
Cloudera Stream Processing Community Edition 2.0.0

Getting Started Guide
Date published: 2022-07-29
Date modified: 2023-01-31

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Stream Processing Community Edition | Contents | iii

Contents

Getting started with Streams Messaging... 4
Getting started with Kafka... 4

Creating a topic.. 4
Producing and consuming data.. 5
Monitoring Kafka topics with SMM..6

Getting started with Schema Registry..9
Creating a schema...9
Evolving a schema..11
Deleting a schema...13
Integrating Schema Registry with a Kafka Java client..13

Getting started with Kafka Connect...16
Creating a database and table in PostgreSQL..17
Creating a topic and producing messages..17
Deploying the connector...18
Monitoring and managing the connector... 21

Getting Started with Streams Messaging Manager Alert Policies...23
Setting up connectors that use JDBC drivers.. 26

Getting started with Streaming Analytics..29
Getting started with SQL Stream Builder..29

1. Creating a project... 29
2. Creating a job and table...31
3. Running a SELECT query... 35
4. Creating and querying a view..36
5. Outputting results of SQL query... 37

Using different connectors in SSB...51
Using Filesystem source...51
Using PostgreSQL CDC connector..53

Monitoring SQL results and jobs...54
Sampling results in Streaming SQL Console...54
Reviewing data in Streams Messaging Manager... 54
Reviewing jobs in Flink Dashboard...55

Managing SQL jobs..57
Configuring SQL job settings.. 57
Managing SQL jobs..59
Loading SQL queries to SQL Editor... 60
Using SQL Stream Builder REST API..62
Materialized View Pagination.. 62

Cloudera Stream Processing Community Edition Getting started with Streams Messaging

Getting started with Streams Messaging

Get started with Streams Messaging in CSP Community Edition.

The following collection of tutorials walks you through the basic usage and features of Kafka, Schema Registry,
Streams Messaging Manager, and Kafka Connect. Complete any of the following tutorials to get familiar with the
features and functionalities of the Streams Messaging components.

Getting started with Kafka
Get started with Kafka in CSP Community Edition.

The following sections walk you through the basics of how Kafka is used in CSP Community Edition. Completing
this tutorial you will learn:

• How to create a topic using Streams Messaging Manager (SMM).
• How to produce and consume data using Kafka's built-in console clients as well as your own client applications.
• How to monitor topic activity in SMM.

Before you begin

Find out the name or ID of the Kafka container. You will need to pass the container name or ID as a parameter in
some of the commands you will be running.The container name and ID can be listed using docker ps. For example:

docker ps -a --format '{{.ID}}\t{{.Names}}' --filter "name=kafka.(\d)"

The Kafka container will either be called cspce-kafka-1 or cspce_kafka_1.

Creating a topic
Learn how to create a Kafka topic using the SMM UI.

Procedure

1. Access the SMM UI by entering the following in a browser window:

http://localhost:9991

2.
Click (Topics) in the navigation sidebar.

3. Click Add New.

4. Configure the topic as follows:

• Topic Name: csp-ce
• Partitions: 3
• Availability: Low
• Cleanup Policy: delete

Important: You can only create topics using the Low preset or the Custom preset with REPLICATION
FACTOR and MIN.INSYNC.REPLICAS set to 1. This is because CSP Community Edition has a single
Kafka broker deployed. Additionally, the name of the topic can only contain ASCII alphanumeric
characters (a-z, A-Z, 0-9), dots (.), underscores(_), and minus signs (-).

5. Click Save.

4

Cloudera Stream Processing Community Edition Getting started with Streams Messaging

6. Verify that the topic was created.

This can be done by typing csp-ce in the search field. If the topic was successfully created, it will be listed under
Topics.

Producing and consuming data
Learn how to produce and consume data to and from Kafka topics using Kafka’s built-in console tools or your own
client application.

About this task

Once you have created your topic it's time to start producing (writing) and consuming (reading) some data (also
referred to as records or messages). Data production and consumption happens using Kafka producer and consumer
applications, or clients for short. Clients connect to a Kafka server, called a broker, and either produce data to or
consume data from topics. In most production environments these applications are custom built using a Kafka client
library. However, Kafka is shipped with command line tools, including a console producer and consumer application
that you can use to test Kafka’s features and capabilities.

