
Cloudera Data Warehouse on premises 1.5.5

Querying Data
Date published: 2020-08-17
Date modified: 2025-06-06

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Data Warehouse on premises | Contents | iii

Contents

Query data... 4
Submit queries with Hue..4
View query history..5
Create User-defined functions... 5

Set up dev environment..5
Create UDF... 7
Build project and upload JAR..8
Register UDF.. 8
Call UDF in a query...9

Simplify queries with User-defined functions.. 10
Creating an Impala user-defined function..10

UDF concepts... 10
Runtime environment for UDFs...14
Writing UDFs... 14
Writing user-defined aggregate functions (UDAFs).. 18
Building and deploying UDFs..19
Performance considerations for UDFs... 20
Examples of creating and using UDFs.. 20
Security considerations for UDFs.. 27
Limitations and restrictions for Impala UDFs... 27

Start SQL AI Assistant...27
Generate SQL from NQL...28
Edit query in natural language... 29
Explain query in natural language... 29
Optimize SQL query...31
Fixing a query in Hue.. 32
Generate comment for a SQL query..32
Multi database support for SQL query.. 33

Impala workload management.. 35
Impala workload management table format...35
Impala workload management table maintenance... 38
Impala workload management use cases... 39
Enable Impala workload management... 39

Impala coordinator Startup flags.. 40
Running queries on system tables... 41

Configuring the only coordinators request pool.. 42
Hive query history service..42

Query history table... 43
Query history table format... 44

Query history use case... 46
Configuring query history service..47

Cloudera Data Warehouse on premises Querying data in Cloudera Data Warehouse

Querying data in Cloudera Data Warehouse

This topic describes how to query data in your Virtual Warehouse on Cloudera Data Warehouse.

About this task

The Cloudera Data Warehouse service includes the Hue SQL editor that you can use to submit queries to Virtual
Warehouses. For example, you can use Hue to submit queries to an Impala Virtual Warehouse.

Procedure

1. Log in to the Cloudera Data Warehouse service as DWUser.

The Overview page is displayed.

2. Click Hue on the Virtual Warehouse tile.

3. Enter your query into the editor and submit it to the Virtual Warehouse.

Submitting queries with Hue

You can write and edit queries for Hive or Impala Virtual Warehouses in the Cloudera Data Warehouse service by
using Hue.

About this task

For detailed information about using Hue, see Using Hue.

Before you begin
Hue uses your LDAP credentials that you have configured for the Cloudera cluster.

Procedure

1. Log into the Cloudera Data Warehouse service as DWUser.

2. Go to the Virtual Warehouses tab, locate the Virtual Warehouse using which you want to run queries, and click
HUE.

The Hue query editor opens in a new browser tab.

3. To run a query:

a) Click a database to view the tables it contains.

When you click a database, it sets it as the target of your query in the main query editor panel.
b)

Type a query in the editor panel and click to run the query.

You can also run multiple queries by selecting them and clicking .

Note: Use the language reference to get information about syntax in addition to the SQL auto-

complete feature that is built in. To view the language reference, click the book icon to the
right of the query editor panel.

Related Information
Advanced Hue configurations (safety valves) in Cloudera Data Warehouse

4

https://docs.cloudera.com/cdw-runtime/1.5.5/using-hue/topics/hue-using.html
https://docs.cloudera.com/cdw-runtime/1.5.5/administering-hue/topics/dw-hue-configurations.html

Cloudera Data Warehouse on premises Viewing query history in Cloudera Data Warehouse

Viewing query history in Cloudera Data Warehouse

In Cloudera Data Warehouse, you can view all queries that were run against a Database Catalog from Hue, Beeline,
Hive Warehouse Connector (HWC), Tableau, Impala-shell, Impyla, and so on.

About this task
You need to set up Query Processor administrators to view the list of all queries from all users, or to restrict viewing
of queries.

Procedure

1. Log in to the Cloudera web interface and navigate to the Cloudera Data Warehouse service.

2. In the Cloudera Data Warehouse service, navigate to the Overview page.

3. From a Virtual Warehouse, launch Hue.

4. Click on the Jobs icon on the left-assist panel.

The Job Browser page is displayed.

5. Go to the Queries tab to view query history and query details.

Related Information
Viewing Hive query details

Viewing Impala query details

Adding Query Processor Administrator users and groups in Cloudera Data Warehouse

Creating a user-defined function in Cloudera Data
Warehouse on premises

You export user-defined functionality (UDF) to a JAR from a Hadoop- and Hive-compatible Java project and store
the JAR on your cluster. Using Hive commands, you register the UDF based on the JAR, and call the UDF from a
Hive query.

Before you begin

• You must have access rights to upload the JAR to your cluster. Minimum Required Role: Configurator (also
provided by Cluster Administrator, Full Administrator).

• Make sure Hive on Tez or Hive LLAP is running on the cluster.
• Make sure that you have installed Java and a Java integrated development environment (IDE) tool on the machine,

or virtual machine, where you want to create the UDF.

Setting up the development environment
You can create a Hive UDF in a development environment using IntelliJ, for example, and build the UDF. You define
the Cloudera Maven Repository in your POM, which accesses necessary JARS hadoop-common-<version>.jar and
hive-exec-<version>.jar.

Procedure

1. Open IntelliJ and create a new Maven-based project. Click Create New Project. Select Maven and the supported
Java version as the Project SDK. Click Next.

5

https://docs.cloudera.com/cdw-runtime/1.5.5/using-hue/topics/hue-view-hive-query-details.html
https://docs.cloudera.com/cdw-runtime/1.5.5/using-hue/topics/hue-view-impala-query-details.html
https://docs.cloudera.com/cdw-runtime/1.5.5/administering-hue/topics/hue-adding-query-store-admin-users.html

Cloudera Data Warehouse on premises Creating a user-defined function in Cloudera Data Warehouse on
premises

2. Add archetype information.
For example:

• GroupId: com.mycompany.hiveudf
• ArtifactId: hiveudf

3. Click Next and Finish.
The generated pom.xml appears in sample-hiveudf.

4. To the pom.xml, add properties to facilitate versioning.
For example:

<properties>
 <hadoop.version>TBD</hadoop.version>
 <hive.version>TBD</hive.version>
</properties>

5. In the pom.xml, define the repositories.

Use internal repositories if you do not have internet access.

<repositories>
 <repository>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>always</updatePolicy>
 <checksumPolicy>warn</checksumPolicy>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 <updatePolicy>never</updatePolicy>
 <checksumPolicy>fail</checksumPolicy>
 </snapshots>
 <id>HDPReleases</id>
 <name>HDP Releases</name>
 <url>http://repo.hortonworks.com/content/repositories/releases/</u
rl>
 <layout>default</layout>
 </repository>
 <repository>
 <id>public.repo.hortonworks.com</id>
 <name>Public Hortonworks Maven Repo</name>
 <url>http://repo.hortonworks.com/content/groups/public/</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 <repository>
 <id>repository.cloudera.com</id>
 <url>https://repository.cloudera.com/artifactory/cloudera-repos/<
/url>
 </repository>
 </repositories>

6. Define dependencies.
For example:

<dependencies>
 <dependency>
 <groupId>org.apache.hive</groupId>
 <artifactId>hive-exec</artifactId>
 <version>${hive.version}</version>
 </dependency>
 <dependency>

6

Cloudera Data Warehouse on premises Creating a user-defined function in Cloudera Data Warehouse on
premises

 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-common</artifactId>
 <version>${hadoop.version}</version>
 </dependency>
</dependencies>

Creating the UDF class
You define the UDF logic in a new class that returns the data type of a selected column in a table.

Procedure

1. In IntelliJ, click the vertical project tab, and expand hiveudf: hiveudf src main . Select the java directory, and on
the context menu, select New Java Class , and name the class, for example, TypeOf.

2. Extend the GenericUDF class to include the logic that identifies the data type of a column.
For example:

package com.mycompany.hiveudf;

import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDF;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.\
PrimitiveObjectInspectorFactory;
import org.apache.hadoop.io.Text;
public class TypeOf extends GenericUDF {
 private final Text output = new Text();
@Override
 public ObjectInspector initialize(ObjectInspector[] arguments) throws U
DFArgumentException {
 checkArgsSize(arguments, 1, 1);
 checkArgPrimitive(arguments, 0);
 ObjectInspector outputOI = PrimitiveObjectInspectorFactory.writableSt
ringObjectInspector;
 return outputOI;
 }

@Override
 public Object evaluate(DeferredObject[] arguments) throws HiveException
 {
 Object obj;
 if ((obj = arguments[0].get()) == null) {
 String res = "Type: NULL";
 output.set(res);
 } else {
 String res = "Type: " + obj.getClass().getName();
 output.set(res);
 }
 return output;
 }

@Override
 public String getDisplayString(String[] children) {
 return getStandardDisplayString("TYPEOF", children, ",");
 }
}

7

Cloudera Data Warehouse on premises Creating a user-defined function in Cloudera Data Warehouse on
premises

Building the project and uploading the JAR
You compile the UDF code into a JAR and add the JAR to the classpath on the cluster.

About this task
Use the direct reference method to configure the cluster to find the JAR. It is a straight-forward method, but
recommended for development only.

Procedure

1. Build the IntelliJ project.

...
[INFO] Building jar: /Users/max/IdeaProjects/hiveudf/target/TypeOf-1.0-S
NAPSHOT.jar
[INFO] ---

[INFO] BUILD SUCCESS
[INFO] --

[INFO] Total time: 14.820 s
[INFO] Finished at: 2019-04-03T16:53:04-07:00
[INFO] Final Memory: 26M/397M
[INFO] --

Process finished with exit code 0

2. In IntelliJ, navigate to the JAR in the /target directory of the project.

3. Configure the cluster so that Hive can find the JAR using the direct reference method.

a) Upload the JAR to HDFS.
b) Move the JAR into the Hive warehouse. For example, in Cloudera Base on premises:

$ hdfs dfs -put TypeOf-1.0-SNAPSHOT.jar /warehouse/tablespace/managed/hi
veudf-1.0-SNAPSHOT.jar

4. In IntelliJ, click Save.

5. Click Actions Deploy Client Configuration .

6. Restart the Hive service.

Registering the UDF
In Cloudera Data Warehouse, you run a command from Hue to make the UDF functional in Hive queries. The UDF
persists between HiveServer restarts.

Before you begin
You need to set up UDF access using a Ranger policy as follows:

1. Log in to the Cloudera Data Warehouse service and open Ranger from the Database Catalog associated with your
Hive Virtual Warehouse.

2. On the Service Manager page, under the HADOOP SQL section, select the Database Catalog associated with the
Hive Virtual Warehouse in which you want to run the UDFs.

The list of policies is displayed.
3. Select the all - database, udf policy and add the users needing access to Hue. To add all users, you can specify

{USER}.

8

Cloudera Data Warehouse on premises Creating a user-defined function in Cloudera Data Warehouse on
premises

About this task
In this task, the registration command differs depending on the method you choose to configure the cluster for finding
the JAR. If you use the Hive aux library directory method that involves a symbolic link, you need to restart the
HiveServer pod after registration. If you use the direct JAR reference method, you do not need to restart HiveServer.
You must recreate the symbolic link after any patch or maintenance upgrades that deploy a new version of Hive.

Procedure

1. Open Hue from the Hive Virtual Warehouse in Cloudera Data Warehouse.

2. Run the registration command by including the JAR location in the command as follows:

CREATE FUNCTION udftypeof AS 'com.mycompany.hiveudf.TypeOf01' USING JAR
'hdfs:///warehouse/tablespace/managed/TypeOf01-1.0-SNAPSHOT.jar';

3. Restart the HiveServer.

You can either delete the hiveserver2-0 pod using Kubernetes, or, you can edit an HS2 related configuration, and
Cloudera restarts the HiveServer pod.

Note: If you plan to run UDFs on LLAP, you must restart the query executor and query coordinator pods
after registering the UDF.

4. Verify whether the UDF is registered.

SHOW FUNCTIONS;

You scroll through the output and find default.typeof.

