
Cloudera Observability

Cloudera Observability Reference Material
Date published: 2023-04-31
Date modified: 2023-04-31

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Observability | Contents | iii

Contents

Cloudera Observability reference overview.. 4

Hive, MapReduce, Oozie, and Spark health checks... 4

Impala health checks..7

Impala query status..12

Impala statement types.. 13

Potential SQL issues...15

Cloudera Observability Hive cluster metrics.. 17

Cloudera Observability Cloudera Observability reference overview

Cloudera Observability reference overview

This section provides additional information that support the features and functions in Cloudera Observability.

The following topics provide descriptions of health checks for jobs that involve Hive, MapReduce, Oozie, and Spark,
and descriptions of health checks for workloads that involve Impala. In addition to health check descriptions, these
topics also provide recommendations for addressing the conditions that trigger health checks and information about a
query's state, type, and potential SQL issues that are identified by Cloudera Observability.

Hive, MapReduce, Oozie, and Spark health checks

Lists the health check tests that are performed by Cloudera Observability at the end of a Hive, MapReduce, Oozie,
or Spark job. They provide job performance insights, such as the amount of data the job processed and how long the
job took. You can find the health checks on the Hive, MapReduce, Oozie, or Spark engine's Jobs page in the Health
Check list.

Execution completion health checks

The execution metrics determine whether a job failed or passed the Cloudera Observability health checks and whether
a job failed to complete.

Table 1: Execution

Health Check Description

Failed - Any Health Checks Displays jobs that failed at least one health check.

Passed All Health Checks Displays jobs that did not fail any health checks.

Failed to Finish Displays jobs that failed to finish running.

Baseline health checks

The baseline metrics measure the current performance of a job against the average performance of previous runs.
They use performance data from 30 of the most recent runs of a job and require a minimum of three runs. Therefore,
the baseline comparisons start with the fourth run of a job.

When a baseline is first created there will be comparison differences until more data is established.

Important: Cloudera Observability uses job name, job group name, and environment to correlate the job
data and create the baselines. These values for subsequent runs of the job must be identical to the initial run in
order for the baseline to be accurate.

Table 2: Baseline

Health Check Description

Duration Compares the job's completion time with a baseline based on previous
runs of the same job.

Where a healthy status indicates that the difference in duration between
the current job and baseline median is less than both 25% and five
minutes.

4

Cloudera Observability Hive, MapReduce, Oozie, and Spark health checks

Health Check Description

Input Size Compares the input data for the current job run with the job's baseline.

Where a healthy status indicates that the difference in input data
between the current job and the baseline median is less than 25% and
100 MB.

Cloudera Observability calculates the input size using the following
metrics:

•
org.apache.hadoop.mapreduce.File
SystemCounter:HDFS_BYTES_READ

•
org.apache.hadoop.mapreduce.File
SystemCounter:S3A_BYTES_READ

•
SPARK:INPUT_BYTES

Output Size Compares the output data for the current job run with the job's baseline.

Where a healthy status indicates that the difference in output data
between the current job and the baseline median is less than 25% and
100 MB.

Cloudera Observability calculates the output size using the following
metrics:

•
org.apache.hadoop.mapreduce.File
SystemCounter:HDFS_BYTES_WRITTEN

•
org.apache.hadoop.mapreduce.File
SystemCounter:S3A_BYTES_WRITTEN

•
SPARK:OUTPUT_BYTES

Resource health checks

The resource metrics determine whether the performance for tasks were impacted by insufficient resources.

Table 3: Resources

Health Check Description Recommendation

Task Retries Determines whether the number of failed task
attempts exceeds 10% of the total number of
tasks.

Note: Failed attempts are repeated,
which leads to poor performance
and resource waste.

Task GC Time Determines whether the job spent more than
10 minutes performing garbage collection
tasks.

Note: Long garbage collection
duration times contribute to the
job's overall time and slows down
the application.

If the status is not healthy, as a starting
point, consider adding more memory to the
garbage collection tasks or tuning the garbage
collection configuration for the application.

5

Cloudera Observability Hive, MapReduce, Oozie, and Spark health checks

Health Check Description Recommendation

Disk Spillage Determines whether the job spilled too much
data to disk and ran slowly as a result of the
extra disk I/O.

