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Cloudera Al alows data scientists to build, deploy, and manage models as REST APIsto serve predictions.

Cloudera Al allows data scientists to build, deploy, and manage models as REST APIsto serve predictions.

Data scientists often develop models using a variety of Python/R open source packages. The challenge liesin actually
exposing those models to stakeholders who can test the model. In most organizations, the model deployment process
will require assistance from a separate DevOps team who likely have their own policies about deploying new code.

For example, amodel that has been devel oped in Python by data scientists might be rebuilt in another language by
the devops team before it is actually deployed. This process can be slow and error-prone. It can take months to deploy
new models, if at al. This also introduces compliance risks when you take into account the fact that the new re-
developed model might not be even be an accurate reproduction of the original model.

Once amodel has been deployed, you then need to ensure that the devops team has away to rollback the model to a
previous version if needed. This means the data science team also needs a reliable way to retain history of the models
they build and ensure that they can rebuild a specific version if needed. At any time, data scientists (or any other
stakeholders) must have away to accurately identify which version of amodel is/was deployed.

Cloudera Al allows data scientists to build and deploy their own models as REST APIs. Data scientists can now select
aPython or R function within a project file, and Cloudera Al will:

« Create asnapshot of model code, model parameters, and dependencies.
» Package atrained model into an immutable artifact and provide basic serving code.

e AddaREST endpoint that automatically accepts input parameters matching the function, and that returns a data
structure that matches the function’s return type.

« Savethe mode along with some metadata.
* Deploy aspecified number of model API replicas, automatically load balanced.

M odel

Model isahigh level abstract term that is used to describe several possible incarnations of objects
created during the model deployment process. For the purpose of this discussion you shall note
that 'model’ does not always refer to a specific artifact. More precise terms (as defined later in this
section) shall be used whenever possible.

Stages of the Model Deployment Process
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Therest of this section contains supplemental information that describes the model deployment processin detail.

Create

Build

File - The R or Python file containing the function to be invoked when the model is started.
Function - The function to be invoked inside the file. This function should take a single JSON-
encoded object (for example, a python dictionary) as input and return a JSON-encodabl e object
as output to ensure compatibility with any application accessing the model using the API. JSON
decoding and encoding for model input/output is built into Cloudera Al.

The function will likely include the following components:
* Mode Implementation

The code for implementing the model (e.g. decision trees, k-means). This might originate
with the data scientist or might be provided by the engineering team. This code implements
the model's predict function, along with any setup and teardown that may be required.

* Model Parameters
A set of parameters obtained as aresult of model training/fitting (using experiments). For

example, a specific decision tree or the specific centroids of a k-means clustering, to be used
to make a prediction.

This stage takes as input the file that calls the function and returns an artifact that implements a
single concrete model, referred to as amodel build.

Built Model

A built model is a static, immutable artifact that includes the model implementation, its
parameters, any runtime dependencies, and its metadata. If any of these components need to
be changed, for example, code changes to the implementation or its parameters need to be
retrained, a new build must be created for the model. Model builds are versioned using build
numbers.

To create the model build, Cloudera Al creates a Docker image based on the engine designated
asthe project's default engine. Thisimage provides an isolated environment where the model
implementation code will run.

To configure the image environment, you can specify alist of dependenciesto beinstaledina
build script called cdsw-build.sh.

For details about the build process and examples on how to install dependencies, see Engines for
Experiments and Models.
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Deploy

Build Number:

Build numbers are used to track different versions of builds within the scope of a single model.
They start at 1 and are incremented with each new build created for the model.

This stage takes as input the memory/CPU resources required to power the model, the number of
replicas needed, and deploys the model build created in the previous stage to a REST API.

Deployed Model

A deployed model isamodel build in execution. A built model is deployed in amodel serving
environment, likely with multiple replicas.

Environmental Variable

Y ou can set environmental variables each time you deploy a model. Note that models also
inherit any environment variables set at the project and global level. (For more information see
Engine Environment Variables.) However, in case of any conflicts, variables set per-model will
take precedence.

Note: If you are using any model-specific environmental variables, these must be
specified every time you re-deploy a model. Models do not inherit environmental
variables from previous deployments.

Model Replicas

The engines that serve incoming requests to the model. Note that each replica can only process
onerequest at atime. Multiple replicas are essential for load-balancing, fault tolerance, and
serving concurrent requests. Cloudera Al allows you to deploy a maximum of 9 replicas per
model.

Deployment 1D

Deployment IDs are numeric | Ds used to track models deployed across Cloudera Al. They are
not bound to amodel or project.

Engines Environment Variables

This section provides an overview of model training and deployment using Cloudera Al.

Machine learning is a discipline that uses computer algorithms to extract useful knowledge from data. There are many
different types of machine learning algorithms, and each one works differently. In general however, machine learning
algorithms begin with an initial hypothetical model, determine how well this model fits a set of data, and then

work on improving the model iteratively. This training process continues until the algorithm can find no additional
improvements, or until the user stops the process.

A typical machine learning project will include the following high-level steps that will transform aloose data
hypothesis into amodel that serves predictions.

1.
2.
3.
4,

Explore and experiment with and display findings of data
Deploy automated pipelines of analytics workloads

Train and evaluate models

Deploy models as REST APIsto serve predictions

With Cloudera Al, you can deploy the complete lifecycle of amachine learning project from research to deployment.
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Challenges with Machine Learning in production

One of the hardest parts of Machine Learning (ML) is deploying and operating ML modelsin production
applications. These challenges fall mainly into the following categories. model deployment and serving, model
monitoring, and model governance.

Challenges with model deployment and serving

After models are trained and ready to deploy in a production environment, lack of consistency with model
deployment and serving workflows can present challengesin terms of scaling your model deployments to meet the
increasing numbers of ML usecases across your business.

Many model serving and deployment workflows have repeatable, boilerplate aspects which you can automate using
modern DevOps techniques like high frequency deployment and microservices architectures. This approach can
enable the ML engineers to focus on the model instead of the surrounding code and infrastructure.

Challenges with model monitoring

Machine Learning (ML) models predict the world around them which is constantly changing. The unique and
complex nature of model behavior and model lifecycle present challenges after the models are deployed.

Cloudera Al provides you the capability to monitor the performance of the model on two levels: technical
performance (latency, throughput, and so on similar to an Application Performance Management), and mathematical
performance (is the model predicting correctly, isthe model biased, and so on).

There are two types of metrics that are collected from the models:

* Time series metrics: Metrics measured in-line with model prediction. It can be useful to track the changesin these
values over time. It isthe finest granular data for the most recent measurement. To improve performance, older
datais aggregated to reduce data records and storage.

» Post-prediction metrics: Metrics that are calculated after prediction time, based on ground truth and/or batches
(aggregates) of time series metrics. To collect metrics from the models, the Python SDK has been extended to
include the following functions that you can use to store different types of metrics:

To collect metrics from the models, the Python SDK has been extended to include the following functions that you
can use to store different types of metrics:

« track_metrics: Tracks the metrics generated by experiments and models.
« read_metrics. Reads the metrics already tracked for a deployed model, within a given window of time.

» track_delayed metrics: Tracks metrics that correspond to individua predictions, but are not known at the time the
prediction is made. The most common instances are ground truth and metrics derived from ground truth such as
error metrics.
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» track_aggregate _metrics: Registers metrics that are not associated with any particular prediction. This function
can be used to track metrics accumulated and/or calculated over alonger period of time.

The following two use-cases show how you can use these functions:

» Tracking accuracy of amodel over time
e Tracking drift

Usecase 1. Tracking accuracy of a model over time

Consider the case of alarge telco. When a customer service representative takes a call from a customer, aweb
application presents an estimate of the risk that the customer will churn. The service representative takes this risk into
account when evaluating whether to offer promotions.

The web application obtains the risk of churn by calling into amodel hosted on Cloudera Al. For each prediction thus
obtained, the web application records the UUID into a datastore al ongside the customer ID. The prediction itself is
tracked in Cloudera Al using the track_metrics function.

At some point in the future, some customers do in fact churn. When a customer churns, they or another customer
service representative close their account in aweb application. That web application records the churn event, which is
ground truth for this example, in a datastore.

An ML engineer who works at the telco wants to continuously evaluate the suitability of the risk model. To do this,
they create arecurring Cloudera Al job. At each run, the job uses the read_metrics function to read all the predictions
that were tracked in the last interval. It also reads in recent churn events from the ground truth datastore. It joins the
churn events to the predictions and customer ID’ s using the recorded UUID’ s, and computes an Receiver operating
characteristic (ROC) metric for the risk model. The ROC istracked in the metrics store using the track_aggregate
metrics function.

track_metric (key, value call_model()

 «——Input Business
processes

Model Ops <—_Prediciton-time

X deployment . .
metrics (i.e Cloudera Al) Output— > ERIEEIEY)

Prediction-time
metrics Delayed

Accuracy ground truth

metrics

Accuracy Ground truth

Analysis Ground truth datastore
(i.e Cloudera Al jobs)

(i.e Cloudera Data
Warehouse)

read_metrics (model, start, stop)
track_delayed_metric (model, key, value, ts)

track_aggregrate_metrics (model, key, value, ts)

Note: You can store the ground truth in an external datastore, such as Cloudera Data Warehouse or in the
metrics store.

Use-case 2: Tracking drift

Instead of or in addition to computing ROC, the ML engineer may need to track various types of drift. Drift metrics
are especially useful in cases where ground truth is unavailable or is difficult to obtain.
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The definition of drift is broad and somewhat nebulous and practical approaches to handling it are evolving, but drift
is always about changing distributions. The distribution of the input data seen by the model may change over time and
deviate from the distribution in the training dataset, and/or the distribution of the output variable may change, and/or
the relationship between input and output may change.

All drift metrics are computed by aggregating batches of predictions in some way. Asin the use case above, batches
of predictions can be read into recurring jobs using the read_metrics function, and the drift metrics computed by the
job can be tracked using the track_aggregate_metrics function.

Businesses implement ML models across their entire organization, spanning alarge spectrum of usecases. When
you start deploying more than just a couple modelsin production, alot of complex governance and management
challenges arise.

Almost al the governance needs for ML are associated with data and are tied directly to the data management
practice in your organization. For example, what data can be used for certain applications, who should be able to
access what data, and based on what data are models created.

Some of the other unique governance challenges that you could encounter are:

« How to gain visibility into the impact your models have on your customers?
e How can you ensure you are still compliant with both governmental and internal regulations?
* How does your organization’s security practices apply to the models in production?

Ultimately, the needs for ML governance can be distilled into the following key areas. model visibility, and model
explainability, interpretability, and reproducibility.

A basic requirement for model governance is enabling teams to understand how machine learning is being applied
in their organizations. This requires a canonical catalog of modelsin use. In the absence of such a catalog, many
organizations are unaware of how their models work, where they are deployed, what they are being used for, and so
on. Thisleads to repeated work, model inconsistencies, recomputing features, and other inefficiencies.

Models are often seen as a black box: data goes in, something happens, and a prediction comes out. This lack of

transparency is challenging on a number of levels and is often represented in loosely related terms explainability,

interpretability, and reproducibility.

» Explainability: Indicates the description of the internal mechanics of an Machine Learning (ML) model in human
terms

* Interpretability: Indicates the ability to:

« Understand the relationship between model inputs, features and outputs
« Predict the response to changesin inputs
* Reproducibility: Indicates the ability to reproduce the output of a model in a consistent fashion for the same inputs

To solve these challenges, Cloudera Al provides an end-to-end model governance and monitoring workflow that
gives organizations increased visibility into their machine learning workflows and aims to eliminate the blackbox
nature of most machine learning models.

