
Machine Learning

Managing Engines in Cloudera Machine
Learning
Date published: 2020-07-16
Date modified: 2024-05-30

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Machine Learning | Contents | iii

Contents

Managing Engines...4
Creating Resource Profiles... 4
Configuring the Engine Environment.. 5
Set up a custom repository location...6
Burstable CPUs...6

Installing Additional Packages.. 6
Using Conda to Manage Dependencies... 8

Engine Environment Variables... 9
Engine Environment Variables...10
Accessing Environmental Variables from Projects..12

Customized Engine Images..12
Creating a Customized Engine Image..13

Create a Dockerfile for the Custom Image..13
Build the New Docker Image.. 13
Distribute the Image... 13
Including Images in allowlist for Cloudera Machine Learning projects..14
Add Docker registry credentials...14

Limitations.. 14
End-to-End Example: MeCab.. 15

Pre-Installed Packages in Engines.. 16
Base Engine 15-cml-2021.09-1.. 16
Base Engine 14-cml-2021.05-1.. 17
Base Engine 13-cml-2020.08-1.. 19
Base Engine 12-cml-2020.06-2.. 21
Base Engine 11-cml1.4...22
Base Engine 10-cml1.3...24
Base Engine 9-cml1.2...25

Machine Learning Managing Engines

Managing Engines

This topic describes how to manage engines and configure engine environments to meet your project requirements.

Required Role: EnvironmentAdmin

Site administrators and project administrators are responsible for making sure that all projects on the deployment have
access to the engines they need. Site admins can create engine profiles, determine the default engine version to be
used across the deployment, and white-list any custom engines that teams require. As a site administrator, you can
also customize engine environments by setting global environmental variables and configuring any files/folders that
need to be mounted into project environments on run time.

By default, Cloudera Machine Learning ships a base engine image that includes kernels for Python, R, and Scala,
along with some additional libraries (see Configuring Cloudera Machine Learning Engines for more information)
that can be used to run common data analytics operations. Occasionally, new engine versions are released and shipped
with Cloudera Machine Learning releases.

Engine images are available in the Site Administrator panel at Admin Engines , under the Engine Images section.
As a site administrator, you can select which engine version is used by default for new projects. Furthermore, project
administrators can explicitly select which engine image should be used as the default image for a project. To do so, go
to the project's Overview page and click Settings on the left navigation bar.

If a user publishes a new custom Docker image, site administrators are responsible for white-listing such images for
use across the deployment. For more information on creating and managing custom Docker images, see Configuring
the Engine Environment.

Related Information
Configuring the Engine Environment

Installing Additional Packages

Creating Resource Profiles
Resource profiles define how many vCPUs and how much memory the product will reserve for a particular workload
(for example, session, job, model).

About this task

As a site administrator you can create several different vCPU, GPU, and memory configurations which will be
available when launching a session/job. When launching a new session, users will be able to select one of the
available resource profiles depending on their project's requirements.

Procedure

1. To create resource profiles, go to the Site Administration Runtime/Engine page.

2. Add a new profile under Resource Profiles.

Cloudera recommends that all profiles include at least 2 GB of RAM to avoid out of memory errors for common
user operations.

You will see the option to add GPUs to the resource profiles only if your hosts are equipped with GPUs, and you
have enabled them for use by setting the relevant properties in cdsw.conf.

Results

If there are two worker nodes and 10 vCPU available overall, if one user tries to establish a session with 8 vCPU,
CDSW will not allow it. The memory and CPU must be contiguous (adjacent to each other). When a user spins a

4

https://docs.cloudera.com/machine-learning/1.5.4/engines/topics/ml-configuring-the-engine-environment.html
https://docs.cloudera.com/machine-learning/1.5.4/engines/topics/ml-install-pkg-lib.html

Machine Learning Managing Engines

session, the pod triggers on a single node and resources on the same node are utilized. This is expected behavior for
Kubernetes.

Figure 1: Resource profiles available when launching a session

Configuring the Engine Environment
This section describes some of the ways you can configure engine environments to meet the requirements of your
projects.

Install Additional Packages

For information on how to install any additional required packages and dependencies to your engine, see Installing
Additional Packages.

Environmental Variables

For information on how environmental variables can be used to configure engine environments in Cloudera Machine
Learning, see Engine Environment Variables.

Configuring Shared Memory Limit for Docker Images

You can increase the shared memory size for the sessions, experiments, and jobs running within an Engine container
within your project. For Docker, the default size of the available shared memory is 64 MB.

To increase the shared memory limit:

1. From the web UI, go to Projects Project Settings Engine Advanced Settings
2. Specify the shared memory size in the Shared Memory Limit field.
3. Click Save Advanced Settings to save the configuration and exit.

This mounts a volume with the tmpfs file system to /dev/shm and Kubernetes will enforce the given limit. The
maximum size of this volume is the half of your physical RAM in the node without the swap.

Related Information
Engine Environment Variables

Installing Additional Packages

5

https://docs.cloudera.com/machine-learning/1.5.4/engines/topics/ml-environment-variables.html

Machine Learning Installing Additional Packages

Set up a custom repository location
You can set up a custom default location for Python and R code package repositories. This is especially useful for air-
gapped clusters that are isolated from the PIP and CRAN repositories on the public internet.

Python PIP repository

Custom PIP repositories can be set as default for all engines at a site or project level. The environmental variables can
be set at the Project or Site level. If the values are set at the Site level, they can be overridden at the Project level.

