This is the documentation for CDH 5.1.x. Documentation for other versions is available at Cloudera Documentation.

LOAD DATA Statement

The LOAD DATA statement streamlines the ETL process for an internal Impala table by moving a data file or all the data files in a directory from an HDFS location into the Impala data directory for that table.

Syntax:

LOAD DATA INPATH 'hdfs_file_or_directory_path' [OVERWRITE] INTO TABLE tablename
  [PARTITION (partcol1=val1, partcol2=val2 ...)]

Statement type: DML (but still affected by SYNC_DDL query option)

Usage Notes:

  • The loaded data files are moved, not copied, into the Impala data directory.
  • You can specify the HDFS path of a single file to be moved, or the HDFS path of a directory to move all the files inside that directory. You cannot specify any sort of wildcard to take only some of the files from a directory. When loading a directory full of data files, keep all the data files at the top level, with no nested directories underneath.
  • Currently, the Impala LOAD DATA statement only imports files from HDFS, not from the local filesystem. It does not support the LOCAL keyword of the Hive LOAD DATA statement. You must specify a path, not an hdfs:// URI.
  • In the interest of speed, only limited error checking is done. If the loaded files have the wrong file format, different columns than the destination table, or other kind of mismatch, Impala does not raise any error for the LOAD DATA statement. Querying the table afterward could produce a runtime error or unexpected results. Currently, the only checking the LOAD DATA statement does is to avoid mixing together uncompressed and LZO-compressed text files in the same table.
  • When you specify an HDFS directory name as the LOAD DATA argument, any hidden files in that directory (files whose names start with a .) are not moved to the Impala data directory.
  • The loaded data files retain their original names in the new location, unless a name conflicts with an existing data file, in which case the name of the new file is modified slightly to be unique. (The name-mangling is a slight difference from the Hive LOAD DATA statement, which replaces identically named files.)
  • By providing an easy way to transport files from known locations in HDFS into the Impala data directory structure, the LOAD DATA statement lets you avoid memorizing the locations and layout of HDFS directory tree containing the Impala databases and tables. (For a quick way to check the location of the data files for an Impala table, issue the statement DESCRIBE FORMATTED table_name.)
  • The PARTITION clause is especially convenient for ingesting new data for a partitioned table. As you receive new data for a time period, geographic region, or other division that corresponds to one or more partitioning columns, you can load that data straight into the appropriate Impala data directory, which might be nested several levels down if the table is partitioned by multiple columns. When the table is partitioned, you must specify constant values for all the partitioning columns.

If you connect to different Impala nodes within an impala-shell session for load-balancing purposes, you can enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed metadata has been received by all the Impala nodes. See SYNC_DDL for details.

  Important: After adding or replacing data in a table used in performance-critical queries, issue a COMPUTE STATS statement to make sure all statistics are up-to-date. Consider updating statistics for a table after any INSERT, LOAD DATA, or CREATE TABLE AS SELECT statement in Impala, or after loading data through Hive and doing a REFRESH table_name in Impala. This technique is especially important for tables that are very large, used in join queries, or both.

Examples:

First, we use a trivial Python script to write different numbers of strings (one per line) into files stored in the cloudera HDFS user account. (Substitute the path for your own HDFS user account when doing hdfs dfs operations like these.)

$ random_strings.py 1000 | hdfs dfs -put - /user/cloudera/thousand_strings.txt
$ random_strings.py 100 | hdfs dfs -put - /user/cloudera/hundred_strings.txt
$ random_strings.py 10 | hdfs dfs -put - /user/cloudera/ten_strings.txt

Next, we create a table and load an initial set of data into it. Remember, unless you specify a STORED AS clause, Impala tables default to TEXTFILE format with Ctrl-A (hex 01) as the field delimiter. This example uses a single-column table, so the delimiter is not significant. For large-scale ETL jobs, you would typically use binary format data files such as Parquet or Avro, and load them into Impala tables that use the corresponding file format.

[localhost:21000] > create table t1 (s string);
[localhost:21000] > load data inpath '/user/cloudera/thousand_strings.txt' into table t1;
Query finished, fetching results ...
+----------------------------------------------------------+
| summary                                                  |
+----------------------------------------------------------+
| Loaded 1 file(s). Total files in destination location: 1 |
+----------------------------------------------------------+
Returned 1 row(s) in 0.61s
[kilo2-202-961.cs1cloud.internal:21000] > select count(*) from t1;
Query finished, fetching results ...
+------+
| _c0  |
+------+
| 1000 |
+------+
Returned 1 row(s) in 0.67s
[localhost:21000] > load data inpath '/user/cloudera/thousand_strings.txt' into table t1;
ERROR: AnalysisException: INPATH location '/user/cloudera/thousand_strings.txt' does not exist. 

As indicated by the message at the end of the previous example, the data file was moved from its original location. The following example illustrates how the data file was moved into the Impala data directory for the destination table, keeping its original filename:

$ hdfs dfs -ls /user/hive/warehouse/load_data_testing.db/t1
Found 1 items
-rw-r--r--   1 cloudera cloudera      13926 2013-06-26 15:40 /user/hive/warehouse/load_data_testing.db/t1/thousand_strings.txt

The following example demonstrates the difference between the INTO TABLE and OVERWRITE TABLE clauses. The table already contains 1000 rows. After issuing the LOAD DATA statement with the INTO TABLE clause, the table contains 100 more rows, for a total of 1100. After issuing the LOAD DATA statement with the OVERWRITE INTO TABLE clause, the former contents are gone, and now the table only contains the 10 rows from the just-loaded data file.

[localhost:21000] > load data inpath '/user/cloudera/hundred_strings.txt' into table t1;
Query finished, fetching results ...
+----------------------------------------------------------+
| summary                                                  |
+----------------------------------------------------------+
| Loaded 1 file(s). Total files in destination location: 2 |
+----------------------------------------------------------+
Returned 1 row(s) in 0.24s
[localhost:21000] > select count(*) from t1;
Query finished, fetching results ...
+------+
| _c0  |
+------+
| 1100 |
+------+
Returned 1 row(s) in 0.55s
[localhost:21000] > load data inpath '/user/cloudera/ten_strings.txt' overwrite into table t1;
Query finished, fetching results ...
+----------------------------------------------------------+
| summary                                                  |
+----------------------------------------------------------+
| Loaded 1 file(s). Total files in destination location: 1 |
+----------------------------------------------------------+
Returned 1 row(s) in 0.26s
[localhost:21000] > select count(*) from t1;
Query finished, fetching results ...
+-----+
| _c0 |
+-----+
| 10  |
+-----+
Returned 1 row(s) in 0.62s

Cancellation: Cannot be cancelled.

Page generated September 3, 2015.