The following image shows the end-to-end producltion ML workflow:

10
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Model governance using Apache Atlas
To address governance challenges, Cloudera Al uses Apache Atlas to automatically collect and visualize lineage
information for data used in Cloudera Al workflows — from training datato model deployments.

Lineageis avisual representation of the project. The lineage information includes visualization of the relationships
between model entities such as code, model builds, deployments, and so on. and the processes that carry out
transformations on the data involved, such as create project, build model, deploy model, and so on.

The Apache Atlas type system has pre-built governance features that can be used to define ML metadata objects.

A typein Atlasis adefinition of the metadata stored to describe a data asset or other object or processin an
environment. For ML governance, Cloudera has designed new Atlas types that capture ML entities and processes as
Atlas metadata objects.

In addition to the definition of the types, Atlas also captures the relationship between the entities and processes to
visualize the end-to-end lineage flow, as shown in the following image. The blue hexagons represent an entity (also
called the noun) and the green hexagons represent a process (also called the verb).

(\ Apache Atlas = < Q z Ml @ & abreshears

W CLASSIFICATION B GLOSSARY

Predict Churn-12-16 (ml_model_deployment)

Basic Advanced @

ml_model_deployment (17)

Properties Relationships Classifications Audits

Ocurrent Entity B In Progress — — Impac o|[@|(e| ¥ [a][ala)[~]

Model Training Model Serving

Data Warehousing Model Build
odel Bul

Favorite Searches Data Engineering /

treaming \
| | B o
O
The ML metadata definition closely follows the actual machine learning workflow. Training data sets are the starting

point for amodel lineage flow. These data sets can be tables from a data warehouse or an embedded csv file. Once a
data set has been identified, the lineage follows into training, building and deploying the model.

11
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See ML operations entities created in Atlas for alist of metadata that Atlas collects from each Cloudera Al
Workbench. Metadata is collected from machine learning projects, model builds, and model deployments, and the
processes that create these entities.

Using Cloudera Al Registry
Cloudera Al Registry isthe core enabler for MLOps, or DevOps for machine learning.

Cloudera Al Registry stores and manages machine learning models and associated metadata, such as the model's
version, dependencies, and performance. The registry enables ML Ops and facilitates the development, deployment,
and maintenance of machine learning models in a production environment.

Figure 2: Cloudera Al Registry on premises

Cloudera environment

Shared KBs Clusters

(1 Workbenche(s) namespace

L Cloudera Al Registry namespace

Session APIV2Z Maodel Deployment Service Heme-grown Model Registry Server

sZi-server = sZi-queve —w sZi-queve

Cloudera Al
Registry
plugin

Cloudera Al
Tracking
Servar

plugin

53 gatewsay

Cloudara Al
Ragestry
artifact

Cloudera Al Registry includes functionality for the following tasks:

« Storing and organizing different versions of a machine learning model and its associated metadata.

» Tracking the lineage of amodel, including who created it, when it was created, and any changes made to it over
time.

« Providing APIsfor accessing and deploying models, as well as for querying and searching the registry.

 Integrating with CI/CD pipelines and other tools used in the ML Ops workflow.

Cloudera Al Registry instances help organizations improve the quality and reliability of their machine learning
models by providing a centralized location for storing and managing models, as well as enabling traceability and
reproducibility of model development. They also make deploying and managing models in a production environment
easier by providing a single source for model versions and dependencies.

The Cloudera Al Registry integrates MLFlow and maintains compatibility with the open source ecosystem.

Registering and deploying models with Cloudera Al Registry
After you have set up Cloudera Al Registry, you can create, register, and deploy models with Al Registry.

12
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Setting up Cloudera Al Registry

Y ou can use MLflow to create a model.

To create amodel using MLflow, see Using an MLflow Model Artifact inaModel REST API.

Y ou can register amodel using the Al Registry user interface or the MLFlow SDK.

Registering amodel enables you to track your model and upload and share the model. Registering amodel stores
the model archivesin the Cloudera Al Registry with aversion tag. The first time you register amodel, Al Registry
automatically creates a model repository with the first version of the model.

Y ou must have permission to access a project in which the model is created before you can register the model.

1. Click Projectsin the left navigation pane to display the Projects page.
2. Select the project that contains the model that you want to register.

Al Registry displaysall of the models under the specific project along with their source, deployment status,
replicas, memory and a drop-down function for actions that can be made pertaining to that model for deployment.

3. Click the Experiments tab in the left navigation pane and select the experiment that contains the model you want
to register.

4, Select the model you want to register.
Cloudera Al displays the Experiment Run Details page.

13
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admin  testl ' Experiments

v Metrics

Name
rmse |
12 |
mae |=

v Parameters

Name
alpha

11_ratio

v Tags

Name

Add Tags

registermodeltest / Run

Value
0.7931640229276851

0.10862644997792614

0.6271946374319586
Value
0.5
0.5
Value Actions
Add

v Artifacts

¥ 1 model
[ requirements.txt
[& conda.yaml
[ model.pkl
[ python_env.yam|
[ MLmodel

Make Predictions

Predict on a Spark DataFrame:

import miflow B Copy Code

logged_model = 'Thome/edsw/ experiments/rkms-xkz8-144a-hv5o/6j60-k1bf-77ct-6fs4/artifacts
/maodel

# Load model as a Spark UDF.
loaded_model = miflow pyfunc.spark_udf(spark, model_uri=legged_model)

# Predict on a Spark DataFrame.
df.withColumn('predictions’, loaded_model(*column_names)).collect()

Predict on a Pandas DataFrame:

import miflow B Copy Code

. . . — )
Select the run that contains the model you want to register.
Select Register Model to begin the registration process.

Al Registry displays the Registry Model dialog box.

Enter the name of your registered model.

Y ou can a'so enter optional information for the description, version notes, and version tags.

Click OK to complete the registration.

Y ou can register amodel using the user interface or the MLFlow SDK.

Registering a model enables you to track your model and upload and share the model. Registering a model stores
the model archivesin the Cloudera Al Registry with aversion tag. Thefirst time you register amodel, Cloudera Al
Registry automatically creates amodel repository with the first version of the model.

14
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Procedure

1. Toregister amodel using MLFlow SDK, specify the registered_model_name and assign avalue:
m fl ow. <nodel _fl avor>. | og_nodel ()
For example:

m f 1 ow. skl earn. | og_nodel (I r, "nodel", registered _nodel nane="El asticnetW
i neModel ")

2. If you run the Python code again with the same model_name it will create an additional version for the model_na
me.

Using MLflow SDK to register customized models
In MLflow, you can also deploy models that are not directly supported by MLFlow.

To learn more, see Serving LLMswith MLflow: Leveraging Custom PyFunc.

Viewing registered model information

1. From the Projects page in Cloudera Al, select Al Registry from the navigation pane. On the main Al Registry
page, you can see all the models currently registered, their respective owners, location of creation, and the last
updated time, if known.

2. Select aregistered model to seeits description.

Cloudera Al displays the Details page which outlines the model description, ID, owner, and versions. Different
versions of the same model can be deployed in the workbench.

| Registry Q, Praject quick find + Oadmmv I
Version 1 %

Version ID
168y-cfrb-h0I8-m8xx

Creator
admin

Version Notes
not specified

Experiment ID
rkms-xkz8-144a-hv50

Run ID
6j60-k1bf-77ct-6fs4

Deployed Workopuce
ml-f0f49cbB-619.apps.apps.shared-os-dev-02 keloud.cloudera.com

Metrics Parameters Tags

Name Value

rmse 0.7931640229276851
2 0.10862644997792614
mae 0.6271946374319586
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Follow the instructions to create a new version of aregistered model.

w

© N o g M

Click Projectsin the left navigation pane to display the Projects page.

Select the project that contains the model for which you want to create a new version.

Click Experiments in the |eft navigation pane and select the experiment that contains the model you want to
register.

The system displays the Experiment Detail page.

Select the run that contains the model you want to register.

Scroll down the page to find the Artifacts section and click model.

Click Register Model.

From the Name field, choose the model for which you want to create a new version.

Click OK.

Y ou can also create a new model version using MLflow SDK. Simply run the Python code to register amodel again
with the same model_name. Thiswill create an additional version for the model_name.

Y ou can deploy amodel once or more times to create different versions of the model. Y ou can also deploy a model
you created in one workbench to a different workbench.

Select Al Registry from the left navigation pane.

Select the model you want to deploy.

Al Registry displaysthe Model Version List page.

Select the model version you want to deploy.

Al Registry displays a side window that lists the version information. Dismiss this window to proceed.
Under the Actions menu, click Deploy.
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5. Select the project you want to deploy to in the dialog box and click Go.
Y ou can select either the project the model islocated in or another project to deploy the model to.
Al Registry displays the Deploy a Model page with the detailed model information auto populated.

a t '3  Model Deployments = Deploy Model + oadmin'

Deploy a Model

Deployment Template

O Deploy model from code
@ Deploy registered model

General

* Registered Model

| ElasticnetWineModel |

* Model Version

| Version 1 |

Enable Authentication

€) Enforces model API requests to be authenticated with an APl key. @

Build

Example Input @

4
Example Output @
%A
Runtime
Editor © Kernel & Edition ® Version
Workbench ‘ Python 3.7 Standard 2022.04

Configure additional runtime options in Project Settings

modelregistrytest2

S

6. If you enable authentication and you have deployed the model to a shared project, you will need to enter an AP
key to be able to access and use the model.

7. Click OK.

Y ou can use the API v2 to deploy registered models from the Al Registry as part of your MLOps CI/CD pipeline.

The following example code shows how to deploy a model from the Al Registry by using three APIV2 calls: create a
model, create amodel build, and create amodel deployment.

cm api . default _client()

api _client

nodel _body = cml api . Cr eat eMbdel Request (
proj ect i d=project_id,
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nane="f 00", # replace this with the nodel

name

descri pti on="Foo0"

di sabl e_aut henti cati on=Tr ue,

regi st ered_nodel _i d="xyo2- ohbr-w0On2-dx3s" # replace this with the register
ed nodel id

)

nodel = api _client.create_nodel (nodel body, project_id)
pri nt (nodel )

nmodel _bui |l d_body = cnl api . Cr eat eMbdel Bui | dRequest (
proj ect i d=project _id,
nodel _i d=nodel . i d,
ker nel =" pyt hon3"
runtime_identifier="docker.repository.cloudera.conl cl oudera/cdsw nl -run
ti me- pbj - wor kbench- pyt hon3. 10- st andar d: 2023. 12. 1-b8', # replace this with th
e runtinme identifier
regi st ered_nodel _versi on_i d="ar Oa- z7sd- pj gb-2f n2" # replace this with the
regi stered nodel id

)
nmodel _bui I d = api _client.create_nodel _build(nodel _build_body, project_id, no
g?:h;?%odel_build)
whil e nodel _build.status not in ["built", "build failed"]:
print("waiting for nodel to build...")

time. sl eep(10)
nmodel build = api_client.get_nodel build(project_id, nodel.id, nodel _b

uild.id)

i f nodel build.status == "build failed"
print("nodel build failed, see U for nore information")
sys.exit (1)

print("nodel built successfully!")

nodel _depl oynent _body = cnl api . Cr eat eModel Depl oynment Request ( proj ect _i d=pr o]
ect _id, nodel id=nodel.id, build_ id=nodel build.id, replicas = nodel replica
s)

nodel _depl oynent = api _client.create_nodel _depl oynent (nodel _depl oynent _bo
dy, project _id, nodel.id, nodel build.id)

whi | e nodel _depl oynent.status not in ["stopped", "failed", "deployed"]:
print("waiting for nodel to deploy...")
tine. sl eep(10)
nodel _depl oynent = api _client.get_nodel _depl oynent (project_id, nodel.id,
nmodel _buil d.id, nodel depl oynent.id)

i f nodel depl oynent. status != "depl oyed"
print ("nodel deploynent failed, see U for nore information")
sys.exit (1)

print ("nodel depl oyed successfully!")