The following list of steps will walk you through how you can use Kafka’s built-in console producer to produce some
messages and then consume and view those messages using the SMM UI. Additionally, information about how to
configure your own custom developed clients to connect to Kafka in CSP Community Edition is also provided.

Before you begin

• Ensure that you have a topic available. If not, create one, see Creating a topic on page 4.
• Ensure that you have the SMM UI open. If not, enter the following in a browser window:

http://localhost:9991

Steps

For Console Client

1. Open a terminal sessions and run the following command:

docker exec -it [***KAFKA CONTAINER NAME OR ID***] /bin/bash

This command launches a Bash session within the docker container that Kafka is running in. The interactive
session is required to run the console producer.

2. Run the console producer to start producing data.

/opt/kafka/bin/kafka-console-producer.sh --bootstrap-server localhost:90
94 --topic csp-ce

The --bootstrap-server option specifies the host and port of the Kafka broker that the client should connect to.
The --topic option specifies the topic that data will be produced to.

3. Start typing to produce data.

>my first message
>my second message

Once you are done entering messages, ensure that you leave the console producer running.
4.

In the SMM UI locate your topic and click (Profile) next to the topic name.

5

Cloudera Stream Processing Community Edition Getting started with Streams Messaging

5. Go to Data Explorer.

The Data Explorer tab lets you sample the data that is flowing through the topic. The messages that you
produced using the console producer will be available on this page. Select different partitions and experiment
with the slider controls to view data.

Note: The Data Explorer defaults to Partition 0 of a topic. If you do not see any data, select a different
partition from the Partitions drop-down to find the messages that you produced.

6. Switch over to the terminal session running the producer and produce some more data.
7. Switch back to the Data Explorer in SMM and refresh the page.

The new messages you produced should be visible in Data Explorer.
8. Close the producer session with CTRL+C.

For Custom Client

To connect your own Kafka clients, that are running outside of the docker network, to the Kafka broker deployed
with CSP Community Edition you need to run the client with the following configuration:

bootstrap.servers=localhost:9094

Once you have a producer set up and running, you can immediately view the data that is being produced into a
topic using the SMM UI.

1.

In the SMM UI locate your topic and click (Profile) next to the topic name.
2. Go to Data Explorer.

The Data Explorer tab lets you sample the data that is flowing through the topic. The messages that you
produce will be available on this page. Select different partitions and experiment with the slider controls to
view data.

Note: The Data Explorer defaults to Partition 0 of a topic. If you do not see any data, select a different
partition from the Partitions drop-down to find the messages that you produced.

Monitoring Kafka topics with SMM
Learn how you can monitor Kafka topics and topic activity in SMM.

About this task

Now that you know how to create a topic and produce/consume data, it is time to learn how you can monitor your
topics and the activity of those topics using Streams Messaging Manager (SMM).

Although you already have a topic with some data, the following steps will walk you through another production/
consumption process where data production and consumption is continuous. This is done so that the topic activity is
closer to what you would actually see in a production environment. Once you have the data flowing, you will access
the SMM UI and monitor topic and client activity as well as look at the data that is being produced.

Note: SMM can be used to monitor the activity of all types of Kafka entities, not just topics. For a
comprehensive overview and more information regarding SMM, see the Related Information section at the
bottom of this page.

Before you begin

• Ensure that you have a topic available. If not, create one, see Creating a topic on page 4.
• Ensure that you have the SMM UI open. If not, enter the following in a browser window:

http://localhost:9991

6

Cloudera Stream Processing Community Edition Getting started with Streams Messaging

• Ensure that you have two interactive Bash sessions open in the Kafka container. If not, open two separate terminal
sessions and run the following command in both sessions:

docker exec -it [***KAFKA CONTAINER NAME OR ID***] /bin/bash

Procedure

1. Produce and consume some data.

a) Pick a terminal session and run the console producer.

vmstat 1 1000 | /opt/kafka/bin/kafka-console-producer.sh --bootstrap-ser
ver localhost:9094 --topic csp-ce

This command uses vmstat to generate data. The data that vmstat prints is then picked up by the console
producer and is streamed into the specified Kafka topic. Each line from the output of vmstat is produced as a
standalone message. Do not close this session or interrupt the producer, otherwise data production will stop.

b) Switch over to the other terminal session and run the console consumer.

