sos;

feccoccoccoccococococooocooooe +
| udfs.sum of squares(y) |
eccococococoocococcooccooooooos +
| 36.3 |
Focococococococococoocoooa +

Returned 1 row(s) in 0.35s

Typically, you use aUDA in querieswith GROUP BY clauses, to produce aresult set with a
separate aggregate value for each combination of values from the GROUP BY clause. Let's change
our sample table to use O to indicate rows containing even values, and 1 to flag rows containing
odd values. Then the GROUP BY query can return two values, the sum of the squares for the even
values, and the sum of the sgquares for the odd values:

26

Cloudera Data Warehouse on premises Starting the SQL Al Assistant in Hue

When the Impala authorization feature is enabled:

« Tocdl aUDFinaquery, you must have the required read privilege for any databases and tables used in the
query.

e The CREATE FUNCTION statement requires:
* The CREATE privilege on the database.
e TheALL privilege on two URIswhere the URIs are:

« TheJAR fileon the file system. For example:

GRANT ALL ON URI ‘file:///PATH TO MY.JAR TO ROLE MY_ROLE;

e TheJAR on HDFS. For example:

GRANT ALL ON URI ' hdfs:///PATH TOQ JAR TO ROLE MY_ROLE

The following limitations and restrictions apply to Impala UDFs in the current release.

Hive has 2 types of UDFs. This release contains limited support for the second generation UDFs called GenericUDFs.
The main limitations are as follows:

» Decimal types are not supported
« Complex types are not supported
« Functions are not extracted from the jar file

GenericUDFs cannot be made permanent. They will need to be recreated every time the server is restarted.

» Impaladoes not support Hive UDFs that accept or return composite or nested types, or other types not availablein
Impalatables.

« TheHivecurrent_user() function cannot be called from a Java UDF through Impala.

e All Impala UDFs must be deterministic, that is, produce the same output each time when passed the same
argument values. For example, an Impala UDF must not call functions such as rand() to produce different values
for each invocation. It must not retrieve data from external sources, such as from disk or over the network.

¢ AnImpaaUDF must not spawn other threads or processes.

» Prior to Impala 2.5 when the cat al ogd processisrestarted, all UDFs become undefined and must be rel oaded.
In Impala 2.5 and higher, this limitation only applies to older Java UDFs. Re-create those UDFs using the new
CREATE FUNCTION syntax for Java UDFs, which excludes the function signature, to remove the limitation
entirely.

e Impala currently does not support user-defined table functions (UDTFs).

e The CHAR and VARCHAR types cannot be used as input arguments or return values for UDFs.

A SQL Al Assistant has been integrated into Hue with the capability to leverage the power of Large Language
Models (LLMs) for various SQL tasks. It helps you to create, edit, optimize, fix, and succinctly summarize queries

27

Cloudera Data Warehouse on premises Starting the SQL Al Assistant in Hue

using natural language and makes SQL devel opment faster, easier, and less error-prone. Y ou can also generate
comments and insert them into your queries to improve readability.

Attention: The SQL Al Assistant operates only on the database that you have selected in the Hue editor, and
& not necessarily on the one that is displayed on the left-assist bar.

Y our administrator must have configured and set up the required infrastructure for you to use the SQL Al Assistant.
See About setting up the Hue SQL Al Assistant.

1. Log into the Cloudera Data Warehouse service as DWUser.
2. Open Hue corresponding to your Virtual Warehouse.

3. oo '
Click +7 Assistant on the Hue SQL editor:

The following options are displayed:
¥ Impala Add aname... Add a description... ~ =Y

:+ Assistant {2) GENERATE & EDIT () EXPLAIN {7 OPTIMIZE IF FIX CJ COMMENT ><

About setting up the SQL Al Assistant in Cloudera Data Warehouse

The SQL Al Assistant in Cloudera Data Warehouse helps you to generate SQL queries by entering aprompt in
natural language. Y ou can then insert the generated SQL in the Hue SQL editor and run it as usual.

Y our administrator must have configured and set up the required infrastructure for you to use the SQL Al Assistant.
See About setting up the Hue SQL Al Assistant.

1. Logintothe Cloudera Data Warehouse service as DWUser.
2. Open Hue corresponding to your Virtual Warehouse.

+
Click +* Assistant on the Hue SQL editor:
4. Click GENERATE.

3 Hive Add aname... Add a description..

¥4+ Assistant (2) GENERATE

A SQL query is generated based on your input prompt. Click Insert to insert the query into the editor and run it.

28

https://docs.cloudera.com/data-warehouse/1.5.5/private-cloud-getting-started/topics/dw-hue-sql-ai-assistant-setup.html
https://docs.cloudera.com/data-warehouse/1.5.5/private-cloud-getting-started/topics/dw-hue-sql-ai-assistant-setup.html
https://docs.cloudera.com/data-warehouse/1.5.5/private-cloud-getting-started/topics/dw-hue-sql-ai-assistant-setup.html

Cloudera Data Warehouse on premises Starting the SQL Al Assistant in Hue

About setting up the SQL Al Assistant in Cloudera Data Warehouse

Y ou can edit aquery in natural language and generate it again to fine-tune your results using the Hue SQL Al
Assistant. Y ou can then insert the SQL query into the editor and run it as usual.

Y our administrator must have configured and set up the required infrastructure for you to use the SQL Al Assistant.
See About setting up the Hue SQL Al Assistant.

1. Log into the Cloudera Data Warehouse service as DWUser.
2. Open Hue corresponding to your Virtual Warehouse.

3. - +] o
ick +7 Assistant on the Hue SQL editor:
4, Click EDIT.
4+ Assistant () 2 EDT getnames of all customers v a purchas ne2023 .) o X
faulte & 7

Select the query from the list and edit it as needed. Then press enter to regenerate the SQL.