Calling the UDF in a query
After registration of a UDF, you do not need to restart Hive before using the UDF in a query. In this example, you
call the UDF you created in a SELECT statement, and Hive returns the data type of a column you specify.

Before you begin

• For the example query in this task, you need to create a table in Hive and insert some data.

This task assumes you have the following example table in Hive:

+------------------+---------------+---------------+
| students.name | students.age | students.gpa |
+------------------+---------------+---------------+
| fred flintstone | 35 | 1.28 |
| barney rubble | 32 | 2.32 |
+------------------+---------------+---------------+

• As a user, you need to have permission to call a UDF, which a Ranger policy can provide.

Procedure

1. Use the database in which you registered the UDF.

USE default;

9

Cloudera Data Warehouse on premises Simplify queries with User-defined functions

2. Query Hive using the direct reference method:

SELECT students.name, udftypeof(students.name) AS type FROM students WHERE
 age=35;

You get the data type of the name column in the students table:

+------------------+--+
| students.name | type |
+------------------+--+
| fred flintstone | Type: org.apache.hadoop.hive.serde2.io.HiveVarcharWri
table |
+------------------+--+

Simplify queries with User-defined functions

Learn how to use built-in Hive and Impala functions or create custom user-defined functions (UDFs) for specific
needs.

Register UDFs using Hive commands and incorporate them into queries. Impala supports UDFs, enabling custom
logic for processing column values, complex calculations, and data transformations. These UDFs streamline query
logic and enhance flexibility in data processing.

Creating an Impala user-defined function
User-defined functions (frequently abbreviated as UDFs) let you code your own application logic for processing
column values during an Impala query. For example, a UDF could perform calculations using an external
math library, combine several column values into one, do geospatial calculations, or other kinds of tests and
transformations that are outside the scope of the built-in SQL operators and functions.

You can use UDFs to simplify query logic when producing reports, or to transform data in flexible ways when
copying from one table to another with the INSERT ... SELECT syntax.

You might be familiar with this feature from other database products, under names such as stored functions or stored
routines.

Impala support for UDFs is available in Impala 1.2 and higher:

• In Impala 1.1, using UDFs in a query required using the Hive shell. (Because Impala and Hive share the same
metastore database, you could switch to Hive to run just those queries requiring UDFs, then switch back to
Impala.)

• Starting in Impala 1.2, Impala can run both high-performance native code UDFs written in C++, and Java-based
Hive UDFs that you might already have written.

• Impala can run scalar UDFs that return a single value for each row of the result set, and user-defined aggregate
functions (UDAFs) that return a value based on a set of rows. Currently, Impala does not support user-defined
table functions (UDTFs) or window functions.

UDF concepts
Depending on your use case, you might write all-new functions, reuse Java UDFs that you have already written for
Hive, or port Hive Java UDF code to higher-performance native Impala UDFs in C++. You can code either scalar
functions for producing results one row at a time, or more complex aggregate functions for doing analysis across. The
following sections discuss these different aspects of working with UDFs.

UDFs and UDAFs

10

Cloudera Data Warehouse on premises Simplify queries with User-defined functions

Depending on your use case, the user-defined functions (UDFs) you write might accept or produce
different numbers of input and output values:

• The most general kind of user-defined function (the one typically referred to by the abbreviation
UDF) takes a single input value and produces a single output value. When used in a query, it is
called once for each row in the result set. For example:

select customer_name, is_frequent_customer(customer_id) from
 customers;
select obfuscate(sensitive_column) from sensitive_data;

• A user-defined aggregate function (UDAF) accepts a group of values and returns a single value.
You use UDAFs to summarize and condense sets of rows, in the same style as the built-in
COUNT, MAX(), SUM(), and AVG() functions. When called in a query that uses the GROU
P BY clause, the function is called once for each combination of GROUP BY values. For
example:

-- Evaluates multiple rows but returns a single value.
select closest_restaurant(latitude, longitude) from places;

-- Evaluates batches of rows and returns a separate value for
 each batch.
select most_profitable_location(store_id, sales, expenses, tax
_rate, depreciation) from franchise_data group by year;

• Currently, Impala does not support other categories of user-defined functions, such as user-
defined table functions (UDTFs) or window functions.

Native Impala UDFs

Impala supports UDFs written in C++, in addition to supporting existing Hive UDFs written in
Java. Cloudera recommends using C++ UDFs because the compiled native code can yield higher
performance, with UDF execution time often 10x faster for a C++ UDF than the equivalent Java
UDF.

Using Hive UDFs with Impala

Impala can run Java-based user-defined functions (UDFs), originally written for Hive, with no
changes, subject to the following conditions:

• The parameters and return value must all use scalar data types supported by Impala. For
example, complex or nested types are not supported.

• Hive/Java UDFs must extend org.apache.hadoop.hive.ql.exec.UDF class.
• Currently, Hive UDFs that accept or return the TIMESTAMP type are not supported.
• Prior to Impala 2.5 the return type must be a “Writable” type such as Text or IntWritable, rather

than a Java primitive type such as String or int. Otherwise, the UDF returns NULL. In Impala
2.5 and higher, this restriction is lifted, and both UDF arguments and return values can be Java
primitive types.

• Hive UDAFs and UDTFs are not supported.
• Typically, a Java UDF will run several times slower in Impala than the equivalent native UDF

written in C++.
• In Impala 2.5 and higher, you can transparently call Hive Java UDFs through Impala, or call

Impala Java UDFs through Hive. This feature does not apply to built-in Hive functions. Any
Impala Java UDFs created with older versions must be re-created using new CREATE FUNCT
ION syntax, without any signature for arguments or the return value.

To take full advantage of the Impala architecture and performance features, you can also write
Impala-specific UDFs in C++.

For background about Java-based Hive UDFs, see the Hive documentation for UDF. For examples
or tutorials for writing such UDFs, search the web for related blog posts.

11

Cloudera Data Warehouse on premises Simplify queries with User-defined functions

The ideal way to understand how to reuse Java-based UDFs (originally written for Hive) with
Impala is to take some of the Hive built-in functions (implemented as Java UDFs) and take the
applicable JAR files through the UDF deployment process for Impala, creating new UDFs with
different names:

1. Take a copy of the Hive JAR file containing the Hive built-in functions.
2. Use jar tf JAR_FILE to see a list of the classes inside the JAR. You will see names like org/apac

he/hadoop/hive/ql/udf/UDFLower.class and org/apache/hadoop/hive/ql/udf/UDFOPNegative.
class. Make a note of the names of the functions you want to experiment with. When you specify
the entry points for the Impala CREATE FUNCTION statement, change the slash characters to
dots and strip off the .class suffix, for example org.apache.hadoop.hive.ql.udf.UDFLower and
org.apache.hadoop.hive.ql.udf.UDFOPNegative.

3. Copy that file to an HDFS location that Impala can read. (In the examples here, we renamed the
file to hive-builtins.jar in HDFS for simplicity.)

4. For each Java-based UDF that you want to call through Impala, issue a CREATE FUNCT
ION statement, with a LOCATION clause containing the full HDFS path of the JAR file,
and a SYMBOL clause with the fully qualified name of the class, using dots as separators
and without the .class extension. Remember that user-defined functions are associated with a
particular database, so issue a USE statement for the appropriate database first, or specify the
SQL function name as DB_NAME.FUNCTION_NAME. Use completely new names for the SQL
functions, because Impala UDFs cannot have the same name as Impala built-in functions.

5. Call the function from your queries, passing arguments of the correct type to match the function
signature. These arguments could be references to columns, arithmetic or other kinds of
expressions, the results of CAST functions to ensure correct data types, and so on.

Note:

In Impala 2.9 and higher, you can refresh the user-defined functions (UDFs) that
Impala recognizes, at the database level, by running the REFRESH FUNCTIONS
statement with the database name as an argument. Java-based UDFs can be added to
the metastore database through Hive CREATE FUNCTION statements, and made
visible to Impala by subsequently running REFRESH FUNCTIONS. For example:

CREATE DATABASE shared_udfs;
USE shared_udfs;
...use CREATE FUNCTION statements in Hive to create so
me Java-based UDFs
 that Impala is not initially aware of...
REFRESH FUNCTIONS shared_udfs;
SELECT udf_created_by_hive(c1) FROM ...

Java UDF example: Reusing lower() function

For example, the following impala-shell session creates an Impala UDF my_lower() that
reuses the Java code for the Hive lower(): built-in function. We cannot call it lower() because
Impala does not allow UDFs to have the same name as built-in functions. From SQL, we call the
function in a basic way (in a query with no WHERE clause), directly on a column, and on the
results of a string expression:

[localhost:21000] > create database udfs;
[localhost:21000] > use udfs;
localhost:21000] > create function lower(string) returns string
location '/user/hive/udfs/hive.jar' symbol='org.apache.hadoop.hi
ve.ql.udf.UDFLower';
ERROR: AnalysisException: Function cannot have the same name as a
 builtin: lower
[localhost:21000] > create function my_lower(string) returns s
tring location '/user/hive/udfs/hive.jar' symbol='org.apache.had
oop.hive.ql.udf.UDFLower';

12

Cloudera Data Warehouse on premises Simplify queries with User-defined functions

[localhost:21000] > select my_lower('Some String NOT ALREADY LOWE
RCASE');
+--+
| udfs.my_lower('some string not already lowercase') |
+--+
| some string not already lowercase |
+--+
Returned 1 row(s) in 0.11s
[localhost:21000] > create table t2 (s string);
[localhost:21000] > insert into t2 values ('lower'),('UPPER'),('I
nit cap'),('CamelCase');
Inserted 4 rows in 2.28s
[localhost:21000] > select * from t2;
+-----------+
| s |
+-----------+
| lower |
| UPPER |
| Init cap |
| CamelCase |
+-----------+
Returned 4 row(s) in 0.47s
[localhost:21000] > select my_lower(s) from t2;
+------------------+
| udfs.my_lower(s) |
+------------------+
| lower |
| upper |
| init cap |
| camelcase |
+------------------+
Returned 4 row(s) in 0.54s
[localhost:21000] > select my_lower(concat('ABC ',s,' XYZ')) f
rom t2;
+--+
| udfs.my_lower(concat('abc ', s, ' xyz')) |
+--+
| abc lower xyz |
| abc upper xyz |
| abc init cap xyz |
| abc camelcase xyz |
+--+
Returned 4 row(s) in 0.22s

Java UDF example: Reusing negative() function

Here is an example that reuses the Hive Java code for the negative() built-in function. This example
demonstrates how the data types of the arguments must match precisely with the function signature.
At first, we create an Impala SQL function that can only accept an integer argument. Impala cannot
find a matching function when the query passes a floating-point argument, although we can call the
integer version of the function by casting the argument. Then we overload the same function name
to also accept a floating-point argument.

[localhost:21000] > create table t (x int);
[localhost:21000] > insert into t values (1), (2), (4), (100);
Inserted 4 rows in 1.43s
[localhost:21000] > create function my_neg(bigint) returns bigin
t location '/user/hive/udfs/hive.jar' symbol='org.apache.hadoop.
hive.ql.udf.UDFOPNegative';
[localhost:21000] > select my_neg(4);
+----------------+
| udfs.my_neg(4) |
+----------------+

13

Cloudera Data Warehouse on premises Simplify queries with User-defined functions

| -4 |
+----------------+
[localhost:21000] > select my_neg(x) from t;
+----------------+
| udfs.my_neg(x) |
+----------------+
| -2 |
| -4 |
| -100 |
+----------------+
Returned 3 row(s) in 0.60s
[localhost:21000] > select my_neg(4.0);
ERROR: AnalysisException: No matching function with signature:
 udfs.my_neg(FLOAT).
[localhost:21000] > select my_neg(cast(4.0 as int));
+-------------------------------+
| udfs.my_neg(cast(4.0 as int)) |
+-------------------------------+
| -4 |
+-------------------------------+
Returned 1 row(s) in 0.11s
[localhost:21000] > create function my_neg(double) returns double
 location '/user/hive/udfs/hive.jar' symbol='org.apache.hadoop.h
ive.ql.udf.UDFOPNegative';
[localhost:21000] > select my_neg(4.0);
+------------------+
| udfs.my_neg(4.0) |
+------------------+
| -4 |
+------------------+
Returned 1 row(s) in 0.11s

You can find the sample files mentioned here in the Impala github repo.