/opt/kafka/bin/kafka-console-consumer.sh --bootstrap-server localhost:90
94 --topic csp-ce --from-beginning --group my-consumer-group

The messages that are being produced by the console producer instance should appear on the screen. As long
as you keep both processes running, and as long as vmstat is generating data, the producer will continue to
produce messages, and the consumer will continue to consume them.

2. Switch over to the SMM UI and start monitoring topic activity.

When you open SMM, you are presented with the Overview page. This page gives you information about the
total number of producers, brokers, topics, and consumer groups. It also provides more detailed metrics about
producers and consumers. The following points give a quick introduction of the UI and its features. Feel free to
experiment and explore.

Note: It may take a few minutes for recent activity to start appearing. If you do not see any activity, wait
a few minutes and refresh the page.

• In the middle you have a list of topics. Here, you can identify and review some key metrics for the overall
topic activity. Clicking on a topic lists the partitions of that topic as well as partition-level metrics.

• On the left and right hand side of the page you can see your producers and consumers. If everything is working
correctly, you should see at least one active producer and at least one active consumer. Clicking on either the

7

Cloudera Stream Processing Community Edition Getting started with Streams Messaging

producer or consumer will show their activity, highlighting all the topics and partitions they are writing to or
reading from, respectively.

•

Clicking on (Profile) redirects you to the topic details page which has a total of four tabs. The tabs and
the information they present are as follows:

For Metrics

The Metrics tab collects all the topic-related metrics and utilization charts.

Tip: You can delete a topic on this tab by clicking ActionsDelete.

For Data Explorer

The Data Explorer tab lets you sample the data that is flowing through the topic. Select different partitions and
experiment with the slider controls to view data. If the topic you are viewing is getting data produced into it
actively, you can refresh the page to see the latest messages being produced

Tip: The Data Explorer tab of a topic can be accessed from the Overview page by clicking next
to the name of a topic.

For Configs

The Configs tab gives you an overview of the topic’s configuration properties. Additionally, you can also
reconfigure a topic on this tab.

For Latency

The Latency tab gives you a powerful snapshot of end-to-end latency including the number of consumer
groups for a topic, number of clients inside a particular consumer group, and number of partitions in a
topic.This tab also includes two graphs that visualize messages consumed as well as end-to-end latency. By
default the Latency tab will not show any data. This is because in order for SMM to fetch metrics related to
end-to-end latency, clients must be configured. Specifically, interceptors must be enabled within the client.
This is not covered in this tutorial. For more information on enabling interceptors and monitoring end-to-end
latency, see Monitoring End-to-End Latency using Streams Messaging Manager.

8

Cloudera Stream Processing Community Edition Getting started with Streams Messaging

What to do next

Completing this tutorial you learned how to create Kafka topics using SMM, how to produce and consume data and
got familiar with the basic monitoring features of SMM. Cloudera recommends that you hop over to the Schema
Registry or Kafka Connect tutorials and complete those as well. Alternatively, If you want to dive deeper into Kafka
or SMM, visit any of the resources listed in the Related Information section below.

Related Information
Official Apache Kafka Documentation

Cloudera Runtime - Apache Kafka Overview

Cloudera Runtime - Developing Apache Kafka Applications

Cloudera Runtime - Monitoring Kafka Clusters using Streams Messaging Manager

Cloudera Runtime - Managing Kafka Topics using Streams Messaging Manager

Cloudera Runtime - Monitoring End-to-End Latency using Streams Messaging Manager

Streams Messaging Manager Alert Policies

Getting started with Schema Registry
Get started with Schema Registry in CSP Community Edition.

Schema Registry provides a shared repository of schemas that allows applications to flexibly interact with each other.
Applications frequently need a way to share metadata across data format, schema, and semantics. Schema Registry
addresses these challenges by evolving schemas such that a producer and consumer can understand different versions
of the schemas but still read all information shared between both versions and safely ignore the rest.