About setting up the SQL Al Assistant in Cloudera Data Warehouse

Y ou can use the SQL Al Assistant to breakdown and understand a complex SQL query in natural language.

Y our administrator must have configured and set up the required infrastructure for you to use the SQL Al Assistant.
See About setting up the Hue SQL Al Assistant.

Log in to the Cloudera Data Warehouse service as DWUser.
Open Hue corresponding to your Virtual Warehouse.
Insert a SQL query in the Hue editor that you would like to understand in natural language.

S .

+
Click ++ Assistant on the Hue SQL editor:

29

https://docs.cloudera.com/data-warehouse/1.5.5/private-cloud-getting-started/topics/dw-hue-sql-ai-assistant-setup.html
https://docs.cloudera.com/data-warehouse/1.5.5/private-cloud-getting-started/topics/dw-hue-sql-ai-assistant-setup.html
https://docs.cloudera.com/data-warehouse/1.5.5/private-cloud-getting-started/topics/dw-hue-sql-ai-assistant-setup.html
https://docs.cloudera.com/data-warehouse/1.5.5/private-cloud-getting-started/topics/dw-hue-sql-ai-assistant-setup.html

Cloudera Data Warehouse on premises Starting the SQL Al Assistant in Hue

5. Click EXPLAIN.

‘f+ Assistant () GENERATE & EDIT Q) EXPLAIN & OPTIMIZE T FIX J COMMENT)4
Explain the selected SQL statement default~ & 2?2
1[SELECT nome
Z[FROM customers
3| WHERE EXISTS (
4| SELECT
5 FROM orders
6| WHERE orders.customer_id customers.id

AND orders.order_dote BETWEEN '2023-06-01' AND '"2823-86-30°

The LLM generates the explanation of the SQL query.

¥+ Explained SQL for default

customers

orders.customer_id = customer

orders.order_date BETWEEN

SUMMARY

Returns the names of customers who placed an order between June 1, 2023 and June 30,
2023.

EXPLANATION

The given SQL query performs an EXISTS subguery to check if each customer in the
customers table has any orders in the orders table that were placed between "2023-06-01'
and '2023-06-30".

It first selects the name column from the customers table. This is the
outer query.

For each customer, it checks if there exists any rows in the orders table
where:

- The order customer_id matches the current customer's id

- The order_date is

between '2023-06-01" and '2023-06-30'

If there is at least one matching order for a given
customer, the EXISTS subquery will return true and that customer's name will be included
in the result set.

Insert as comment

About setting up the SQL Al Assistant in Cloudera Data Warehouse

30

https://docs.cloudera.com/data-warehouse/1.5.5/private-cloud-getting-started/topics/dw-hue-sql-ai-assistant-setup.html

Cloudera Data Warehouse on premises Starting the SQL Al Assistant in Hue

Y ou can use the SQL Al Assistant to optimize a SQL query. Hue identifies the issues in the source query, optimizes
it, and provides the optimized version of the SQL query. Hue also summarizes the issues and how it optimized the
query in natural language.

Y our administrator must have configured and set up the required infrastructure for you to use the SQL Al Assistant.
See About setting up the Hue SQL Al Assistant.

Log in to the Cloudera Data Warehouse service as DWUser.
Open Hue corresponding to your Virtual Warehouse.
Insert a SQL query in the Hue editor that you would like to optimize.

A w DN

+
Click ++ Assistant on the Hue SQL editor:
5. Click OPTIMIZE.

*+ Assistant () GENERATE Z EDIT () EXPLAIN £ OPTIMIZE Tk FIX L3 COMMENT »
Optimize the selected SQL statement default~ £ ?
1[SELECT name
2| FROM customers
3| WHERE EXISTS (
4 SELECT
5 FROM orders
6 WHERE orders.customer_id = customers.id
7 AND orders.order_date BETWEEN '2023-06-01" AND '2023-06-30'
> 8
9
10

Hue displays the original and the optimized SQL query side-by-side. It also provides an explanation of the issues
in the origina query and how it was optimized.

#+ Optimized SQL for default - suggestion X

customers

E id IN (
customer_id
orders
rders.customer_id
) orders.order_date B

WHERE order_date BETWEEN '2
)i

EXPLANATION

The original query uses EXISTS which will check for existence of rows for each customer. This can be
slow if there are a large number of customers.

The optimized version uses an IN clause with a subquery to only return customers that have orders in

the given date range. This performs better by only returning the subset of customers that match the
criteria.

1B Copy to clipboard Cancel

About setting up the SQL Al Assistant in Cloudera Data Warehouse

31

https://docs.cloudera.com/data-warehouse/1.5.5/private-cloud-getting-started/topics/dw-hue-sql-ai-assistant-setup.html
https://docs.cloudera.com/data-warehouse/1.5.5/private-cloud-getting-started/topics/dw-hue-sql-ai-assistant-setup.html

Cloudera Data Warehouse on premises Starting the SQL Al Assistant in Hue

You can use the SQL Al Assistant to fix abroken SQL query. Hue identifies the issuesin SQL syntax and provides
the corrected version.

Y our administrator must have configured and set up the required infrastructure for you to use the SQL Al Assistant.
See About setting up the Hue SQL Al Assistant.

A w DN

Log in to the Cloudera Data Warehouse service as DWUser.
Open Hue corresponding to your Virtual Warehouse.
Insert a SQL query in the Hue editor that you would like to fix.