Runtime environment for UDFs
By default, Impala copies UDFs into /tmp, and you can configure this location through the --local_library_dir startup
flag for the impalad daemon.

Writing UDFs
Before starting UDF development, make sure to install the development package and download the UDF code
samples.

When writing UDFs:

• Keep in mind the data type differences as you transfer values from the high-level SQL to your lower-level UDF
code. For example, in the UDF code you might be much more aware of how many bytes different kinds of
integers require.

• Use best practices for function-oriented programming: choose arguments carefully, avoid side effects, make each
function do a single thing, and so on.

Getting started with UDF coding

To understand the layout and member variables and functions of the predefined UDF data types,
examine the header file /usr/include/impala_udf/udf.h:

// This is the only Impala header required to develop UDFs and U
DAs. This header
// contains the types that need to be used and the FunctionCont
ext object. The context

14

https://github.com/cloudera/impala-udf-samples

Cloudera Data Warehouse on premises Simplify queries with User-defined functions

// object serves as the interface object between the UDF/UDA and
 the impala process.

For the basic declarations needed to write a scalar UDF, see the header file udf-sample.h within the
sample build environment, which defines a simple function named AddUdf():

#ifndef IMPALA_UDF_SAMPLE_UDF_H
#define IMPALA_UDF_SAMPLE_UDF_H
#include <impala_udf/udf.h>

using namespace impala_udf;

IntVal AddUdf(FunctionContext* context, const IntVal& arg1, const
 IntVal& arg2);
#endif

For sample C++ code for a simple function named AddUdf(), see the source file udf-sample.cc
within the sample build environment:

#include "udf-sample.h"
// In this sample we are declaring a UDF that adds two ints and
 returns an int.
IntVal AddUdf(FunctionContext* context, const IntVal& arg1, const
 IntVal& arg2) {
 if (arg1.is_null || arg2.is_null) return IntVal::null();
 return IntVal(arg1.val + arg2.val);
}

// Multiple UDFs can be defined in the same file

Data types for function arguments and return values

Each value that a user-defined function can accept as an argument or return as a result value must
map to a SQL data type that you could specify for a table column.

Currently, Impala UDFs cannot accept arguments or return values of the Impala complex types
(STRUCT, ARRAY, or MAP).

Each data type has a corresponding structure defined in the C++ and Java header files, with two
member fields and some predefined comparison operators and constructors:

• is_null indicates whether the value is NULL or not. val holds the actual argument or return value
when it is non-NULL.

• Each struct also defines a null() member function that constructs an instance of the struct with
the is_null flag set.

• The built-in SQL comparison operators and clauses such as <, >=, BETWEEN, and ORDER BY
all work automatically based on the SQL return type of each UDF. For example, Impala knows
how to evaluate BETWEEN 1 AND udf_returning_int(col1) or ORDER BY udf_returni
ng_string(col2) without you declaring any comparison operators within the UDF itself.

For convenience within your UDF code, each struct defines == and != operators for comparisons
with other structs of the same type. These are for typical C++ comparisons within your own
code, not necessarily reproducing SQL semantics. For example, if the is_null flag is set in both
structs, they compare as equal. That behavior of null comparisons is different from SQL (where
NULL == NULL is NULL rather than true), but more in line with typical C++ behavior.

• Each kind of struct has one or more constructors that define a filled-in instance of the struct,
optionally with default values.

• Impala cannot process UDFs that accept the composite or nested types as arguments or return
them as result values. This limitation applies both to Impala UDFs written in C++ and Java-
based Hive UDFs.

15

https://github.com/cloudera/impala-udf-samples/blob/master/udf-sample.h

Cloudera Data Warehouse on premises Simplify queries with User-defined functions

• You can overload functions by creating multiple functions with the same SQL name but
different argument types. For overloaded functions, you must use different C++ or Java entry
point names in the underlying functions.

The data types defined on the C++ side (in /usr/include/impala_udf/udf.h) are:

• IntVal represents an INT column.
• BigIntVal represents a BIGINT column. Even if you do not need the full range of a BIGINT

value, it can be useful to code your function arguments as BigIntVal to make it convenient to
call the function with different kinds of integer columns and expressions as arguments. Impala
automatically casts smaller integer types to larger ones when appropriate, but does not implicitly
cast large integer types to smaller ones.

• SmallIntVal represents a SMALLINT column.
• TinyIntVal represents a TINYINT column.
• StringVal represents a STRING column. It has a len field representing the length of the string,

and a ptr field pointing to the string data. It has constructors that create a new StringVal struct
based on a null-terminated C-style string, or a pointer plus a length; these new structs still
refer to the original string data rather than allocating a new buffer for the data. It also has a
constructor that takes a pointer to a FunctionContext struct and a length, that does allocate space
for a new copy of the string data, for use in UDFs that return string values.

• BooleanVal represents a BOOLEAN column.
• FloatVal represents a FLOAT column.
• DoubleVal represents a DOUBLE column.
• TimestampVal represents a TIMESTAMP column. It has a date field, a 32-bit integer

representing the Gregorian date, that is, the days past the epoch date. It also has a time_of_day
field, a 64-bit integer representing the current time of day in nanoseconds.

Variable-length argument lists

UDFs typically take a fixed number of arguments, with each one named explicitly in the signature
of your C++ function. Your function can also accept additional optional arguments, all of the same
type. For example, you can concatenate two strings, three strings, four strings, and so on. Or you
can compare two numbers, three numbers, four numbers, and so on.

To accept a variable-length argument list, code the signature of your function like this:

StringVal Concat(FunctionContext* context, const StringVal& sepa
rator,
 int num_var_args, const StringVal* args);

In the CREATE FUNCTION statement, after the type of the first optional argument, include ...
to indicate it could be followed by more arguments of the same type. For example, the following
function accepts a STRING argument, followed by one or more additional STRING arguments:

[localhost:21000] > create function my_concat(string, string ...
) returns string location '/user/test_user/udfs/sample.so' symbo
l='Concat';

The call from the SQL query must pass at least one argument to the variable-length portion of the
argument list.

When Impala calls the function, it fills in the initial set of required arguments, then passes the
number of extra arguments and a pointer to the first of those optional arguments.

Handling NULL values

For correctness, performance, and reliability, it is important for each UDF to handle all situations
where any NULL values are passed to your function. For example, when passed a NULL, UDFs
typically also return NULL. In an aggregate function, which could be passed a combination of real

16

Cloudera Data Warehouse on premises Simplify queries with User-defined functions

and NULL values, you might make the final value into a NULL (as in CONCAT()), ignore the
NULL value (as in AVG()), or treat it the same as a numeric zero or empty string.

Each parameter type, such as IntVal or StringVal, has an is_null Boolean member. Test this flag
immediately for each argument to your function, and if it is set, do not refer to the val field of the
argument structure. The val field is undefined when the argument is NULL, so your function could
go into an infinite loop or produce incorrect results if you skip the special handling for NULL.

If your function returns NULL when passed a NULL value, or in other cases such as when a search
string is not found, you can construct a null instance of the return type by using its null() member
function.

Memory allocation for UDFs

By default, memory allocated within a UDF is deallocated when the function exits, which could be
before the query is finished. The input arguments remain allocated for the lifetime of the function,
so you can refer to them in the expressions for your return values. If you use temporary variables
to construct all-new string values, use the StringVal() constructor that takes an initial FunctionCont
ext* argument followed by a length, and copy the data into the newly allocated memory buffer.

Thread-safe work area for UDFs

One way to improve performance of UDFs is to specify the optional PREPARE_FN and CLOS
E_FN clauses on the CREATE FUNCTION statement. The “prepare” function sets up a thread-
safe data structure in memory that you can use as a work area. The “close” function deallocates
that memory. Each subsequent call to the UDF within the same thread can access that same
memory area. There might be several such memory areas allocated on the same host, as UDFs are
parallelized using multiple threads.

Within this work area, you can set up predefined lookup tables, or record the results of complex
operations on data types such as STRING or TIMESTAMP. Saving the results of previous
computations rather than repeating the computation each time is an optimization known as
Memoization. For example, if your UDF performs a regular expression match or date manipulation
on a column that repeats the same value over and over, you could store the last-computed value
or a hash table of already-computed values, and do a fast lookup to find the result for subsequent
iterations of the UDF.

Each such function must have the signature:

void FUNCTION_NAME(impala_udf::FunctionContext*, impala_udf::F
unctionContext::FunctionScope)

Currently, only THREAD_SCOPE is implemented, not FRAGMENT_SCOPE. See udf.h for details
about the scope values.

Error handling for UDFs

To handle errors in UDFs, you call functions that are members of the initial FunctionContext*
argument passed to your function.

A UDF can record one or more warnings, for conditions that indicate minor, recoverable problems
that do not cause the query to stop. The signature for this function is:

bool AddWarning(const char* warning_msg);

For a serious problem that requires cancelling the query, a UDF can set an error flag that prevents
the query from returning any results. The signature for this function is:

void SetError(const char* error_msg);

17

Cloudera Data Warehouse on premises Simplify queries with User-defined functions

Writing user-defined aggregate functions (UDAFs)
User-defined aggregate functions (UDAFs or UDAs) are a powerful and flexible category of user-defined functions.
If a query processes N rows, calling a UDAF during the query condenses the result set, anywhere from a single value
(such as with the SUM or MAX functions), or some number less than or equal to N (as in queries using the GROUP
BY or HAVING clause).

The underlying functions for a UDA

A UDAF must maintain a state value across subsequent calls, so that it can accumulate a result
across a set of calls, rather than derive it purely from one set of arguments. For that reason, a UDAF
is represented by multiple underlying functions:

• An initialization function that sets any counters to zero, creates empty buffers, and does any
other one-time setup for a query.

• An update function that processes the arguments for each row in the query result set and
accumulates an intermediate result for each node. For example, this function might increment a
counter, append to a string buffer, or set flags.

• A merge function that combines the intermediate results from two different nodes.
• A serialize function that flattens any intermediate values containing pointers, and frees any

memory allocated during the init, update, and merge phases.
• A finalize function that either passes through the combined result unchanged, or does one final

transformation.

In the SQL syntax, you create a UDAF by using the statement CREATE AGGREGATE FUN
CTION. You specify the entry points of the underlying C++ functions using the clauses INIT_FN,
UPDATE_FN, MERGE_FN, SERIALIZE_FN, and FINALIZE_FN.

For convenience, you can use a naming convention for the underlying functions and Impala
automatically recognizes those entry points. Specify the UPDATE_FN clause, using an entry point
name containing the string update or Update. When you omit the other _FN clauses from the SQL
statement, Impala looks for entry points with names formed by substituting the update or Update
portion of the specified name.

uda-sample.h:

See this file online at: uda-sample.h

uda-sample.cc:

See this file online at: uda-sample.cc

Intermediate results for UDAs

A user-defined aggregate function might produce and combine intermediate results during some
phases of processing, using a different data type than the final return value. For example, if you
implement a function similar to the built-in AVG() function, it must keep track of two values, the
number of values counted and the sum of those values. Or, you might accumulate a string value
over the course of a UDA, then in the end return a numeric or Boolean result.

In such a case, specify the data type of the intermediate results using the optional INTERMEDIATE
TYPE_NAME clause of the CREATE AGGREGATE FUNCTION statement. If the intermediate
data is a typeless byte array (for example, to represent a C++ struct or array), specify the type name
as CHAR(N), with N representing the number of bytes in the intermediate result buffer.

For an example of this technique, see the trunc_sum() aggregate function, which accumulates
intermediate results of type DOUBLE and returns BIGINT at the end. View the appropriate CREA
TE FUNCTION statement and the implementation of the underlying TruncSum*() functions on
Github.