1. Set the environmental variables at the appropriate level.

• For Site level, go to: Site Administration Engine
• For Project level, go to: Project Settings Engine

2. To set a new default URL for the PIP index, enter:

• PIP_INDEX_URL = <new url>
• PIP_EXTRA_INDEX_URL = <new url>

CRAN repository

Custom CRAN repositories must be set in a session or as part of a custom engine. To set a new default URL for a
CRAN repository, set the following in the /home/cdsw/.Rprofile file:

options(repos=structure(c(CRAN="<mirror URL>")))

Burstable CPUs
CML configures no upper bound on the CPU resources that Workloads can use so that they can use all of the CPU
resources available on the node where they are running. By configuring no CPU limits, CML enables efficient use of
the CPU resources available on your cluster nodes.

• If the CPUs are idle then the workloads can burst and take advantage of the free CPU cycles. For example, if
you've launched a session with 1vCPU but the code inside it requires more than 1vCPU, the workload container
can consume all the available CPU cycles on the node where it's launched.

• When the cluster is highly utilized and CPU resources are sparse, Workloads will be limited to use the number of
CPU resources configured in their resource profile.

• If multiple containers are attempting to use excess CPU, CPU time is distributed in proportion to the amount of
CPU initially requested by each container.

Installing Additional Packages

Cloudera Machine Learning engines are preloaded with a few common packages and libraries for R, Python, and
Scala. However, a key feature of Cloudera Machine Learning is the ability of different projects to install and use
libraries pinned to specific versions, just as you would on your local computer.

Note: Before downloading or using third-party content, you are responsible for reviewing and complying
with any applicable license terms and making sure that they are acceptable for your use case.

Generally, Cloudera recommends you install all required packages locally into your project. This will ensure you
have the exact versions you want and that these libraries will not be upgraded when Cloudera upgrades the base
engine image. You only need to install libraries and packages once per project. From then on, they are available to
any new engine you spawn throughout the lifetime of the project.

6

Machine Learning Installing Additional Packages

You can install additional libraries and packages from the workbench, using either the command prompt or the
terminal.

Note:

Cloudera Machine Learning does not currently support installation of packages that require root access to the
hosts. For such use-cases, you will need to create a new custom engine that extends the base engine image to
include the required packages. For instructions, see Creating a Customized Engine Image.

(Python and R) Install Packages Using Workbench Command Prompt

To install a package from the command prompt:

1. Navigate to your project's Overview page. Click Open Workbench and launch a session.
2. At the command prompt (see Native Workbench Console and Editor) in the bottom right, enter the command to

install the package. Some examples using Python and R have been provided.

R

Install from CRAN
install.packages("ggplot2")

Install using devtools
install.packages('devtools')
library(devtools)
install_github("hadley/ggplot2")

Python 2

Installing from console using ! shell operator and pip:
!pip install beautifulsoup

Installing from terminal
pip install beautifulsoup

Python 3

Installing from console using ! shell operator and pip3:
!pip3 install beautifulsoup4
Installing from terminal
pip3 install beautifulsoup4

(Python Only) Using a Requirements File

For a Python project, you can specify a list of the packages you want in a requirements.txt file that lives in your
project. The packages can be installed all at once using pip/pip3.

1. Create a new file called requirements.txt file within your project:

beautifulsoup4==4.6.0
seaborn==0.7.1

2. To install the packages in a Python 3 engine, run the following command in the workbench command prompt.

!pip3 install -r requirements.txt

For Python 2 engines, use pip.

!pip install -r requirements.txt

7

Machine Learning Installing Additional Packages

Related Information
Conda

Using Conda to Manage Dependencies
You can install additional libraries and packages from the workbench, using either the command prompt or the
terminal. Alternatively, you might choose to use a package manager such as Conda to install and maintain packages
and their dependencies. This topic describes some basic usage guidelines for Conda.

Cloudera Machine Learning recommends using pip for package management along with a requirements.txt file (as
described in the previous section). However, for users that prefer Conda, the default engine in Cloudera Machine
Learning includes two environments called python2.7, and python3.6. These environments are added to sys.path,
depending on the version of Python selected when you launch a new session.

In Python 2 and Python 3 sessions and attached terminals, Cloudera Machine Learning automatically sets the COND
A_DEFAULT_ENV and CONDA_PREFIX environment variables to point to Conda environments under /home/cd
sw/.conda.

However, Cloudera Machine Learning does not automatically configure Conda to pin the actual Python version.
Therefore if you are using Conda to install a package, you must specify the version of Python. For example, to use
Conda to install the feather-format package into the python3.6 environment, run the following command in the
Workbench command prompt:

!conda install -y -c conda-forge python=3.6.9 feather-format

To install a package into the python2.7 environment, run:

!conda install -y -c conda-forge python=2.7.17 feather-format

Note that on sys.path, pip packages have precedence over conda packages.

Note:

• Cloudera Machine Learning does not automatically configure a Conda environment for R and Scala
sessions and attached terminals. If you want to use Conda to install packages from an R or Scala session
or terminal, you must manually configure Conda to install packages into the desired environment.

Creating an Extensible Engine With Conda

Cloudera Machine Learning also allows you to Configuring the Engine Environment to include packages of your
choice using Conda. To create an extended engine:

1. Add the following lines to a Dockerfile to extend the base engine, push the engine image to your Docker registry,
and include the new engine in the allowlist, for your project. For more details on this step, see Configuring the
Engine Environment.