Y ou can deploy amodel once or more times to create different versions of the model. Y ou can also deploy a model
you created in one workbench to a different workbench.

1. Navigate to the Project you want to deploy to.
2. Click Model Deployment in the left navigation pane.
3. Make sure you have clicked the Deploy registered model checkbox at the top of the window.
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Select the registered model you want to deploy from the Deploy Registered Model field.

If you enable authentication and you have deployed the model to a shared project, you will need to enter an API
key to access and use the model.

Select Deploy Model at the bottom of the window.

Y ou can view detailed information for Cloudera Al Registry.

In the Cloudera Console, click the Cloudera Al tile.
The Cloudera Al Workbenches page displays.
Select aworkbench.

The Workbenches Home page displays.

Select Al Registry from the left navigation pane.

On the main Al Registry page, you can see al the models currently registered, their environment name, respective
owners, location of creation, and the last updated time, if known.

Choose the Cloudera Al Registry you want to synchronize with the workbenches in the environment.
Y ou can use thefilter bar at the top of the window to filter the list of model registries by name, status, and
environment name.

Click OK.

Y ou can delete amodel from Cloudera Al Registry through the Ul or using an API call.

1
2.
3.

In Al Registry, find the model to delete.
In Actions, select Delete.
Click OK to confirm deleting the model.

The model is deleted from the Cloudera Al Registry.

Y ou can run API calsin the session workbench to delete a model.

1

2.

Use the first two commands to obtain the model _id:

api _client=cm api .default _client()
api _client.list_registered_nodel s()

The json output of the command includes an example model_id as shown here:

"nmodel _id': ' 7xwf-e6pl-tb28-iylh',

Insert the model_id (replace the example shown below with your own value) to the following command and run it.

api _client.delete registered nodel (nodel i d="7xwf - e6pl -t b28-iyl h')

The model is deleted from the Cloudera Al Registry.

By default, Cloudera Al Registry is enabled in Cloudera Al. Y ou can disable Cloudera Al Registry if you do not want
to use this feature.
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1. Click Site Administration in the left navigation pane.
2. Click Settings to display the Setting Page.
3. Under the Feature Flags section, uncheck the Enable Model Registry checkbox.

Y ou can use the standalone Cloudera Al Registry APl to communicate with the Cloudera Al Registry using the REST
client or CLI client.

The Cloudera Al Registry standalone API supports the following functionalities:

e GET/PATCH/DELETE for the model and model version
* GET acurated list of NGC models
* Import external model from NVIDIA NGC or HuggingFace to Cloudera Al Registry through the POST method

Currently, the Cloudera Al Registry Standalone API does not support uploading the models through POST method
from the local machine.

The Swagger definition is available in the Cloudera Al APl documentation.

To set up the Cloudera Al Registry standalone API, configure the Cloudera Al Inference service and import
pretrained Models.

Consider the following prerequisites before setting up Cloudera Al Inference service

» Cloudera Manager supported versions: JSON Web Token-based authentication from Cloudera Control Plane to
Cloudera Al Inference service requires Cloudera Manager version 7.12 or higher.

« LDAP Authentication: User authentication is performed by the Knox service running on Cloudera Al Inference
service, which relies on the LDAP configuration defined in the Cloudera Control Plane. Without this LDAP
integration, access to APIs and model endpointsis denied.

* Ozone Credentias: Cloudera Al Inference service requires read-only Ozone S3 credentials to access Ozone
for model downloads. Both Ozone and Cloudera Al Inference service must reside within the same Cloudera
Manager, as Ozone certificates are dynamically retrieved from the base cluster during Cloudera Al Inference
service provisioning.

Y ou must add the URL detailsto allow them in the firewall rules.
NVIDIA GPU Cloud (NGC)
Add the following URL details so they can be allowed in the firewall's rules.

e prod.otel.kaizen.nvidia.com (NVIDIA open telemetry)

e api.ngc.nvidia.com

» files.ngc.nvidia.com

Hugging Face

Add the following URL details so they can be allowed in the firewall's rules.
» huggingface.co

» cdn-Ifs.huggingface.co
» *.cloudfront.net (CDN)
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E Note: If required, you must allow more URLS based on your requirements.

Clients that interact with the Cloudera Al Registry Standalone API and with model endpoints must obtain a JSON
Web Token (JWT) from the Cloudera control plane, which must be passed as a Bearer token in HT TP requests sent to
the serving APl and endpoints.

To obtain JWT, run the following Cloudera CL1 command:

$ CDP_TOKEN=$(cdp i am gener at e- wor kl oad- aut h-t oken --workl oad-nane DE | jq -
:
' .token")

In this comment, DE is the workload name.
Then pass CDP_TOKEN in the HTTP request header as follows

$ curl -H "Authorization: Bearer ${CDP_TOKEN}" <URL>

The token obtained using this method expiresin one hour.

Cloudera Al Registry implements role-based access control.
Users must have the following roles to create an instance of the service in a Cloudera environment;

¢ EnvironmentAdmin
e MLAdmin (admin user)

Registered Models can be viewed, created, deleted, and modified by users having EnvironmentUser role along with
either one of the following roles:

e MLAdmin (admin user)
e MLUser

For more information about the access control for the registered models, see Model access control.

Y ou need the domain information to use the REST client to interact with the registry.

To obtain the domain information, perform the following:

1. Inthe Cloudera console, click the Cloudera Al tile.
2. Click Al Registriesin the left navigation menu. The Al Registries page displays.
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3. Click on the name of the Cloudera Al Registry to display the Cloudera Al Registry information. The Domain
name is displayed in the Detail s tab.

Model Registries ' model-registry-ml-c "~ ™~

@ Ready

Details Events & Logs

Name

Environment Name

Environment CRN

CRN

Machine User CRN

Machine User Workload User Name

Creation Date

" -e0d

go01-demo-aws
crn:cdp ' 1:8ale15cd-04c2-48aa-8f35-b4a8¢11997d3:...
"= ----*.1:8ale15cd-04c2-48aa-8f35-b4a8c11997d3:model_regi... Ol
crn:altus:iam:us-west-1:8a1e15cd-04c2-48aa-8f35-b4a8c11997d3:machine... Cl
srv_crm=snvamashinasucer=25244

06/12/2024 2:37 AM IST

Creator crn:altus:iam:us-west-1:8a1e15cd-04c2-48aa-8f35-b4a8¢11¢~7 7 7. _TITTLTL66
Domain https://modelregistry.ml-c go01-dem.ylcu-g site (J
curl -s -H "Authorization: Bearer ${CDP_TOKEN}" ${DOMAI N}/ api/v2/nodels | jq
"nodel s": [
{
"created_at": "2024-04-18T15: 54: 15. 5437",
"creator": {
"user _nanme": "csso_cheyuanl”
¥
"id": "5bwt-qge2-elvg-chqgj",
"nanme": "foo",
"tags": null,
"updated_at": "2024-04-18T15: 54: 15. 5437",
"visibility": "private"
¥
curl -s -H "Authorization: Bearer ${CDP_TOKEN}" ${DOVAI N}/ api/v2/ nodel s/ fx0k
-baf 7-yszl-jrt2 | jq
{
"created_at": "2024-04-18T15: 54: 24. 940Z",
"creator":
"user _nane": "csso_cheyuanl "
} il
"id": "fxOk-baf7-yszl-jrt2",

"model _versions": [

"artifact_uri":
regi stry/fx0k-baf 7-yszl -jrt 2/ y8d8-ql uc- 00nd- h2pw nodel . tar. gz",
"created_at"

. net / nodel

"nodel _id":
"status":
"tags":

"updated_at"

"abfs://data@ngm devenvazur esan. df s. cor e. wi ndows

: "2024-04-18T15: 54: 24. 9427",
"f x0k- baf 7-yszl -jrt2",

" READY",
nul |,

: "2024-04-18T15: 54: 24. 9427",
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"user": {

"user _nanme": "csso_cheyuanl "
}1

"version": 1

}

]l

"name": "foo2",

"tags": null,

"updated_at": "2024-04-18T15: 54: 24. 940z"
"visibility": "private"

}

curl -s -H "Authorization: Bearer ${CDP_TOKEN}" ${DOVAI N}/ api/v2/ nodel s/fxO0k
-baf 7-yszl -jrt2/versions/1 | jq

"artifact _uri": "abfs://data@ngm devenvazuresan. df s. core. wi ndows.
net/nDdeIreglstry/fXOK baf7 yszl -jrt2/y8d8- gl uc- 00md- h2pw nodel . tar. gz"
"created_at": "2024-04-18T15: 54: 24. 9427",
"nodel _jd": fx0k baf 7-yszl -jrt 2",
"status": "READYU

"tags": null,

"updat ed_at": "2024-04-18T15: 54: 24. 942Z7"
"user": {

"user _nane": "csso_cheyuanl "

} b

"version": 1

}

curl -XPATCH -s -H "Authorization: Bearer ${CDP_TOKEN}" ${DOVAI N}/ api/v2/ nod
el s/ f xOk-baf 7-yszl-jrt2 -d *{

“visibility”: “public”
}!

curl -XPATCH -s -H "Authorization: Bearer ${CDP_TOKEN}" ${DOVAI N}/ api/v2/ nod
el s/ f xOk-baf 7-yszl -jrt2/version/1 -d *{
13 t agS” : [ {“ key” : 13 kl” , 13 Val ue” : 13 Vl” } , 13 key” : 13 k2” , 13 Val ue” : 13 V2” }]

curl -XDELETE -s -H "Authorization: Bearer ${CDP_TOKEN}" ${DOMAI N}/ api/v2/ no
del s/ vuu6-gcfx-ydio-rit0

curl -XDELETE -s -H "Authorization: Bearer ${CDP_TOKEN}" ${DOVAI N}/ api/v2/ no
del s/ vuu6-gcfx-ydio-rit0/versions/1
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Cloudera Al Registry client is acommand line tool (CLI) that can be used to interact to a Cloudera Al Registry
server. It can be downloaded from any Cloudera Al Registry server <domain>/apiv2/cli/<os>. Here, <os> is either
Linux, Darwin for Mac, or Windows based on the operating system the Cloudera Al Registry CLI isinstalled on.

The swagger CLI isdownloaded from ht t ps: / / <domai n>/ api v2/ cl i / <os>. Thefollowing are some of the
example usage of CLI.

After you download the CLI and add it to the path, you can use the nodel r egi st rycl i commands.

nodel regi strycli help
Usage:
nodel regi strycli [ comrmand]

Avai | abl e Commands:
conpl etion Generate conpl etion script

hel p Hel p about any conmand
oper ati ons
Fl ags:

--Aut hori zation string
--config string config file path
- -debug out put debug | ogs
--dry-run do not send the request to server

-h, --help hel p for nodel regi strycl
--host nane string host nanme of the service (default "l ocal host")
--schene string Choose from [http] (default "http")

Create an imported model request

$ nodel registrycli --Authorization "Bearer nil" --hostnanme | ocal host: 8188 op
erations CreateMdel --body '({
"name": "tiny",

"creat eModel Ver si onRequest Payl oad": {
"nmetadat a": {
"nodel _repo_type": "HF"

}!

