
Machine Learning 1.5.2

Accessing Data from CML
Date published: 2020-07-16
Date modified: 2023-10-31

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Machine Learning | Contents | iii

Contents

Data Access..4

Upload and work with local files.. 4

Create an Iceberg data connection... 5

Create an Ozone data connection... 5

Connect to CDW...5
Accessing data with Spark... 6

Use JDBC Connection with PySpark.. 7

Connect to external Amazon S3 buckets... 8

Connect to External SQL Databases..9

Accessing Ozone..10
Accessing Ozone from Spark...10
Accessing local files in Ozone...10

Machine Learning Data Access

Data Access

Cloudera Machine Learning is a flexible, open platform supporting connections to many data sources.

CML supports easy, secure data access through connection snippets and the cml.data library. This library,
implemented in Python, abstracts all of the complexity of configuring, initializing, and authenticating data
connections. Users choosing to manually create and configure the data connections can follow the reference guide
below.

Upload and work with local files

This topic includes code samples that demonstrate how to access local data for CML workloads.

If you want to work with existing data files (.csv, .txt, etc.) from your computer, you can upload these files directly
to your project in the CML workspace. Go to the project's Overview page. Under the Files section, click Upload and
select the relevant data files to be uploaded. These files will be uploaded to an NFS share available to each project.

Note: Storing large data files in your Project folder is highly discouraged. You can store your data files in the
Data Lake.

The following sections use the tips.csv dataset to demonstrate how to work with local data stored in your project.
Before you run these examples, create a folder called data in your project and upload the dataset file to it.

Python

import pandas as pd
tips = pd.read_csv('data/tips.csv')

tips \
 .query('sex == "Female"') \
 .groupby('day') \
 .agg({'tip' : 'mean'}) \
 .rename(columns={'tip': 'avg_tip_dinner'}) \
 .sort_values('avg_tip_dinner', ascending=False)

R

library(readr)
library(dplyr)

load data from .csv file in project
tips <- read_csv("data/tips.csv")

query using dplyr
tips %>%
 filter(sex == "Female") %>%
 group_by(day) %>%
 summarise(
 avg_tip = mean(tip, na.rm = TRUE)
) %>%
 arrange(desc(avg_tip))

4

https://github.com/pandas-dev/pandas/blob/94e868a76f5dfd30e84469b47a316699eb1f083d/pandas/tests/io/data/csv/tips.csv

Machine Learning Create an Iceberg data connection

Create an Iceberg data connection

CML supports data connections to Iceberg data lakes.

You can set up a manual connection using the snippet provided below. To connect with Iceberg, you must use Spark
3.

Make sure to set the correct DATALAKE_DIRECTORY environmental variable.

spark = (
 SparkSession
 .builder
 .appName("Iceberg Spark")
 .config("spark.jars", "/opt/spark/optional-lib/iceberg-spark-runtime.jar
,/opt/spark/optional-lib/iceberg-hive-runtime.jar")
 .config("spark.sql.extensions", "org.apache.iceberg.spark.extensions.Ice
bergSparkSessionExtensions")
 .config("spark.sql.catalog.spark_catalog.type", "hive")
 .config("spark.sql.catalog.spark_catalog", "org.apache.iceberg.spark.Sp
arkSessionCatalog")
 .config("spark.hadoop.iceberg.engine.hive.enabled", "true")
 .config("spark.yarn.access.hadoopFileSystems", <DATALAKE_DIRECTORY>)
 .getOrCreate()
)

Create an Ozone data connection

CML supports data connections to Ozone file systems.

You can set up a manual connection using the snippet provided below. To connect to Ozone, you must use Spark 3.

Make sure to set the following parameters:

• DATALAKE_DIRECTORY
• Valid database and table name in the describe formatted SQL command.

from pyspark.sql import SparkSession
Change to the appropriate Datalake directory location
DATALAKE_DIRECTORY = "s3a://your-aws-demo/"

spark = (
 SparkSession.builder.appName("MyApp")
 .config("spark.jars", "/opt/ozone-addon/jar/ozone-filesystem-hadoop3.jar")
 .config("spark.yarn.access.hadoopFileSystems", DATALAKE_DIRECTORY)
 .getOrCreate()
)

spark.sql("show databases").show()
spark.sql("describe formatted <database_name>.<table_name>").show()

Connect to CDW

The Data Connection Snippet feature now suggests using the cml.data library to connect to CDW virtual warehouses
- these code snippets pop up as suggestions for every new session in a project. For further information, see Using data
connection snippets.