Python 2

RUN mkdir -p /opt/conda/envs/python2.7
RUN conda install -y nbconvert python=2.7.17 -n python2.7

Python 3

RUN mkdir -p /opt/conda/envs/python3.6
RUN conda install -y nbconvert python=3.6.9 -n python3.6

8

https://conda.io/en/latest/

Machine Learning Engine Environment Variables

2. Set the PYTHONPATH environmental variable as shown below. You can set this either globally in the site
administrator dashboard, or for a specific project by going to the project's Settings Engine page.

Python 2

PYTHONPATH=$PYTHONPATH:/opt/conda/envs/python2.7/lib/python2.7/site-pack
ages

Python 3

PYTHONPATH=$PYTHONPATH:/opt/conda/envs/python3.6/lib/python3.6/site-pack
ages

Related Information
Conda

Configuring the Engine Environment

Engine Environment Variables

This topic describes how engine environmental variables work. It also lists the different scopes at which they can be
set and the order of precedence that will be followed in case of conflicts.

Environmental variables allow you to customize engine environments for projects. For example, if you need to
configure a particular timezone for a project, or increase the length of the session/job timeout windows, you can use
environmental variables to do so. Environmental variables can also be used to assign variable names to secrets such as
passwords or authentication tokens to avoid including these directly in the code.

In general, Cloudera recommends that you do not include passwords, tokens, or any other secrets directly in your
code because anyone with read access to your project will be able to view this information. A better place to store
secrets is in your project's environment variables, where only project collaborators and admins have view access.
They can therefore be used to securely store confidential information such as your AWS keys or database credentials.

Cloudera Machine Learning allows you to define environmental variables for the following scopes:
Global

A site administrator for your Cloudera Machine Learning deployment can set environmental
variables on a global level. These values will apply to every project on the deployment.

To set global environmental variables, go to Admin Runtime/Engines .

Project

Project administrators can set project-specific environmental variables to customize the
engines launched for a project. Variables set here will override the global values set in the site
administration panel.

To set environmental variables for a project, go to the project's Overview page and click Settings
Advanced .

Job

Environments for individual jobs within a project can be customized while creating the job.
Variables set per-job will override the project-level and global settings.

To set environmental variables for a job, go to the job's Overview page and click Settings Set
Environmental Variables .

Experiments

9

https://conda.io/en/latest/

Machine Learning Engine Environment Variables

Engines created for execution of experiments are completely isolated from the project. However,
these engines inherit values from environmental variables set at the project-level and/or global level.
Variables set at the project-level will override the global values set in the site administration panel.

Models

Model environments are completely isolated from the project. Environmental variables for these
engines can be configured during the build stage of the model deployment process. Models will also
inherit any environment variables set at the project and global level. However, variables set per-
model build will override other settings.

Engine Environment Variables
The following table lists Cloudera Machine Learning environment variables that you can use to customize your
project environments. These can be set either as a site administrator or within the scope of a project or a job.

Environment Variable Description

MAX_TEXT_LENGTH Maximum number of characters that can be displayed in a single text cell. By default, this value
is set to 800,000 and any more characters will be truncated.

Default: 800,000

PROJECT_OWNER The name of the Team or user that created the project.

SESSION_MAXIMUM_MINUTES Maximum number of minutes a session can run before it times out.

Default: 60*24*7 minutes (7 days)

Maximum Value: 35,000 minutes

JOB_MAXIMUM_MINUTES Maximum number of minutes a job can run before it times out.

Default: 60*24*7 minutes (7 days)

Maximum Value: 35,000 minutes

IDLE_MAXIMUM_MINUTES Maximum number of minutes a session can remain idle before it exits.

Default: 60 minutes

Maximum Value: 35,000 minutes

Idle timeouts for sessions vary by workbench type (runtime).

• Standard Workbench: Sessions timeout regardless of activity in the browser or terminal.
• PBJ Workbench: Sessions timeout if there is no browser activity and no terminal window

is open. If a terminal window is open, the session will not timeout, regardless of whether
there is activity in the terminal window.

• Jupyterlab: Sessions timeout if there is no browser activity. Terminal window activity is
not considered.

• Custom runtimes: No idle timeout behavior is enforced on custom or third-party
workbenches.

CONDA_DEFAULT_ENV Points to the default Conda environment so you can use Conda to install/manage packages
in the Workbench. For more details on when to use this variable, see Installing Additional
Packages.

Per-Engine Environmental Variables: In addition to the previous table, there are some more built-in environmental
variables that are set by the Cloudera Machine Learning application itself and do not need to be modified by users.
These variables are set per-engine launched by Cloudera Machine Learning and only apply within the scope of each
engine.

Environment Variable Description

CDSW_PROJECT The project to which this engine belongs.

10

Machine Learning Engine Environment Variables

Environment Variable Description

CDSW_PROJECT_ID The ID of the project to which this engine belongs.

CDSW_ENGINE_ID The ID of this engine. For sessions, this appears in your browser's URL bar.

CDSW_MASTER_ID If this engine is a worker, this is the CDSW_ENGINE_ID of its master.

CDSW_MASTER_IP If this engine is a worker, this is the IP address of its master.

CDSW_PUBLIC_PORT Note: This property is deprecated. See CDSW_APP_PORT and CDSW_READONL
Y_PORT for alternatives.