"downl oadMbdel RepoRequest": {
"source": "HF",
"repo_id": "prajjwal 1/ bert-tiny"

o
***O.jt put * k%

{"created_at":"2024- 04-03T18: 02: 15. 331Z", "creator": {"user _nanme": "adm n"},
"description":"nodel to classify cat AndDogd assifier","id":"1wbs-8nbt-ngdr-3
gvr","nodel versions":null,"nane":"cat AndDogC assifier","tags":[{"key":"cat"
,"value":"1"}], "updat ed_at": " 2024- 04-03T18: 02: 15. 331Z", "visibility": "public"
}

$ nodel registrycli --Authorization "Bearer nil" --hostnanme | ocal host: 8188 op
erations Cet Mbdel s

*xkQUt put *x*:
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{"nmodel s":[{"created_at":"2024-04-03T18: 02: 15. 331Z7", "creator": {"user_nane
":"admi n"}, "description":"nodel to classify cat AndDogCd assifier","id":"1wes-
8nbt - ngdr - 3qvr ", "nodel _versions":null,"name":"cat AndDogC assifier","tags": nu
I'l,"updated_at":"2024- 04-03T18: 02: 15. 331Z","visibility":"public"},{"created_
at":"2024-04-03T18: 08: 43. 130Z", "creator": {"user_nane": "adm n"}, "descri pti on"
:"create request nodel request with nodel version exanmple","id":"8fts-rgpn-r
9xo0- xI h0", "nmodel _versions": null,"nane":"chain-classifier","tags": null, "updat
ed_at":"2024-04-03T18: 08: 43. 130Z","visibility":"public"}]}

$ nodel registrycli --Authorization "Bearer nil" --hostnane | ocal host: 8188 op
erations Cet Model --nodel_id '8fts-rgpn-r9xo-xl h0O'

{"created_at":"2024- 04-03T18: 08: 43. 130Z", "creator": {"user _nanme": "adm n"},
"description":"create request nodel request wth nodel version exanple","id"
:"8fts-rgpn-r9xo-xl h0", "nodel _versions":[{"artifact uri":"http://l|ocal host:9
000/ 8f t s-rgpn-r 9xo- x| hO/ r 5eg- nOgp-i 49gs- 8b07/ nodel . tar.gz", "created_at":"2024
-04-03T18: 08: 43.1327", "nodel _id": "8fts-rgpn-r9xo-xl h0", "notes": "create reque
st nmodel request with nodel version exanple","status":"REG STERI NG', "tags": [
{"key":"chain","value":"2"}], "updat ed_at": "2024- 04-03T18: 08: 43. 132Z", "user":
{"user_name":"adm n"},"version":1}],"nane":"chain-classifier","tags":null,"u
pdat ed_at": "2024- 04-03T18: 08: 43. 130Z", "visibility":"public"}

These are some of the known issues you might run into while using Cloudera Al Registry standalone API.

NGC model download timeout

The NGC model import might time out, and the corresponding model version status is shown as
“failed”. You can access the logs found in the API v2 pod by performing the steps mentioned in the
Debugging the model import failure troubleshooting section.

2024/04/23 16:53:45 Error download model repo: ohlfw@olaadg/ea-participants/1lama-2-7b-chat:LLAMA-2-
7B-CHAT-4K-FP16-1-A100.24.01

2024/04/23 16:53:45 Error: exit status 1

2024/04/23 16:53:45 Command output: Connection failed; retrying... (Retries left: 5)

Connection failed; retrying... (Retries left: 4)

Connection failed; retrying... (Retries left: 3)

Connection failed; retrying... (Retries left: 2)

Connection failed; retrying... (Retries left: 1)

Error: Request timed out.

CLI_VERSION: Latest - 3.41.2 available (current: 3.41.1). Please update by using the command 'ngc ver
sion upgrade’

2024/04/23 16:53:45 Failed to download NGC model repo to local folder: exit status 1

Retry the model import request again.

Model import failure

Y ou can download the models concurrently only if their combined size is below approximately 400
GB. Exceeding thislimit may result in import failures and unexpected behavior.

Request Throttling

Currently, there is no request throttling mechanism implemented. As aresult, excessive concurrent
requests may lead to model import failures. To minimize the risk, it is recommended to limit
concurrent requests to a maximum of 5, which is considered a safe threshold.

Model Import progressindicator

A progress bar is not available for model imports. For reference, importing a 70 GB model typically
takes approximately 1 hour. Users should plan accordingly and monitor the process through
alternative options, if necessary.
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Learn about some of the recommended series of steps to perform when troubleshooting issues related to the Cloudera
Al Registry API.

To debug errors that occurred on the Cloudera Al Registry server, you can access the logs found in the API v2 pod.

Access logs from Cloudera Al Registry Kubernetes cluster.
Y ou can obtain the kubeconfig for the Cloudera Al Registry cluster.

1. Inthe Cloudera console, click the Cloudera Al tile.
2. Click Al Registriesin the |eft navigation menu. The Al Registries page displays.

3. -
L |
. i ] i
In the Actions menu, click and select Download K ubeconfig.
it E ﬁ:‘°UDE“A Al Registries
a |
Al HUB J J L
) Model Hub Stats Name z:::z"mem Creator Created At Actions
@ Ready MOdelre o, il 2ouinls (92 725 428e-84cd- ‘wsw‘/m/'zuza 12:56 AM E
/o Delete
© Ready mOdehregioy i v ooB SN elete

Synchronize
CIMAUSIIAM. ce vcos ciois viin s omm o mn o ¢ s i i e s oo - 392 11/18/2)

Read) B I-dev-env-
[] ly model-regivu y 07 eng-mi-dev-env-azure Cdee20360900 o1

Download Kubeconfig

Manage Remote Access 3l
§

In AWS, you need to add your identity under Manage Remote Access to access the Kubernetes cluster.

Y ou must add your identity under Manage Remote Access. For information on granting remote access, see
Granting Remote Access to Cloudera Al Workbench. After the kubeconfig is set up, run the following kubect |
command to get logs for the Cloudera Al Registry pod:

kubect!| | ogs <Al registry pod nane> -n nlx

If your desired Hugging Face model is unavailable on the Model Hub page, you can import those models from the
Hugging Face website. After you import the model, the newly imported model will be listed on the Registered
Models page.

Note: Thisfeatureisin Technical Preview and not recommended for production deployments. Cloudera
E recommends that you try this feature in test or development environments.

1. Inthe Cloudera console, click the Cloudera Al tile.
The Cloudera Al Workbenches page displays.
2. Click Registered Models under Deploymentsin the left navigation menu.

The Registered M odels page displays. The page lists al the models of different Cloudera Al Registries along
with the associated metadata.
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3. Click Import Model. The Import Model page displays.
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Import Model

(D Technical Preview - Import Hugging Face Models

Cloudera Al Inference Service.

This feature is in Technical Preview, so some models may not fully integrate with

* Al Registry

‘ Select Al Registry

* Name

Visibility ®
(® Public Private

* Repository ID

Hugging Face Token (®

‘ Enter your Hugging Face Token

Description

Version Notes
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4. Inthe Al Registry drop-down list, select the Al registry to which you want to import the model.
In the Name field, enter a new name for the model you are importing.

6. Select the Visibility as Public or Private. If you select Public, the model is available for other users. If you select
Private, the model is displayed on the Registered Models page only for the user who imported it.

7. Inthe Repository ID field, enter the ID of the Hugging Face model. Y ou can obtain the ID of amodel from the
Hugging Face website.

8. Inthe Hugging Face Token field, enter the token obtained from the Hugging Face website.
9. Inthe Description field, enter a description for the model.

10. In the Version Notes field, enter notes about this version of the model.

11. Click Import.

o

Y ou can view this newly imported model on the Registered Models page.

Using Cloudera Al, you can create any function within a script and deploy it to aREST API. In aCloudera Al
project, thisistypically a predict function that accepts an input and returns a prediction based on the model's
parameters.

As an example, we create a function that adds two numbers, and deploy it asamodel that returns the sum of the
numbers. This function will accept two numbersin JSON format as input and return the sum.

Note: In case of PBJ (Powered by Jupyter) Runtime, a specific decorator, the cml_model decorator is needed
Ij to create a model. This decorator allows afunction to work as a model in a PBJ Runtime. The decorator can
aso be used to enable gathering of model metrics. For more details, see Example models with PBJ Runtimes.

1. Create anew project. Note that models are always created within the context of a project.
Click New Session and launch anew Python 3 session.

3. Createanew file within the project called add_numbers.py. Thisisthe file where we define the function that
will be called when the model is run. For example:

N

add_numbers.py

import cml.nodels vl as nodel s

@model s. cm _nodel

def add(args):
result = args["a"] + args["b"]
return result

Note: In practice, do not assume that users calling the model will provide input in the correct format
B or enter good values. Always perform input validation.

29


https://docs.cloudera.com/machine-learning/1.5.5/runtimes/topics/ml-pbj-models.html

Cloudera Al Managing Models

4. Before deploying the model, test it by running the add_numbers.py script, and then by calling the add function
directly from the interactive workbench session. For example:

add({"a": 3, "b": 5})

File Edit View Navigate Run € Project >_Terminal access A Clear ¥ Interrupt M Stop Sessions ~ | &8

1 # Function to add two numbers i H —

2 unetron tomac s number Untitled Session # Collapse @ Share Running

3 def add(args): By .m....mwwm. — Python 3 Session — 1 vCPU / 2 GiB Memory — 50 minutes ago

4 result = args["a"] + args["b"] -

5 return result add({ : 3, 1 5))

6
8
add({"a": 4, 7

m

5. Deploy the add function to a REST endpoint.

a. Gotothe project Overview page.

Click Model Deployments New Model .

Give the model a Name and Description.

In the General section of the page, under the Deploy Model as option, you can select the Service Account
option, if the model is to be deployed in a service account, and choose the account from the dropdown
menu.

e. Enter the details about the model that you want to build, for example:

oo o

« File: add_numbers.py

¢ Function: add

e ExampleInput: {"a": 3,"b": 5}
¢ Example Output: 8

File *
add_numbers.py

Function *

add

Example Input @

Example Output ©

8

f. Select the resources needed to run this model, including any replicas for load balancing. To specify the
maximum number of replicasin amodel deployment, go to Site Administration Settings Models . The
default is 9 replicas, and up to 199 can be set.

g. Click Deploy Model.
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6. Select the model to go on its Overview page. Click Builds to track realtime progress as the model is built and
deployed. This process essentially creates a Docker container where the model will live and serve requests.

Add Two NUmberS Building Stop Deploy New Build

Overview Deployments Builds Monitoring  Settings

Build Status File Function Kernel Engine Image Created By Created At Comment  Actions

Base Image Initial
Building add bers. add hon3 ambreen Jun 5,2018, 5:44 PM Delete

revision.

Sending build context to Docker daemon 15.85 MB

Step 1/16 : FROM docker.repository.cloudera.com/cdsw/engine:’
---> f89557708daal

Step 2/16 : ENTRYPOINT node /app/model-runtime/model-server.js
---> Running in 58838f1e58d5

7. Once the model has been deployed, go back to the model Overview page and use the Test Model widget to
make sure the model works as expected.

If you entered example input when creating the model, the Input field will be pre-popul ated with those values.
Click Test. The result returned includes the output response from the model, as well asthe ID of the replica
that served the request.

Model response times depend largely on your model code. That is, how long it takes the model function to
perform the computation needed to return a prediction. Note that model replicas can only process one request
at atime. Concurrent requests will be queued until the model can process them.