The following sections teach you how you can:

• Create a schema.
• Evolve a schema.
• Delete a schema.
• Integrate your own Java Kafka client with Schema Registry.

Creating a schema
Learn how to create a schema in Schema Registry using the Schema Registry UI.

About this task

Before you begin
Creating a schema involves configuring the properties of the schema and uploading the schema itself to Schema
Registry. Cloudera recommends that you use your own schema if one is available to you. If you do not have a schema
available, an example schema is provided in Step 4 on page 10.

Procedure

1. Access the Schema Registry UI by entering the following in a browser window:

http://localhost:7788/

2. Click +.

The Add New Schema dialog appears.

9

https://kafka.apache.org/28/documentation.html
https://docs.cloudera.com/runtime/7.2.16/kafka-overview/topics/kafka-overview-intro.html
https://docs.cloudera.com/runtime/7.2.16/kafka-developing-applications/topics/kafka-develop-producers.html
https://docs.cloudera.com/runtime/7.2.16/monitoring-kafka-clusters/topics/smm-monitoring-clusters.html
https://docs.cloudera.com/runtime/7.2.16/managing-topics/topics/smm-create-kafka-topic.html
https://docs.cloudera.com/runtime/7.2.16/monitoring-end-to-end-latency/topics/smm-end-to-end-latency-overview.html
https://docs.cloudera.com/csp-ce/latest/getting-started/topics/csp-ce-sm-smm-alerts.html

Cloudera Stream Processing Community Edition Getting started with Streams Messaging

3. Configure the schema.

If you do not have a schema available and plan to use the example schema provided in the next step, provide a
NAME and DESCRIPTION for the schema and leave all other properties set to their default values.
NAME

Add a unique name for the schema. Used as a key to look up schemas.

DESCRIPTION

Add a short description of the schema

SCHEMA TYPE

The schema format. Supported formats are Avro and JSON. If you do not have a schema available
and plan to use the example provided in this guide, select AVRO

SCHEMA GROUP

Add the name of a schema group. Schema Groups allow you to group schemas in any logical order.

COMPATIBILITY

Sets the compatibility policy for the schema. A compatibility policy defines the rules of how a
schema can be evolved. Once set, this cannot be changed. The policies are as follows:

• FORWARD - allows evolving a schema by adding information.
• BACKWARD - allows evolving a schema by removing information.

Note: It is possible to add new fields to BACKWARD compatible schemas. In a
case like this however, a default value must be provided for that field. An example
of this is shown in the Evolving a Schema section.

• BOTH - allows evolving a schema by adding and removing information.
• NONE - no policy is applied to the schema, any change to the schema is accepted, compatibility

checks are not carried out.

For a comprehensive description on each policy, see Compatibility Policies.

EVOLVE

Controls whether a schema can be evolved later by creating multiple versions. If you deselect this
option the schema can only have one version. Leave this set as the next section walks you through
schema evolution using the schema you are creating now.

4. Copy and paste, drag and drop, or browse for your schema in the SCHEMA TEXT area.

You can use the following example schema if you don't have a schema available.

Tip: Although the following example is written in JSON, it is an Avro schema. This is because Avro
schemas are created using the JSON format.

{
 "type": "record",
 "namespace": "com.cloudera.examples",
 "name": "MachineData",
 "doc": "Machine utilization metrics",
 "fields": [
 {
 "name": "timestamp",
 "doc": "Metrics timestamp",
 "type": "long"
 },
 {
 "name": "hostname",
 "doc": "Host name of the source machine",
 "type": "string"
 },
 {
 "name": "counters",

10

Cloudera Stream Processing Community Edition Getting started with Streams Messaging

 "doc": "Machine counters",
 "type": {
 "type": "array",
 "items": {
 "type" : "record",
 "name" : "Counter",
 "fields" : [
 {
 "name": "name",
 "doc": "Name of the counter",
 "type": "string"
 },
 {
 "name": "value",
 "doc": "Value of the counter",
 "type": "long"
 },
 {
 "name": "unit",
 "doc": "Unit of the counter value",
 "type": ["string", "null"],
 "default": "null"
 }
]
 }
 }
 }
]
}

5. Click Save.

Evolving a schema
Learn how to evolve a schema in Schema Registry using the Schema Registry UI.