A port on which you can expose HTTP services in the engine to browsers. HTTP services
that bind CDSW_PUBLIC_PORT will be available in browsers at: http(s)://read-only-<
$CDSW_ENGINE_ID>.<$CDSW_DOMAIN>. By default, CDSW_PUBLIC_PORT is set to 8080.

A direct link to these web services will be available from the grid icon in the upper right corner of
the Cloudera Machine Learning web application, as long as the job or session is still running. For
more details, see Accessing Web User Interfaces from Cloudera Machine Learning.

In Cloudera Machine Learning, setting CDSW_PUBLIC_PORT to a non-default port number is not
supported.

CDSW_APP_PORT A port on which you can expose HTTP services in the engine to browsers. HTTP services that bind
CDSW_APP_PORT will be available in browsers at: http(s)://read-only-<$CDSW_ENGINE_ID>.<
$CDSW_DOMAIN>. Use this port for applications that grant some control to the project, such as
access to the session or terminal.

A direct link to these web services will be available from the grid icon in the upper right corner of
the Cloudera Machine Learning web application as long as the job or session runs. Even if the web
UI does not have authentication, only Contributors and those with more access to the project can
access it. For more details, see Accessing Web User Interfaces from Cloudera Machine Learning.

Note that if the Site Administrator has enabled Allow only session creators to run commands on
active sessions, then the UI is only available to the session creator. Other users will not be able to
access it.

Use 127.0.0.1 as the IP.

CDSW_READONLY_PORT A port on which you can expose HTTP services in the engine to browsers. HTTP services
that bind CDSW_READONLY_PORT will be available in browsers at: http(s)://read-only-<
$CDSW_ENGINE_ID>.<$CDSW_DOMAIN>. Use this port for applications that grant read-only
access to project results.

A direct link to these web services will be available to users with from the grid icon in the upper
right corner of the Cloudera Machine Learning web application as long as the job or session
runs. Even if the web UI does not have authentication, Viewers and those with more access to the
project can access it. For more details, see Accessing Web User Interfaces from Cloudera Machine
Learning.

Use 127.0.0.1 as the IP.

CDSW_DOMAIN The domain on which Cloudera Machine Learning is being served. This can be useful for iframing
services, as demonstrated in Accessing Web User Interfaces from Cloudera Machine Learning.

CDSW_CPU_MILLICORES The number of CPU cores allocated to this engine, expressed in thousandths of a core.

CDSW_MEMORY_MB The number of megabytes of memory allocated to this engine.

CDSW_IP_ADDRESS Other engines in the Cloudera Machine Learning cluster can contact this engine on this IP address.

CDSW_APP_POLLING_ENDPOINT Specify a custom endpoint that CML uses to check the status of the application. The default value is
'/'.

Related Information
Installing Additional Packages

11

https://docs.cloudera.com/machine-learning/1.5.4/engines/topics/ml-install-pkg-lib.html

Machine Learning Customized Engine Images

Accessing Environmental Variables from Projects
This topic shows you how to access environmental variables from your code.

Environmental variables are injected into every engine launched for a project, contingent on the scope at which
the variable was set (global, project, etc.). The following code samples show how to access a sample environment
variable called DATABASE_PASSWORD from your project code.

R

database.password <- Sys.getenv("DATABASE_PASSWORD")

Python

import os
database_password = os.environ["DATABASE_PASSWORD"]

Scala

System.getenv("DATABASE_PASSWORD")

Appending Values to Environment Variables:

You can also set environment variables to append to existing values instead of replacing them. For example, when
setting the LD_LIBRARY_PATH variable, you can set the value to LD_LIBRARY_PATH:/path/to/set.

Customized Engine Images

This topic explains how custom engines work and when they should be used.

By default, Cloudera Machine Learning engines are preloaded with a few common packages and libraries for R,
Python, and Scala. In addition to these, Cloudera Machine Learning also allows you to install any other packages or
libraries that are required by your projects. However, directly installing a package to a project as described above
might not always be feasible. For example, packages that require root access to be installed, or that must be installed
to a path outside /home/cdsw (outside the project mount), cannot be installed directly from the workbench.

For such circumstances, Cloudera Machine Learning allows you to extend the base Docker image and create a new
Docker image with all the libraries and packages you require. Site administrators can then include this new image in
the allowlist for use in projects, and project administrators set the new white-listed image to be used as the default
engine image for their projects. For an end-to-end example of this process, see End-to-End Example: MeCab.

Note: You will need to remove any unnecessary Cloudera sources or repositories that are inaccessible
because of the paywall.

Note that this approach can also be used to accelerate project setup across the deployment. For example, if you want
multiple projects on your deployment to have access to some common dependencies (package or software or driver)
out of the box, or even if a package just has a complicated setup, it might be easier to simply provide users with an
engine that has already been customized for their project(s).

Related Resources

• The Cloudera Engineering Blog post on Customizing Docker Images in Cloudera Maching Learning describes an
end-to-end example on how to build and publish a customized Docker image and use it as an engine in Cloudera
Machine Learning.

• For an example of how to extend the base engine image to include Conda, see Installing Additional Packages.

12

Machine Learning Customized Engine Images

Related Information
End-to-End Example: MeCab

Installing Additional Packages

Customizing Docker Images in Cloudera Machine Learning

Creating a Customized Engine Image
This section walks you through the steps required to create your own custom engine based on the Cloudera Machine
Learning base image.

For a complete example, see End-to-End Example: MeCab.

Create a Dockerfile for the Custom Image
This topic shows you how to create a Dockerfile for a custom image.