+
Click ++ Assistant on the Hue SQL editor:

Click FIX.
*4 Assistant (2) GENERATE 2 EDIT Q EXPLAIN £F OPTIMIZE TrFIX CJ COMMENT »
Fix the selected SQL statement default= # ?
1|SELECT name
Z|FROM customers
3| WHERE EXIST| ¢
4 SELECT
5 FROM orders
6| WHERE orders.customer_id customers.id
7 AND orders.order_date BETWEEN '2023-06-91' AND '2023-06-3@"
> &);
g9
10

Hue displays the origina and the fixed SQL query in a side-by-side comparison.

3+ Fixed SQL for default - suggestion X

orders

rders.customer_id
rders.order_dat

EXPLANATION

The issue was the use of EXIST instead of EXISTS. EXISTS is the correct syntax for an EXISTS
subquery in Impala SQL.

12 Copy to clipboard Cancel

Click Insert to insert the fixed query in the Hue editor and run it.

About setting up the SQL Al Assistant in Cloudera Data Warehouse

The SQL Al Assistant can generate a comment explaining what SQL query does. Y ou can insert it into the query to
improve readability.

32

https://docs.cloudera.com/data-warehouse/1.5.5/private-cloud-getting-started/topics/dw-hue-sql-ai-assistant-setup.html
https://docs.cloudera.com/data-warehouse/1.5.5/private-cloud-getting-started/topics/dw-hue-sql-ai-assistant-setup.html

Cloudera Data Warehouse on premises

Starting the SQL Al Assistant in Hue

Y our administrator must have configured and set up the required infrastructure for you to use the SQL Al Assistant.
See About setting up the Hue SQL Al Assistant.

A w DN PR

Log in to the Cloudera Data Warehouse service as DWUser.
Open Hue corresponding to your Virtual Warehouse.

Insert a SQL query in the Hue editor for which you want to generate a comment.

+
Click ++ Assistant on the Hue SQL editor:
Click COMMENT.

*4 Assistant () GENERATE Z EDIT () EXPLAIN # OPTIMIZE ~ {FFIX GJ COMMENT

)

Comment SQL

J‘ SELECT name

The SQL Al Assistant generates a detailed comment for the input SQL query.

*+ Explained SQL for default

This query selects the name of customers who have at least one order
placed between '2023-86-81' and '2823-86-30" .

It first selects the name column from the customers table.

It then uses the EXISTS clause to check if there are any rows in the
orders table that satisfy the following conditions:

- The customer_id in the orders table matches the id in the customers
table. This jeins the two tab n the customer id.

- The order_date is between ' 81' and 86-30'. This

filters for orders placed in June

The EXISTS clause will return TRUE if there is at least one order for
stomer in June 2823. By putting this in the WHERE clause, we
ect custome where EXISTS returns TRUE, i.e. customers with

.customer_id
rders.order_date B

Insert

Click Insert to insert the comment into the query.

Cancel

The Hue SQL Al Assistant now supports multi-database querying, allowing you to retrieve data from multiple
databases simultaneously. This enhancement simplifies managing large datasets across different systems and enables
seamless cross-database queries.

33

https://docs.cloudera.com/data-warehouse/1.5.5/private-cloud-getting-started/topics/dw-hue-sql-ai-assistant-setup.html

Cloudera Data Warehouse on premises Starting the SQL Al Assistant in Hue

1 +
Click ++ Assistant on the Hue SQL editor, then open the Al Assistant Settings.

i Impala Add aname... Add a description.. [Ed B
*+ Assistant (2) GENERATE

calmart_sales~ # ?
1

2. Select the databases you want to include in your queries. Y ou can choose multiple databases from the list provided
and click OK.

3. Enter your prompt in natural language to generate SQL queries.
Querying across multiple databases

Database Name Tables
CadMart_Sales DB Customers, Sales, Sales Items
CalMart_Products DB Products, Suppliers, Product_Supplier

Use Case: ldentifying Top-Selling Products and Their Suppliers.
Objective: Retrieve top-selling products along with their suppliers by combining data from two databases.

SELECT
Si . product _id,
p. product _nane,
SUM'si . quantity) AS total _quantity_sol d,
s.suppli er _name

Cal Mart _Sal es_DB. Sal es_Itens si
JO N

Cal Mart _Products_DB. Products p
ON

si.product _id = p.product _id
JO N

Cal Mart _Products_DB. Product _Supplier ps
ON

p. product _id = ps.product _id
JAN

Cal Mart _Products_DB. Suppliers s

ON

ps.supplier id = s.supplier_id
GROUP BY

si . product _id, p.product_nane, s.supplier_name
ORDER BY

Cloudera Data Warehouse on premises Impala workload management

total _quantity sol d DESC;

This query retrieves a comprehensive list of top-selling products along with their suppliers by combining data
from multiple databases.

Learn how to enable Impala query logging in Cloudera Data Warehouse to track queries, analyze performance, and
retain execution data for better insights.

Cloudera Data Warehouse provides you the option to enable logging Impala queries on an existing Virtual Warehouse
or while creating a new Impala Virtual Warehouse. By logging the Impala queries in Cloudera Data Warehouse, you
gain increased observability of the workloads running on Impala, which you can use to improve the performance of
your Impala Virtual Warehouses.

This feature represents a significant enhancement to query profiling capabilities. Y ou can have Impala archive crucial
data from each query's profile into dedicated database tables known as the query history table and live query table.
These tables are part of the sys database and are designed to store valuable information that can later be queried using
any Impala client, providing a consolidated view of both actively running and previously executed queries.