• test_udfs.py
• test-udas.cc

18

https://github.com/cloudera/impala-udf-samples/blob/master/uda-sample.h
https://github.com/cloudera/impala-udf-samples/blob/master/uda-sample.cc
https://github.com/cloudera/Impala/blob/cdh5-trunk/tests/query_test/test_udfs.py
https://github.com/Cloudera/Impala/blob/cdh5-trunk/be/src/testutil/test-udas.cc

Cloudera Data Warehouse on premises Simplify queries with User-defined functions

Building and deploying UDFs
This section explains the steps to compile Impala UDFs from C++ source code, and deploy the resulting libraries for
use in Impala queries.

Impala UDF development package ships with a sample build environment for UDFs, that you can study, experiment
with, and adapt for your own use.

The cmake configuration command reads the file CMakeLists.txt and generates a Makefile customized for your
particular directory paths. Then the make command runs the actual build steps based on the rules in the Makefile.

Impala loads the shared library from an HDFS location. After building a shared library containing one or more UDFs,
use hdfs dfs or hadoop fs commands to copy the binary file to an HDFS location readable by Impala.

The final step in deployment is to issue a CREATE FUNCTION statement in the impala-shell interpreter to
make Impala aware of the new function. Because each function is associated with a particular database, always issue
a USE statement to the appropriate database before creating a function, or specify a fully qualified name, that is,
CREATE FUNCTION DB_NAME.FUNCTION_NAME.

As you update the UDF code and redeploy updated versions of a shared library, use DROP FUNCTION and CREA
TE FUNCTION to let Impala pick up the latest version of the code.

Note:

In Impala 2.5 and higher, Impala UDFs and UDAs written in C++ are persisted in the metastore database.
Java UDFs are also persisted, if they were created with the new CREATE FUNCTION syntax for Java UDFs,
where the Java function argument and return types are omitted. Java-based UDFs created with the old CREA
TE FUNCTION syntax do not persist across restarts because they are held in the memory of the catalogd
daemon. Until you re-create such Java UDFs using the new CREATE FUNCTION syntax, you must reload
those Java-based UDFs by running the original CREATE FUNCTION statements again each time you restart
the catalogd daemon. Prior to Impala 2.5 the requirement to reload functions after a restart applied to both
C++ and Java functions.

See CREATE FUNCTION statement and DROP FUCNTION statement for the new syntax for the persistent
Java UDFs.

Prerequisites for the build environment are:

1. Install the packages using the appropriate package installation command for your Linux distribution.

sudo yum install gcc-c++ cmake boost-devel
sudo yum install impala-udf-devel
The package name on Ubuntu and Debian is impala-udf-dev.

2. Download the UDF sample code:

git clone https://github.com/cloudera/impala-udf-samples
cd impala-udf-samples && cmake . && make

3. Unpack the sample code in udf_samples.tar.gz and use that as a template to set up your build environment.

To build the original samples:

Process CMakeLists.txt and set up appropriate Makefiles.
cmake .
Generate shared libraries from UDF and UDAF sample code,
udf_samples/libudfsample.so and udf_samples/libudasample.so
make

The sample code to examine, experiment with, and adapt is in these files:

• udf-sample.h: Header file that declares the signature for a scalar UDF (AddUDF).

19

https://docs.cloudera.com/cdw-runtime/1.5.5/impala-sql-reference/topics/impala-create-function.html
https://docs.cloudera.com/cdw-runtime/1.5.5/impala-sql-reference/topics/impala-drop-function.html

Cloudera Data Warehouse on premises Simplify queries with User-defined functions

• udf-sample.cc: Sample source for a simple UDF that adds two integers. Because Impala can reference multiple
function entry points from the same shared library, you could add other UDF functions in this file and add their
signatures to the corresponding header file.

• udf-sample-test.cc: Basic unit tests for the sample UDF.
• uda-sample.h: Header file that declares the signature for sample aggregate functions. The SQL functions will be

called COUNT, AVG, and STRINGCONCAT. Because aggregate functions require more elaborate coding to
handle the processing for multiple phases, there are several underlying C++ functions such as CountInit, AvgU
pdate, and StringConcatFinalize.

• uda-sample.cc: Sample source for simple UDAFs that demonstrate how to manage the state transitions as the
underlying functions are called during the different phases of query processing.

• The UDAF that imitates the COUNT function keeps track of a single incrementing number; the merge
functions combine the intermediate count values from each Impala node, and the combined number is returned
verbatim by the finalize function.

• The UDAF that imitates the AVG function keeps track of two numbers, a count of rows processed and the sum
of values for a column. These numbers are updated and merged as with COUNT, then the finalize function
divides them to produce and return the final average value.

• The UDAF that concatenates string values into a comma-separated list demonstrates how to manage storage
for a string that increases in length as the function is called for multiple rows.

• uda-sample-test.cc: basic unit tests for the sample UDAFs.

Performance considerations for UDFs
Because a UDF typically processes each row of a table, potentially being called billions of times, the performance of
each UDF is a critical factor in the speed of the overall ETL or ELT pipeline. Tiny optimizations you can make within
the function body can pay off in a big way when the function is called over and over when processing a huge result
set.

Examples of creating and using UDFs
This section demonstrates how to create and use all kinds of user-defined functions (UDFs).

For downloadable examples that you can experiment with, adapt, and use as templates for your own functions, see the
Cloudera sample UDF github. You must have already installed the appropriate header files, as explained in Building
and deploying UDFs.

Sample C++ UDFs: HasVowels, CountVowels, StripVowels

This example shows 3 separate UDFs that operate on strings and return different data types. In the
C++ code, the functions are HasVowels() (checks if a string contains any vowels), CountVowels()
(returns the number of vowels in a string), and StripVowels() (returns a new string with vowels
removed).

First, we add the signatures for these functions to udf-sample.h in the demo build environment:

BooleanVal HasVowels(FunctionContext* context, const StringVal&
input);
IntVal CountVowels(FunctionContext* context, const StringVal& ar
g1);
StringVal StripVowels(FunctionContext* context, const StringVal&
 arg1);

Then, we add the bodies of these functions to udf-sample.cc:

BooleanVal HasVowels(FunctionContext* context, const StringVal&
input)
{
 if (input.is_null) return BooleanVal::null();

20

Cloudera Data Warehouse on premises Simplify queries with User-defined functions

 int index;
 uint8_t *ptr;

 for (ptr = input.ptr, index = 0; index <= input.len; i
ndex++, ptr++)
 {
 uint8_t c = tolower(*ptr);
 if (c == 'a' || c == 'e' || c == 'i' || c == 'o'
 || c == 'u')
 {
 return BooleanVal(true);
 }
 }
 return BooleanVal(false);
}

IntVal CountVowels(FunctionContext* context, const StringVal&
arg1)
{
 if (arg1.is_null) return IntVal::null();

 int count;
 int index;
 uint8_t *ptr;

 for (ptr = arg1.ptr, count = 0, index = 0; index <= arg1.
len; index++, ptr++)
 {
 uint8_t c = tolower(*ptr);
 if (c == 'a' || c == 'e' || c == 'i' || c == 'o'
 || c == 'u')
 {
 count++;
 }
 }
 return IntVal(count);
}

StringVal StripVowels(FunctionContext* context, const StringVal&
 arg1)
{
 if (arg1.is_null) return StringVal::null();

 int index;
 std::string original((const char *)arg1.ptr,arg1.len);
 std::string shorter("");

 for (index = 0; index < original.length(); index++)
 {
 uint8_t c = original[index];
 uint8_t l = tolower(c);

 if (l == 'a' || l == 'e' || l == 'i' || l == 'o'
 || l == 'u')
 {
 ;
 }
 else
 {
 shorter.append(1, (char)c);
 }
 }
// The modified string is stored in 'shorter', which is destroyed
 when this function ends. We need to make a string val

21

Cloudera Data Warehouse on premises Simplify queries with User-defined functions

// and copy the contents.
 StringVal result(context, shorter.size()); // Only the ve
rsion of the ctor that takes a context object allocates new memo
ry
 memcpy(result.ptr, shorter.c_str(), shorter.size());
 return result;
}

We build a shared library, libudfsample.so, and put the library file into HDFS where Impala can
read it:

$ make
[0%] Generating udf_samples/uda-sample.ll
[16%] Built target uda-sample-ir
[33%] Built target udasample
[50%] Built target uda-sample-test
[50%] Generating udf_samples/udf-sample.ll
[66%] Built target udf-sample-ir
Scanning dependencies of target udfsample
[83%] Building CXX object CMakeFiles/udfsample.dir/udf-sample.o
Linking CXX shared library udf_samples/libudfsample.so
[83%] Built target udfsample
Linking CXX executable udf_samples/udf-sample-test
[100%] Built target udf-sample-test
$ hdfs dfs -put ./udf_samples/libudfsample.so /user/hive/udfs/li
budfsample.so

Finally, we go into the impala-shell interpreter where we set up some sample data, issue
CREATE FUNCTION statements to set up the SQL function names, and call the functions in
some queries:

[localhost:21000] > create database udf_testing;
[localhost:21000] > use udf_testing;

[localhost:21000] > create function has_vowels (string) returns b
oolean location '/user/hive/udfs/libudfsample.so' symbol='HasVow
els';
[localhost:21000] > select has_vowels('abc');
+------------------------+
| udfs.has_vowels('abc') |
+------------------------+
| true |
+------------------------+
Returned 1 row(s) in 0.13s
[localhost:21000] > select has_vowels('zxcvbnm');
+----------------------------+
| udfs.has_vowels('zxcvbnm') |
+----------------------------+
| false |
+----------------------------+
Returned 1 row(s) in 0.12s
[localhost:21000] > select has_vowels(null);
+-----------------------+
| udfs.has_vowels(null) |
+-----------------------+
| NULL |
+-----------------------+
Returned 1 row(s) in 0.11s
[localhost:21000] > select s, has_vowels(s) from t2;
+-----------+--------------------+
| s | udfs.has_vowels(s) |
+-----------+--------------------+

22

Cloudera Data Warehouse on premises Simplify queries with User-defined functions

lower	true
UPPER	true
Init cap	true
CamelCase	true
+-----------+--------------------+	
Returned 4 row(s) in 0.24s	
[localhost:21000] > create function count_vowels (string) retur	
ns int location '/user/hive/udfs/libudfsample.so' symbol='CountV	
owels';	
[localhost:21000] > select count_vowels('cat in the hat');	
+-------------------------------------+	
udfs.count_vowels('cat in the hat')	
+-------------------------------------+	
4	
+-------------------------------------+	
Returned 1 row(s) in 0.12s	
[localhost:21000] > select s, count_vowels(s) from t2;	
+-----------+----------------------+	
s	udfs.count_vowels(s)
+-----------+----------------------+	
lower	2
UPPER	2
Init cap	3
CamelCase	4
+-----------+----------------------+	
Returned 4 row(s) in 0.23s	
[localhost:21000] > select count_vowels(null);	
+-------------------------+	
udfs.count_vowels(null)	
+-------------------------+	
NULL	
+-------------------------+
Returned 1 row(s) in 0.12s

[localhost:21000] > create function strip_vowels (string) returns
 string location '/user/hive/udfs/libudfsample.so' symbol='Strip
Vowels';
[localhost:21000] > select strip_vowels('abcdefg');
+------------------------------+
| udfs.strip_vowels('abcdefg') |
+------------------------------+
| bcdfg |
+------------------------------+
Returned 1 row(s) in 0.11s
[localhost:21000] > select strip_vowels('ABCDEFG');
+------------------------------+
| udfs.strip_vowels('abcdefg') |
+------------------------------+
| BCDFG |
+------------------------------+
Returned 1 row(s) in 0.12s
[localhost:21000] > select strip_vowels(null);
+-------------------------+
| udfs.strip_vowels(null) |
+-------------------------+
| NULL |
+-------------------------+
Returned 1 row(s) in 0.16s
[localhost:21000] > select s, strip_vowels(s) from t2;
+-----------+----------------------+
| s | udfs.strip_vowels(s) |
+-----------+----------------------+
| lower | lwr |
| UPPER | PPR |

23

Cloudera Data Warehouse on premises Simplify queries with User-defined functions

| Init cap | nt cp |
| CamelCase | CmlCs |
+-----------+----------------------+
Returned 4 row(s) in 0.24s

Sample C++ UDA: SumOfSquares

[localhost:21000] > insert overwrite sos values (1, 1), (2, 0),
(3, 1), (4, 0);
Inserted 4 rows in 1.24s

[localhost:21000] > -- Compute 1 squared + 3 squared, and 2 sq
uared + 4 squared;
[localhost:21000] > select y, sum_of_squares(x) from sos group by
 y;
+---+------------------------+
| y | udfs.sum_of_squares(x) |
+---+------------------------+
| 1 | 10 |
| 0 | 20 |
+---+------------------------+
Returned 2 row(s) in 0.43s

This example demonstrates a user-defined aggregate function (UDA) that produces the sum of the
squares of its input values.