The first step when building a customized image is to create a Dockerfile that specifies which packages you would
like to install in addition to the base image.

For example, the following Dockerfile installs the beautifulsoup4 package on top of the base Ubuntu image that ships
with Cloudera Machine Learning.

Dockerfile

Specify a Cloudera Machine Learning base image
FROM docker.repository.cloudera.com/cloudera/cdsw/engine:13-cml-2021.02-1

Update packages on the base image and install beautifulsoup4
RUN apt-get update
RUN pip install beautifulsoup4 && pip3 install beautifulsoup4

Build the New Docker Image
This topic shows you how to use Docker to build a custom image.

A new custom Docker image can be built on any host where Docker binaries are installed. To install these binaries,
run the following command on the host where you want to build the new image:

docker build -t <image-name>:<tag> . -f Dockerfile

If you want to build your image on the Cloudera Machine Learning workspace, you must add the --network=host
option to the build command:

docker build --network=host -t <image-name>:<tag> . -f Dockerfile

Distribute the Image
This topic explains the different methods that can be used to distribute a custom engine to all the hosts.

Once you have built a new custom engine, use one of the following ways to distribute the new image to all your
Cloudera Machine Learning hosts:
Push the image to a public registry such as DockerHub

For instructions, refer the Docker documentation docker push and Push images to Docker Cloud.

Push the image to your company's Docker registry

When using this method, make sure to tag your image with the following schema:

docker tag <image-name> <company-registry>/<user-name>/<image-na
me>:<tag>

13

https://docs.cloudera.com/machine-learning/1.5.4/engines/topics/ml-install-pkg-lib.html
https://blog.cloudera.com/customizing-docker-images-in-cloudera-data-science-workbench/

Machine Learning Customized Engine Images

Once the image has been tagged properly, use the following command to push the image:

docker push <company-registry>/<user-name>/<image-name>:<tag>

The MeCab example at the end of this topic uses this method.

Related Information
docker push

Including Images in allowlist for Cloudera Machine Learning projects
This topic describes how to include custom images in the allowlist so that they can be used in projects.

Including a customized image in Cloudera Machine Learning is a two-step process.

1. Include the image in the allowlist for the whole deployment.

First, a site administrator will need to clear the new image for use on the deployment.

a. Log in as a site administrator.
b. Click Admin Engines .
c. Add <company-registry>/<user-name>/<image-name>:<tag> to the allowlist of engine images.

2. Include the image in the allowlist for a specific project

If you want to start using the image in a project, the project administrator will need to set this image as the default
image for the project.

a. Go to the project Settings page.
b. Click Engines.
c. Select the new customized engine from the drop-down list of available Docker images. Sessions and jobs you

run in your project will now have access to this engine.

Add Docker registry credentials
To enable CML to fetch custom engines from a secure repository, as Administrator you need to add Docker registry
credentials.

Create a kubectl secret named regcred for your secured Docker registry. The following command creates the secret
in your Kubernetes cluster:

kubectl create secret docker-registry regcred
 --docker-server=<server host>
 --docker-username=<username>
 --docker-password=<password>
 -n <compute namespace eg. mlx>

The next time the engine image is pulled, the new secret will be picked up.

Limitations
This topic lists some limitations associated with custom engines.

• Cloudera Machine Learning only supports customized engines that are based on the Cloudera Machine Learning
base image.

• Cloudera Machine Learning does not support creation of custom engines larger than 10 GB.

Cloudera Bug: DSE-4420
• Cloudera Machine Learning does not support pulling images from registries that require Docker credentials.

Cloudera Bug: DSE-1521

14

https://docs.docker.com/engine/reference/commandline/push/

Machine Learning Customized Engine Images

• The contents of certain pre-existing standard directories such as /home/cdsw, /tmp, and so on, cannot be modified
while creating customized engines. This means any files saved in these directories will not be accessible from
sessions that are running on customized engines.

Workaround: Create a new custom directory in the Dockerfile used to create the customized engine, and save your
files to that directory.

End-to-End Example: MeCab
This topic walks you through a simple end-to-end example on how to build and use custom engines.

This section demonstrates how to customize the Cloudera Machine Learning base engine image to include the MeCab
(a Japanese text tokenizer) library.

This is a sample Dockerfile that adds MeCab to the Cloudera Machine Learning base image.

Dockerfile

FROM docker.repository.cloudera.com/cloudera/cdsw/engine:13-cml-2021.02-1
RUN rm /etc/apt/sources.list.d/*
RUN apt-get update && \
 apt-get install -y -q mecab \
 libmecab-dev \
 mecab-ipadic-utf8 && \
 apt-get clean && \
 rm -rf /var/lib/apt/lists/*
RUN cd /tmp && \
 git clone --depth 1 https://github.com/neologd/mecab-ipadic-neologd.git
 && \
 /tmp/mecab-ipadic-neologd/bin/install-mecab-ipadic-neologd -y -n -p /v
ar/lib/mecab/dic/neologd && \
 rm -rf /tmp/mecab-ipadic-neologd
RUN pip install --upgrade pip
RUN pip install mecab-python==0.996

To use this image on your Cloudera Machine Learning project, perform the following steps.