Where, a healthy status indicates that the total
number of spilled records is less than 1000 and
that the number of spilled records divided by
the number of output records is less than three.

If the status is not healthy, as a starting point,
consider adding more memory to the job's
tasks.

Task Wait Time Determines whether some job tasks took too
long to start a successful attempt.

Where, a healthy status indicates that the
successful tasks took less than 15 minutes and
less than 40% of total task duration time to
start.

Sufficient resources reduce the run time of the
job by lowering the maximum wait duration.

If the status is not healthy, as a starting point,
consider either adding more resources to the
job by running it in resource pools with less
contention or adding more nodes to the cluster.

(Spark only) RDD Caching Verifies that the RDDs were cached
successfully.

Where, a healthy status indicates that the
RDDs were cached successfully and Cloudera
Observability did not determine that there was
a redundant RDD cache.

If the status is not healthy, the message will
indicate whether there was a redundant cache
that you can remove to save executor space.

(Spark only) Executor Memory Validates that the executor memory, which
was allocated from either the spark.executor.m
emory or the --executor-memory option, is not
more than the recommended upper threshold.

Long garbage collection pauses result when
the allocation is too high.

As a starting point, consider lowering the
allocation.

(Spark only) Executor Cores Determines whether the number of cores
allocated by the executor, from either
the spark.executor.cores or the --executor-c
ores option, is not more than the recommended
upper threshold.

Poor HDFS throughput and/or out-of-memory
failures may result when the number of cores
allocated is higher than the upper threshold.

As a starting point, consider lowering the
number of allocated cores.

(Spark only) Serializer Determines which Java serializer is being
used.

For speed and efficiency, Cloudera strongly
recommends using Kryo serialization rather
than the Java native serialization.

(Spark only) Dynamic Allocation Determines whether dynamic allocation is
disabled.

For more efficient resource utilization,
Cloudera recommends enabling dynamic
allocation.

Skew health checks

The skew metrics compare the performance of tasks to other tasks within the same job. For optimal performance,
tasks within the same job should perform the same amount of processing.

Table 4: Skew

Health Check Description Recommendation

Task Duration Compares the amount of time the job's tasks
took to finish their processing.

Where, a healthy status indicates that
successful tasks took less than two standard
deviations and less than five minutes from the
average for all tasks.

If the status is not healthy, as a starting point,
consider configuring the job so that the job's
processing is distributed evenly across tasks.

6

Cloudera Observability Impala health checks

Health Check Description Recommendation

Data Processing Speed Compares the data processing speed for each
task and indicates which tasks are processing
the data slowly.

Where, a healthy status indicates that the data
processing speed for each task is less than two
standard deviations from the average and less
than 1 MB/s from the average.

Input Data Compares the amount of input data that each
task processed.

Where, a healthy status indicates that the input
data size is less than two standard deviations
and 100 MB from the average amount of input
data.

If the status is not healthy, as a starting point,
consider partitioning the data so that each task
processes a similar amount of input.

Output Data Compares the amount of output data that each
task generated.

Where, a healthy status indicates that the
output data size is less than two standard
deviations and 100 MB from the average
amount of output data.

If the status is not healthy, as a starting point,
consider partitioning the data so that each task
generates a similar amount of output.

Shuffle Input Compares the input size during the tasks
shuffle phase.

Where, a healthy status indicates that the
shuffle phase input data size is less than two
standard deviations and 100 MB from the
average amount of shuffle phase input data.

If the status is not healthy, as a starting point,
consider distributing input data so that the
tasks process similar amounts of data during
the shuffle phase.

Impala health checks

Lists the Impala health check tests that are performed by Cloudera Observability at the end of an Apache Impala job.
They provide performance and query insights, such as pointing out queries that may be causing bottlenecks. You can
find the Impala health checks on the Impala Queries page in the Health Check list.

Execution completion health checks

The execution metric determines whether a job failed or passed the Cloudera Observability health check.

Table 5: Execution

Health Check Description

Failed - Any Healthcheck Displays jobs that failed at least one health check.

Metadata/Statistics health checks

The metadata/statistic metrics test the distribution of values in one or more columns of the data table for query
optimization.

7

Cloudera Observability Impala health checks

Table 6: Metadata/Statistics

Health Check Description Recommendation

Corrupt Table Statistics Indicates that these queries contain table
statistics that were incorrectly computed and
therefore cannot be used.

