Using the Parquet File Format with Impala, Hive, Pig, and MapReduce
Parquet is automatically installed when you install any of the above components, and the necessary libraries are automatically placed in the classpath for all of them. Copies of the libraries are in /usr/lib/parquet or inside the parcels in /lib/parquet.
The Parquet file format incorporates several features that make it highly suited to data warehouse-style operations:
- Columnar storage layout. A query can examine and perform calculations on all values for a column while reading only a small fraction of the data from a data file or table.
- Flexible compression options. The data can be compressed with any of several codecs. Different data files can be compressed differently. The compression is transparent to applications that read the data files.
- Innovative encoding schemes. Sequences of identical, similar, or related data values can be represented in ways that save disk space and memory. The encoding schemes provide an extra level of space savings beyond the overall compression for each data file.
- Large file size. The layout of Parquet data files is optimized for queries that process large volumes of data, with individual files in the multi-megabyte or even gigabyte range.
Among components of the CDH distribution, Parquet support originated in Cloudera Impala. Impala can create Parquet tables, insert data into them, convert data from other file formats to Parquet, and then perform SQL queries on the resulting data files. Parquet tables created by Impala can be accessed by Hive, and vice versa.
The CDH software stack lets you use the tool of your choice with the Parquet file format, for each phase of data processing. For example, you can read and write Parquet files using Pig and MapReduce jobs. You can convert, transform, and query Parquet tables through Impala and Hive. And you can interchange data files between all of those components.
Using Parquet Tables with Impala
The Cloudera Impala component can create tables that use Parquet data files; insert data into those tables, converting the data into Parquet format; and query Parquet data files produced by Impala or by other components. The only syntax required is the STORED AS PARQUET clause on the CREATE TABLE statement. After that, all SELECT, INSERT, and other statements recognize the Parquet format automatically. For example, a session in the impala-shell interpreter might look as follows:
[localhost:21000] > create table parquet_table (x int, y string) stored as parquet; [localhost:21000] > insert into parquet_table select x, y from some_other_table; Inserted 50000000 rows in 33.52s [localhost:21000] > select y from parquet_table where x between 70 and 100;
Once you create a Parquet table this way in Impala, you can query it or insert into it through either Impala or Hive.
Remember that Parquet format is optimized for working with large data files, typically 1 GB each. Avoid using the INSERT ... VALUES syntax, or partitioning the table at too granular a level, if that would produce a large number of small files that cannot take advantage of the Parquet optimizations for large data chunks.
Inserting data into a partitioned Impala table can be a memory-intensive operation, because each data file requires a 1 GB memory buffer to hold the data before being written. Such inserts can also exceed HDFS limits on simultaneous open files, because each node could potentially write to a separate data file for each partition, all at the same time. Consider splitting up such insert operations into one INSERT statement per partition.
For complete instructions and examples, see the Parquet section in the Impala documentation.
Using Parquet Tables in Hive
To create a table named PARQUET_TABLE that uses the Parquet format, you would use a command like the following, substituting your own table name, column names, and data types:
hive> CREATE TABLE parquet_table_name (x INT, y STRING) STORED AS PARQUET;
- Once you create a Parquet table this way in Hive, you can query it or insert into it through either Impala or Hive. Before the first time you access a newly created Hive table through Impala, issue a one-time INVALIDATE METADATA statement in the impala-shell interpreter to make Impala aware of the new table.
- dfs.block.size should be set to 1GB in hdfs-site.xml.
If the table will be populated with data files generated outside of Impala and Hive, it is often useful to create the table as an external table pointing to the location where the files will be created:
hive> create external table parquet_table_name (x INT, y STRING) ROW FORMAT SERDE 'parquet.hive.serde.ParquetHiveSerDe' STORED AS INPUTFORMAT "parquet.hive.DeprecatedParquetInputFormat" OUTPUTFORMAT "parquet.hive.DeprecatedParquetOutputFormat" LOCATION '/test-warehouse/tinytable';
To populate the table with an INSERT statement, and to read the table with a SELECT statement, see the Impala documentation for Parquet.