1. Build a new image with the Dockerfile.

docker build --network=host -t <company-registry>/user/cdsw-mecab:latest .
 -f Dockerfile

2. Push the image to your company's Docker registry.

docker push <your-company-registry>/user/cdsw-mecab:latest

3. Whitelist the image, <your-company-registry>/user/cdsw-mecab:latest. Only a site administrator can do this.

Go to Admin Engines and add <company-registry>/user/cdsw-mecab:latest to the list of whitelisted engine
images.

15

Machine Learning Pre-Installed Packages in Engines

4. Ask a project administrator to set the new image as the default for your project. Go to the project Settings, click
Engines, and select company-registry/user/cdsw-mecab:latest from the dropdown.

You should now be able to run this project on the customized MeCab engine.

Pre-Installed Packages in Engines

Cloudera Machine Learning ships with several base engine images that include Python and R kernels, and frequently
used libraries.

Base Engine 15-cml-2021.09-1
Engine 15 ships Python versions 2.7.18 and 3.6.13, and R version 3.6.3.

Items in bold indicate a new version since the last release.

Table 1: Python 3 Libraries

Library Version

ipython 5.1.0

requests 2.22.0

simplejson 3.16.0

numpy 1.16.5

pandas 0.24.2

pandas-datareader 0.8.0

py4j 0.10.8.1

matplotlib 2.2.4

seaborn 0.9.0

cython 0.29.13

six 1.16.0

Table 2: Python 2 Libraries

Library Version

ipython 5.1.0

requests 2.22.0

simplejson 3.16.0

16

Machine Learning Pre-Installed Packages in Engines

Library Version

numpy 1.16.5

pandas 0.24.2

pandas-datareader 0.8.0

py4j 0.10.8.1

futures 3.3.0

matplotlib 2.2.4

seaborn 0.9.0

cython 0.29.13

six 1.16.0

Table 3: R Libraries

Package Version

RCurl 1.98.1.2

caTools 1.18.0

svTools 0.9.5

png 0.1.7

RJSONIO 1.3.1.4

ggplot2 3.3.1

cluster 2.1.0

codetools 0.2.16

foreign 0.8.69

dplyr 1.0.0

httr 1.4.1

httpuv 1.5.4

jsonlite 1.6.1

magrittr 1.5

knitr 1.28

purrr 0.3.4

tm 0.7.7

proxy 0.4.24

data.table 1.12.8

stringr 1.4.0

Rook 1.1.1

rJava 0.9.12

devtools 2.3.0

Base Engine 14-cml-2021.05-1
Engine 14 ships Python versions 2.7.18 and 3.6.10, and R version 3.6.3.

Items in bold indicate a new version since the last release.

17

Machine Learning Pre-Installed Packages in Engines

Table 4: Python 3 Libraries

Library Version

ipython 5.1.0

requests 2.22.0

simplejson 3.16.0

numpy 1.17.2

pandas 0.25.1

pandas-datareader 0.8.1

py4j 0.10.8.1

matplotlib 3.1.2

seaborn 0.9.0

cython 0.29.13

six 1.15.0

Table 5: Python 2 Libraries

Library Version

ipython 5.1.0

requests 2.22.0

simplejson 3.16.10

numpy 1.16.5

pandas 0.24.2

pandas-datareader 0.8.0

py4j 0.10.8.1

futures 3.3.0

matplotlib 2.2.4

seaborn 0.9.0

cython 0.29.13

six 1.15.0

Table 6: R Libraries

Package Version

RCurl 1.98.1.2

caTools 1.18.0

svTools 0.9.5

png 0.1.7

RJSONIO 1.3.1.4

ggplot2 3.3.1

cluster 2.1.0

codetools 0.2.16

foreign 0.8.69

18

Machine Learning Pre-Installed Packages in Engines

Package Version

dplyr 1.0.0

httr 1.4.1

httpuv 1.5.4

jsonlite 1.6.1

magrittr 1.5

knitr 1.28

purrr 0.3.4

tm 0.7.7

proxy 0.4.24

data.table 1.12.8

stringr 1.4.0

Rook 1.1.1

rJava 0.9.12

devtools 2.3.0

Related Information
Base Engine 9

Base Engine 10

Base Engine 11

Base Engine 12

Base Engine 13

Base Engine 13-cml-2020.08-1
Engine 13 ships Python versions 2.7.18 and 3.6.10, and R version 3.6.3.

Items in bold indicate a new version since the last release.

Note: This is the only engine available on CML Private Cloud 1.0.

Table 7: Python 3 Libraries

Library Version

ipython 5.1.0

requests 2.22.0

simplejson 3.16.0

numpy 1.17.2

pandas 0.25.1

pandas-datareader 0.8.1

py4j 0.10.8.1

matplotlib 3.1.2

seaborn 0.9.0

cython 0.29.13

19

https://docs.cloudera.com/machine-learning/1.5.4/engines/topics/ml-base-engine-9.html
https://docs.cloudera.com/machine-learning/1.5.4/engines/topics/ml-base-engine-10.html
https://docs.cloudera.com/machine-learning/1.5.4/engines/topics/ml-base-engine-11.html
https://docs.cloudera.com/machine-learning/1.5.4/engines/topics/ml-base-engine-12.html
https://docs.cloudera.com/machine-learning/1.5.4/engines/topics/ml-base-engine-12.html