The coding for a UDA is a little more involved than a scalar UDF, because the processing is
split into several phases, each implemented by a different function. Each phase is relatively
straightforward: the “update” and “merge” phases, where most of the work is done, read an input
value and combine it with some accumulated intermediate value.

As in our sample UDF from the previous example, we add function signatures to a header file (in
this case, uda-sample.h). Because this is a math-oriented UDA, we make two versions of each
function, one accepting an integer value and the other accepting a floating-point value.

void SumOfSquaresInit(FunctionContext* context, BigIntVal* val);
void SumOfSquaresInit(FunctionContext* context, DoubleVal* val);

void SumOfSquaresUpdate(FunctionContext* context, const BigIntVal
& input, BigIntVal* val);
void SumOfSquaresUpdate(FunctionContext* context, const Double
Val& input, DoubleVal* val);

void SumOfSquaresMerge(FunctionContext* context, const BigIntV
al& src, BigIntVal* dst);
void SumOfSquaresMerge(FunctionContext* context, const DoubleV
al& src, DoubleVal* dst);

BigIntVal SumOfSquaresFinalize(FunctionContext* context, const Bi
gIntVal& val);
DoubleVal SumOfSquaresFinalize(FunctionContext* context, const Do
ubleVal& val);

We add the function bodies to a C++ source file (in this case, uda-sample.cc):

void SumOfSquaresInit(FunctionContext* context, BigIntVal* val) {
 val->is_null = false;
 val->val = 0;
}
void SumOfSquaresInit(FunctionContext* context, DoubleVal* val) {
 val->is_null = false;
 val->val = 0.0;

24

Cloudera Data Warehouse on premises Simplify queries with User-defined functions

}

void SumOfSquaresUpdate(FunctionContext* context, const BigIntVal
& input, BigIntVal* val) {
 if (input.is_null) return;
 val->val += input.val * input.val;
}
void SumOfSquaresUpdate(FunctionContext* context, const DoubleVal
& input, DoubleVal* val) {
 if (input.is_null) return;
 val->val += input.val * input.val;
}

void SumOfSquaresMerge(FunctionContext* context, const BigIntVal&
 src, BigIntVal* dst) {
 dst->val += src.val;
}
void SumOfSquaresMerge(FunctionContext* context, const DoubleV
al& src, DoubleVal* dst) {
 dst->val += src.val;
}
BigIntVal SumOfSquaresFinalize(FunctionContext* context, const
BigIntVal& val) {
 return val;
}
DoubleVal SumOfSquaresFinalize(FunctionContext* context, const
 DoubleVal& val) {
 return val;
}

As with the sample UDF, we build a shared library and put it into HDFS:

$ make
[0%] Generating udf_samples/uda-sample.ll
[16%] Built target uda-sample-ir
Scanning dependencies of target udasample
[33%] Building CXX object CMakeFiles/udasample.dir/uda-sample.o
Linking CXX shared library udf_samples/libudasample.so
[33%] Built target udasample
Scanning dependencies of target uda-sample-test
[50%] Building CXX object CMakeFiles/uda-sample-test.dir/uda-s
ample-test.o
Linking CXX executable udf_samples/uda-sample-test
[50%] Built target uda-sample-test
[50%] Generating udf_samples/udf-sample.ll
[66%] Built target udf-sample-ir
[83%] Built target udfsample
[100%] Built target udf-sample-test
$ hdfs dfs -put ./udf_samples/libudasample.so /user/hive/udfs/li
budasample.so

To create the SQL function, we issue a CREATE AGGREGATE FUNCTION statement and
specify the underlying C++ function names for the different phases:

[localhost:21000] > use udf_testing;

[localhost:21000] > create table sos (x bigint, y double);
[localhost:21000] > insert into sos values (1, 1.1), (2, 2.2),
(3, 3.3), (4, 4.4);
Inserted 4 rows in 1.10s

[localhost:21000] > create aggregate function sum_of_squares(b
igint) returns bigint

25

Cloudera Data Warehouse on premises Simplify queries with User-defined functions

 > location '/user/hive/udfs/libudasample.so'
 > init_fn='SumOfSquaresInit'
 > update_fn='SumOfSquaresUpdate'
 > merge_fn='SumOfSquaresMerge'
 > finalize_fn='SumOfSquaresFinalize';
[localhost:21000] > -- Compute the same value using literals or
 the UDA;
[localhost:21000] > select 1*1 + 2*2 + 3*3 + 4*4;
+-------------------------------+
| 1 * 1 + 2 * 2 + 3 * 3 + 4 * 4 |
+-------------------------------+
| 30 |
+-------------------------------+
Returned 1 row(s) in 0.12s
[localhost:21000] > select sum_of_squares(x) from sos;
+------------------------+
| udfs.sum_of_squares(x) |
+------------------------+
| 30 |
+------------------------+
Returned 1 row(s) in 0.35s

Until we create the overloaded version of the UDA, it can only handle a single data type. To allow
it to handle DOUBLE as well as BIGINT, we issue another CREATE AGGREGATE FUNCTION
statement:

[localhost:21000] > select sum_of_squares(y) from sos;
ERROR: AnalysisException: No matching function with signature: ud
fs.sum_of_squares(DOUBLE).

[localhost:21000] > create aggregate function sum_of_squares(dou
ble) returns double
 > location '/user/hive/udfs/libudasample.so'
 > init_fn='SumOfSquaresInit'
 > update_fn='SumOfSquaresUpdate'
 > merge_fn='SumOfSquaresMerge'
 > finalize_fn='SumOfSquaresFinalize';

[localhost:21000] > -- Compute the same value using literals or t
he UDA;
[localhost:21000] > select 1.1*1.1 + 2.2*2.2 + 3.3*3.3 + 4.4*4.4;
+---+
| 1.1 * 1.1 + 2.2 * 2.2 + 3.3 * 3.3 + 4.4 * 4.4 |
+---+
| 36.3 |
+---+
Returned 1 row(s) in 0.12s
[localhost:21000] > select sum_of_squares(y) from sos;
+------------------------+
| udfs.sum_of_squares(y) |
+------------------------+
| 36.3 |
+------------------------+
Returned 1 row(s) in 0.35s

Typically, you use a UDA in queries with GROUP BY clauses, to produce a result set with a
separate aggregate value for each combination of values from the GROUP BY clause. Let's change
our sample table to use 0 to indicate rows containing even values, and 1 to flag rows containing
odd values. Then the GROUP BY query can return two values, the sum of the squares for the even
values, and the sum of the squares for the odd values:

26

Cloudera Data Warehouse on premises Starting the SQL AI Assistant in Hue

Security considerations for UDFs
When the Impala authorization feature is enabled:

• To call a UDF in a query, you must have the required read privilege for any databases and tables used in the
query.

• The CREATE FUNCTION statement requires:

• The CREATE privilege on the database.
• The ALL privilege on two URIs where the URIs are:

• The JAR file on the file system. For example:

GRANT ALL ON URI 'file:///PATH_TO_MY.JAR' TO ROLE MY_ROLE;

• The JAR on HDFS. For example:

GRANT ALL ON URI 'hdfs:///PATH/TO/JAR' TO ROLE MY_ROLE

Limitations and restrictions for Impala UDFs
The following limitations and restrictions apply to Impala UDFs in the current release.

Limited support for Hive Generic UDFs

Hive has 2 types of UDFs. This release contains limited support for the second generation UDFs called GenericUDFs.
The main limitations are as follows:

• Decimal types are not supported
• Complex types are not supported
• Functions are not extracted from the jar file

GenericUDFs cannot be made permanent. They will need to be recreated every time the server is restarted.

Other limitations

• Impala does not support Hive UDFs that accept or return composite or nested types, or other types not available in
Impala tables.

• The Hive current_user() function cannot be called from a Java UDF through Impala.
• All Impala UDFs must be deterministic, that is, produce the same output each time when passed the same

argument values. For example, an Impala UDF must not call functions such as rand() to produce different values
for each invocation. It must not retrieve data from external sources, such as from disk or over the network.

• An Impala UDF must not spawn other threads or processes.
• Prior to Impala 2.5 when the catalogd process is restarted, all UDFs become undefined and must be reloaded.

In Impala 2.5 and higher, this limitation only applies to older Java UDFs. Re-create those UDFs using the new
CREATE FUNCTION syntax for Java UDFs, which excludes the function signature, to remove the limitation
entirely.

• Impala currently does not support user-defined table functions (UDTFs).
• The CHAR and VARCHAR types cannot be used as input arguments or return values for UDFs.

Starting the SQL AI Assistant in Hue

A SQL AI Assistant has been integrated into Hue with the capability to leverage the power of Large Language
Models (LLMs) for various SQL tasks. It helps you to create, edit, optimize, fix, and succinctly summarize queries

27

Cloudera Data Warehouse on premises Starting the SQL AI Assistant in Hue

using natural language and makes SQL development faster, easier, and less error-prone. You can also generate
comments and insert them into your queries to improve readability.

About this task

Attention: The SQL AI Assistant operates only on the database that you have selected in the Hue editor, and
not necessarily on the one that is displayed on the left-assist bar.

Before you begin
Your administrator must have configured and set up the required infrastructure for you to use the SQL AI Assistant.
See About setting up the Hue SQL AI Assistant.

Procedure

1. Log in to the Cloudera Data Warehouse service as DWUser.

2. Open Hue corresponding to your Virtual Warehouse.

3.
Click Assistant on the Hue SQL editor:

Results
The following options are displayed:

Related Information
About setting up the SQL AI Assistant in Cloudera Data Warehouse

Generating SQL from natural language in Hue
The SQL AI Assistant in Cloudera Data Warehouse helps you to generate SQL queries by entering a prompt in
natural language. You can then insert the generated SQL in the Hue SQL editor and run it as usual.

Before you begin
Your administrator must have configured and set up the required infrastructure for you to use the SQL AI Assistant.
See About setting up the Hue SQL AI Assistant.

Procedure

1. Log in to the Cloudera Data Warehouse service as DWUser.

2. Open Hue corresponding to your Virtual Warehouse.

3.
Click Assistant on the Hue SQL editor:

4. Click GENERATE.

A SQL query is generated based on your input prompt. Click Insert to insert the query into the editor and run it.

28

https://docs.cloudera.com/data-warehouse/1.5.5/private-cloud-getting-started/topics/dw-hue-sql-ai-assistant-setup.html
https://docs.cloudera.com/data-warehouse/1.5.5/private-cloud-getting-started/topics/dw-hue-sql-ai-assistant-setup.html
https://docs.cloudera.com/data-warehouse/1.5.5/private-cloud-getting-started/topics/dw-hue-sql-ai-assistant-setup.html

Cloudera Data Warehouse on premises Starting the SQL AI Assistant in Hue

Related Information
About setting up the SQL AI Assistant in Cloudera Data Warehouse

Editing the query in natural language in Hue
You can edit a query in natural language and generate it again to fine-tune your results using the Hue SQL AI
Assistant. You can then insert the SQL query into the editor and run it as usual.