Note: This condition may be
caused from Metastore database
issues.

To address this condition, consider
recomputing the table statistics.

For more information, see the Impala
documentation.

Missing Table Statistics Indicates that no table statistics were
computed for query optimization.

To address this condition, consider computing
the table statistics.

For more information, see the Impala
documentation.

Optimal configuration health checks

The optimal configuration metrics determine whether the query's operation performance was impacted by insufficient
resources

Table 7: Optimal Configuration

Health Check Description Recommendation

Aggregation Spilled Partitions Indicates that during the query's aggregation
operation, data was spilled to disk.

This health check is triggered when there is
not enough memory to complete the operation.

To address this condition, consider:

• Replacing the high-cardinality GROUP-
BY clauses, which can lead to memory
issues, with low-cardinality clauses that
organize your data with fewer columns.

• Increasing the query's memory limit
setting with the MEM_LIMIT query
option.

• Adding more physical memory.

For more information, see the Impala
documentation.

HashJoin Spilled Partitions Indicates that during the query's hash join
operation, data was spilled to disk.

This health check is triggered when there is
not enough memory to complete the operation.

To address this condition, consider:

• Reducing the cardinality from the right-
hand side of the join by filtering more
rows.

• Increasing the query's memory limit
setting with the MEM_LIMIT query
option.

• Using a denormalized table.
• Adding more physical memory.

8

Cloudera Observability Impala health checks

Health Check Description Recommendation

Slow Client Indicates that the client consumed the query
results slower than expected.

To address this condition depends on the root
cause. For example:

• If the condition is triggered because
some clients are taking too long to
unregister the query, consider using more
appropriate clients for the workload. Such
as using an interactive client rather than
an ODBC or a JDBC client when testing
and building SQL queries.

• If the condition is triggered because
the client is unable to close the query
in a timely manner, consider using the
Impala Timeout feature. Such as when
your Impala job contains wait times
between reading each set of rows during
exploratory analysis. This example, will
also deplete system resources.

Additionally, consider limiting the
number of returned rows to 100 or less by
adding a LIMIT clause to your queries.

For more information about setting timeout
periods for daemons, queries, and sessions, see
the Impala documentation.

Performance health checks

The performance metrics measure the query's execution times.

Table 8: Performance

Health Check Description Recommendation

Slow Aggregate Indicates that the aggregation operations were
slower than expected.

This health check is triggered when the
observed throughput is less than ten million
rows per second.

Note: Observed throughput is
calculated by dividing the time
spent in the aggregation operation
with the number of input rows.

To address this condition depends on the root
cause. For example:

• If the root cause is from resource conflicts
with other queries, consider reducing
conflicts by allocating different resource
pools.

• If the root cause is from overly complex
GROUP BY operations, consider
rewriting the queries with simpler GROU
P BY operations.

Slow Code Generation Indicates that the compiled code was
generated slower than expected.

This health check is triggered when the
generation time exceeds 20% of the overall
query execution time.

Note: For every query plan
fragment, Impala considers how
much time is used to generate the
code.

This condition may be triggered due to an
overly complex query. For example, if the
query has too many predicates in its WHERE
clause, contains too many joins, or contains
too many columns.

To address this condition, consider using the
DISABLE_CODEGEN query option in your
session.

9

Cloudera Observability Impala health checks

Health Check Description Recommendation

Slow HDFS Scan Indicates that the time taken to scan data from
HDFS was slower than expected.

Note: The HDFS scan rate is based
on the amount of time the scanner
takes to read a specific number of
rows.

This condition is caused by either a slow disk,
extremely complex scan predicates, or a busy
HDFS NameNode.

Important: If the workload is
accessing data stored on Amazon
S3 this condition may be triggered.
Slow HDFS scanning is a known
limitation of this storage platform.

Depending on the cause, to address this
condition consider the following:

• If the cause is a slow disk, replace the
disk.

• If the cause is through complex scan
predicates, reduce the complexity by
simplifying the scan predicates.

• If the cause is due to a busy HDFS
NameNode, consider upgrading.

Slow Hash Join Indicates that the hash join operations were
slower than expected.

This health check is triggered when the
observed throughput is less than five million
rows per second.