Machine Learning Pre-Installed Packages in Engines

Library Version

six 1.15.0

Table 8: Python 2 Libraries

Library Version

ipython 5.1.0

requests 2.22.0

simplejson 3.16.10

numpy 1.16.5

pandas 0.24.2

pandas-datareader 0.8.0

py4j 0.10.8.1

futures 3.3.0

matplotlib 2.2.4

seaborn 0.9.0

cython 0.29.13

six 1.15.0

Table 9: R Libraries

Package Version

RCurl 1.98.1.2

caTools 1.18.0

svTools 0.9.5

png 0.1.7

RJSONIO 1.3.1.4

ggplot2 3.3.1

cluster 2.1.0

codetools 0.2.16

foreign 0.8.69

dplyr 1.0.0

httr 1.4.1

httpuv 1.5.4

jsonlite 1.6.1

magrittr 1.5

knitr 1.28

purrr 0.3.4

tm 0.7.7

proxy 0.4.24

data.table 1.12.8

stringr 1.4.0

Rook 1.1.1

20

Machine Learning Pre-Installed Packages in Engines

Package Version

rJava 0.9.12

devtools 2.3.0

Related Information
Base Engine 9

Base Engine 10

Base Engine 11

Base Engine 12

Base Engine 14

Base Engine 12-cml-2020.06-2
Engine 12 ships Python versions 2.7.18 and 3.6.10, and R version 3.6.3.

Table 10: Python 3 Libraries

Library Version

ipython 5.1.0

requests 2.22.0

simplejson 3.16.0

numpy 1.17.2

pandas 0.25.1

pandas-datareader 0.8.1

py4j 0.10.8.1

matplotlib 3.1.2

seaborn 0.9.0

Cython 0.29.13

Table 11: Python 2 Libraries

Library Version

ipython 5.1.0

requests 2.22.0

simplejson 3.16.0

numpy 1.16.5

pandas 0.24.2

pandas-datareader 0.8.0

py4j 0.10.8.1

futures 3.3.0

matplotlib 2.2.4

seaborn 0.9.0

Cython 0.29.13

21

https://docs.cloudera.com/machine-learning/1.5.4/engines/topics/ml-base-engine-9.html
https://docs.cloudera.com/machine-learning/1.5.4/engines/topics/ml-base-engine-10.html
https://docs.cloudera.com/machine-learning/1.5.4/engines/topics/ml-base-engine-11.html
https://docs.cloudera.com/machine-learning/1.5.4/engines/topics/ml-base-engine-12.html
https://docs.cloudera.com/machine-learning/1.5.4/engines/topics/ml-base-engine-12.html

Machine Learning Pre-Installed Packages in Engines

Table 12: R Libraries

Package Version

RCurl 1.98.1.2

caTools 1.18.0

svTools 0.9.5

png 0.1.7

RJSONIO 1.3.1.4

ggplot2 3.3.1

cluster 2.1.0

codetools 0.2.16

foreign 0.8.69

dplyr 1.0.0

httr 1.4.1

httpuv 1.5.4

jsonlite 1.6.1

magrittr 1.5

knitr 1.28

purrr 0.3.4

tm 0.7.7

proxy 0.4.24

data.table 1.12.8

stringr 1.4.0

Rook 1.1.1

rJava 0.9.12

devtools 2.3.0

Related Information
Base Engine 9

Base Engine 10

Base Engine 11

Base Engine 13

Base Engine 14

Base Engine 11-cml1.4
Engine 11 ships Python versions 2.7.17 and 3.6.9, and R version 3.6.2.

Table 13: Python 3 Libraries

Library Version

ipython 5.1.0

requests 2.22.0

simplejson 3.16.0

22

https://docs.cloudera.com/machine-learning/1.5.4/engines/topics/ml-base-engine-9.html
https://docs.cloudera.com/machine-learning/1.5.4/engines/topics/ml-base-engine-10.html
https://docs.cloudera.com/machine-learning/1.5.4/engines/topics/ml-base-engine-11.html
https://docs.cloudera.com/machine-learning/1.5.4/engines/topics/ml-base-engine-13.html
https://docs.cloudera.com/machine-learning/1.5.4/engines/topics/ml-base-engine-12.html

Machine Learning Pre-Installed Packages in Engines

Library Version

numpy 1.17.2

pandas 0.25.1

pandas-datareader 0.8.1

py4j 0.10.8.1

matplotlib 2.0.0

seaborn 0.9.0

Cython 0.29.13

Table 14: Python 2 Libraries

Library Version

ipython 5.1.0

requests 2.22.0

simplejson 3.16.0

numpy 1.16.5

pandas 0.24.2

pandas-datareader 0.8.0

py4j 0.10.8.1

futures 3.3.0

matplotlib 2.0.0

seaborn 0.9.0

Cython 0.29.13

Table 15: R Libraries

Package Version

RCurl 1.95.4.12

caTools 1.17.1.3

svTools 0.9.5

png 0.1.7

RJSONIO 1.3.1.3

ggplot2 3.2.1

cluster 2.1.0

codetools 0.2.16

foreign 0.8.73

dplyr 0.8.3

httr 1.4.1

httpuv 1.5.2

jsonlite 1.6

magrittr 1.5

knitr 1.26

purrr 0.3.3

23

Machine Learning Pre-Installed Packages in Engines

Package Version

tm 0.7.7

proxy 0.4.23

data.table 1.12.8

stringr 1.4.0

Rook 1.1.1

rJava 0.9.11

devtools 2.2.1

Related Information
Base Engine 9

Base Engine 10

Base Engine 12

Base Engine 13

Base Engine 14

Base Engine 10-cml1.3
Engine 10 ships Python versions 2.7.17 and 3.6.9, and R version 3.5.1.