The query history table, sys.impala_query _log proves particularly useful when dissecting workloads for in-depth
analysis of query performance. Unlike the limitations associated with query profiles, which are only available to
the client that initiated the query, the query history table offers a comprehensive solution for querying completed
queries without the need to parse the text of each query profile. Additionally, the query history table provides a
comprehensive view across al Impala coordinators.

The Impala query information is stored indefinitely in the sys.impala_query_log table whereas the sys.impala_q
uery_livetable reflects the in-memory state of all Impala coordinators. Actively running and recently completed
queries are stored in thistable. Datais removed from this table once the query finishes and is persisted in the sys.impa
la_query log table or if the coordinator is restarted. Therefore, there is a possibility that some of the records could
momentarily be duplicated in both these tables.

Since the sys.iimpala_query_livetable is stored only in-memory, recently completed queries that are not yet persisted
to the sys.impala_query_log table arelost if the coordinator crashes. However, if the coordinator is shut down
gracefully, then the recently completed queries are stored in the sys.impala_query_log table and are not lost.

The <onlyCoordinators> element in Impala’ s Admission Control restricts a request pool to coordinators only,
excluding executors. Thisis mainly used for querying the sys.impala_query_live table. However, these pools can till
run any query, potentially exhausting coordinator resources. Proper naming isimportant to avoid unintended query
routing. For more information, see Apache Impala: onlyCoordinators.

Hive query history service

Learn about the available columns in the query history and live query system tables.

The following columns are available as part of the query history and live query system tables:

cluster_id String specified through the string cluster-123
Impala startup flag to uniquely
identify an instance.

uery_id Impalaassigned query identifier. | string 214d08bef0831e7a:3c65392400000000
query.

35

https://docs.cloudera.com/data-warehouse/1.5.5/querying-data/topics/dw-query-history-hive.html

Cloudera Data Warehouse on premises

Impala workload management

Column Name Description Data Type Sample Value

b8

L V6

R=Impala

=2

session_id Impala assigned session identifier. | string eadf661af43993d8:587839553a4 1
session_type Client session type. string HIVESERVER2
hiveserver2_protocol_version Version of the HiveServer (HS2) | string HIVE_CLI_SERVICE_PROTOCO
protocol that was used by the
client when connecting.
db_user Effective user on the cluster. string €Sso_hame
db_user_connection Username from an authenticated | string CSS0_name
client.
db_name Name of the database being string default
queried.
impala_coordinator Name of the coordinator for the string coord-22899:27000
query.
query_status Status of the query when it string OK
completes.
query_state Final state of the query. string FINISHED
impala_query_end_state Final Impala state of the query. string FINISHED
query_type Type of the query. string QUERY
network_address Client |P address and port. string 127.0.0.1:40120
start_time_utc Time when the query started. timestamp 2024-07-17 17:13:46.414316000
Time zoneisin UTC.
total_time_ms Difference between the query decimal (18,3) 136.121
end time and start time, in
milliseconds (digits after
the decimal point represent
milliseconds).
query_opts_config List of query options stored as a string TIMEZONE=Americal
single string containing comma- Los Angeles,CLIENT_IDENTIFIE
separated values of key-value Shell v4.4.0al (04bdb4d) built on
pairs. Mon Nov 20 10:49:35 PST 2023
resource_pool Name of the resource pool for the | string default-pool
query.
per_host_mem_estimate Size, in bytes of the per-host bigint 5
memory estimate.
dedicated_coord_mem_estimate | Size, in bytes of the dedicated bigint 4
coordinator memory estimate.
per_host_fragment_instances Commea-separated string listing string myhost-1:27000=1,myhost-2:27001
each host and its fragment
instances.
backends_count Count of the number of backends | integer 2
used by this query.
admission_result Result of the admission (not string Admitted immediately
applicableto DDLS).
cluster_memory_admitted Cluster memory, in bytesthat was | integer 4
admitted.
executor_group Name of the executor group. string executor_group
executor_groups List of all executor groups string executor_groupl,
including the groups that were executor_group2...
considered and rejected as part of
Workload Aware Auto Scaling.
exec_summary Full text of the executor summary. | string

36

Cloudera Data Warehouse on premises Impala workload management

Column Name Description Data Type Sample Value

num_rows _fetched Number of rows fetched by the bigint 6001215
query.
row_materialization_rows_per_sec| Count of the number of rows bigint 3780

materialized per second.

row_materialization_time_ms Time spent materializing rows decimal (18,3) 158
converted to milliseconds.

compressed_bytes spilled Count of bytes that were written bigint 241515
(or spilled) to scratch disk space.

event_planning_finished Event from the timeline.The decimal (18,3) 27.253
value represents the number of
milliseconds since the query was
received.

event_submit_for_admission Event from the timeline.The decimal (18,3) 30.204
value represents the number of
milliseconds since the query was
received.

event_completed_admission Event from the timeline.The decimal (18,3) 30.986
value represents the number of
milliseconds since the query was
received.

event_all_backends_started Event from the timeline.The decimal (18,3) 31.969
value represents the number of
milliseconds since the query was
received.

event_rows_available Event from the timeline. The decimal (18,3) 31.969
value represents the number of
milliseconds since the query was
received.

event_first_row_fetched Event from the timeline.The decimal (18,3) 135.175
value represents the number of
milliseconds since the query was
received.

event_last_row_fetched Event from the timeline.The decimal (18,3) 135.181
value represents the number of
milliseconds since the query was
received.

event_unregister_query Event from the timeline.The decimal (18,3) 141.435
value represents the number of
milliseconds since the query was

received.

read_io_wait_tota_ms Total read 1/0 wait time converted | bigint 15.091
to milliseconds.

