Creating the Model entry in Cloudera AI Registry in air-gapped environment
The example outlines how to create the Model entry in Cloudera AI Registry within an air-gapped environment.
curl -k https://$MODELREGISTRYDOMAIN/api/v2/models -X POST -H 'Content-Type: application/json' -H "Authorization: Bearer $TOKEN" --data-raw '
{ "name": "llama3-instruct-70b",
"createModelVersionRequestPayload": {
"metadata": {
"model_repo_type": "NGC"
},
"downloadModelRepoRequest": {
"source": "REMOTE",
"remoteObjectStoragePath": "s3://bucket1/secured-models",
"repo_id": "nim/meta/llama-3_1-70b-instruct:0.11.1+14957bf8-h100x4-fp8-throughput.1.2.18099809"
}
}
}'
curl -k https://$MODELREGISTRYDOMAIN/api/v2/models -X POST -H 'Content-Type: application/json' -H "Authorization: Bearer $TOKEN" --data-raw '
{ "name": "llama3-instruct-70b",
"createModelVersionRequestPayload": {
"metadata": {
"model_repo_type": "NGC"
},
"downloadModelRepoRequest": {
"source": "REMOTE",
"remoteObjectStoragePath": "abfs://data@datalakeaccount.dfs.core.windows.net/modelregistry/secured-models",
"repo_id": "nim/meta/llama-3_1-70b-instruct:0.11.1+14957bf8-h100x4-fp8-throughput.1.2.18099809"
}
}
}'
These curl requests create a new model named llama3-instruct-70b in Cloudera AI Registry, and its initial version.
These requests also trigger the copying of model artifacts from
your uploaded, secured model location (specified by remoteObjectStoragePath
in
your cloud-specific object store) to a preferred Cloudera AI Registry object store location.