Create and deploy amodel using the Models APl as instructed in this example:
This example demonstrates the use of the Models API. Run this example:

1. Create a project with the Python template and a legacy engine.
2. Start asession.

3. Run!pip3install sklearn.

4. Runfit.py.

The example script first obtains the project ID, then creates and deploys a model.

projects = client.list_projects(search_filter=json.dunps({"name": “<your
proj ect nane>"}))

project = projects.projects[0] # assuming only one project is returned by
t he above query

nmodel _body = cnl api . Cr eat eMbdel Request (proj ect _i d=proj ect.id, nanme="Denp
Model ", description="A sinple nodel")

model = client.create_nodel (nodel _body, project.id)

nmodel _bui l d_body = cm api . Creat eMbdel Bui | dRequest (proj ect i d=project.id,
nodel id=nodel .id, file path="predict.py", function_nane="predict", ker

nel =" pyt hon3")

nmodel _build = client.create_nodel buil d(nmodel _build_body, project.id, nod

el .id)
whi | e nodel _build.status not in [“built”, “build failed"]:
print(“waiting for nodel to build...”)

time. sl eep(10)

nmodel _build = client.get _nodel buil d(project.id, nodel.id, nodel build
.id)
if nodel build.status == “build failed”:
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print(“nodel build failed, see U for nore information”)

sys.exit (1)

print(“nodel built successfully!”)

nodel _depl oynent _body = cm api . Cr eat eModel Depl oynent Request (proj ect i d=p
roject.id, nodel _id=nodel.id, build_id=nbdel build.id)

nmodel _depl oynent = client.create_nodel _depl oynent (nodel _depl oynent _body,
project.id, nodel.id, build.id)
whi | e nodel _depl oynent.status not in [“stopped”, “failed”, “deployed’]:
print(“waiting for nodel to deploy...")

time. sl eep(10)

nmodel _depl oynent = client.get_nodel _depl oyment (project.id, nodel.id, m
odel build.id, model depl oynent.id)

i f nodel _depl oynent.status != “depl oyed”:
print (“nodel deploynment failed, see U for nore information”)
sys.exit(1)

print (“nodel depl oyed successfully!”)

Example models with PBJ Runtimes

Cloudera Al Workbench models give you the flexibility to host, expose, and monitor a variety of Al and machine
learning models and functions.

Consider the below example on how to use an open-source model and the HuggingFace Transformerslibrary to
expose and perform Large Language Model (LLM) Inference.

Y ou must review which LLM model you want to deploy and which GPU model is available within your Cloudera Al
Workbench before hosting an LLM solution.

If the LLM you want to deploy istoo large to fit within the GPU memory of the available GPU model, consider a
smaller LLM, changing the GPU model available for this Cloudera Al Workbench, or utilize quantization techniques
in your launch_model deployment script.

Consider the following file requirements:
requirements.txt

Thisfilelists al the PIP dependencies required for loading and performing inference on the LLM.
transformers==4.44.0
torch==2.3.1
accel erate==0.33.0

cdsw-build.sh

Thisfile contains the prerequisite steps that shall be executed for the model build. In this caseit is used primarily for
installing dependencies.

pip install --no-cache-dir -r requirenents.txt

launch_model.py
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This file contains the python script to be loaded during the deployment of the Cloudera Al Workbench Model. This
filewill also contain the function to be executed whenever the Model Endpoint is called, thisis specified in the
Cloudera Al Workbench Model configuration.

i mport cml . nodel s_vl as nodels

i mport torch
fromtransforners inport pipeline

# The LLM from Huggi nFace of your choice
# Note that paraneters for the pipeline instantiation could differ depending
on the LLM chosen
nmodel _id = "neta-I|Ilanma/Ll ama-3. 2-3B-Instruct”
nodel i nference = pipelineg(
"text-generation”,
nodel =nodel _i d,
t or ch_dt ype=t or ch. bf | oat 16,
devi ce_map="aut 0",
return_full text=Fal se

)

@odel s. cm _nodel

def api _w apper(args):
# Pick up args from d oudera Al Workbench api, this could be nodified to
the needs of the clients calling the O oudera Al Wrkbench api .

pronpt = args["pronpt"]

# Pick up sone additional args for inference, see transforners docunentati
on for addition inference paraneters that are possible to pass in a pipeline

try:

max_| ength = int(args["max_| ength"])
except (Val ueError, KeyError):

max_| ength = 512

try:
tenperature = int(args["tenperature"])
except (Val ueError, KeyError):
tenperature = 0.7

# Note: Huggi ngface pipeline inference includes the pronp text in the gene
rated out put

out put = nodel _i nference(pronpt, nmax_| engt h=max_| engt h, tenperature=tenpe
rature)

return output[0O]["generated text"]

Models - Concepts and Terminology
Access Keys for Models
Prerequisites for creating Cloudera Al Registry

Deploy a Cloudera Al Workbench model following the instructions.

Go to the Project Overview page.
Select New Model.
Give the model a Name and a Description.

In Deploy Model as, if the model isto be deployed in a service account, select Service Account and choose the
account from the dropdown menu.

A w NP
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5. Deploy amodel by setting the following details.
File: launch_model.py
Function: api_wrapper
Exampleinput:
{
"pronpt": "How are you?",

"max_|l ength": 64,
"tenperature": "0.7"
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Deploy a Model

Deployment Template

@ Deploy model from code

) Deploy registered mode
General

Namme *

llama-32-3b

Deploy Model as

Description *

Simple inference deployment

Enable Authentication

o Enforces model APl requests to be authenticated with an AFI key. @

Build

File *

launch_model.py

Function *

api_wrapper

Example Input
(7]

{
"prompt”: "Which model is this?”,
"max_length": 64,
"temperature”: "8.7"

}

6. In ML Runtime: Use a GPU edition Runtime.

7. InResource Profile select at least 1 GPU. Use a CPU/MEM profile suitable for your LLM size. Thisis required
to load the LLM into GPU VRAM.

8. Inthe Environment Variables: Add HF_TOKEN if the model you are using has an access gate on Huggingface
hub.

9. Click Deploy Model.
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After successfully deploying the Cloudera Al Workbench model, you can find examples of how to accessit and run a
test inference on the Project Overview tab.

Securing Models

Consider these guidelines when deploying models with Cloudera Al.

Model Code

Modelsin Cloudera Al are designed to run any code that is wrapped into a function. This means you
can potentially deploy amodel that returns the result of a SELECT * query on avery large table.
However, Cloudera strongly recommends against using the models feature for such use cases.

As abest practice, your models should be returning simple JSON responses in near-real time
speeds (within afraction of a second). If you have along-running operation that requires extensive
computing and takes more than 15 seconds to compl ete, consider using batch jobs instead.

Model Artifacts

Once you start building larger models, make sure you are storing these model artifactsin HDFS, S3,
or any other external storage. Do not use the project filesystem to store large output artifacts.

In general, any project files larger than 50 MB must be part of your project's .gitignore file so that
they are not included in Engines for Experiments and Models for future experiments/model builds.

E Notice:
In case your models require resources that are stored outside the model itself, itisup
to you to ensure that these resources are available and immutable as model replicas
may be restarted at any time.

Resour ce Consumption and Scaling

Models should be treated as any other long-running applications that are continuously consuming
memory and computing resources. If you are unsure about your resource requirements when you
first deploy the model, start with a single replica, monitor its usage, and scale as needed.

If you notice that your models are getting stuck in various stages of the deployment process, check
the guidelines on Monitoring Active Models to make sure that the cluster has sufficient resources to
compl ete the deployment operation.

Security Considerations

As stated previously, models do not impose any limitations on the code they can run. Additionally,
models run with the permissions of the user that creates the model (same as sessions and jobs).
Therefore, be conscious of potential data leaks especially when querying underlying data setsto
serve predictions.

Cloudera Al models are not public by default. Each model has an access key associated with it.
Only userg/applications who have this key can make calls to the model. Be careful with who has
permission to view this key.

Cloudera Al aso prints stderr/stdout logs from models to an output pane in the Ul. Make sure you
are not writing any sensitive information to these logs.

Deployment Considerations
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Models deployed using Cloudera Al on premises are highly available subject to the following

limitations:

* Model high availability is dependent on the high availability of the Kubernetes service. If using
athird-party Kubernetes service to host Cloudera on premises, please refer to your chosen
provider for precise SLAS.

* Inthe event that the Kubernetes pod running either the model proxy service or the load balancer
becomes unavailable, the Model may be unavailable for multiple seconds during failover.

There can only be one active deployment per model at any given time. This means you shall plan
for model downtime if you want to deploy a new build of the model or re-deploy with more or
fewer replicas.

Keep in mind that models that have been devel oped and trained using Cloudera Al are essentially
Python or R code that can easily be persisted and exported to external environments using popular
seriaization formats such as Pickle, PMML, ONNX, and so on.

Technical Metrics for Models

* Known Issues with Model Builds and Deployed Models

* Re-deploying or re-building models results in model downtime (usually brief).
* Re-gtarting Cloudera Al does not automatically restart active models. These models must be manually
restarted so they can serve requests again.

Cloudera Bug: DSE-4950
« Model buildswill fail if your project filesystem includes a .git directory (likely hidden or nested). Typical
build stage errorsinclude:

Error: 2 UNKNOMWN: Unable to schedule build: [Unable to create a checkpoi
nt of current source: [Unable to push sources to git server:

To work around this, rename the .git directory (for example, NO.git) and re-build the model.

Cloudera Bug: DSE-4657

» JSON requests made to active models should not be more than 5 MB in size. Thisis because JSON is not
suitable for very large requests and has high overhead for binary objects such asimages or video. Call the
model with a reference to the image or video, such asa URL, instead of the object itself.

« Any external connections, for example, a database connection or a Spark context, must be managed by the
model's code. Models that require such connections are responsible for their own setup, teardown, and refresh.

* Model logs and statistics are only preserved so long as the individual replicais active. Cloudera Al may restart
areplicaat any timeit is deemed necessary (such as bad input to the model).

e (MLLib) The MLLib model.save() function fails with the following sample error. This occurs because the
Spark executors on Cloudera Al al share a mount of /home/cdsw which results in arace condition as multiple
executors attempt to write to it at the sametime.

Caused by:
java.io. | Oexception: Mdirs failed to create
file:/hone/cdsw nodel . |ib/metadata/ _tenporary ....
Recommended workarounds:

e Savethe modd to /tmp, then moveit into /home/cdsw on the driver/session.
* Savethe model to either an S3 URL or any other explicit external URL.
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« Limitations with Model Builds and Deployed Models

» Scalamodels are not supported.
e Spawning worker threads are not supported with models.
« Models deployed using Cloudera Al on premises are highly available subject to the following limitations:

« Model high availability is dependent on the high availability of the Kubernetes service. If using athird-
party Kubernetes service to host Cloudera on premises, please refer to your chosen provider for precise
SLAs.
« Inthe event that the Kubernetes pod running either the model proxy service or the load balancer becomes
unavailable, the Model may be unavailable for multiple seconds during failover.
» Dynamic scaling and auto-scaling are not currently supported. To change the number of replicas in service,
you will have to re-deploy the build.

Distributed Computing with Workers

Every model function in Cloudera Al takes a single argument in the form of a JSON-encoded object, and returns
another JSON-encoded object as output. This format ensures compatibility with any application accessing the model
using the API, and gives you the flexibility to define how JSON data types map to your model's datatypes.

When making calls to amodel, keep in mind that JSON is not suitable for very large requests and has high overhead
for binary objects such asimages or video. Consider calling the model with areference to the image or video such
asaURL instead of the object itself. Requests to models should not be more than 5 MB in size. Performance may
degrade and memory usage increase for larger requests.

Ensure that the JSON request represents all objectsin the request or response of amodel call. For example, JSON
does not natively support dates. In such cases consider passing dates as strings, for example in 1SO-8601 format,
instead.

For a simple example of how to pass JSON arguments to the model function and make calls to deployed model, see
Creating and deploying a Model.