read_io_wait_mean_ms Average read |/O wait time bigint 35.515
across executors converted to
milliseconds

bytes read_cache total Total bytes read from the data bigint 45823
cache

bytes read_total Total bytesread bigint 745227

pernode_peak_mem_min Minimum value of all the per- bigint 5552846
node peak memory usages

pernode_peak_mem_max Maximum value of all the per- bigint 5552846
node peak memory usages

pernode_peak_mem_mean Mean value of all the per-node bigint 5552846
peak memory usages

37

Cloudera Data Warehouse on premises

Impala workload management

Column Name Description Data Type Sample Value

SQL statement as provided by the
user

string

SELECT db_user, total_time_ms
from impala_query_log where
query_state = 'EXCEPTION';

plan

Full text of the query plan

string

tables _queried

Commearseparated string
containing all the tables queried in
the SQL statement. Aliased tables
areresolved to their actual table
names.

string

db.tbl,db.tbl

select_columns

Commearseparated string
containing all columns from
the select list of the sgl. Aliased
columns are resolved to

their actual column names.
Each column isin the format
database.table.column_name.

string

db.tbl.col1,db.tbl.col2

where_columns

Commearseparated string
containing all columns from
the wherelist of the sql.
Aliased columns are resolved
to their actual column names.
Each column isin the format
database.table.column_name.

string

db.thl.col1,db.thl.col2

join_columns

Commea-separated string
containing all columns from
the sgl used in ajoin. Aliased
columns are resolved to

their actual column names.
Each column isin the format
database.table.column_name.

string

db.thl.col1,db.thl.col2

aggregate_columns

Commea-separated string
containing all columns from the
group by and having lists of the
sqgl. Aliased columns are resolved
to their actual column names.
Each column isin the format
database.table.column_name.

string

db.thl.col1,db.thl.col2

orderby_columns

Comma-separated string
containing all columns from
the order by list of the sql.
Aliased columns are resolved
to their actual column names.
Each column isin the format
database.table.column_name.

string

db.tbl.col1,db.tbl.col2

coordinator_slots

Number of query slots used by the
guery on the coordinator.

bigint

executor_slots

Numberof query slots used by the
guery on the executors. The value
in this column represents the slots
used by a single executor, not the
total number of slots across all
executors.

bigint

Impala workload management table maintenance

Understand the maintenance requirements for the sys.impala_query_live and sysimpala_query log tables.

For efficient query performance, different maintenance needs apply to the sys.impala query live and sysimpala q

uery_log tables.

38

Cloudera Data Warehouse on premises Impala workload management

e Sysimpaa_query_live:

* No maintenanceis required because it resides entirely in memory.
e Sys.impaa_query_log:

« Asan Iceberg table, it requires periodic maintenance, such as:

e Computing statistics.
e Optimizing the table structure.
» Performing snapshot expiration or cleanup.

Since Impalaworkloads are unique, no automatic maintenance is performed on the sys.impala_query_log table. You
should schedule maintenance tasks according to your workload needs.

To optimize the Impala query log, run the query OPTIMIZE TABLE sys.impala query log (FILE_SIZE THRES
HOLD_MB=128). Cloudera recommends testing this query in the development or test environments to evaluate its
impact on your workload. For best results, run the query during low cluster activity times.

Learn how to use query history to track executed queries by user, identify frequently queried statements, and report
long-running queries for anaysis.

A consolidated view of reports from previously executed queries can be useful in the following use cases:

« Caollecting history of all queries run and reporting by user, start/end time, and execution duration. For instance;
SELECT db_user, start _tinme, end tine, total tinme_ns, sql FROMinpal a _que
ry | og ORDER BY db_user;

» Collecting the top five most frequently executed queries. For instance:

SELECT | ower(sql) sqgl, count(sql) count FROM sys.inpal a_query | og GROUP BY
| ower (sql) ORDER BY count desc LIMT 5;

» Reporting on queries that ran over 10 minutes. For instance:

SELECT db_user, total tinme_ns, sql FROM sys.inpal a query_| og WHERE t ot al
_time_nms > 600000;

* Reporting on queriesthat are actively running and have been running for over 10 minutes. For instance:

SELECT db_user, total tinme_ms, sql FROM sys.inpala query |ive WHERE tota
| time_nms > 600000;

Learn how to enable and configure Impala query logging to store and analyze query history.

To use this feature, enable Impala query logging while creating anew Virtual Warehouse or by editing an existing
one by selecting the Log Impala Queries option. By default, the Log |mpala Queries option is off.

Y ou can then configure the Impala coordinator using specific startup flags to store query history. Impala manages the
table serving as a centralized repository for al query histories across databases. Completed queries are periodically
inserted into this table based on a preconfigured interval.

This feature streamlines the process of query history management, providing a more accessible and comprehensive
way to analyze and retrieve information about completed queries.

Note: Thisfeatureisavailable from Cloudera Data Warehouse versions 2024.0.18.0 (tech preview),
2025.0.19.0 and higher (GA).

39

Cloudera Data Warehouse on premises Impala workload management

: Important: The following query types are not written into the query logging tables:

« SET

« SHOW

« USE
 DESCRIBE

Impala coordinator Startup flags
Learn about Impala coordinator startup flags used to create and configure query logging tables during startup.