Note: Observed throughput is
calculated by dividing the number
of input rows by the time spent in
the hash join operation.

This condition may be triggered when there
are overly complex join predicates or a hash
join is causing data to spill to disk.

To address this condition, consider simplifying
the join predicates or reducing the size on the
right-hand side of the join.

Slow Query Planning Indicates that the query plan generated slower
than expected.

This health check is triggered when the query
planning time exceeds 30% of the overall
query execution time.

This condition may be caused by overly
complex queries or if a metadata refresh
occurred whilst the query was executing.

To address this condition, consider simplifying
your queries. For example, reduce the number
of columns returned, reduce the number of
filters, or reduce the number of joins.

Slow Row Materialization Indicates that rows were returned slower than
expected.

This health check is triggered when it takes
more than 20% of the query execution time to
return rows.

This condition may be caused when overly
complex expressions are used in the SELECT
list or when too many rows are requested.

To address this condition, simplify the query
by either reducing the number of columns in
the selected list or reducing the number of
requested rows.

Slow Sorting Indicates that the sorting operations were
slower than expected.

This health check is triggered when the
observed throughput is less than ten million
rows per second.

Note: Observed throughput is
calculated by dividing the number
of input rows by the time spent in
the sorting operation.

To address this condition, consider the
following:

• Simplify the ORDER BY clause in your
queries.

• If data is spilling to disk, reduce the
amount of data to be sorted by either
adding more predicates to the WHERE
clause, increasing the available memory,
or increasing the value specified by the
MEM_LIMIT query option.

10

Cloudera Observability Impala health checks

Health Check Description Recommendation

Slow Write Speed Indicates that the query's write speed is slower
than expected.

This health check is triggered when the
difference between the actual write time and
the expected write time is more than 20% of
the query execution time.

Important: If the workload is
accessing data stored on Amazon
S3 this condition may be triggered.
Slow HDFS scanning is a known
limitation of this storage platform.

This condition may be caused when overly
complex expressions are used, too many
columns are specified, or too many rows are
requested from the SELECT list.

Depending on the cause, to address this
condition consider the following:

• If the cause is from overly complex
expressions, reduce the complexity by
simplifying the expressions.

• If the cause is from too many specified
columns, reduce the number of columns.

• If the cause is from requesting too
many rows in the SELECT list, reduce
the complexity of the SELECT list
expression.

Query/Schema design health checks

The query/schema design metrics determine whether the query contains inefficient code.

Table 9: Query/Schema Design

Health Check Description Recommendation

Insufficient Partitioning Indicates that there is an insufficient number
of partitions to enable parallel processing.

This health check is triggered when the system
reads rows that are not required for the query's
operation, which increases the query's run-
time duration and depletes resources.

To address this condition, consider:

• Adding filters to your query for existing
partitioned columns.

• Using your more popular filters as
partition keys. For example, if you have
multiple queries that use the ship date as
a filter, consider creating partitions where
the ship date is the partition key.

For more information, see the Impala
documentation.

Many Materialized Columns Indicates that an unusually large number of
columns were returned for the query.

This health check is triggered when the query
reads more than 15 columns.

Note: This health check is for
Parquet tables only.

To address this condition, consider rewriting
the query to return 15 columns or less.

Skew health checks

The skew metrics compare the performance of the query's operations to other operations within the same job. For
optimal performance, operations within the same job should perform the same amount of processing.

Table 10: Skew

Health Check Description Recommendation

Bytes Read Skew Indicates that one of the cluster nodes is
reading a significantly larger amount of data
than the other nodes in the cluster.

To address this condition, consider
rebalancing the data or using the Impala SCHE
DULE_RANDOM_REPLICA query option.

For more information, see the Impala
documentation.

11

Cloudera Observability Impala query status

Health Check Description Recommendation

Duration Skew Indicates that one or more cluster nodes are
taking longer to execute the query than others.

The skew indicates an uneven distribution of
data across cluster nodes. The more evenly the
data is distributed, the faster the operations
will run on the cluster. Operations that use
JOINS and GROUP BY clauses may require
rewriting the query or changing the underlying
data partitioning to use columns with the most
evenly distributed values.

To address this condition, as a starting
point, consider configuring the query so that
its processing is distributed evenly across
operations.