Models return responses in the form of a JSON-encoded object. Model response times depend on how long it takes
the model function to perform the computation needed to return a prediction. Model replicas can only process one
reguest at atime. Concurrent requests are queued until areplicais available to process them.

When Cloudera Al receives acall request for amodel, it attempts to find afree replica that can answer the call. If the
first arbitrarily selected replicais busy, Cloudera Al will keep trying to contact a free replicafor 30 seconds. If no
replicais available, Cloudera Al will return a model.busy error with HTTP status code 429 (Too Many Requests). If
you see such errors, re-deploy the model build with a higher number of replicas.

Y ou can set the model request timeout duration to a custom value. The default value is 30 seconds. The timeout can
be changed if model requests might take more than 30 seconds.

To set the timeout value;

1. Asan Administrator user, open aCLlI.
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2. At the prompt, execute the following command. Substitute <value> with the number of seconds to set.

kubect| set env depl oynment nodel - proxy MODEL REQUEST TI MEOUT SECONDS=<va
lue> -n nlx

Thiseditsthe kubeconf i g file and sets a new value for the timeout duration.

Creating and deploying a model
Workflows for Active Models

Cloudera Al provides two ways to test callsto amodel:
e Test Model Widget

On each model's Overview page, Cloudera Al provides awidget that makes a sample call to the deployed model
to ensureit isreceiving input and returning results as expected.

Test Model

Input

Result
Status success
Response 8
Replica ID add-two-numbers-1-1-86b9b58b7h-g6s8r

39


https://docs.cloudera.com/machine-learning/1.5.5/models/topics/ml-updating-active-models.html

Cloudera Al

Managing Models

Sample Request Strings

On the model Overview page, Cloudera Al also provides sample curl and POST request strings that you can use to
test calls to the model. Copy/paste the curl request directly into a Terminal to test the call.

Note that these sample requests already include the example input values you entered while building the model,
and the access key required to query the model.

Add Two Numbers

Overview  Deployments Builds Monitoring  Settings

Description Add two numbers.

Sample Code Shell Python R

curl -H "Content-Type: application/json" -H "Authorization: Bearer

<place API key here>" -X POST https://
/model -d '{"accessKey":"mgc4w3rdi4

3x28fy4h8e8: ", "request":{"a":3,"b":5}}'

Y ou can secure your Cloudera Al models using Access keys or API keys.

A

Important: Clouderaon cloud allows customers to maintain full ownership and control of their data and
workloads and is designed to operate in some of the most restricted on cloud environments. Since Cloudera
on cloud runsin a customer’s cloud account, Security and Compliance is a shared responsibility between
Cloudera and its on cloud customers. For more information, see Cloudera’s Shared Responsibility Model.

Cloudera’s Shared Responsibility Model

Each model in Cloudera Al has a unique access key associated with it. This access key is aunique identifier for the

model.

Models deployed using Cloudera Al are not public. In order to call an active model your request must include the
model's access key for authentication (as demonstrated in the sample calls above).

To locate the access key for amodel, go to the model Overview page and click Settings.
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Add Two Numbers

Overview  Deployments Builds Monitoringj Settings

Name

Add Two Numbers

Description

This model takes two numbers as input and returns their sum.

Access Key Regenerate

mgc4w3rdi43x28fy4h8e8swsdadjyfoq @ Access Key is required to
make requests on this model

f Important:

Only one access key per model is active at any time. If you regenerate the access key, you will need to re-
distribute this access key to users/applications using the model.

Alternatively, you can use this mechanism to revoke access to amodel by regenerating the access key.
Anyone with an older version of the key will not be able to make calls to the model.

Y ou can prevent unauthorized access to your models by specifying an APl key in the Authorization header of your
model HTTP request. This topic covers how to create, test, and use an APl key in Cloudera Al.

The APl key governs the authentication part of the process and the authorization is based on what privileges the users
already have in terms of the project that they are a part of. For example, if auser or application has read-only access
to a project, then the authorization is based on their current access level to the project, which is “read-only”. If the
users have been authenticated to a project, then they can make areguest to amodel with the API key. Thisis different
from the previously described Access Key, which is only used to identify which model should serve arequest.

Restricting access using APl keysis an optional feature. By default, the Enable Authentication option is turned on.
However, it isturned off by default for the existing models for backward compatibility. Y ou can enable authentication
for all your existing models.

To enable authentication, go to Projects Models Settings and check the Enable Authentication option.
E Note: It can take up to five minutes for the system to update.

If you have enabled authentication, then you need an API key to call amodel. If you are not a collaborator on a
particular project, then you cannot access the models within that project using the API key that you generate. Y ou
need to be added as a collaborator by the admin or the owner of the project to use the API key to access a model.

There are two types of API keysused in Cloudera Al:

e APl Key: These are used to authenticate requests to a model. Y ou can choose the expiration period and delete
them when no longer needed.
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* Legacy API Key: Thisisused in the CDSW-specific internal APIsfor CLI automation. This cannot be deleted and
neither doesit expire. This APl Key is not required when sending requests to a model.

Y ou can generate more than one API keysto use with your model, depending on the number of clients that you are
using to call the models.

Signin to Cloudera Al.

Click Settings from the left navigation pane.

On the User Settings page, click the API Keystab.

Select an expiry date for the Model API Key, and click Create APl keys.
An API key is generated along with aKey ID.

If you do not specify an expiry date, then the generated key is active for one year from the current date, or for
the duration set by the Administrator. If you specify an expiration date that exceeds the duration value set by the
Administrator, you will get an error. The Administrator can set the default duration value at Admin Security
Default API keys expiration in days

A w DN PR

Note:

E * TheAPI key is private and ephemeral. Copy the key and the corresponding key ID on to a secure
location for future use before refreshing or leaving the page. If you miss storing the key, then you can
generate another key.

¢ You can delete the API keysthat have expired or no longer in use. It can take up to five minutes by the
system to take effect.

5. Totestthe API key:
a) Navigate to your project and click Models from the |eft navigation pane.

b) Onthe Overview page, paste the API key in the API key field that you had generated in the previous step and
click Test.

The test results, along with the HTTP response code and the Replica ID are displayed in the Results table.

If the test fails and you see the following message, then you must get added as a collaborator on the respective
project by the admin or the creator of the project:

"User APi key not authorized to access nodel": "Check API KEY perm ssions
or nodel authentication perm ssions"

The administrator user can accessthe list of al the users who are accessing the workbench and can delete the API
keysfor auser.

To manage users and their keys:

1. Signinto Cloudera Al asan administrator user.
2. From the left navigation pane, click Admin.
The Site Administration pageis displayed.
3. Onthe Site Administration page, click on the Userstab.
All the users signed under this workbench are displayed.
The API Keys column displays the number of API keys granted to a user.
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4. Todeletea APl key for aparticular user:
a) Select the user for which you want to delete the API key.

A page containing the user’ sinformation is displayed.
b) To delete akey, click Delete under the Action column corresponding to the Key ID.
¢) Click Delete al keysto delete all the keys for that user.

B Note: It can take up to five minutes by the system to take effect.

As anon-admin user, you can delete your own API key by navigating to Settings User Settings APl Keys.

This topic walks you through some nuances between the different workflows available for re-deploying and re-
building models.

Active Model - A model that isin the Deploying, Deployed, or Stopping stages.

Y ou can make changes to amodel even after it has been deployed and is actively serving requests. Depending on
business factors and changing resource requirements, such changes will likely range from changes to the model code
itself, to simply modifying the number of CPU/GPUs requested for the model. In addition, you can also stop and
restart active models.

Depending on your requirement, you can perform one of the following actions:

Re-deploying a model involves re-publishing a previously-deployed model in anew serving environment - thisis,
with an updated number of replicas or memory/CPU/GPU allocation. For example, circumstances that require are-
deployment might include:

» An active model that previously requested alarge number of CPUS/GPUs that are not being used efficiently.
* Anactive model that is dropping requests because it is falling short of replicas.
« Anactive model needsto be rolled back to one of its previous versions.

Warning: Currently, Cloudera Al only allows one active deployment per model. This means when you re-
deploy abuild, the current active deployment will go offline until the re-deployment processis complete and
the new deployment is ready to receive requests. Prepare for model downtime accordingly.

To re-deploy an existing model:

1. Go to the model Overview page.
2. Click Deployments.
3. Select the version you want to deploy and click Re-deploy this Build.

Add Two Numbers Deployed | Stop | Restart | Deploy New Build

Overview  Deployments  Builds ~ Monitoring  Settings

Id Build Status Deployed At Stopped At Deployed By Model Re-deploy This Build

4 3 0ct 20,2021, 03:34 PM csso_welemendiile 2
Name Add Two Numbers
3 2 Oct 20, 2021, 03:16 PM Oct 20, 2021, 03:33 PM csso_wclemens  Description Add two numbers.

4. Modify the model serving environment as needed.
5. Click Deploy Model.
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Deploying a new build for amodel involves both, re-building the Docker image for the model, and deploying this
new build. Note that thisis not required if you only need to update the resources allocated to the model. As an
example, changes that require a new build might include:

» Code changes to the model implementation.
* Renaming the function that is used to invoke the model.

Warning: Currently, Cloudera Al does not allow you to create a new build for amodel without aso
deploying it. This combined with the fact that you can only have one active deployment per model means
that once the new model is built, the current active deployment will go offline so that the new build can be
deployed. Prepare for model downtime accordingly.

To create anew build and deploy it:

1. Gotothe model Overview page.
2. Click Deploy New Build.

Add Two Numbers Deployed | stop | | Restart ||| Deploy New Build

Overview  Deployments  Builds Monitoring ~ Settings

Description This model takes two numbers as input and returns their sum Model Details

Sample Code shell  Python | R Model Id 1
Model CRN

curl -H "Content-Type: application/json” -H "Authorization: Bearer
<place API key here>" -X POST https:
-d '{"accessKey"':" |
", "request”:{"a":3,"b":5}}"

3. Complete the form and click Deploy Moddl.

To stop amodel (all replicas), go to the model Overview page and click Stop. Click OK to confirm.

To restart amodel (al replicas), go to the model Overview page and click Restart. Click OK to confirm.

Restarting a model does not let you make any code changes to the model. It should primarily be used asaway to
quickly re-initialize or re-connect to resources.

Y ou can observe the operation of your models by using charts provided for technical metrics. These charts can help
you determine if your models are under- or over-resourced, or are experiencing some problem.

To check the performance of your model, go to Models, click on the model name, and select the Monitoring tab. Y ou
can choose to monitor all replicas of the model, or choose a specific replica. Y ou can also select the time and date
range to display. Up to two weeks of datais retained.

This tab displays charts for the following technical metrics:

* Reguests per Second

*  Number of Requests

e Number of Failed Requests

* Model Response Time

e All Moded ReplicaCPU Usage

e All Model ReplicaMemory Usage
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* Model Request & Response Size

All charts share a common time axis (the x axis), so it is easy to correlate CPU and memory usage with model
response time or the number of failed requests, for example.

This topic describes some common issues to watch out for during different stages of the model build and deployment
process.

Asagenerd rule, if your model spendstoo long in any of the afore-mentioned stages, check the resource
consumption statistics for the cluster. When the cluster starts to run out of resources, often models will spend some
time in a queue before they can be executed.

Resource consumption by active models on a deployment can be tracked by site administrators on the Admin Models
page.

Live progress for this stage can be tracked on the model's Build tab. It shows the details of the build process that
creates a new Docker image for the model. Potential issues:

« |If you specified a custom build script (cdsw-build.sh), ensure that the commands inside the script complete
successfully.

e |f you arein an environment with restricted network connectivity, you might need to manually upload
dependencies to your project and install them from local files.