Table 16: Python 3 Libraries

Library Version

ipython 5.1.0

requests 2.22.0

simplejson 3.16.0

numpy 1.17.2

pandas 0.25.1

pandas-datareader 0.8.1

py4j 0.10.8.1

matplotlib 2.0.0

seaborn 0.9.0

Cython 0.29.13

Table 17: Python 2 Libraries

Library Version

ipython 5.1.0

requests 2.22.0

simplejson 3.16.0

numpy 1.16.5

pandas 0.24.2

pandas-datareader 0.8.0

py4j 0.10.8.1

futures 3.3.0

24

https://docs.cloudera.com/machine-learning/1.5.4/engines/topics/ml-base-engine-9.html
https://docs.cloudera.com/machine-learning/1.5.4/engines/topics/ml-base-engine-10.html
https://docs.cloudera.com/machine-learning/1.5.4/engines/topics/ml-base-engine-12.html
https://docs.cloudera.com/machine-learning/1.5.4/engines/topics/ml-base-engine-13.html
https://docs.cloudera.com/machine-learning/1.5.4/engines/topics/ml-base-engine-12.html

Machine Learning Pre-Installed Packages in Engines

Library Version

matplotlib 2.0.0

seaborn 0.9.0

Cython 0.29.13

Table 18: R Libraries

Package Version

RCurl 1.95.4.12

caTools 1.17.1.3

svTools 0.9.5

png 0.1.7

RJSONIO 1.3.1.3

ggplot2 3.2.1

cluster 2.1.0

codetools 0.2.16

foreign 0.8.73

dplyr 0.8.3

httr 1.4.1

httpuv 1.5.2

jsonlite 1.6

magrittr 1.5

knitr 1.26

purrr 0.3.3

tm 0.7.7

proxy 0.4.23

data.table 1.12.8

stringr 1.4.0

Rook 1.1.1

rJava 0.9.11

devtools 2.2.1

Related Information
Base Engine 9

Base Engine 11

Base Engine 12

Base Engine 13

Base Engine 14

Base Engine 9-cml1.2
Engine 9 ships Python 2.7.11 and 3.6.8, and R version 3.5.1.

25

https://docs.cloudera.com/machine-learning/1.5.4/engines/topics/ml-base-engine-9.html
https://docs.cloudera.com/machine-learning/1.5.4/engines/topics/ml-base-engine-11.html
https://docs.cloudera.com/machine-learning/1.5.4/engines/topics/ml-base-engine-12.html
https://docs.cloudera.com/machine-learning/1.5.4/engines/topics/ml-base-engine-13.html
https://docs.cloudera.com/machine-learning/1.5.4/engines/topics/ml-base-engine-12.html

Machine Learning Pre-Installed Packages in Engines

Table 19: Python Libraries

Library Version

ipython 5.1.0

requests 2.13.0

Flask 0.12.0

simplejson 3.10.0

numpy 1.13.3

pandas 0.20.1

pandas-datareader 0.2.1

py4j 0.10.7

futures 2.1.4

matplotlib 2.0.0

seaborn 0.8.0

Cython 0.25.2

kudu-python 1.2.0

Table 20: R Libraries

Package Version

RCurl 1.95.4.12

caTools 1.17.1.2

svTools 0.9.5

png 0.1.7

RJSONIO 1.3.1.2

ggplot2 3.1.1

cluster 2.0.9

codetools 0.2.16

foreign 0.8.71

dplyr 0.8.1

httr 1.4.0

httpuv 1.5.1

jsonlite 1.6

magrittr 1.5

knitr 1.23

purrr 0.3.2

tm 0.7.6

proxy 0.4.23

data.table 1.12.2

stringr 1.4.0

Rook 1.1.1

rJava 0.9.11

26

Machine Learning Pre-Installed Packages in Engines

Package Version

devtools 2.0.2

Related Information
Base Engine 10

Base Engine 11

Base Engine 12

Base Engine 13

Base Engine 14

27

https://docs.cloudera.com/machine-learning/1.5.4/engines/topics/ml-base-engine-10.html
https://docs.cloudera.com/machine-learning/1.5.4/engines/topics/ml-base-engine-11.html
https://docs.cloudera.com/machine-learning/1.5.4/engines/topics/ml-base-engine-12.html
https://docs.cloudera.com/machine-learning/1.5.4/engines/topics/ml-base-engine-13.html
https://docs.cloudera.com/machine-learning/1.5.4/engines/topics/ml-base-engine-12.html

	Contents
	Managing Engines
	Creating Resource Profiles
	Configuring the Engine Environment
	Set up a custom repository location
	Burstable CPUs

	Installing Additional Packages
	Using Conda to Manage Dependencies

	Engine Environment Variables
	Engine Environment Variables
	Accessing Environmental Variables from Projects

	Customized Engine Images
	Creating a Customized Engine Image
	Create a Dockerfile for the Custom Image
	Build the New Docker Image
	Distribute the Image
	Including Images in allowlist for Cloudera Machine Learning projects
	Add Docker registry credentials

	Limitations
	End-to-End Example: MeCab

	Pre-Installed Packages in Engines
	Base Engine 15-cml-2021.09-1
	Base Engine 14-cml-2021.05-1
	Base Engine 13-cml-2020.08-1
	Base Engine 12-cml-2020.06-2
	Base Engine 11-cml1.4
	Base Engine 10-cml1.3
	Base Engine 9-cml1.2

