Key differences between Cloudera Machine Learning and Cloudera Data Science Workbench
This topic highlights some key differences between Cloudera Data Science Workbench and its cloud-native counterpart, Cloudera Machine Learning.
How is Cloudera Machine Learning (CML) related to Cloudera Data Science Workbench (CDSW)?
CML expands the end-to-end workflow of Cloudera Data Science Workbench (CDSW) with cloud-native benefits like rapid provisioning, elastic autoscaling, distributed dependency isolation, and distributed GPU training.
It can run its own native distributed computing workloads without requiring a separate CDH cluster for scale-out compute. It is designed to run on CDP in existing Kubernetes environments, such as managed cloud Kubernetes services (EKS, AKS, GKE), Red Hat OpenShift, or ECS (Embedded Container Service), reducing operational costs for some customers while delivering multi-cloud portability.
Both products help data engineers and data science teams be more productive on shared data and compute, with strong security and governance. They share extensive code.
-
CDSW extends an existing CDH cluster, by running on gateway nodes and pushing distributed compute workloads to the cluster. CDSW requires and supports a single CDH cluster for its distributed compute, including Apache Spark.
-
In contrast, CML is self-contained and manages its own distributed compute, natively running workloads - including but not limited to Apache Spark - in containers on Kubernetes.
Note: It can still connect to an existing cluster to leverage its distributed compute, data, or metadata (SDX).