Before you begin
Your administrator must have configured and set up the required infrastructure for you to use the SQL AI Assistant.
See About setting up the Hue SQL AI Assistant.

Procedure

1. Log in to the Cloudera Data Warehouse service as DWUser.

2. Open Hue corresponding to your Virtual Warehouse.

3.
Click Assistant on the Hue SQL editor:

4. Click EDIT.

Select the query from the list and edit it as needed. Then press enter to regenerate the SQL.

Related Information
About setting up the SQL AI Assistant in Cloudera Data Warehouse

Getting an explanation of a SQL query in natural language in Hue
You can use the SQL AI Assistant to breakdown and understand a complex SQL query in natural language.

Before you begin
Your administrator must have configured and set up the required infrastructure for you to use the SQL AI Assistant.
See About setting up the Hue SQL AI Assistant.

Procedure

1. Log in to the Cloudera Data Warehouse service as DWUser.

2. Open Hue corresponding to your Virtual Warehouse.

3. Insert a SQL query in the Hue editor that you would like to understand in natural language.

4.
Click Assistant on the Hue SQL editor:

29

https://docs.cloudera.com/data-warehouse/1.5.5/private-cloud-getting-started/topics/dw-hue-sql-ai-assistant-setup.html
https://docs.cloudera.com/data-warehouse/1.5.5/private-cloud-getting-started/topics/dw-hue-sql-ai-assistant-setup.html
https://docs.cloudera.com/data-warehouse/1.5.5/private-cloud-getting-started/topics/dw-hue-sql-ai-assistant-setup.html
https://docs.cloudera.com/data-warehouse/1.5.5/private-cloud-getting-started/topics/dw-hue-sql-ai-assistant-setup.html

Cloudera Data Warehouse on premises Starting the SQL AI Assistant in Hue

5. Click EXPLAIN.

The LLM generates the explanation of the SQL query.

Related Information
About setting up the SQL AI Assistant in Cloudera Data Warehouse

30

https://docs.cloudera.com/data-warehouse/1.5.5/private-cloud-getting-started/topics/dw-hue-sql-ai-assistant-setup.html

Cloudera Data Warehouse on premises Starting the SQL AI Assistant in Hue

Optimizing a query in Hue
You can use the SQL AI Assistant to optimize a SQL query. Hue identifies the issues in the source query, optimizes
it, and provides the optimized version of the SQL query. Hue also summarizes the issues and how it optimized the
query in natural language.

Before you begin
Your administrator must have configured and set up the required infrastructure for you to use the SQL AI Assistant.
See About setting up the Hue SQL AI Assistant.

Procedure

1. Log in to the Cloudera Data Warehouse service as DWUser.

2. Open Hue corresponding to your Virtual Warehouse.

3. Insert a SQL query in the Hue editor that you would like to optimize.

4.
Click Assistant on the Hue SQL editor:

5. Click OPTIMIZE.

Hue displays the original and the optimized SQL query side-by-side. It also provides an explanation of the issues
in the original query and how it was optimized.

Related Information
About setting up the SQL AI Assistant in Cloudera Data Warehouse

31

https://docs.cloudera.com/data-warehouse/1.5.5/private-cloud-getting-started/topics/dw-hue-sql-ai-assistant-setup.html
https://docs.cloudera.com/data-warehouse/1.5.5/private-cloud-getting-started/topics/dw-hue-sql-ai-assistant-setup.html

Cloudera Data Warehouse on premises Starting the SQL AI Assistant in Hue

Fixing a query in Hue
You can use the SQL AI Assistant to fix a broken SQL query. Hue identifies the issues in SQL syntax and provides
the corrected version.

Before you begin
Your administrator must have configured and set up the required infrastructure for you to use the SQL AI Assistant.
See About setting up the Hue SQL AI Assistant.

Procedure

1. Log in to the Cloudera Data Warehouse service as DWUser.

2. Open Hue corresponding to your Virtual Warehouse.

3. Insert a SQL query in the Hue editor that you would like to fix.

4.
Click Assistant on the Hue SQL editor:

5. Click FIX.

Hue displays the original and the fixed SQL query in a side-by-side comparison.

Click Insert to insert the fixed query in the Hue editor and run it.

Related Information
About setting up the SQL AI Assistant in Cloudera Data Warehouse

Generating a comment for a query in Hue
The SQL AI Assistant can generate a comment explaining what SQL query does. You can insert it into the query to
improve readability.

32

https://docs.cloudera.com/data-warehouse/1.5.5/private-cloud-getting-started/topics/dw-hue-sql-ai-assistant-setup.html
https://docs.cloudera.com/data-warehouse/1.5.5/private-cloud-getting-started/topics/dw-hue-sql-ai-assistant-setup.html

Cloudera Data Warehouse on premises Starting the SQL AI Assistant in Hue

Before you begin
Your administrator must have configured and set up the required infrastructure for you to use the SQL AI Assistant.
See About setting up the Hue SQL AI Assistant.

Procedure

1. Log in to the Cloudera Data Warehouse service as DWUser.

2. Open Hue corresponding to your Virtual Warehouse.

3. Insert a SQL query in the Hue editor for which you want to generate a comment.

4.
Click Assistant on the Hue SQL editor:

5. Click COMMENT.

The SQL AI Assistant generates a detailed comment for the input SQL query.

Click Insert to insert the comment into the query.

Multi database support for SQL query
The Hue SQL AI Assistant now supports multi-database querying, allowing you to retrieve data from multiple
databases simultaneously. This enhancement simplifies managing large datasets across different systems and enables
seamless cross-database queries.

33

https://docs.cloudera.com/data-warehouse/1.5.5/private-cloud-getting-started/topics/dw-hue-sql-ai-assistant-setup.html

Cloudera Data Warehouse on premises Starting the SQL AI Assistant in Hue

Procedure

1.
Click Assistant on the Hue SQL editor, then open the AI Assistant Settings.

2. Select the databases you want to include in your queries. You can choose multiple databases from the list provided
and click OK.

3. Enter your prompt in natural language to generate SQL queries.
Querying across multiple databases

Database Name Tables

CalMart_Sales_DB Customers, Sales, Sales_Items

CalMart_Products_DB Products, Suppliers, Product_Supplier

Use Case: Identifying Top-Selling Products and Their Suppliers.

Objective: Retrieve top-selling products along with their suppliers by combining data from two databases.

SELECT
 si.product_id,
 p.product_name,
 SUM(si.quantity) AS total_quantity_sold,
 s.supplier_name
FROM
 CalMart_Sales_DB.Sales_Items si
JOIN
 CalMart_Products_DB.Products p
ON
 si.product_id = p.product_id
JOIN
 CalMart_Products_DB.Product_Supplier ps
ON
 p.product_id = ps.product_id
JOIN
 CalMart_Products_DB.Suppliers s
ON
 ps.supplier_id = s.supplier_id
GROUP BY
 si.product_id, p.product_name, s.supplier_name
ORDER BY

34

Cloudera Data Warehouse on premises Impala workload management

 total_quantity_sold DESC;

This query retrieves a comprehensive list of top-selling products along with their suppliers by combining data
from multiple databases.

Impala workload management

Learn how to enable Impala query logging in Cloudera Data Warehouse to track queries, analyze performance, and
retain execution data for better insights.

Cloudera Data Warehouse provides you the option to enable logging Impala queries on an existing Virtual Warehouse
or while creating a new Impala Virtual Warehouse. By logging the Impala queries in Cloudera Data Warehouse, you
gain increased observability of the workloads running on Impala, which you can use to improve the performance of
your Impala Virtual Warehouses.

This feature represents a significant enhancement to query profiling capabilities. You can have Impala archive crucial
data from each query's profile into dedicated database tables known as the query history table and live query table.
These tables are part of the sys database and are designed to store valuable information that can later be queried using
any Impala client, providing a consolidated view of both actively running and previously executed queries.

The query history table, sys.impala_query_log proves particularly useful when dissecting workloads for in-depth
analysis of query performance. Unlike the limitations associated with query profiles, which are only available to
the client that initiated the query, the query history table offers a comprehensive solution for querying completed
queries without the need to parse the text of each query profile. Additionally, the query history table provides a
comprehensive view across all Impala coordinators.

The Impala query information is stored indefinitely in the sys.impala_query_log table whereas the sys.impala_q
uery_live table reflects the in-memory state of all Impala coordinators. Actively running and recently completed
queries are stored in this table. Data is removed from this table once the query finishes and is persisted in the sys.impa
la_query_log table or if the coordinator is restarted. Therefore, there is a possibility that some of the records could
momentarily be duplicated in both these tables.

Since the sys.impala_query_live table is stored only in-memory, recently completed queries that are not yet persisted
to the sys.impala_query_log table are lost if the coordinator crashes. However, if the coordinator is shut down
gracefully, then the recently completed queries are stored in the sys.impala_query_log table and are not lost.

The <onlyCoordinators> element in Impala’s Admission Control restricts a request pool to coordinators only,
excluding executors. This is mainly used for querying the sys.impala_query_live table. However, these pools can still
run any query, potentially exhausting coordinator resources. Proper naming is important to avoid unintended query
routing. For more information, see Apache Impala: onlyCoordinators.

Related Information
Hive query history service

Impala workload management table format
Learn about the available columns in the query history and live query system tables.

Table Format

The following columns are available as part of the query history and live query system tables:

Column Name Description Data Type Sample Value

cluster_id String specified through the
Impala startup flag to uniquely
identify an instance.

string cluster-123

query_id Impala assigned query identifier. string 214d08bef0831e7a:3c65392400000000

35

https://docs.cloudera.com/data-warehouse/1.5.5/querying-data/topics/dw-query-history-hive.html

Cloudera Data Warehouse on premises Impala workload management

Column Name Description Data Type Sample Value

session_id Impala assigned session identifier. string ea4f661af43993d8:587839553a41adb8

session_type Client session type. string HIVESERVER2

hiveserver2_protocol_version Version of the HiveServer (HS2)
protocol that was used by the
client when connecting.

string HIVE_CLI_SERVICE_PROTOCOL_V6

db_user Effective user on the cluster. string csso_name

db_user_connection Username from an authenticated
client.

string csso_name

db_name Name of the database being
queried.

string default

impala_coordinator Name of the coordinator for the
query.

string coord-22899:27000

query_status Status of the query when it
completes.

string OK

query_state Final state of the query. string FINISHED

impala_query_end_state Final Impala state of the query. string FINISHED

query_type Type of the query. string QUERY

network_address Client IP address and port. string 127.0.0.1:40120

start_time_utc Time when the query started.
Time zone is in UTC.

timestamp 2024-07-17 17:13:46.414316000

total_time_ms Difference between the query
end time and start time, in
milliseconds (digits after
the decimal point represent
milliseconds).

decimal(18,3) 136.121

query_opts_config List of query options stored as a
single string containing comma-
separated values of key-value
pairs.

string TIMEZONE=America/
Los_Angeles,CLIENT_IDENTIFIER=Impala
Shell v4.4.0a1 (04bdb4d) built on
Mon Nov 20 10:49:35 PST 2023

resource_pool Name of the resource pool for the
query.

string default-pool

per_host_mem_estimate Size, in bytes of the per-host
memory estimate.

bigint 5

dedicated_coord_mem_estimate Size, in bytes of the dedicated
coordinator memory estimate.

bigint 4

per_host_fragment_instances Comma-separated string listing
each host and its fragment
instances.

string myhost-1:27000=1,myhost-2:27001=2

backends_count Count of the number of backends
used by this query.

integer 2

admission_result Result of the admission (not
applicable to DDLs).

string Admitted immediately

cluster_memory_admitted Cluster memory, in bytes that was
admitted.

integer 4

executor_group Name of the executor group. string executor_group

executor_groups List of all executor groups
including the groups that were
considered and rejected as part of
Workload Aware Auto Scaling.