5

Machine Learning Connect to CDW

However, if you would still like to use raw Python code to connect, follow the below details.

You can access data stored in the data lake using a Cloudera Data Warehouse cluster from a CML workspace, using
the impyla Python package.

Configuring the connection

The CDW connection requires a WORKLOAD_PASSWORD that can be configured following the steps described in
Setting the workload password, linked below.

The VIRTUAL_WAREHOUSE_HOSTNAME can be extracted from the JDBC URL that can be found in CDW, by
selecting the Option menu > Copy JDBC String on a Virtual Warehouse.

For example, if the JDBC string copied as described above is:

jdbc:impala//<your-vw-host-name.site>/default;transportMode=http;httpPath=cl
iservice;socketTimeout=60;ssl=true;auth=browser;

Then, the extracted hostname to assign to the VWH_HOST is: <your-vw-host-name.site>

Connection code

Enter this code in your project file, and run it in a session.

This code assumes the impyla package to be installed.
If not, please pip install impyla

from impala.dbapi import connect
import os
USERNAME=os.getenv(HADOOP_USER_NAME)
PASSWORD=os.getenv(WORKLOAD_PASSWORD)
VWH_HOST = "<<VIRTUAL_WAREHOUSE_HOSTNAME>>"
VWH_PORT = 443
conn = connect(host=VWH_HOST, port=VWH_PORT, auth_mechanism="LDAP", user=USE
RNAME, password=PASSWORD, use_http_transport=True, http_path="cliservice",
use_ssl=True)

dbcursor = conn.cursor()
dbcursor.execute("<<INSERT SQL QUERY HERE>>")
for row in dbcursor:
 print(row)

#Sample pandas code
#from impala.util import as_pandas
#import pandas
#dbcursor = conn.cursor()
#dbcursor.execute("<<INSERT SQL QUERY HERE>>")
#tables = as_pandas(cursor)
#tables
#dbcursor.close()

Accessing data with Spark
When you are using CDW, you can use JDBC connections.

JDBC is useful in the following cases:

1. Use JDBC connections when you have fine-grained access.
2. If the scale of data sent over the wire is on the order of tens of thousands of rows of data.

6

Machine Learning Connect to CDW

Add the Python code as described below, in the Session where you want to utilize the data, and update the code with
the data location information.

Permissions

In addition, check with the Administrator that you have the correct permissions to access the data lake. You will need
a role that has read access only.

How to obtain the Data Lake directory location

You need this location if you are using a Direct Reader connection.

1. In the CDP home page, select Management Console.
2. In Environments, select the environment you are using.
3. In the tabbed section, select Cloud Storage.
4. Choose the location where your data is stored.
5. For managed data tables, copy the location shown for Hive Metastore Warehouse.
6. For external unmanaged data tables, copy the location shown for Hive Metastore External Warehouse.
7. Paste the location into the connection script in the designated position. If you are using AWS, the location starts

with s3:, and if you are using Azure, it starts with abfs:. If you are using a different location in the data lake, the
default path is shown by Hbase Root.

Set up a JDBC Connection

When using a JDBC connection, you read through a virtual warehouse that has Hive or Impala installed. You need to
obtain the JDBC connection string, and paste it into the script in your session.

1. In CDW, go to the Hive database containing your data.
2. From the kebab menu, click Copy JDBC URL.
3. Paste it into the script in your session.
4. You also have to enter your user name and password in the script. You should set up environmental variables to

store these values, instead of hardcoding them in the script.

Use JDBC Connection with PySpark
PySpark can be used with JDBC connections, but it is not recommended. The recommended approach is to use
Impyla for JDBC connections. For more information, see Connect to CDW.