Related Information
SQL Operations that Spill to Disk

LIMIT clause

MEM_LIMIT query option

Scalability Considerations

SCHEDULE_RANDOM_REPLICA query option

Detecting Missing Statistics

Partitioning

Setting Timeouts in Impala

DISABLE_CODEGEN query option

Impala query status

Lists the query states for workloads that use Apache Impala. You can find the status of your query on either the
Summary page in the Trend widget or on the Impala Queries page in the Status list.

Table 11: Impala Query Status

Query Status Description

Analysis Exception The query failed due to syntax errors or incorrect table or column
names.

Authorization Exception The query failed because the user executing the query does not have
permission to access the data.

Cancelled The query was cancelled by the system or a user.

Exceeded Memory Limit The amount of memory required to execute the query exceeded the
allocated memory limit.

Failed - Any Reason The query failed for a reason other than one of the Cloudera
Observability query states.

Other Failures The query failed for other unclassified reasons.

Rejected from Pool The query failed because there are too many queries already pending in
the Impala resource pool.

Session Closed The query failed because the session was closed by the system or a
user.

Succeeded The query succeeded.

12

https://docs.cloudera.com/cdw-runtime/cloud/impala-reference/topics/impala-scalability.html#pnavId4
https://docs.cloudera.com/cdw-runtime/cloud/impala-sql-reference/topics/impala-limit.html
https://docs.cloudera.com/cdw-runtime/cloud/impala-sql-reference/topics/impala-query-options.html#query_options__mem_limit
https://docs.cloudera.com/cdw-runtime/cloud/impala-reference/topics/impala-scalability.html
https://docs.cloudera.com/cdw-runtime/cloud/impala-sql-reference/topics/impala-query-options.html#query_options__schedule_random_replica
https://docs.cloudera.com/cdw-runtime/cloud/impala-reference/topics/impala-perf-stats.html#pnavId4
https://docs.cloudera.com/cdw-runtime/cloud/impala-reference/topics/impala-partition.html
https://docs.cloudera.com/cdw-runtime/cloud/impala-start-stop/topics/impala-timeouts.html
https://docs.cloudera.com/cdw-runtime/cloud/impala-sql-reference/topics/impala-query-options.html#query_options__disable_codegen

Cloudera Observability Impala statement types

Impala statement types

Lists the SQL statement types for workloads that use Apache Impala. You can find the statement types on the Impala
Queries page in the Type list. For more detailed information about these types of SQL statements, click the Related
Information link below.

Table 12: Impala Statement Types

Statement Type Description

ALTER TABLE Changes the structure or properties of an existing table.

For example, ALTER TABLE table_name ADD PARTITION (mont
h=1, day=1);

ALTER VIEW Changes the characteristics of a view.

For example, ALTER VIEW view_name AS SELECT * FROM
 table_name;

COMPUTE STATS Collects information about volume and distribution data in a table and
all associated columns and partitions.

For example, COMPUTE STATS table_name;

CREATE DATABASE Creates a new database.

For example, CREATE DATABASE database_name;

CREATE FUNCTION Creates a user-defined function (UDF), which you can use to
implement custom logic during SELECT or INSERT operations.

For example, CREATE FUNCTION function_name LOCATION
 'hdfs_path_to_jar' SYMBOL='class_name';

CREATE ROLE Creates a role to which privileges can be granted. After privileges are
granted to the role, then the role can be assigned to users. A user who
has been assigned a role is only able to exercise the privileges of that
role.

For example, CREATE ROLE role_name;

CREATE TABLE Creates a new table and specifies its characteristics.

For example, CREATE TABLE table_name (column_name
 data_type) PARTITIONED BY (column_name data_type) LOCATI
ON 'hdfs_path';

CREATE TABLE AS SELECT Creates a new table with the output from a SELECT statement.

For example, CREATE TABLE table_name AS SELECT * FROM
 table_3;

CREATE TABLE LIKE Creates a new table by cloning an existing table.

For example, CREATE TABLE table_name_2 LIKE
 table_name_1;

CREATE VIEW Creates a shorthand abbreviation (alias) for a query. A view is a purely
logical construct with no physical data behind it.

For example, CREATE VIEW view_name AS SELECT * FROM
 table_name;

DDL The Data Definition Language, whose SQL statements change the
structure of the database by creating, deleting, or modifying schema
objects, such as databases, tables, and views.