About this task

You evolve a schema when you create a new version of it. Schema Registry tracks the changes made to your schema,
and stores each set of changes in a separate version of the schema. When multiple versions exist, you can select which
version you want to use. Ensure that you understand compatibility policies, as they determine how you can evolve
your schemas.

Procedure

1. Access the Schema Registry UI by entering the following in a browser window:

http://localhost:7788/

2. Identify and select the schema that you want to evolve (version).

3.

Click the icon to open the Edit Version dialog

11

Cloudera Stream Processing Community Edition Getting started with Streams Messaging

4. Add a description of what has changed in this new version of the schema.

You can view the description in the Schema Registry UI to easily understand what has changed in each version of
the schema. As a result, Cloudera recommends that you add as much detail as you can.

5. Edit the schema in either of the following ways:

• Edit it directly in the SCHEMA TEXT area.
• Click Clear and upload a new version.

If you used the MachineData schema provided as an example in Creating a Schema, add the following schema.
This is the evolved version of the Machine data schema.

{
 "type": "record",
 "namespace": "com.cloudera.examples",
 "name": "MachineData",
 "doc": "Machine utilization metrics",
 "fields": [
 {
 "name": "timestamp",
 "doc": "Metrics timestamp",
 "type": "long"
 },
 {
 "name": "hostname",
 "doc": "Host name of the source machine",
 "type": "string"
 },
 {
 "name": "os_type",
 "doc": "OS type of the source machine",
 "type": "string",
 "default": "UNKNOWN"
 },
 {
 "name": "counters",
 "doc": "Machine counters",
 "type": {
 "type": "array",
 "items": {
 "type" : "record",
 "name" : "Counter",
 "fields" : [
 {
 "name": "name",
 "doc": "Name of the counter",
 "type": "string"
 },
 {
 "name": "value",
 "doc": "Value of the counter",
 "type": "long"
 },
 {
 "name": "unit",
 "doc": "Unit of the counter value",
 "type": ["string", "null"],
 "default": "null"
 }
]
 }
 }
 }

12

Cloudera Stream Processing Community Edition Getting started with Streams Messaging

]
}

6. Click Save.

7. The schema you created will be visible on the UI.

8. Click COMPARE VERSIONS.

In the COMPARE VERSIONS dialog you can compare versions of the schemas. If you have used the
MachineData schema example, you will see that in MachineData V2 a new field regarding OS type was added.

"name": "os_type",
"doc": "OS type of the source machine",
"type": "string",
"default": "UNKNOWN"

Notice that a default value of UNKNOWN is added. This is only needed if the schema compatibility is set to
BACKWARD (default). New fields can only be added to backward compatible schemas if a default value is also
provided for that field.

Deleting a schema
Learn how to delete a schema from Schema Registry with the Swagger UI or curl.

About this task

Schemas can be deleted if you no longer need them. However, unlike schema creation and evolution, schema deletion
can not be done using the Schema Registry UI. Instead, you must use the Schema Registry API. The following
provides instructions on how to delete a schema using the Swagger UI or curl.

Steps

For Swagger UI

1. Go to http://localhost:7788/swagger
2. Click Schema.
3. Click DELETE /api/v1/schemaregistry/schemas/{name}.
4. Click Try it out.
5. Enter the name of the Schema that you want to delete in the Name field.
6. Click Execute.

For curl

1. Open a new terminal session.
2. Run the following command:

curl -X DELETE "http://localhost:7788/api/v1/schemaregistry/sche
mas/[***SCHEMA NAME***]" -H "accept: application/json"

Replace [***SCHEMA NAME***] with the name of the schema that you want to delete

Integrating Schema Registry with a Kafka Java client
Learn how you can integrate existing Kafka Java clients with Schema Registry.