Procedure

1. In your session, open the workbench and add the following code.

2. Obtain the JDBC connection string, as described above, and paste it into the script where the “jdbc” string is
shown. You will also need to insert your user name and password, or create environment variables for holding
those values.

Example

This example shows how to read external Hive tables using Spark and a Hive Virtual Warehouse.

from pyspark.sql import SparkSession
from pyspark_llap.sql.session import HiveWarehouseSession

spark = SparkSession\
.builder\
.appName("CDW-CML-JDBC-Integration")\
.config("spark.security.credentials.hiveserver2.enabled","false")\
.config("spark.datasource.hive.warehouse.read.jdbc.mode", "client")\
.config("spark.sql.hive.hiveserver2.jdbc.url",
"jdbc:hive2://hs2-aws-2-hive-viz.env-j2ln9x.dw.ylcu-atmi.cloudera.site/def
ault;\

7

Machine Learning Connect to external Amazon S3 buckets

transportMode=http;httpPath=cliservice;ssl=true;retries=3;\
user=<username>;password=<password>")\
.getOrCreate()

hive = HiveWarehouseSession.session(spark).build()
hive.showDatabases().show()
hive.setDatabase("default")
hive.showTables().show()
hive.sql("select * from foo").show()

Related Information
Connect to CDW

Connect to external Amazon S3 buckets

Every language in Cloudera Machine Learning has libraries available for uploading to and downloading from
Amazon S3.

To work with external S3 buckets in Python, do the following:

• Add your Amazon Web Services access keys to your project's environment variables as AWS_ACCESS_KEY_ID
and AWS_SECRET_ACCESS_KEY.

• Add your Ozone S3 gateway to the environment variables as OZONE_S3_GATEWAY.

Python

Install Boto to the project
!pip3 install boto3

Make sure below environment variables are set
ozone s3 gateway : os.environ['OZONE_S3_GATEWAY']
s3 keys from os.environ['AWS_ACCESS_KEY_ID'] and os.environ['AWS_SECRET
_ACCESS_KEY']

import os
import boto3

Use Boto to connect to S3 and get a list of objects from a bucket
conn = boto3.session.Session()

s3g = os.environ['OZONE_S3_GATEWAY']
access_key = os.environ['AWS_ACCESS_KEY_ID']
secret_key = os.environ['AWS_SECRET_ACCESS_KEY']

s3_client = conn.client(
 service_name='s3',
 endpoint_url=s3g
)

test_bucket = 'testozones3'
s3_client.create_bucket(Bucket=test_bucket)
all_buckets = s3_client.list_buckets()
print(f"All S3 Buckets are {[i['Name'] for i in all_buckets['Buckets']]}")

s3_client.put_object(Bucket=test_bucket, Key='README.md')

all_objs = s3_client.list_objects(Bucket=test_bucket)

8

https://docs.aws.amazon.com/accounts/latest/reference/credentials-access-keys-best-practices.html
https://docs.cloudera.com/machine-learning/1.5.2/engines/topics/ml-environment-variables.html

Machine Learning Connect to External SQL Databases

print(f"All keys in {bucket_name} are {[i['Key']for i in all_objs['Contents'
]]}")

s3_client.get_object(Bucket=test_bucket, Key='README.md')

ssl = "true" if s3g.startswith("https") else "false"
s3a_path = f"s3a://{test_bucket}/"

hadoop_opts = f"-Dfs.s3a.access.key='{access_key}' -Dfs.s3a.secret.key='{
secret_key}' -Dfs.s3a.endpoint='{s3g}' -Dfs.s3a.connection.ssl.enabled={ssl}
 -Dfs.s3a.path.style.access=true"

!hdfs dfs {hadoop_opts} -ls "s3a://{test_bucket}/"

Connect to External SQL Databases

Every language in Cloudera Machine Learning has multiple client libraries available for SQL databases.

If your database is behind a firewall or on a secure server, you can connect to it by creating an SSH tunnel to the
server, then connecting to the database on localhost.

If the database is password-protected, consider storing the password in an environmental variable to avoid displaying
it in your code or in consoles. The examples below show how to retrieve the password from an environment variable
and use it to connect.