On startup, each Impala coordinator runs an SQL statement to create the query logging tables. The following table
lists the Impala startup coordinator flags that you can configure:

Name Data Type Default Description

cluster_id string Specifies an identifier string that
uniquely represents this cluster.
Thisidentifier isincluded in both
thetables and is used as atable
partition for the sys.impala_query
_log table.

query_log_shutdown_timeout_s number (seconds) 30 Hidden flag. Number of seconds
to wait for the queue of completed
queriesto be carried into the
query history table before timing
out and continuing the shutdown
process.The query history table
drain process runs after the
shutdown process compl etes,
therefore the max shutdown time
is extended by the value specified
inthisflag.

workload_mgmt_user string impala Specifies the user that will be used
to insert recordsinto the query
history table.

query_log_write_interval_s number (seconds) 300 Number of seconds to wait before
inserting completed queries into
the query history table. Allows
for batching inserts to help avoid
small files.

query_log_max_queued number 3000 Maximum number of completed
queries that can be queued before
they are written to the query
history table.This flag operates
independently of the query_lo
g_write_interval_m flag. If the
number of queued records reaches
this value, the records will be
written to the query log table no
matter how much time has passed
since the last write.A value of 0
indicates no maximum number of
queued records.

40

Cloudera Data Warehouse on premises Running queries on system tables

query_log_max_sql_length number 16777216 Maximum length of a SQL
statement that will be recorded
in the completed queries table.
If aSQL statement with alength
longer than this specified value is
executed, the SQL inserted into
the completed queries table will
be trimmed to this length. Any
characters that require escaping
will have their backslash character
counted towards this limit.

query_log_max_plan_length number 16777216 Maximum length of the SQL
query plan that will be recorded
in the completed queriestable. If
aquery plan has alength longer
than this value, the plan inserted
into the completed queries table
will be trimmed to this length.
Any characters that require
escaping will have their backslash
character counted towards this
limit.

query_log_request_pool string Specifies a pool or queue used
by the queries that insert into
the query log table. Empty value
causes no pool to be set.

query_log_dml_exec_timeout_s number 120 Specifies the value of the
EXEC_TIME_LIMIT_S query
option on the DML that inserts
records into the sys.impala_query
_log table.

Learn how to configure system table queriesin Impalato use only the necessary coordinator resources.

Queries against Impala system tables, such as sys.impaa_query_live, experienced delays due to admission control
constraints. These queries, which only require only coordinator resources, were blocked by other queries competing
for executor resources.

To address this, Impalaintroduces an "only coordinators' request pool. This allows system table queriesto run
without waiting for executor resources, even when those resources are fully used. In Cloudera Data Warehouse,
queries submitted to an only coordinators request pool continue to run even if no executors are running.

B Note:
Running queries on system tables feature for Impalaisin technical preview and not recommended for
production deployments. Cloudera recommends that you try this feature in test or development environments.

Y ou can configure coordinator-only request poolsin Impala by setting the <onlyCoordinators> option to truein the
fair-scheduler.xml file. When enabled, the request pool runs queries only on coordinators. No executors are required,
and all fragment instances are executed exclusively on the coordinators.

Warning: Be cautious when submitting queries to a coordinator-only request pool. If alarge or non-system
table query is submitted, it will run entirely on the coordinators. This can lead to memory or CPU exhaustion.

41

Cloudera Data Warehouse on premises Hive query history service

To prevent resource issues, Cloudera recommends limiting access to coordinator-only request poolsto a small group
of users who understand the risks of running complex queriesin this configuration.

Follow these steps to configure a coordinator-only request pool in Impalato optimize system table queries.

By configuring a coordinator-only request pool, you can run queries that do not require executors. This reduces
resource usage and enhances system performance.

Ensure you have administrator access to modify Impala configurations.

1. Log into the Clouderaweb interface and navigate to the Cloudera Data Warehouse service.
2. Inthe Cloudera Data Warehouse service, click Virtual Warehouses in the left navigation panel.

Select the Impala Virtual Warehouse, click options for the warehouse you want to include the onlyCoor
dinators setting for a request pool.

4. Click Edit and navigate to Impala Coordinator under the Configurations tab.

5. Select the fair-scheduler.xm under Configuration files.

6. Add <onlyCoordinators>true</onlyCoordinators>.

<queue nane="coords">
<maxResour ces>10000 nb, 0 vcor es</ maxResour ces>
<onl yCoor di nat or s>t r ue</ onl yCoor di nat or s>

</ queue>

7. Click Apply Changes and restart Impala

The query history service in Hive provides a scalable solution for storing and querying historical query information in
a structured and performant manner, enabling long-term analysis and monitoring.

Cloudera Data Warehouse provides you the option to enable logging Hive queries on an existing Virtua Warehouse
or while creating a new Hive Virtual Warehouse.The query history servicein Hiveis afeature that stores along-term
record of finished queries and their associated metrics. It is designed to support auditing, debugging, and performance
monitoring at scale by persisting historical query datain a modern table format.

Hive already offers several waysto inspect query activity, including:

* Hivehistory .txt files.

« Protobuf logging hook.

« Livequerieson the HiveServer2 Web UI.

e SHOW PROCESSLIST command.

* In-development query history service.

While these options allow inspection of active or recent queries, none provide a scalable solution for storing and
querying historical query information in a structured and performant manner.

42

Cloudera Data Warehouse on premises Hive query history service

The query history service addresses this limitation by persisting structured records for completed queries, enabling
long-term analysis using standard SQL.

The query history table stores the following information for each finished query:

e Submitting user

e Query runtime

e Tables accessed

e Errors

e Additional metadatafields

Thisinformation is stored in a structured format using the | ceberg table format, alowing efficient querying and future
integration with tools such as Apache Hue or custom dashboards.

The query history service runs as part of HiveServer2 and writes query data to an Iceberg table in batches, using
configurable memory buffering and flushing strategies. However, it is not intended for real-time query inspection,
query debugging or recommendations, or for creating user interfaces or visualizations.

Impala workload management

Learn how the query history service in Hive stores past query datain structured tables using Iceberg and ORC for
efficient querying and long-term data storage.

