MLflow transformers
This is an example of how MLflow transformers can be supported in Cloudera Machine Learning.
This example shows how to implement a translation workflow using a translation model.
- Save the following as a file, for example, named mlflowtest.py.
#!pip3 install torch transformers torchvision tensorflow import mlflow from mlflow.models import infer_signature from mlflow.transformers import generate_signature_output from transformers import pipeline en_to_de = pipeline("translation_en_to_de") data = "MLflow is great!" output = generate_signature_output(en_to_de, data) #signature = infer_signature(data, output) with mlflow.start_run() as run: mlflow.transformers.log_model( transformers_model=en_to_de, artifact_path="english_to_german_translator", input_example=data, registered_model_name="entodetranslator", ) model_uri = f"runs:/{run.info.run_id}/english_to_german_translator" loaded = mlflow.pyfunc.load_model(model_uri) print(loaded.predict(data))
- In the Model Registry page, find the entodetranslator model. Deploy the model.
- Make a request using the following payload:
{ "dataframe_split": { "columns": [ "data" ], "data": [ [ "MLflow is great!" ] ] } }
- In a session, run the mlflowtest.py file. It should print the following
output.
print(loaded.predict(data)) ['MLflow ist großartig!']