Python

You can access data using pyodbc or SQLAlchemy

pyodbc lets you make direct SQL queries.
!wget https://pyodbc.googlecode.com/files/pyodbc-3.0.7.zip
!unzip pyodbc-3.0.7.zip
!cd pyodbc-3.0.7;python setup.py install --prefix /home/cdsw
import os

See http://www.connectionstrings.com/ for information on how to construct
 ODBC connection strings.
db = pyodbc.connect("DRIVER={PostgreSQL Unicode};SERVER=localhost;PORT=54
32;DATABASE=test_db;USER=cdswuser;OPTION=3;PASSWORD=%s" % os.environ["POSTGR
ESQL_PASSWORD"])
cursor = cnxn.cursor()
cursor.execute("select user_id, user_name from users")

sqlalchemy is an object relational database client that lets you make data
base queries in a more Pythonic way.
!pip install sqlalchemy
import os

import sqlalchemy
from sqlalchemy.orm import sessionmaker
from sqlalchemy import create_engine
db = create_engine("postgresql://cdswuser:%s@localhost:5432/test_db" % os.en
viron["POSTGRESQL_PASSWORD"])
session = sessionmaker(bind=db)
user = session.query(User).filter_by(name='ed').first()

9

https://docs.cloudera.com/machine-learning/1.5.2/engines/topics/ml-environment-variables.html
https://github.com/mkleehammer/pyodbc
http://www.sqlalchemy.org/

Machine Learning Accessing Ozone

R

You can access remote databases with dplyr.

install.packages("dplyr")
library("dplyr")
db <- src_postgres(dbname="test_db", host="localhost", port=5432, user="cds
wuser", password=Sys.getenv("POSTGRESQL_PASSWORD"))
flights_table <- tbl(db, "flights")
select(flights_table, year:day, dep_delay, arr_delay)

Accessing Ozone

In Cloudera Machine Learning, you can connect CML to the Ozone object store using a script or command line
commands. The following two articles show how to access Ozone.

Accessing Ozone from Spark
In CML, you can connect Spark to the Ozone object store with a script. The following example demonstrates how to
do this.

This script, in Scala, counts the number of word occurrences in a text file. The key point in this example is to use the
following string to refer to the text file: ofs://omservice1/s3v/hivetest/spark/jedi_wisdom.txt

Word counting example in Scala

import sys.process._

// Put the input file into Ozone
//"hdfs dfs -put data/jedi_wisdom.txt ofs://omservice1/s3v/hivetest/spark" !
// Set the following spark setting in the file "spark-defaults.conf" on the
 CML session using terminal
//spark.yarn.access.hadoopFileSystems=ofs://omservice1/s3v/hivetest
//count lower bound
val threshold = 2
// this file must already exist in hdfs, add a
// local version by dropping into the terminal.
val tokenized = sc.textFile("ofs://omservice1/s3v/hivetest/spark/jedi_wisd
om.txt").flatMap(_.split(" "))
// count the occurrence of each word
val wordCounts = tokenized.map((_ , 1)).reduceByKey(_ + _)
// filter out words with fewer than threshold occurrences
val filtered = wordCounts.filter(_._2 >= threshold)
System.out.println(filtered.collect().mkString(","))

Accessing local files in Ozone
You can access files in Ozone on a local file system using hdfscli. This method works with both legacy engines and
runtime sessions.

The following commands enable a CML session to connect to Ozone using the ofs protocol.

1. Put the input file into Ozone:

hdfs dfs -put data/jedi_wisdom.txt ofs://omservice1/s3v/hivetest/spark

10

Machine Learning Accessing Ozone

2. List the files in Ozone:

hdfs dfs -ls ofs://omservice1/s3v/hivetest/

3. Download file from ozone to local:

hdfs dfs -copyToLocal ofs://omservice1/s3v/hivetest/spark data/jedi_wisd
om.txt

11

	Contents
	Data Access
	Upload and work with local files
	Create an Iceberg data connection
	Create an Ozone data connection
	Connect to CDW
	Accessing data with Spark
	Use JDBC Connection with PySpark

	Connect to external Amazon S3 buckets
	Connect to External SQL Databases
	Accessing Ozone
	Accessing Ozone from Spark
	Accessing local files in Ozone