Select the compression to use when writing data with the parquet.compression property, for example:
set parquet.compression=GZIP; INSERT OVERWRITE TABLE tinytable SELECT * FROM texttable;
The valid options for compression are:
- UNCOMPRESSED
- GZIP
- SNAPPY
Using Parquet Files in Pig
Reading Parquet Files in Pig
Assuming the external table was created and populated with Impala or Hive as described above, the Pig instruction to read the data is:
grunt> A = LOAD '/test-warehouse/tinytable' USING ParquetLoader AS (x: int, y int);
Writing Parquet Files in Pig
Create and populate a Parquet file with the ParquetStorer class:
grunt> store A into '/test-warehouse/tinytable' USING ParquetStorer;
There are three compression options: uncompressed, snappy, and gzip. The default is snappy. You can specify one of them once before the first store instruction in a Pig script:
SET parquet.compression gzip;
Using Parquet Files in MapReduce
MapReduce needs thrift in its CLASSPATH and in libjars to access Parquet files. It also needs parquet-format in libjars. Perform the following setup before running MapReduce jobs that access Parquet data files:
if [ -e /opt/cloudera/parcels/CDH ] ; then CDH_BASE=/opt/cloudera/parcels/CDH else CDH_BASE=/usr fi THRIFTJAR=`ls -l $CDH_BASE/lib/hive/lib/libthrift*jar | awk '{print $9}' | head -1` export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$THRIFTJAR export LIBJARS=`echo "$CLASSPATH" | awk 'BEGIN { RS = ":" } { print }' | grep parquet-format | tail -1` export LIBJARS=$LIBJARS,$THRIFTJAR hadoop jar my-parquet-mr.jar -libjars $LIBJARS
Reading Parquet Files in MapReduce
Taking advantage of the Example helper classes in the Parquet JAR files, a simple map-only MapReduce job that reads Parquet files can use the ExampleInputFormat class and the Group value class. There is nothing special about the reduce phase when using Parquet files. The following example demonstrates how to read a Parquet file in a MapReduce job; portions of code specific to the Parquet aspect are shown in bold.
import static java.lang.Thread.sleep; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.Mapper.Context; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; import parquet.Log; import parquet.example.data.Group; import parquet.hadoop.example.ExampleInputFormat; public class TestReadParquet extends Configured implements Tool { private static final Log LOG = Log.getLog(TestReadParquet.class); /* * Read a Parquet record */ public static class MyMap extends Mapper<LongWritable, Group, NullWritable, Text> { @Override public void map(LongWritable key, Group value, Context context) throws IOException, InterruptedException { NullWritable outKey = NullWritable.get(); String outputRecord = ""; // Get the schema and field values of the record String inputRecord = value.toString(); // Process the value, create an output record // ... context.write(outKey, new Text(outputRecord)); } } public int run(String[] args) throws Exception { Job job = new Job(getConf()); job.setJarByClass(getClass()); job.setJobName(getClass().getName()); job.setMapOutputKeyClass(LongWritable.class); job.setMapOutputValueClass(Text.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); job.setMapperClass(MyMap.class); job.setNumReduceTasks(0); job.setInputFormatClass(ExampleInputFormat.class); job.setOutputFormatClass(TextOutputFormat.class); FileInputFormat.setInputPaths(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.waitForCompletion(true); return 0; } public static void main(String[] args) throws Exception { try { int res = ToolRunner.run(new Configuration(), new TestReadParquet(), args); System.exit(res); } catch (Exception e) { e.printStackTrace(); System.exit(255); } } }
Writing Parquet Files in MapReduce
When writing Parquet files you will need to provide a schema. The schema can be specified in the run method of the job before submitting it, for example:
... import parquet.Log; import parquet.example.data.Group; import parquet.hadoop.example.GroupWriteSupport; import parquet.hadoop.example.ExampleInputFormat; import parquet.hadoop.example.ExampleOutputFormat; import parquet.hadoop.metadata.CompressionCodecName; import parquet.hadoop.ParquetFileReader; import parquet.hadoop.metadata.ParquetMetadata; import parquet.schema.MessageType; import parquet.schema.MessageTypeParser; import parquet.schema.Type; ... public int run(String[] args) throws Exception { ... String writeSchema = "message example {\n" + "required int32 x;\n" + "required int32 y;\n" + "}"; ExampleOutputFormat.setSchema( job, MessageTypeParser.parseMessageType(writeSchema)); job.submit();
or it can be extracted from the input file(s) if they are in Parquet format:
import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.FileStatus; import org.apache.hadoop.fs.LocatedFileStatus; import org.apache.hadoop.fs.RemoteIterator; ... public int run(String[] args) throws Exception { ... String inputFile = args[0]; Path parquetFilePath = null; // Find a file in case a directory was passed RemoteIterator<LocatedFileStatus> it = FileSystem.get(getConf()).listFiles(new Path(inputFile), true); while(it.hasNext()) { FileStatus fs = it.next(); if(fs.isFile()) { parquetFilePath = fs.getPath(); break; } } if(parquetFilePath == null) { LOG.error("No file found for " + inputFile); return 1; } ParquetMetadata readFooter = ParquetFileReader.readFooter(getConf(), parquetFilePath); MessageType schema = readFooter.getFileMetaData().getSchema(); GroupWriteSupport.setSchema(schema, getConf()); job.submit();
Records can then be written in the mapper by composing a Group as value using the Example classes and no key:
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Void, Group>.Context context) throws java.io.IOException, InterruptedException { int x; int y; // Extract the desired output values from the input text // Group group = factory.newGroup() .append("x", x) .append("y", y); context.write(null, group); } }
Compression can be set before submitting the job with:
ExampleOutputFormat.setCompression(job, codec);
The codec should be one of the following:
- CompressionCodecName.UNCOMPRESSED
- CompressionCodecName.SNAPPY
- CompressionCodecName.GZIP
Parquet File Interoperability
Impala has included Parquet support from the beginning, using its own high-performance code written in C++ to read and write the Parquet files. The Parquet JARs for use with Hive, Pig, and MapReduce are available with CDH 4.5 and higher. Using the Java-based Parquet implementation on a CDH release prior to CDH 4.5 is not supported.
A Parquet table created by Hive can typically be accessed by Impala 1.1.1 and higher with no changes, and vice versa. Prior to Impala 1.1.1, when Hive support for Parquet was not available, Impala wrote a dummy SerDes class name into each data file. These older Impala data files require a one-time ALTER TABLE statement to update the metadata for the SerDes class name before they can be used with Hive. See the Impala Release Notes for details.
A Parquet file written by Hive, Impala, Pig, or MapReduce can be read by any of the others. Different defaults for file and block sizes, compression and encoding settings, and so on might cause performance differences depending on which component writes or reads the data files. For example, Impala typically sets the HDFS block size to 1 GB and divides the data files into 1 GB chunks, so that each I/O request reads an entire data file.
There may be limitations in a particular release. The following are known limitations in CDH 4:
- The TIMESTAMP data type in Parquet files is not supported in Hive, Pig, or MapReduce in CDH 4. Attempting to read a Parquet table created with Impala that includes a TIMESTAMP column will fail.
- Parquet has not been tested with HCatalog. Without HCatalog, Pig cannot correctly read dynamically partitioned tables; that is true for all file formats.
- Currently, Impala does not support table columns using nested data types or composite data types such as maps, structs, or arrays. Any Parquet data files that include such types cannot be queried through Impala.
Examples of Java Programs to Read and Write Parquet Files
You can find full examples of Java code at the Cloudera Parquet examples Github repository.
The TestReadParquet.java example demonstrates the
The TestReadWriteParquet.java example reads a Parquet data file, and produces a new text file in CSV format with the same content.
<< Avro Tools | Maintenance Tasks and Notes >> | |