Once the model has been built, it is copied to an internal Docker registry to make it available to all the Cloudera Al
hosts. Depending on network speeds, your model may spend some time in this stage.

If you see issues occurring when Cloudera Al is attempting to start the model, use the following guidelines to begin
troubleshooting:

« Make sure your model code worksin aworkbench session. To do this, launch a new session, run your model file,
and then interactively call your target function with the input object. For a simple example, see the Creating and
deploying a Model.

« Ensurethat you do not have any syntax errors. For Python, make sure you have the kernel with the appropriate
Python version (Python 2 or Python 3) selected for the syntax you have used.

» Make sure that your cdsw-build.sh file provides a complete set of dependencies. Dependencies manually installed
during a session on the workbench are not carried over to your model. Thisisto ensure a clean, isolated, build for
each model.

» If your model accesses resources such as data on the CDH cluster or an external database make sure that those
resources can accept the load your model may exert on them.

Once amodel is up and running, you can track some basic logs and statistics on the model's Monitoring page. In case

iSsues arise;

» Check that you are handling bad input from users. If your function throws an exception, Cloudera Al will restart
your model to attempt to get back to a known good state. The user will see an unexpected model shutdown error.

For most transient issues, model replicas will respond by restarting on their own before they actually crash. This
auto-restart behavior helps keeping the model online as you attempt to debug runtime issues.
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« Make runtime troubleshooting easier by printing errors and output to stderr and stdout. Y ou can catch these on
each model's Monitoring tab. Be careful not to log sensitive data here.

* TheMonitoring tab also displays the status of each replicaand will show if the replica cannot be scheduled due to
alack of cluster resources. It will aso display how many requests have been served/dropped by each replica

Creating and deploying a model
Technical Metrics for Models

: Important:
¢ You must stop all active deployments before you delete amodel. If the deployments are not stopped, the
active models will continue serving requests and consuming resources even though they do not show up in
Cloudera Al UlI.
« Deleted models are not actually removed from disk. That is, this operation will not free up storage space.

1. Gotothemodel Overview Settings.
2. Click Delete Model.

Deleting amodel removes al of the model's builds and its deployment history from Cloudera Al.
Y ou can aso delete specific builds from a model's history by going to the model's Overview Build page.

Model metrics have a configuration that restricts model request payload to 100 KB. Y ou can increase the payload size
if required.

1. Convert the payload size to bytes.
For example, 100 KB (Kilobytes) = 100 * 1024 bytes = 102400 bytes.
2. Encode the valuesinto the Base64 format.

For example, 20 MB in Bytes is 20000000, to convert it to Base64 value, run the following command on the
terminal:

echo -n "20000000" | base64

The output would be MjAWMDAwWMDA-=. Here, MjAWMDAWMDA= is the Base64 encoded value.
3. Edit the existing Secret object to specify the model request payload size.

kubect!| edit secret nodel-netrics-config -n nlx

This opens your default editor and allows you to update the Base64 encoded values.
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4. Locate the max.request.size.bytes field and update it with the Base64 encoded value.
max. request. si ze. bytes: [***Base64-encoded-val ue***]
For example, substitute the above 20 MB Base64 encoded value:

max. request. si ze. bytes: M AWMVDAWVDA=

5. Save and close the editor.
6. Restart the model metrics pod by deleting the pod.

kubect| del ete pod nodel netrics [***pod namext***] -n ml X

Thiswill force Kubernetes to restart the pod with the updated configuration.

This topic uses Cloudera Al's built-in Python template project to walk you through an end-to-end example where we
use experiments to develop and train a model, and then deploy it using Cloudera Al.

This example uses the canonical Iris dataset from Fisher and Anderson to build amodel that predicts the width of a
flower’s petal based on the petal's length.

The scripts for this example are available in the Python template project that ships with Cloudera Al. First, create a
new project from the Python template:
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Create a New Project

Project Name
Iris Project
Project Visibility
Private - Only added collaborators can view the project.

© Public - All authenticated users can view this project.

Initial Setup

Blank Template Local Git

Python

o

lermplates include exdimpie code to help you get started

Create Project

Once you have created the project, go to the project's Files page. The following files are used for the demo:

» cdsw-build.sh - A custom build script used for models and experiments. Pip installs our dependencies, primarily
the scikit-learn library.

« fit.py - A modéd training example to be run as an experiment. Generates the model.pkl file that contains the fitted
parameters of our model.

e predict.py - A sample function to be deployed as a model. Uses model.pkl produced by fit.py to make predictions
about petal width.

Training the Model
This topic shows you how to run experiments and develop amodel using thefit.py file.

About this task

The fit.py script tracks metrics, mean squared error (MSE) and R2, to help compare the results of different
experiments. It also writes the fitted model to a model.pkl file.

Procedure

1. Navigateto the Iris project's Overview Experiments page.
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2. Click Run Experiment.
3. Fill out the form as follows and click Start Run. Make sure you use the Python 3 kernel.
Run New Experiment
Script fit.py
Arguments @
Engine Kernel Python 2
© Python 3
Scala
R
Engine Profile 1 vCPU / 2 GiB Memory 4
Comment

Testing arun ..

Cancel Start Run

4. The new experiment shall now display on the Experiments table. Click on the Run ID to go to the experiment's
Overview page. The Build and Session tabs display realtime progress as the experiment builds and executes.
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5. Once the experiment has completed successfully, go back to its Overview page. The tracked metrics show us that
our test set had an M SE of ~0.0078 and an R2 of ~0.0493. For the purpose of this demo, let's consider this an
accurate enough model to deploy and use for predictions.

Run-21

Overview  Session Build

Configuration Output
Script fit.py model.pki
Arguments

Comment Add to Project
Build Snapshot cd61cBacd43de924189a55¢5562d29268bbeb539

Created At 6/21/18 6:06 PM

Submitter admin

Metrics

mean_sq_err 0.007866659505691643

r2 0.04934628330010382

6. Once you have finished training and comparing metrics from different experiments, go to the experiment that
generated the best model. From the experiment's Overview page, select the model.pkl file and click Add to
Project.

This saves the model to the project filesystem, available on the project's Files page. We will now deploy this
model asa REST API that can serve predictions.

This topic shows you how to deploy the model using the predict.py script from the Python template project.

The predict.py script contains the predict function that accepts petal length as input and uses the model built in the
previous step to predict petal width.

1. Navigateto theIris project's Overview Models page.
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2. Click New Model and fill out the fields. Make sure you use the Python 3 kernel. For example:

51



Cloudera Al

Managing Models

Create a Model

General

Name *

Predict Petal Width

Description *

This model uses petal length to predict petal width.

Build

File *
predict.py

Function *

predict

Example Input @

{
"petal_length": 5.4

}

Example Output @

Kernel
Python 2

© Python 3
R

Comment

Using Python 3 for this build

Deployment
Engine Profile
1vCPU / 2 GiB Memory

Replicas

3

4k

Ak

Set Environmental Variables

m falr T rra

52



Cloudera Al Securing Models

3. Deploy the model.

4. Click onthe model to go to its Overview page. Asthe model builds you can track progress on the Build page.
Once deployed, you can see the replicas deployed on the Monitoring page.

5. Totest the model, use the Test Model widget on the model's Overview page.

Test Model

Input

{
"petal_length": 5.4

}

Result
Status success
Response 1.88262214341560965
Replica ID predict-petal-width-2-9-7¢f557b957-5wjld

Y ou can secure your Cloudera Al models using Access keys or API keys.

Important: Clouderaon cloud allows customers to maintain full ownership and control of their data and
workloads and is designed to operate in some of the most restricted on cloud environments. Since Cloudera
on cloud runsin a customer’s cloud account, Security and Compliance is a shared responsibility between
Cloudera and its on cloud customers. For more information, see Cloudera’s Shared Responsibility Model.

Cloudera’s Shared Responsibility Model

Each model in Cloudera Al has a unique access key associated with it. This access key is aunique identifier for the
model.

Models deployed using Cloudera Al are not public. In order to call an active model your request must include the
model's access key for authentication (as demonstrated in the sample calls above).

To locate the access key for amodel, go to the model Overview page and click Settings.
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Add Two Numbers

Overview  Deployments Builds Monitoringj Settings

Name

Add Two Numbers

Description

This model takes two numbers as input and returns their sum.

Access Key Regenerate

mgc4w3rdi43x28fy4h8e8swsdadjyfoq @ Access Key is required to
make requests on this model

f Important:

Only one access key per model is active at any time. If you regenerate the access key, you will need to re-
distribute this access key to users/applications using the model.

Alternatively, you can use this mechanism to revoke access to amodel by regenerating the access key.
Anyone with an older version of the key will not be able to make calls to the model.

Y ou can prevent unauthorized access to your models by specifying an API key in the Authorization header of your
model HTTP request. This topic covers how to create, test, and use an APl key in Cloudera Al.

The API key governs the authentication part of the process and the authorization is based on what privileges the users
aready have in terms of the project that they are a part of. For example, if auser or application has read-only access
to a project, then the authorization is based on their current access level to the project, which is“read-only”. If the
users have been authenticated to a project, then they can make aregquest to amodel with the API key. Thisis different
from the previously described Access Key, which is only used to identify which model should serve arequest.

Restricting access using APl keysis an optional feature. By default, the Enable Authentication option is turned on.
However, it isturned off by default for the existing models for backward compatibility. Y ou can enable authentication
for all your existing models.

To enable authentication, go to Projects Models Settings and check the Enable Authentication option.
E Note: It can take up to five minutes for the system to update.

If you have enabled authentication, then you need an API key to call amodel. If you are not a collaborator on a
particular project, then you cannot access the models within that project using the API key that you generate. Y ou
need to be added as a collaborator by the admin or the owner of the project to use the API key to access a model.

There are two types of API keysused in Cloudera Al:
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APl Key: These are used to authenticate requests to a model. Y ou can choose the expiration period and delete
them when no longer needed.

Legacy APl Key: Thisisused in the CDSW-specific internal APIsfor CLI automation. This cannot be deleted and
neither doesit expire. This APl Key is not required when sending requests to a model.

Y ou can generate more than one API keysto use with your model, depending on the number of clients that you are
using to call the models.

Signinto ClouderaAl.

Click Settings from the left navigation pane.

On the User Settings page, click the APl Keys tab.

Select an expiry date for the Model APl Key, and click Create APl keys.
An API key is generated along with aKey ID.

If you do not specify an expiry date, then the generated key is active for one year from the current date, or for
the duration set by the Administrator. If you specify an expiration date that exceeds the duration value set by the
Administrator, you will get an error. The Administrator can set the default duration value at Admin Security
Default API keys expiration in days

Note:

E e TheAPI key is private and ephemeral. Copy the key and the corresponding key ID on to a secure
location for future use before refreshing or leaving the page. If you miss storing the key, then you can
generate another key.

¢ You can delete the API keysthat have expired or no longer in use. It can take up to five minutes by the
system to take effect.
To test the API key:
a) Navigate to your project and click Models from the |eft navigation pane.
b) Onthe Overview page, paste the APl key in the API key field that you had generated in the previous step and
click Test.
Thetest results, along with the HTTP response code and the Replica ID are displayed in the Results table.

If the test fails and you see the following message, then you must get added as a collaborator on the respective
project by the admin or the creator of the project:

"User APi key not authorized to access nodel": "Check API KEY perm ssions
or nmodel authentication perm ssions"

The administrator user can accessthe list of al the users who are accessing the workbench and can delete the API
keysfor auser.

To manage users and their keys:

Signin to Cloudera Al as an administrator user.

From the left navigation pane, click Admin.

The Site Administration pageis displayed.