string executor_group1,
executor_group2…

exec_summary Full text of the executor summary. string

36

Cloudera Data Warehouse on premises Impala workload management

Column Name Description Data Type Sample Value

num_rows_fetched Number of rows fetched by the
query.

bigint 6001215

row_materialization_rows_per_sec Count of the number of rows
materialized per second.

bigint 3780

row_materialization_time_ms Time spent materializing rows
converted to milliseconds.

decimal(18,3) 1.58

compressed_bytes_spilled Count of bytes that were written
(or spilled) to scratch disk space.

bigint 241515

event_planning_finished Event from the timeline.The
value represents the number of
milliseconds since the query was
received.

decimal(18,3) 27.253

event_submit_for_admission Event from the timeline.The
value represents the number of
milliseconds since the query was
received.

decimal(18,3) 30.204

event_completed_admission Event from the timeline.The
value represents the number of
milliseconds since the query was
received.

decimal(18,3) 30.986

event_all_backends_started Event from the timeline.The
value represents the number of
milliseconds since the query was
received.

decimal(18,3) 31.969

event_rows_available Event from the timeline.The
value represents the number of
milliseconds since the query was
received.

decimal(18,3) 31.969

event_first_row_fetched Event from the timeline.The
value represents the number of
milliseconds since the query was
received.

decimal(18,3) 135.175

event_last_row_fetched Event from the timeline.The
value represents the number of
milliseconds since the query was
received.

decimal(18,3) 135.181

event_unregister_query Event from the timeline.The
value represents the number of
milliseconds since the query was
received.

decimal(18,3) 141.435

read_io_wait_total_ms Total read I/O wait time converted
to milliseconds.

bigint 15.091

read_io_wait_mean_ms Average read I/O wait time
across executors converted to
milliseconds

bigint 35.515

bytes_read_cache_total Total bytes read from the data
cache

bigint 45823

bytes_read_total Total bytes read bigint 745227

pernode_peak_mem_min Minimum value of all the per-
node peak memory usages

bigint 5552846

pernode_peak_mem_max Maximum value of all the per-
node peak memory usages

bigint 5552846

pernode_peak_mem_mean Mean value of all the per-node
peak memory usages

bigint 5552846

37

Cloudera Data Warehouse on premises Impala workload management

Column Name Description Data Type Sample Value

sql SQL statement as provided by the
user

string SELECT db_user, total_time_ms
from impala_query_log where
query_state = 'EXCEPTION';

plan Full text of the query plan string

tables_queried Comma-separated string
containing all the tables queried in
the SQL statement. Aliased tables
are resolved to their actual table
names.

string db.tbl,db.tbl

select_columns Comma-separated string
containing all columns from
the select list of the sql. Aliased
columns are resolved to
their actual column names.
Each column is in the format
database.table.column_name.

string db.tbl.col1,db.tbl.col2

where_columns Comma-separated string
containing all columns from
the where list of the sql.
Aliased columns are resolved
to their actual column names.
Each column is in the format
database.table.column_name.

string db.tbl.col1,db.tbl.col2

join_columns Comma-separated string
containing all columns from
the sql used in a join. Aliased
columns are resolved to
their actual column names.
Each column is in the format
database.table.column_name.

string db.tbl.col1,db.tbl.col2

aggregate_columns Comma-separated string
containing all columns from the
group by and having lists of the
sql. Aliased columns are resolved
to their actual column names.
Each column is in the format
database.table.column_name.

string db.tbl.col1,db.tbl.col2

orderby_columns Comma-separated string
containing all columns from
the order by list of the sql.
Aliased columns are resolved
to their actual column names.
Each column is in the format
database.table.column_name.

string db.tbl.col1,db.tbl.col2

coordinator_slots Number of query slots used by the
query on the coordinator.

bigint 1

executor_slots Numberof query slots used by the
query on the executors. The value
in this column represents the slots
used by a single executor, not the
total number of slots across all
executors.

bigint 1

Impala workload management table maintenance
Understand the maintenance requirements for the sys.impala_query_live and sys.impala_query_log tables.

For efficient query performance, different maintenance needs apply to the sys.impala_query_live and sys.impala_q
uery_log tables.

38

Cloudera Data Warehouse on premises Impala workload management

• Sys.impala_query_live:

• No maintenance is required because it resides entirely in memory.
• Sys.impala_query_log:

• As an Iceberg table, it requires periodic maintenance, such as:

• Computing statistics.
• Optimizing the table structure.
• Performing snapshot expiration or cleanup.

Since Impala workloads are unique, no automatic maintenance is performed on the sys.impala_query_log table. You
should schedule maintenance tasks according to your workload needs.

To optimize the Impala query log, run the query OPTIMIZE TABLE sys.impala_query_log (FILE_SIZE_THRES
HOLD_MB=128). Cloudera recommends testing this query in the development or test environments to evaluate its
impact on your workload. For best results, run the query during low cluster activity times.

Impala workload management use cases
Learn how to use query history to track executed queries by user, identify frequently queried statements, and report
long-running queries for analysis.

A consolidated view of reports from previously executed queries can be useful in the following use cases:

• Collecting history of all queries run and reporting by user, start/end time, and execution duration. For instance:

SELECT db_user, start_time, end_time, total_time_ms, sql FROM impala_que
ry_log ORDER BY db_user;

• Collecting the top five most frequently executed queries. For instance:

SELECT lower(sql) sql, count(sql) count FROM sys.impala_query_log GROUP BY
 lower(sql) ORDER BY count desc LIMIT 5;

• Reporting on queries that ran over 10 minutes. For instance:

SELECT db_user, total_time_ms, sql FROM sys.impala_query_log WHERE total
_time_ms > 600000;

• Reporting on queries that are actively running and have been running for over 10 minutes. For instance:

SELECT db_user, total_time_ms, sql FROM sys.impala_query_live WHERE tota
l_time_ms > 600000;

Enable Impala workload management
Learn how to enable and configure Impala query logging to store and analyze query history.

To use this feature, enable Impala query logging while creating a new Virtual Warehouse or by editing an existing
one by selecting the Log Impala Queries option. By default, the Log Impala Queries option is off.

You can then configure the Impala coordinator using specific startup flags to store query history. Impala manages the
table serving as a centralized repository for all query histories across databases. Completed queries are periodically
inserted into this table based on a preconfigured interval.

This feature streamlines the process of query history management, providing a more accessible and comprehensive
way to analyze and retrieve information about completed queries.

Note: This feature is available from Cloudera Data Warehouse versions 2024.0.18.0 (tech preview),
2025.0.19.0 and higher (GA).

39

Cloudera Data Warehouse on premises Impala workload management

Important: The following query types are not written into the query logging tables:

• SET
• SHOW
• USE
• DESCRIBE

Impala coordinator Startup flags
Learn about Impala coordinator startup flags used to create and configure query logging tables during startup.

On startup, each Impala coordinator runs an SQL statement to create the query logging tables. The following table
lists the Impala startup coordinator flags that you can configure:

Name Data Type Default Description

cluster_id string Specifies an identifier string that
uniquely represents this cluster.
This identifier is included in both
the tables and is used as a table
partition for the sys.impala_query
_log table.

query_log_shutdown_timeout_s number (seconds) 30 Hidden flag. Number of seconds
to wait for the queue of completed
queries to be carried into the
query history table before timing
out and continuing the shutdown
process.The query history table
drain process runs after the
shutdown process completes,
therefore the max shutdown time
is extended by the value specified
in this flag.

workload_mgmt_user string impala Specifies the user that will be used
to insert records into the query
history table.

query_log_write_interval_s number (seconds) 300 Number of seconds to wait before
inserting completed queries into
the query history table. Allows
for batching inserts to help avoid
small files.

query_log_max_queued number 3000 Maximum number of completed
queries that can be queued before
they are written to the query
history table.This flag operates
independently of the query_lo
g_write_interval_m flag. If the
number of queued records reaches
this value, the records will be
written to the query log table no
matter how much time has passed
since the last write.A value of 0
indicates no maximum number of
queued records.

40

Cloudera Data Warehouse on premises Running queries on system tables

Name Data Type Default Description

query_log_max_sql_length number 16777216 Maximum length of a SQL
statement that will be recorded
in the completed queries table.
If a SQL statement with a length
longer than this specified value is
executed, the SQL inserted into
the completed queries table will
be trimmed to this length. Any
characters that require escaping
will have their backslash character
counted towards this limit.

query_log_max_plan_length number 16777216 Maximum length of the SQL
query plan that will be recorded
in the completed queries table. If
a query plan has a length longer
than this value, the plan inserted
into the completed queries table
will be trimmed to this length.
Any characters that require
escaping will have their backslash
character counted towards this
limit.

query_log_request_pool string Specifies a pool or queue used
by the queries that insert into
the query log table. Empty value
causes no pool to be set.

query_log_dml_exec_timeout_s number 120 Specifies the value of the
EXEC_TIME_LIMIT_S query
option on the DML that inserts
records into the sys.impala_query
_log table.

Running queries on system tables

Learn how to configure system table queries in Impala to use only the necessary coordinator resources.

Queries against Impala system tables, such as sys.impala_query_live, experienced delays due to admission control
constraints. These queries, which only require only coordinator resources, were blocked by other queries competing
for executor resources.

To address this, Impala introduces an "only coordinators" request pool. This allows system table queries to run
without waiting for executor resources, even when those resources are fully used. In Cloudera Data Warehouse,
queries submitted to an only coordinators request pool continue to run even if no executors are running.

Note:

Running queries on system tables feature for Impala is in technical preview and not recommended for
production deployments. Cloudera recommends that you try this feature in test or development environments.

Coordinator-only request pools

You can configure coordinator-only request pools in Impala by setting the <onlyCoordinators> option to true in the
fair-scheduler.xml file. When enabled, the request pool runs queries only on coordinators. No executors are required,
and all fragment instances are executed exclusively on the coordinators.

Warning: Be cautious when submitting queries to a coordinator-only request pool. If a large or non-system
table query is submitted, it will run entirely on the coordinators. This can lead to memory or CPU exhaustion.

41

Cloudera Data Warehouse on premises Hive query history service

To prevent resource issues, Cloudera recommends limiting access to coordinator-only request pools to a small group
of users who understand the risks of running complex queries in this configuration.

Configuring the only coordinators request pool
Follow these steps to configure a coordinator-only request pool in Impala to optimize system table queries.

About this task

By configuring a coordinator-only request pool, you can run queries that do not require executors. This reduces
resource usage and enhances system performance.

Before you begin

Ensure you have administrator access to modify Impala configurations.

Procedure

1. Log in to the Cloudera web interface and navigate to the Cloudera Data Warehouse service.

2. In the Cloudera Data Warehouse service, click Virtual Warehouses in the left navigation panel.

3.

Select the Impala Virtual Warehouse, click options for the warehouse you want to include the onlyCoor
dinators setting for a request pool.

4. Click Edit and navigate to Impala Coordinator under the Configurations tab.

5. Select the fair-scheduler.xm under Configuration files.

6. Add <onlyCoordinators>true</onlyCoordinators>.

<queue name="coords">
 <maxResources>10000 mb,0 vcores</maxResources>
 <onlyCoordinators>true</onlyCoordinators>
</queue>

7. Click Apply Changes and restart Impala.

Hive query history service

The query history service in Hive provides a scalable solution for storing and querying historical query information in
a structured and performant manner, enabling long-term analysis and monitoring.

Cloudera Data Warehouse provides you the option to enable logging Hive queries on an existing Virtual Warehouse
or while creating a new Hive Virtual Warehouse.The query history service in Hive is a feature that stores a long-term
record of finished queries and their associated metrics. It is designed to support auditing, debugging, and performance
monitoring at scale by persisting historical query data in a modern table format.

Hive already offers several ways to inspect query activity, including:

• Hive history .txt files.
• Protobuf logging hook.
• Live queries on the HiveServer2 Web UI.
• SHOW PROCESSLIST command.
• In-development query history service.

While these options allow inspection of active or recent queries, none provide a scalable solution for storing and
querying historical query information in a structured and performant manner.