For example, CREATE TABLE;

13

Cloudera Observability Impala statement types

Statement Type Description

DESCRIBE DB Displays metadata about a database.

For example, DESCRIBE database_name;

DESCRIBE TABLE Displays metadata about a table.

For example, DESCRIBE table_name;

DML The Data Manipulation Language, whose SQL statements modify the
data stored in tables.

For example, INSERT;

DROP DATABASE Removes a database from the system.

For example, DROP database_name;

DROP FUNCTION Removes a user-defined function (UDF) so that it is not available for
execution during Impala SELECT or INSERT operations.

For example, DROP FUNCTION function_name;

DROP STATS Removes the specified statistics from a table or a partition.

For example, DROP STATS table_name;

DROP TABLE Removes a table and its underlying HDFS data files for internal tables,
although not for external tables.

For example, DROP TABLE table_name;

DROP VIEW Removes the specified view. Because a view is purely a logical
construct with no physical data behind it, DROP VIEW only involves
changes to metadata in the metastore database, not any data files in
HDFS.

For example, DROP VIEW view_name;

EXPLAIN Generates a query execution plan for a specific query.

For example, EXPLAIN SELECT * FROM table_1;

GRANT PRIVILEGE Grants privileges on specified objects to groups.

For example, GRANT privilege_name ON TABLE table_name TO
 role_name;

GRANT ROLE Grants roles on specified objects to groups.

For example, GRANT ROLE role_nameTO GROUP
 group_name;

LOAD Loads data from an external data source into a table.

For example, LOAD DATA INPATH 'hdfs_file_or_directory_path' IN
TO TABLE tablename;

N/A These queries failed due to syntax errors and Impala is not able to
identify a query type for them.

REFRESH Reloads the metadata for a table from the metastore database, performs
an incremental reload of the file, and blocks the metadata from the
HDFS NameNode. REFRESH is used to avoid inconsistencies between
Impala and external metadata sources, specifically the Hive Metastore
and the NameNode.

For example, REFRESH table_name;

REVOKE PRIVILEGE Revokes privileges on a specified object from groups.

For example, REVOKE privilege_name ON TABLE table_name;

REVOKE ROLE Revokes roles on a specified object from groups.

For example, REVOKE ROLE role_name FROM GROUP
 group_name;

14

Cloudera Observability Potential SQL issues

Statement Type Description

SELECT Requests data from a data source.

For example, SELECT * FROM table_1;

SET Sets configuration properties or session parameters.

For example, SET compression_codec=snappy;

SHOW COLUMN STATS Displays the column statistics for a specified table.

For example, SHOW COLUMN STATS table_name;

SHOW CREATE TABLE Displays the CREATE TABLE statement used to reproduce the current
structure of a table.

For example, SHOW CREATE TABLE table_name;

SHOW DATABASES Displays all available databases.

For example, SHOW DATABASES;

SHOW FILES Displays the files that constitute a specified table or a partition within a
partitioned table.

For example, SHOW FILES IN table_name;

SHOW FUNCTIONS Displays user-defined functions (UDFs) or user-defined aggregate
functions (UDAFs) that are associated with a particular database.

For example, SHOW FUNCTIONS IN database_name; or SHOW
 AGGREGATE FUNCTIONS IN database_name;

SHOW GRANT ROLE Lists all the grants for the specified role name.

For example, SHOW GRANT ROLE role_name;

SHOW ROLES Displays all available roles.

For example, SHOW ROLES;

SHOW TABLES Displays the names of tables.

For example, SHOW TABLES;

SHOW TABLE STATS Displays the statistics for a table.

For example, SHOW TABLE STATS table_name;

TRUNCATE TABLE Removes the data from an Impala table, while keeping the table.

For example, TRUNCATE TABLE table_name;

USE Switches the current session to a specified database.

For example, USE database_name;

Related Information
Impala SQL statements

Potential SQL issues

Lists the most common SQL mistakes made during statement creation that are identified as potential issues by
Cloudera Observability. The Health Check list, on the engine’s Queries page, categorizes the health tests. For
example, for Hive, MapReduce, Oozie, and Spark engines, the Insufficient Partitioning and Many Materialized
Columns health checks, test for query and schema issues.

