What's New

Major features and updates for the Cloudera Machine Learning service on Private Cloud.

October 4, 2021

CML on Private Cloud, version 1.3.1, has the following new features and updates.

New features and updates
  • Experiences Compute Service (ECS) is now supported.
Installation notes
  • Installation - If ECS is installed using Cloudera Docker Registries, then CML Workspace Model and Experiment building is not supported.
  • Upgrade - Upgrading a CML workspace with ML Governance enabled fails. See Known Issue DSE-18105 for details.

April 27, 2021

CML on Private Cloud, version 1.2, has the following new features and updates.

New features and updates
  • Support for OCP 4.6 and upgrading from PVC 1.1.
  • Improved non-transparent proxy support for air-gapped environments.
  • Introduced Applied ML Prototypes (AMPs).
  • Added NFS support:
    • NFS versions v3 and v4.x are supported.
    • External NFS security improvements - no_root_squash export option has been removed.
  • Support added for custom service principals (Beta).
  • Monitoring now uses CDP centralized Grafana. Added database metrics and improved alerts.
Bug fixes
  • DSE-12037 - Fixed an issue with the seamless login for Grafana.
  • DSE-14891 - Fixed an issue with broken Engine and Session log links.
  • Various security fixes.

December 16, 2020

CML on Private Cloud, version 1.1, has the following new features and updates.

  • MLOPS-216 - Production ML Support

    Model Metrics track machine model serving performance metrics. Model Governance use Apache Atlas to track builds, experiments and deployment of machine learning models.

  • DSE-10777 - UMS Integration

    MLUser and MLAdmin resource roles are now available and assignable through Environment settings.

  • DSE-12955 - Self Signed Private CA certs For custom container registries

    Customers can now use Container registries that are using self signed or private CA signed certificates. There is an option to upload the self signed or private CA signed certificates certificate during Private Cloud installation.

  • DSE-10759 - GPU support

    The OpenShift Nvidia operator is now supported for use with CML workloads.

August 17, 2020

This is the first release of CML on Private Cloud, version 1.0.

CML on Private Cloud lets you:
  • Run Machine Learning workloads on OpenShift clusters in your own data center.
  • Easily onboard a new tenant and provision an ML workspace in a shared OpenShift environment.
  • Enable data scientists to access shared data on CDP Private Cloud Base and CDW.
  • Leverage Spark-on-K8s to spin up and down Spark clusters on demand.
  • Take advantage of most CML features on public cloud, including Teams, Projects, Experiments, Models, and Applications.