42

Cloudera Data Warehouse on premises Hive query history service

The query history service addresses this limitation by persisting structured records for completed queries, enabling
long-term analysis using standard SQL.

Purpose of the query history table

The query history table stores the following information for each finished query:

• Submitting user
• Query runtime
• Tables accessed
• Errors
• Additional metadata fields

This information is stored in a structured format using the Iceberg table format, allowing efficient querying and future
integration with tools such as Apache Hue or custom dashboards.

Scope and Limitations

The query history service runs as part of HiveServer2 and writes query data to an Iceberg table in batches, using
configurable memory buffering and flushing strategies. However, it is not intended for real-time query inspection,
query debugging or recommendations, or for creating user interfaces or visualizations.

Related Information
Impala workload management

Query history table
Learn how the query history service in Hive stores past query data in structured tables using Iceberg and ORC for
efficient querying and long-term data storage.

The query history service in Hive is designed to store historical query data in a scalable and queryable format. It uses
an Iceberg table backed by the ORC file format, enabling efficient SQL queries for analyzing past workloads.

Why Iceberg and ORC were chosen?

To support scalability and queryability, the service avoids storing one file per query or session. Instead, it uses the
Iceberg table format, which provides:

1. Schema evolution
2. Partitioning support
3. Compatibility with SQL engines
4. Efficient metadata management

The ORC format is used for physical storage, offering compact, columnar storage and fast performance for Hive
workloads.

The query history service is designed to be pluggable, allowing flexibility to support other storage formats in the
future. Hive handles all writing operations, so the service itself does not need to manage storage-level complexity.

Benefits of using Iceberg

The query history service stores data in an Iceberg table instead of traditional file-based logs. Iceberg offers the
following advantages:

• Efficient storage and query performance.
• Schema evolution support.
• Partitioning and metadata handling for faster analysis.
• Integration with query engines like Hive and Impala.

43

https://docs.cloudera.com/data-warehouse/1.5.5/querying-data/topics/dw-workload-management-impala.html

Cloudera Data Warehouse on premises Hive query history service

Schema structure

The schema of the query history table is organized into fields and partitioning to efficiently store and query historical
data.

1. Fields:

The query history service gathers a wide range of query-related data, categorized into basic and runtime fields.
These fields address challenges related to data extraction and integration within HiveServer2. Basic fields are
extracted during the service's integration into HiveServer2, leveraging encapsulating objects such as QueryPro
perties, QueryInfo, QueryDisplay, and DriverContext. Each of these objects contains overlapping fields relevant
to query tracking.While these objects provide valuable query-related information, the service needed to identify a
central access point for all necessary data.DriverContext was ultimately chosen as it offers comprehensive access
to all required query details, ensuring efficient data extraction and storage.

2. Partitioning:

The table is partitioned by cluster_id, enabling users to filter queries based on the cluster or compute group that
executed them. This partitioning strategy improves query performance and ensures data separation across different
environments. For more information, see HIVE-28324

Related Information
HIVE-28324

Query history table format
Learn about the query history table format, which provides detailed information on query execution, including
column names, data types, and descriptions.

Table Format

The following table provides an overview of the columns in the query history table, including their names, data types,
and descriptions:

Column Name Data type Description

query_history_schema_version int Schema version of the query history record.

hive_version string Hive version running in HiveServer2 when the
query was executed.

query_id string Hive-assigned identifier for the query.

session_id string Hive-assigned identifier for the session.

operation_id string Hive-assigned identifier for the operation.

execution_engine string Execution engine used to run the query
(typically Tez).

execution_mode string Indicates whether the query ran in LLAP or
Tez container mode.

tez_dag_id string Tez DAG ID used for the query, if applicable.

tez_app_id string Tez application ID used for the query, if
applicable.

tez_session_id string Tez session ID used for the query, if
applicable.

cluster_id string Unique identifier for the cluster instance.

sql string SQL query string submitted by the user.

session_type string Session type (HIVESERVER2 or OTHER).

hiveserver2_protocol_version int Protocol version used by the client, as defined
in TCLIService.

44

https://issues.apache.org/jira/browse/HIVE-28324

Cloudera Data Warehouse on premises Hive query history service

Column Name Data type Description

cluster_user string Effective user on the cluster (typically hive if
doAs is disabled).

end_user string Authenticated client username.

db_name string Database selected when the query was run.

tez_coordinator string Address of the Tez coordinator used for the
query.

query_state string Query state as an OperationState value.

query_type string Query type identified by the semantic analyzer
(DQL, DDL, DML, DCL, STATS, or empty).

operation string Hive operation name based on syntax or
semantic analysis.

server_address string Address of the HiveServer2 instance the client
connected to.

server_port int TCP port of the HiveServer2 instance.

client_address string IP address of the client that initiated the
connection.

start_time_utc timestamp UTC timestamp when the query started.

end_time_utc timestamp UTC timestamp when the query finished.

start_time timestamp Server-local timestamp when the query
started.

end_time timestamp Server-local timestamp when the query
finished.

total_time_ms bigint Total execution time in milliseconds.

planning_duration bigint Time spent in query compilation and planning
(ms).

planning_start_time timestamp Timestamp when query planning started.

prepare_plan_duration bigint Time spent preparing the DAG for execution
(ms).

prepare_plan_start_time timestamp Timestamp when the DAG preparation started.

get_session_duration bigint Time taken to acquire a Tez session (ms).

get_session_start_time timestamp Timestamp when session acquisition started.

execution_duration bigint Duration of DAG execution (ms).

execution_start_time timestamp Timestamp when DAG execution started.

failure_reason string Error message for query failure, if any.

num_rows_fetched int Number of rows fetched by the query.

plan string Full text of the query plan.

used_tables string Comma-separated list of tables used by the
query.

exec_summary string Full text of the execution summary.

configuration_options_changed string Configuration options changed during the
query session.

total_tasks int Total number of Tez tasks started for the
query.

succeeded_tasks int Number of successful tasks.

killed_tasks int Number of killed tasks.

45

Cloudera Data Warehouse on premises Hive query history service

Column Name Data type Description

failed_tasks int Number of failed task attempts.

task_duration_millis bigint Total task execution time in milliseconds.

node_used_count int Number of nodes used to run the query.

node_total_count int Total number of nodes visible during query
execution.

reduce_input_groups bigint Number of reducer input groups.

reduce_input_records bigint Number of input records seen by reducers.

spilled_records bigint Number of records spilled during shuffle.

num_shuffled_inputs bigint Number of physical inputs used during shuffle.

num_failed_shuffle_inputs bigint Number of failed attempts to fetch shuffle
inputs.

input_records_processed bigint Number of input records actually processed.

input_split_length_bytes bigint Total size (bytes) of input splits.

output_records bigint Number of output records from all vertices.

output_bytes_physical bigint Actual bytes written, including compression.

shuffle_chunk_count bigint Number of shuffled files processed.

shuffle_bytes bigint Total shuffled data size in bytes.

shuffle_bytes_disk_direct bigint Bytes shuffled using direct disk access.

shuffle_phase_time bigint Time spent in the shuffle phase (ms).

merge_phase_time bigint Time spent merging shuffled data (ms).

Query history use case
The query history service and the sys.query_history table provide developers, support engineers, and customers with
tools for detailed investigations and large-scale insights.

The query history service and the sys.query_history table are designed for developers, support engineers, and
customers. With a wide range of available fields, you can use the service to:

• Find a specific query and view its details.
• Analyze trends across multiple queries for performance monitoring.

This supports both detailed investigations and large-scale insights.

Example queries
Basic query information

Get key details such as SQL text, DAG ID, execution plan, and summary.

SELECT sql, tez_dag_id, plan, exec_summary
FROM sys.query_history
WHERE query_id = 'abc123';

Query count by user and database

Find the number of queries run by each user on each database.

SELECT db_name, end_user, COUNT(*) AS query_count
FROM sys.query_history
GROUP BY db_name, end_user

46

Cloudera Data Warehouse on premises Hive query history service

ORDER BY db_name;

Top five longest-running queries

Identify the five queries with the highest execution time.

SELECT end_user, query_id, total_time_ms
FROM sys.query_history
ORDER BY total_time_ms DESC
LIMIT 5;

Concurrent query detection

Determine how many queries overlapped with each query.

SELECT a.query_id, COUNT(b.query_id) AS concurrent_queries
FROM sys.query_history a
LEFT JOIN sys.query_history b
 ON a.query_id != b.query_id
 AND a.start_time <= b.end_time
 AND b.start_time <= a.end_time
GROUP BY a.query_id
ORDER BY concurrent_queries DESC
LIMIT 5;

Extracting counters from execution summary

Use regular expressions to extract specific counters that are not stored in separate fields.

SELECT query_id, regexp_extract(exec_summary, 'AM_CPU_MILLISECON
DS: (\\d+)', 1) AS am_cpu_milliseconds
FROM sys.query_history
WHERE tez_dag_id IS NOT NULL;

Configuring query history service
Learn how to modify the default configuration of the query history service in Cloudera Hive to manage query history
settings more effectively.

Before you begin

Make sure the Log Hive queries option is enabled.

Procedure

1. Log in to the Cloudera Data Warehouse service

2.
Go to the Virtual Warehouses tab. Select the Hive Virtual Warehouse, click Edit

3. Go to the Configurations tab. Select hive-site from the Configuration files drop-down menu, and add the following
properties to modify the values as required:

a) hive.query.history.explain.plan.enabled (Default: true)

Determines whether to collect and store the explain plan in the query history.
b) hive.query.history.exec.summary.enabled (Default: true)

Specifies whether to collect and store the execution summary in the query history.
c) hive.query.history.batch.size (Default: 200)

Specifies the maximum number of records that can be held in memory before the query history service
persists them to the target table. Smaller values (e.g., 1-5) enable more real-time behavior but result in smaller

47

Cloudera Data Warehouse on premises Hive query history service

files. Setting this property to 0 forces synchronous persistence of records, Cloudera does not recommend for
production environments

d) hive.query.history.max.memory.bytes (Default: 20mb)

Defines the maximum memory size, in bytes, that the query history queue can occupy before the service
persists records to the target table. Setting this property to 0 disables the memory limit, Cloudera does not
recommend in production environments to prevent excessive memory usage in HiveServer2.

e) hive.query.history.flush.interval.seconds (Default: 1h)

Specifies the time interval, in seconds, for flushing query history records from memory to the Iceberg table,
regardless of the batch size. This ensures timely access to query history records. The default value is 1 hour,
balancing file size and record availability. Setting this property to 0 disables the interval-based flush, relying
solely on batch size for persistence.

f) hive.query.history.repository.class (Default: org.apache.hadoop.hive.ql.queryhistory.repository.IcebergReposit
ory)

Indicates the class that implements QueryHistoryRepository, which is responsible for persisting query history
records.

4. Click Apply Changes and restart Hive.

48

	Contents
	Query data
	Submit queries with Hue
	View query history
	Create User-defined functions
	Set up dev environment
	Create UDF
	Build project and upload JAR
	Register UDF
	Call UDF in a query

	Simplify queries with User-defined functions
	Creating an Impala user-defined function
	UDF concepts
	Runtime environment for UDFs
	Writing UDFs
	Writing user-defined aggregate functions (UDAFs)
	Building and deploying UDFs
	Performance considerations for UDFs
	Examples of creating and using UDFs
	Security considerations for UDFs
	Limitations and restrictions for Impala UDFs

	Start SQL AI Assistant
	Generate SQL from NQL
	Edit query in natural language
	Explain query in natural language
	Optimize SQL query
	Fixing a query in Hue
	Generate comment for a SQL query
	Multi database support for SQL query

	Impala workload management
	Impala workload management table format
	Impala workload management table maintenance
	Impala workload management use cases
	Enable Impala workload management
	Impala coordinator Startup flags

	Running queries on system tables
	Configuring the only coordinators request pool

	Hive query history service
	Query history table
	Query history table format

	Query history use case
	Configuring query history service