The query history servicein Hiveis designed to store historical query datain a scalable and queryable format. It uses
an | ceberg table backed by the ORC file format, enabling efficient SQL queries for analyzing past workloads.

To support scalability and queryability, the service avoids storing one file per query or session. Instead, it uses the
| ceberg table format, which provides:

1. Schemaevolution

2. Partitioning support

3. Compatibility with SQL engines
4, Efficient metadata management

The ORC format is used for physical storage, offering compact, columnar storage and fast performance for Hive
workloads.

The query history serviceis designed to be pluggable, allowing flexibility to support other storage formatsin the
future. Hive handles all writing operations, so the service itself does not need to manage storage-level complexity.

The query history service stores datain an Iceberg table instead of traditional file-based logs. Iceberg offers the
following advantages:

» Efficient storage and query performance.

» Schema evolution support.

« Partitioning and metadata handling for faster analysis.
« Integration with query engines like Hive and Impala.

43

https://docs.cloudera.com/data-warehouse/1.5.5/querying-data/topics/dw-workload-management-impala.html

Cloudera Data Warehouse on premises Hive query history service

Schema structure

The schema of the query history table is organized into fields and partitioning to efficiently store and query historical
data.

1. Fields:

The query history service gathers a wide range of query-related data, categorized into basic and runtime fields.
These fields address challenges related to data extraction and integration within HiveServer2. Basic fields are
extracted during the service's integration into HiveServer2, leveraging encapsulating objects such as QueryPro
perties, Querylnfo, QueryDisplay, and DriverContext. Each of these objects contains overlapping fields relevant
to query tracking.While these objects provide valuable query-related information, the service needed to identify a
central access point for all necessary data.DriverContext was ultimately chosen as it offers comprehensive access
to all required query details, ensuring efficient data extraction and storage.

2. Partitioning:

Thetableis partitioned by cluster_id, enabling usersto filter queries based on the cluster or compute group that
executed them. This partitioning strategy improves query performance and ensures data separation across different
environments. For more information, see HIVE-28324

Related Information

HIVE-28324

Query history table format

Learn about the query history table format, which provides detailed information on query execution, including
column names, data types, and descriptions.

Table Format

The following table provides an overview of the columnsin the query history table, including their names, data types,
and descriptions:

Column Name Datatype Description

query_history_schema version int Schema version of the query history record.

hive version string Hive version running in HiveServer2 when the
query was executed.

query_id string Hive-assigned identifier for the query.

session_id string Hive-assigned identifier for the session.

operation _id string Hive-assigned identifier for the operation.

execution_engine string Execution engine used to run the query
(typicaly Tez).

execution_mode string Indicates whether the query ranin LLAP or
Tez container mode.

tez_dag_id string Tez DAG ID used for the query, if applicable.

tez_app_id string Tez application ID used for the query, if
applicable.

tez_session id string Tez session ID used for the query, if
applicable.

cluster_id string Unique identifier for the cluster instance.

sl string SQL query string submitted by the user.

session_type string Session type (HIVESERVER2 or OTHER).

hiveserver2_protocol_version int Protocol version used by the client, as defined
in TCLIService.

https://issues.apache.org/jira/browse/HIVE-28324

Cloudera Data Warehouse on premises

Hive query history service

Column Name Data type

Description

cluster_user string Effective user on the cluster (typicaly hiveif
doAsisdisabled).

end_user string Authenticated client username.

db_name string Database selected when the query was run.

tez_coordinator string Address of the Tez coordinator used for the
query.

query_state string Query state as an OperationState value.

query_type string Query typeidentified by the semantic analyzer
(DQL, DDL, DML, DCL, STATS, or empty).

operation string Hive operation name based on syntax or
semantic analysis.

server_address string Address of the HiveServer2 instance the client
connected to.

server_port int TCP port of the HiveServer2 instance.

client_address string IP address of the client that initiated the
connection.

start_time_utc timestamp UTC timestamp when the query started.

end_time_utc timestamp UTC timestamp when the query finished.

start_time timestamp Server-local timestamp when the query
started.

end_time timestamp Server-local timestamp when the query
finished.

total_time_ms bigint Total execution time in milliseconds.

planning_duration bigint Time spent in query compilation and planning
(ms).

planning_start_time timestamp Timestamp when query planning started.

prepare_plan_duration bigint Time spent preparing the DAG for execution
(ms).

prepare_plan_start_time timestamp Timestamp when the DAG preparation started.

get_session_duration bigint Timetaken to acquireaTez on (ms).

get_session_start_time timestamp Timestamp when session acquisition started.

execution_duration bigint Duration of DAG execution (ms).

execution_start_time timestamp Timestamp when DAG execution started.

failure_reason string Error message for query failure, if any.

num_rows _fetched int Number of rows fetched by the query.

plan string Full text of the query plan.

used_tables string Commarseparated list of tables used by the
query.

exec_summary string Full text of the execution summary.

configuration_options_changed string Configuration options changed during the
query session.

total_tasks int Total number of Tez tasks started for the
query.

succeeded_tasks int Number of successful tasks.

killed_tasks int Number of killed tasks.