On the Site Administration page, click on the Users tab.

All the users signed under this workbench are displayed.

The API Keys column displays the number of API keys granted to a user.
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4. Todeletea APl key for aparticular user:
a) Select the user for which you want to delete the API key.

A page containing the user’ sinformation is displayed.
b) To delete akey, click Delete under the Action column corresponding to the Key ID.
¢) Click Delete al keysto delete all the keys for that user.

B Note: It can take up to five minutes by the system to take effect.

As anon-admin user, you can delete your own API key by navigating to Settings User Settings APl Keys.

To capture and view centralized information about your ML projects, models, and builds in Apache Atlas (Data
Catalog) for a specific environment, governance must be enabled.

Y ou must enable governance to capture and view information about your ML projects, models, and builds centrally
from Apache Atlas (Data Catalog) for a given environment. If you do not select this option while provisioning
Cloudera Al Workbenches, then integration with Atlas will not work.

Go to Cloudera Al and click Provision Workbench on the top-right corner.
Enter the Cloudera Al Workbench name and other details.

Click Advanced Options.

Select Enable Governance.

> w DN

Y ou must ensure that the following requirements are satisfied in order to enable ML Governance on Private Cloud.
The following services on Cloudera must be enabled:

« Kafka

e Ranger

e Salr

e Atlas

On Cloudera Manager, ensure that the following are enabled in the base cluster for Cloudera Manager:

¢ Auto-TLS
» Kerberos (either MIT or AD)

The Cloudera Al projects, model builds, model deployments, and associated metadata are tracked in Apache Atlas,
which is available in the environment's SDX cluster. Y ou can also specify additional metadata to be tracked for a
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given model build. For example, you can specify metadata that links training data to a project through a special file
called the linking file (lineage.yaml).

The lineage.yaml file describes additional metadata and the lineage relationships between the project’s models and
training data. Y ou can use asingle lineage.yaml file for all the models within the project.

Note: Your lineage file should be present in your project before you create amodel build. The lineagefileis
parsed and metadata is attached during the model build process.
1. Createa YAML fileinyour Cloudera Al project called lineage.yaml.

If you have used atemplate to create your project, alineage.yaml file should already exist in your project.

2. Insert statementsin the file that describe the relationships you want to track between amodel and the training data.
Y ou can include additional descriptive metadata through key-value pairs in a metadata section.

Model name Top-level entry A Cloudera Al model name associated with the current project. There can be
more than one model per linking file.

hive table qualified nam | Second-level entry This pre-defined key introduces sequence items that list the names of Hive

es tables used as training data.

Table names Sequence items The qualified names of Hive tables used as training data enclosed in double

quotation marks. Qualified names are of the format DB-NAME.TABLE-
NAME@CLUSTER-NAME

metadata Second-level entry This pre-defined key introduces additional metadata to be included in the Atlas
representation of the relationship between the model and the training data.

KEY:VALUE Third-level entries Key-value pairs that describe information about how this datais used in the
model. For example, consider including the query text that is used to extract
training data or the name of the training file used.

The following example linking file shows entries for two modelsin your project: modelNamel and model Name2:

nodel Nanel: # the nane of your nodel
hive tabl e qualified_nanes: # this is a predefined key to link to
# training data
- "db. tabl el@anespace” # the qualifiedName of the hive table
# obj ect representing training data
- "db. tabl e2@ns"
nmet adat a: # this is a predefined key for
#

addi ti onal netadata
keyl: val uel
key2: val ue2
query: "select id, name fromtable" # suggested use case: query used to
# extract training data
training file: "fit.py" # suggested use case: training file
# used
nodel Nane2: # mul tiple nodel s can be specified in
# one file
hi ve_tabl e_qual i fi ed_nanes:

- "db. tabl e2@s"

Y ou can view the lineage information for a particular model deployment and trace it back to the specific data that was
used to train the model through the Atlas' Management Console.
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1. Navigateto Management Console Environments, select your environment, and then under Quick Links select
Atlas.

2. Search for ml_model_deployment. Click the model deployment of your interest.

3. Click the Lineage tab to see a visualization of lineage information for the particular model deployment and trace it
back to the specific data that was used to train the model.

Y ou can also search for a specific table, click through to its Lineage tab and see if the table has been used in any
model deployments.

Metrics are essential for tracking model performance. By using custom code, you can track specific model predictions
and analyze the metrics.

Metrics are used to track the performance of the models. When you enable model metrics while creating a
workbench, the metrics are stored in a scalable metrics store. Y ou can track individual model predictions and analyze
metrics using custom code.

Go to Cloudera Al and click Provision Workbench on the top-right corner.
Enter the Cloudera Al Workbench name and other details.

Click Advanced Options.

Select Enable Model Metrics.

If you want to connect to an external (custom) Postgres database, then specify the details in the additional optional
arguments that are displayed. If you do not specify these details, a managed Postgres database will be used to store
the metrics.

A DN PR

Cloudera recommends that you develop and test model metricsin aworkbench session before actually deploying the
model. Thisworkflow avoids the need to rebuild and redeploy a model to test every change.

Metrics tracked in thisway are stored in alocal, in-memory datastore instead of the metrics database, and are no
longer stored when the session exits. Y ou can access these metrics in the same session using the regular metrics AP
in the cdsw.py file.

The following example demonstrates how to track metrics locally within a session, and use the read_metrics function
to read the metrics in the same session by querying by the time window.

To try thisfeaturein the local development mode, use the following files from the Python template project:
e use_mode_metrics.py
o predict_with_metrics.py

The predict function from the predict_with_metrics.py file shown in the following exampleis similar to the function
with the same name in the predict.py file. It takes input and returns output, and can be deployed as a model.

But unlike the function in the predict.py file, the predict function from the predict_with_metrics.py file tracks
mathematical metrics. These metrics can include information such asinput, output, feature values, convergence
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metrics, and error estimates. In this simple example, only input and output are tracked. The function is equipped to
track metrics by applying the decorator models.cml_maodel (metrics=True).

i mport pickle
inmport cml .netrics_vl as netrics
i mport cm . nodel s vl as nodel s

nodel = pickl e.| oad(open(' nodel . pkl', 'rb'))

# The nodel _netrics decorator equips the predict function to
# call track_metrics. It also changes the return type. If the
# raw predict function returns a value "result", the wapped
# function will return eg

# {

# "uuid": "612a0f 17- 33ad- 4c41- 8944- df 15183ac5hd",

# "prediction": "result"
#

# The UUID can be used to query the stored netrics for this
# prediction |ater.
@mwodel s. cnl _nodel (netri cs=Tr ue)
def predict(args):
# Track the input.
metrics.track_nmetric("input", args)
# If this nodel involved features, ie transformations of the
# raw i nput, they could be tracked as well.
# cdsw.track netric("feature vars", {"a":1,"b":23})
petal length = float(args.get (' petal _length'))
result = nodel .predict([[petal _|ength]])

# Track the output.
metrics.track nmetric("predict _result", result[0][0])
return result[0][0]

Y ou can fetch the metrics from the local, in-memory datastore by using the regular metrics API. To fetch the metrics,
set the dev keyword argument to True in the use_model_metrics.py file. Y ou can query the metrics by model, model
build, or model deployment using the variables cdsw.dev_model_crn and cdsw.dev_model _build_crnor cdsw.dev
_model_deploy_crn respectively.

For example:

end_tinestanp_ns=int(round(tinme.tinme() * 1000))

cdsw. read_netri cs(nodel _depl oynent _crn=cdsw. dev_nodel _depl oynent _crn,
start _ti mestanp_nms=0,

end_tinestanp_ns=end_ti nmestanp_ns,

dev=Tr ue)

where CRN denotes Cloudera Resource Name, which is a unique identifier from Cloudera, anal ogous to Amazon's
ARN.

When you have finished developing your metrics tracking code and the code that consumes the metrics, simply
deploy the predict function from predict_with_metrics.py as amodel. No code changes are necessary.

Cdllstoread metrics, track_delayed_metrics, and track_aggregate metrics need to be changed to take the CRN of the
deployed model, build or deployment. These CRNs can be found in the model’ s Overview page.

Callsto the call_model function also requires the model’ s access key (model_access key in use_model_metrics.py)
from the model’ s Settings page. If authentication has been enabled for the model (the default), amodel API key for
the user (model_api_token in use_model_metrics.py) is also required. This can be obtained from the user's Settings

page.
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Registered Models offers a single view for models stored in Cloudera Al Registries across Cloudera Environments
and facilitate easy deployment to Cloudera Al Inference service.

When you import models from Model Hub, the models are listed under Registered Models. Review all imported
models and associated metadata, such as the model’ s associated environment, visibility, owner name, and created
date.

This page lists all imported models and associated metadata, such as the model’ s associated environment, visibility,
owner name, and created date. Y ou can click on any model to view details about that model, and its versions, and
deploy any specific version of the model to the Cloudera Al Inference service. Y ou can aso delete a specific version
of the model on this page. When you try to import a model with the same name, a new version of that model is added
which can then be viewed under Registered Models.

Y ou can deploy amodel from the Registered Models page into Cloudera Al Inference service.

1. Inthe Cloudera console, click the Cloudera Al tile.
The Cloudera Al Workbenches page displays.
2. Click Registered Models under Deploymentsin the left navigation menu.

The Registered Models page displays. The page lists all the models of different Cloudera Al Registries along
with the associated metadata.

3. Select the model you want to deploy. The Registered M odels page displays the model information and the
available versions of the model.

Click <> Deploy to deploy the latest version.

You can select All from the version drop-down to view all the versions and click & in the respective row of
that version. Y ou can deploy any version of the model the status of which is displayed as Ready. The Deploy
Model dialog box is displayed.

5. Inthe Deploy Model dialog box, select the cluster of the Cloudera Al Inference service in which you want to
deploy this model. The Create Endpoint page is displayed.

6. Enter the information and click OK.

For information on creating an endpoint, see Using Cloudera Al | nference service.

Using Cloudera Al Inference service

Y ou can view details like version information about the modelsin your Al Registries in the Registered Models page.
By default, the latest version information is displayed. Model card describes the model, governing terms, the family
of models, resources used, and further information on how to use the model, and so on. It also provides information
about various versions, optimizations made in the specific version, and the minimum resource configuration required
to deploy those versions.
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1. Inthe Cloudera console, click the Cloudera Al tile.
The Cloudera Al Workbenches page displays.
2. Click Registered Models under Deploymentsin the left navigation menu.

The Registered M odels page displays. Y ou can see al the registered models, associated environment, their
owner, visibility, and the last updated time.

3. You can usethefilter bar at the top of the window to filter the list of registered models by tag and environment
name.

4. Select aregistered model to seeits description.

Y ou can modify the visibility of the model to private or public status. If the visibility is set to Public, the registered
model is available for all the usersirrespective of their role. If the visibility is set to Private, the model is available
only to the owner and the administrators of that environment.

1. Inthe Cloudera console, click the Cloudera Al tile.
The Cloudera Al Workbenches page displays.

2. Click Registered M odels under Deploymentsin the left navigation menu.
The Registered M odels page displays.

3. Select the model whose visibility you want to change.

Click Z Edit Model and change the visibility of the model to Private or Public and the description of the
model, if needed.

5. Click Update.

If you no longer want to access aversion of aregistered model, you can deleteit.

1. Inthe Cloudera console, click the Cloudera Al tile.
The Cloudera Al Workbenches page displays.

2. Click Registered Models under Deploymentsin the left navigation menu.
The Registered M odels page displays.

3. Select the model you want to delete .

4. Click All from the version drop-down menu to view all the versions.

From the Actions menu, click m.
6. Click OK to confirm the deletion.
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