15

https://docs.cloudera.com/cdw-runtime/cloud/impala-sql-reference/topics/impala-langref-sql.html

Cloudera Observability Potential SQL issues

Table 13: Common SQL Issues

Potential SQL Issue Impact Recommendation

>5 table joins or > 10 join conditions found. Possible performance impact, depending on
the size of a table, partitioning keys, and filter
and join conditions that are specified in the
query.

To address this issue, denormalize tables to
eliminate the need for joins.

>10 columns present in GROUP BY list. Possible performance impact, depending on
the number of distinct groups and the memory
configuration.

Note: This issue is not raised if the
source platform is Impala.

To address this issue, evaluate the memory
requirements for the query.

>10 Inline Views present in query. Possible performance impact, depending
on the memory configuration, especially if
complex expressions are present in inline
views on Impala.

To address this issue, evaluate the memory
requirements and materialize inline views.

>50 query blocks present in large query. Possible performance impact, depending on
the memory configuration.

To address this issue, evaluate the query
memory requirements, split the query into
smaller queries, and materialize duplicate
blocks.

>2000 expressions found in WHERE clause of
a single query.

This is a hard limit enforced by Impala. The
query fails if it contains >2000 expressions.

To address this issue, consolidate expressions
by replacing repetitive sequences with single
operators like IN or BETWEEN.

Cartesian or CROSS join found. Performance impact if tables are large. To address this issue, rewrite the query by
adding join conditions and eliminate Cartesian
joins.

High cardinality GROUP BY column found. Possible performance impact, depending on
the number of distinct groups and the memory
configuration.

To address this issue, evaluate the memory
requirements for the query.

Joins across large tables found. Possible performance impact, depending
on the partitioning keys, and filter and join
conditions that are specified in the query.

To determine the cause, evaluate the EXPL
AIN output on Impala.

To address this issue, evaluate the filter
and join conditions, the query's memory
requirements, and consider table partitioning
strategies.

Join on a large table found. Possible performance impact, depending
on the partitioning keys, and filter and join
conditions that are specified in the query.

To determine the cause, evaluate the EXPL
AIN output on Hive or Impala.

To address this issue, evaluate the filter
and join conditions, the query's memory
requirements, and consider table partitioning
strategies.

Many single-row inserts found. Possible performance impact when using
singleton inserts that create multiple small
files instead of less large files.

To address this issue, batch inserts together,
which prevents the creation of multiple small
data files.

Popular CASE expression across queries
found.

Possible performance improvement.

Consider materializing the CASE expression.

Popular filter conditions found. Possible performance impact if the tables are
large and are not partitioned.

To address this issue, consider table
partitioning strategies on the filter conditions.

Popular inline views across queries found. Possible performance impact, depending
on the memory configuration, especially if
complex expressions are used in inline views
on Impala.

To address this issue, consider materializing
the inline view.

16

Cloudera Observability Cloudera Observability Hive cluster metrics

Potential SQL Issue Impact Recommendation

Popular subqueries across queries found. Possible performance improvement.

Consider materializing the subqueries.

Query has no filters. Possible performance impact, if the result set
that is returned is very large.

To address this issue, rewrite the query by
adding filtering conditions that reduce the size
of the result set that is returned.

Query on partitioned table is missing filters on
partitioning columns.

Possible performance impact if the tables are
large.

To address this issue, rewrite the query by
adding filtering conditions.

Query with filter conditions on a large table
found.

Possible performance impact if the tables are
large and are not partitioned.

To address this issue, consider table
partitioning strategies on the filter conditions.

Query with inline views found. Possible performance impact, depending
on the memory configuration, especially if
complex expressions are used in inline views
on Impala.

To address this issue, if the inline view is
duplicated, evaluate whether materializing the
inline view is advantageous.

Table might contain too many partitions
(>30K).

May crash the Hive Metastore. To address this issue, re-evaluate the
partitioning key strategy, as queries that
access multiple partitions are unlikely to finish
processing.

Table might contain too many partitions
(>50K).

May crash the Hive Metastore. To address this issue, re-evaluate the
partitioning key strategy, as queries that
access multiple partitions are unlikely to finish
processing.

Table might contain too many partitions
(>100K).

May crash the Hive Metastore. To address this issue, re-evaluate the
partitioning key strategy, as queries that
access multiple partitions are unlikely to finish
processing.