45

Cloudera Data Warehouse on premises Hive query history service

Column Name Data type Description

failed_tasks int Number of failed task attempts.
task_duration_millis bigint Total task execution time in milliseconds.
node_used_count int Number of nodes used to run the query.
node_total_count int Total number of nodes visible during query
execution.
reduce_input_groups bigint Number of reducer input groups.
reduce_input_records bigint Number of input records seen by reducers.
spilled_records bigint Number of records spilled during shuffle.
num_shuffled_inputs bigint Number of physical inputs used during shuffle.
num_failed_shuffle_inputs bigint Number of failed attempts to fetch shuffle
inputs.
input_records_processed bigint Number of input records actually processed.
input_split_length_bytes bigint Total size (bytes) of input splits.
output_records bigint Number of output records from all vertices.
output_bytes physical bigint Actual byteswritten, including compression.
shuffle_chunk_count bigint Number of shuffled files processed.
shuffle_bytes bigint Total shuffled datasizein bytes.
shuffle_bytes disk_direct bigint Bytes shuffled using direct disk access.
shuffle_phase_time bigint Time spent in the shuffle phase (ms).
merge_phase_time bigint Time spent merging shuffled data (ms).

Query history use case

The query history service and the sys.query_history table provide developers, support engineers, and customers with
tools for detailed investigations and large-scale insights.

The query history service and the sys.query_history table are designed for developers, support engineers, and
customers. With awide range of available fields, you can use the service to:

» Find aspecific query and view its details.

« Anayze trends across multiple queries for performance monitoring.

This supports both detailed investigations and large-scale insights.

Example queries
Basic query information

Get key details such as SQL text, DAG ID, execution plan, and summary.

SELECT sqgl, tez dag_id, plan, exec_sumary
FROM sys. query_hi story
VWHERE query_id = 'abcl123';

Query count by user and database
Find the number of queries run by each user on each database.

SELECT db_nane, end_user, COUNT(*) AS query_count
FROM sys. query_hi story
GROUP BY db_nane, end_user

46

Cloudera Data Warehouse on premises Hive query history service

ORDER BY db_nane;

Top five longest-running queries

| dentify the five queries with the highest execution time.

SELECT end_user, query_id, total _tine_ns
FROM sys. query_hi story

ORDER BY total tinme_ns DESC

LIMT 5;

Concurrent query detection

Determine how many queries overlapped with each query.

SELECT a. query_id, COUNT(b.query_id) AS concurrent_queries
FROM sys. query_history a
LEFT JO N sys. query_history b
ON a.query_id !'= b.query_id
AND a.start _tinme <= b.end tine
AND b.start _tine <= a.end_tine
GROUP BY a.query_id
ORDER BY concurrent _queries DESC
LIMT 5;

Extracting counter s from execution summary

Use regular expressions to extract specific counters that are not stored in separate fields.

SELECT query_id, regexp_extract(exec_summary, 'AM CPU M LLI SECON
DS: (\\d+)', 1) AS amcpu_nilliseconds

FROM sys. query_hi story

VWHERE tez dag id I'S NOT NULL;

Learn how to modify the default configuration of the query history service in Cloudera Hive to manage query history
settings more effectively.

Make sure the L og Hive queries option is enabled.

1. Log into the Cloudera Data Warehouse service

2.

3.

Go to the Virtual Warehouses tab. Select the Hive Virtual Warehouse, click * Edit

Go to the Configurations tab. Select hive-site from the Configuration files drop-down menu, and add the following
properties to modify the values as required:

a) hive.query.history.explain.plan.enabled (Default: true)

Determines whether to collect and store the explain plan in the query history.
b) hive.query.history.exec.summary.enabled (Default; true)

Specifies whether to collect and store the execution summary in the query history.
¢) hive.query.history.batch.size (Default: 200)

Specifies the maximum number of records that can be held in memory before the query history service
persists them to the target table. Smaller values (e.g., 1-5) enable more real-time behavior but result in smaller

47

Cloudera Data Warehouse on premises Hive query history service

d)

f)

files. Setting this property to 0 forces synchronous persistence of records, Cloudera does not recommend for
production environments

hive.query.history.max.memory.bytes (Default: 20mb)
Defines the maximum memory size, in bytes, that the query history queue can occupy before the service

persists records to the target table. Setting this property to 0 disables the memory limit, Cloudera does not
recommend in production environments to prevent excessive memory usage in HiveServer2.
hive.query.history.flush.interval .seconds (Default: 1h)

Specifies the time interval, in seconds, for flushing query history records from memory to the Iceberg table,
regardless of the batch size. This ensures timely access to query history records. The default value is 1 hour,
balancing file size and record availability. Setting this property to 0 disables the interval-based flush, relying
solely on batch size for persistence.

hive.query.history.repository.class (Default: org.apache.hadoop.hive.ql.queryhistory.repository.lcebergReposit
ory)

Indicates the class that implements QueryHistoryRepository, which is responsible for persisting query history
records.

4. Click Apply Changes and restart Hive.

48

	Contents
	Query data
	Submit queries with Hue
	View query history
	Create User-defined functions
	Set up dev environment
	Create UDF
	Build project and upload JAR
	Register UDF
	Call UDF in a query

	Simplify queries with User-defined functions
	Creating an Impala user-defined function
	UDF concepts
	Runtime environment for UDFs
	Writing UDFs
	Writing user-defined aggregate functions (UDAFs)
	Building and deploying UDFs
	Performance considerations for UDFs
	Examples of creating and using UDFs
	Security considerations for UDFs
	Limitations and restrictions for Impala UDFs

	Start SQL AI Assistant
	Generate SQL from NQL
	Edit query in natural language
	Explain query in natural language
	Optimize SQL query
	Fixing a query in Hue
	Generate comment for a SQL query
	Multi database support for SQL query

	Impala workload management
	Impala workload management table format
	Impala workload management table maintenance
	Impala workload management use cases
	Enable Impala workload management
	Impala coordinator Startup flags

	Running queries on system tables
	Configuring the only coordinators request pool

	Hive query history service
	Query history table
	Query history table format

	Query history use case
	Configuring query history service