About this task

The following steps walk you through how you can integrate an existing Java Kafka client with Schema Registry.
Additionally, you will learn about the KafkaAvroSerializer and KafkaAvroDeserializer. These are the

13

Cloudera Stream Processing Community Edition Getting started with Streams Messaging

Cloudera recommended converters that you should use when integrating clients with Schema Registry. Lastly, you
will also learn how you can view the Avro data produced into a topic using Streams Messaging Manager (SMM)

Procedure

1. Set up dependencies.

Any client application that you want to integrate with Schema Registry requires the following dependencies.

a) Add the Cloudera Runtime Maven repository to the pom.xml of your project.

<repositories>
 <repository>
 <id>Cloudera Libs</id>
 <url>https://repository.cloudera.com/artifactory/libs-rel
ease-local/</url>
 </repository>
 </repositories>

b) Add a schema-registry-serdes dependency to the pom.xml of your project.

<dependency>
 <groupId>com.hortonworks.registries</groupId>
 <artifactId>schema-registry-serdes</artifactId>
</dependency>

c) Import the following classes.

import com.hortonworks.registries.schemaregistry.SchemaVersionInfo;
import com.hortonworks.registries.schemaregistry.client.SchemaRegistryCl
ient;
import com.hortonworks.registries.schemaregistry.errors.SchemaNotFound
Exception;
import static com.hortonworks.registries.schemaregistry.serdes.avro.A
vroSnapshotSerializer.SERDES_PROTOCOL_VERSION;
import static com.hortonworks.registries.schemaregistry.serdes.avro.S
erDesProtocolHandlerRegistry.CURRENT_PROTOCOL

2. Configure producers and consumers.

Producers and consumers require the following configuration properties to be set respectively.

For Producer

schema.registry.url=http://localhost:7788
key.serializer=org.apache.kafka.common.serialization.StringSerializer
value.serializer=com.hortonworks.registries.schemaregistry.serdes.avro.k
afka.KafkaAvroSerializer

For Consumer

schema.registry.url=http://localhost:7788
key.deserializer=org.apache.kafka.common.serialization.StringDeseriali
zer

14

Cloudera Stream Processing Community Edition Getting started with Streams Messaging

value.deserializer=com.hortonworks.registries.schemaregistry.serdes.avro
.kafka.KafkaAvroDeserializer

If you are specifying your configuration properties directly within the client application, your code will look
similar to the following examples after configuration is complete.

For Producer

config.putAll(Collections.singletonMap(SchemaRegistryClient.Configuratio
n.SCHEMA_REGISTRY_URL.name(), props.get(SCHEMA_REGISTRY_URL)));
config.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.
class.getName());
config.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, KafkaAvroSeri
alizer.class.getName());

For Consumer

config.putAll(Collections.singletonMap(SchemaRegistryClient.Configuratio
n.SCHEMA_REGISTRY_URL.name(), props.get(SCHEMA_REGISTRY_URL)));
config.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeseriali
zer.class.getName());
config.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, KafkaAvroDe
serializer.class.getName());

The schema.registry.url property specifies where the Schema Registry server is running. In CSP Community
Edition this is fixed and will always be http://localhost:7788.

The serializer/deserializer properties specify what classes the client should use to serialize or deserialize
(convert) data. In this specific example key conversion is done using the default StringSerializer
and StringDeserializer shipped with Kafka. Value conversion on the other hand is done using the
KafkaAvroSerializer and KafkaAvroDeserializer respectively. Both of these are Cloudera
provided and are Avro specific. They make it easy to write and read Avro objects to or from Kafka as serialization
and deserialization are handled transparently. As a result, they are the Cloudera recommended converters that you
should use when you are working with Avro data and are integrating with Schema Registry.

Both classes are Schema Registry aware. When the KafkaAvroSerializer is used to produce data to a
Kafka topic, the serializer will first check with the configured Schema Registry service to ensure the schema being
used is compatible with the schema registered for that topic. More specifically one of the following happens:

• If the topic has no schema registered, the serializer will register the schema on behalf of the client.
• If there’s already a schema registered for the topic, the serializer will check if the schema being used by the

client is either the same or a compatible evolution of that schema.