Cloudera Observability Hive cluster metrics

Lists the Hive cluster health check tests that are performed by Cloudera Observability at the end of a Hive job. The
list includes the severity conditions and thresholds, and what actions you should consider to resolve the problem.

Table 14:

Health Test Description Severity Condition Recommendation

Hive on Tez JVM Pause Rate
Analyzer

This health test checks the time
taken to free up memory by the
Java garbage collector.

Where, a high value for the JVM
pause rate indicates that the Java
garbage collection took longer
than the threshold to complete its
work.

It uses the hive_on_tez_jvm_paus
e_time_rate metric to check the
Hive on Tez JVM pause rate.

• A Good result implies
that there were no pauses
greater than 300ms and no
occurrences of more than five
pauses between 100ms and
300ms.

• A Concerning result implies
that there were occurrences
of more than five pauses
between 100ms and 300ms.

• A Bad result implies that
there was at least one pause
that was greater than 300ms.

To address this condition,
consider increasing the allocated
heap size for the HiveServer2
instance.

17

Cloudera Observability Cloudera Observability Hive cluster metrics

Health Test Description Severity Condition Recommendation

Hive Metastore JVM Pause Rate
Analyzer

This health test checks the time
taken to free up memory by the
Java garbage collector.

Where, a high value for the JVM
pause rate indicates that the Java
garbage collection took longer
than the threshold to complete its
work.

It uses the hive_jvm_pause_t
ime_rate metric to check the Hive
Metastore JVM pause rate.

• A Good result implies
that there were no pauses
greater than 300ms and no
occurrences of more than five
pauses between 100ms and
300ms.

• A Concerning result implies
that there were occurrences
of more than five pauses
between 100ms and 300ms.

• A Bad result implies that
there was at least one pause
that was greater than 300ms.

To address this condition consider
increasing the allocated heap size
for the Hive Metastore.

Hive on Tez Waiting Compile
Ops Analyzer

This health test counts the number
of Hive On Tez operations waiting
to compile.

Where, if the number of
operations waiting to compile
is greater than 0, then the
HiveServer2 instance is likely
overloaded.

It uses the hive_on_tez_waiting_
compile_ops metric to count
the number of Hive On Tez
operations waiting to compile.

• A Good result implies that
there were zero operations
waiting to compile.

• A Bad result implies that the
number of operations waiting
to compile is consistently
greater than zero.

If the number of operations
waiting to compile is consistently
greater than zero, then to address
this condition, consider restarting
the HiveServer2 instance.

HiveServer2 Memory Usage
Analyzer

This health test calculates the
percentage of Hive On Tez heap
memory utilization for the input
period.

Where, if the percentage of heap
memory utilization is above the
threshold, there is a possibility of
running out of heap space.

It uses the hive_on_tez_memo
ry_heap_used and the hive_
on_tez_memory_heap_max
metrics to calculate the percentage
of heap memory utilization for the
input period.

• A Good result implies that the
maximum heap utilization is
less than 80% of the available
heap.

• A Concerning result implies
that the maximum heap
utilization is between 80%
and 95% of the available
heap.

• A Bad result implies that the
maximum heap utilization
exceeded 95% of the
available heap.

To address this condition,
consider increasing the allocated
heap size for the HiveServer2
instance.

Hive Metastore Memory Usage
Analyzer

This health test calculates the
percentage of Hive Metastore
heap memory utilization for the
input period.

Where, if the percentage of heap
memory utilization is above the
threshold, there is a possibility of
running out of heap space.

It uses the hive_memory_heap
_used and the hive_memory_
heap_max metrics to calculate
the percentage of heap memory
utilization for the input period.

• A Good result implies that the
maximum heap utilization is
less than 80% of the available
heap.

• A Concerning result implies
that the maximum heap
utilization is between 80%
and 95% of the available
heap.

• A Bad result implies that the
maximum heap utilization
exceeded 95% of the
available heap.

To address this condition,
consider increasing the allocated
heap size for the Hive Metastore.

18

	Contents
	Cloudera Observability reference overview
	Hive, MapReduce, Oozie, and Spark health checks
	Impala health checks
	Impala query status
	Impala statement types
	Potential SQL issues
	Cloudera Observability Hive cluster metrics