• If the schema is the same, the producer will use it for producing messages.
• If the schema is a new version of the currently registered schema that is compatible with the previous

versions, it will be registered with a new version number and will be used for producing messages.
• If the schema being used by the client is not compatible with the currently registered schema the serializer will

throw an exception.

Additionally, the serializer also adds the schema's identifier from Schema Registry to the message payload, so that
the consumer will know what's the correct schema version to fetch.

Afterwards, when the consumer is consuming the messages with the KafkaAvroDeserializer, the
deserializer will fetch that schema using the identifier from the message and will use the schema to correctly
deserialize the payload.

3. Build and run your clients to start producing and consuming data.

15

Cloudera Stream Processing Community Edition Getting started with Streams Messaging

4. View data in SMM.

a) Access the SMM UI by entering the following in a browser window:

http://localhost:9991

b)
Click (Topics) in the navigation sidebar.

c)

Find the topic you have been using and click next to the name of a topic.
d) Go to Data Explorer.

The messages the producer is producing into the topic should be visible on this page. However, the contents of
the messages will not be readable.

This is because your producer is producing binary data. However because SMM integrates with Schema
Registry, it is capable of decoding the binary data using the schema registered for the topic in Schema
Registry. This is done by selecting Avro for the key and/or value deserializer.

Getting started with Kafka Connect
Get started with Kafka Connect in CSP Community Edition.

Kafka Connect is a tool for streaming data between Apache Kafka and other systems in a reliable and scalable
fashion. Kafka Connect makes it simple to quickly define connectors that move large collections of data into and out
of Kafka. Source connectors can ingest entire databases or collect metrics from all your application servers into Kafka
topics, making the data available for stream processing with low latency. Sink connectors can deliver data from Kafka
topics into secondary storage and query systems or into batch systems for offline analysis.

CSP Community Edition is shipped with many different Cloudera developed and publicly available connectors
that each cover a specific use case for streaming data. All of these can be deployed, managed, and monitored using
Streams Messaging Manager (SMM)

16

Cloudera Stream Processing Community Edition Getting started with Streams Messaging

The following tutorial walks you through a simple use case where data is moved from a Kafka topic into a
PostgreSQL database using the JDBC Sink connector, which is one of the Cloudera developed connectors shipped
with CSP Community Edition.

Tip: Although this tutorial focuses on the JDBC Sink connector, the basic process of deploying and
monitoring a connector using SMM is the same for all connectors.

Before you begin

Find out the name or ID of the Kafka and PostgreSQL container. You will need to pass the name or ID of the
containers as parameters in some of the commands you will be running. The container name or ID can be listed using
docker ps. For example:

docker ps -a --format '{{.ID}}\t{{.Names}}' --filter "name=kafka.(\d)" --fil
ter "name=postgres"

The Kafka container will either be called cspce-kafka-1 or cspce_kafka_1.

The PostgreSQL container will either be called cspce-postgresql-1 or cspce_postgresql_1.

Creating a database and table in PostgreSQL
In order to stream data using the JDBC Sink connector, a destination is required for that data. In this tutorial, the
database and table is created using the PostgreSQL instance already deployed in CSP Community Edition.

Procedure

1. Open a new terminal window and run the following command:

docker exec -it [***POSTGRESQL CONTAINER NAME OR ID***] /bin/bash

2. Start the psql client.

psql

3. Create a database.

CREATE DATABASE csp;

4. Change the database owner to smm.

ALTER DATABASE csp OWNER TO smm;

5. Connect to the csp database.

\c csp

6. Create a table.

CREATE TABLE demo (Name VARCHAR (255), Role VARCHAR, Age INT);

7. Change the table owner to smm.

ALTER TABLE demo OWNER to smm;

Creating a topic and producing messages
Before you can deploy the JDBC Sink connector, you need a Kafka topic with some messages that you can use. The
connector connects to this topic and streams the data from the topic into the PostgreSQL database. The topic will be
created using SMM. Message production is done using the Kafka console producer.

17

Cloudera Stream Processing Community Edition Getting started with Streams Messaging

Procedure

1. Access the SMM UI by entering the following in a browser window:

http://localhost:9991

2.
Click (Topics) in the navigation sidebar.

3. Configure the topic as follows:

• Topic Name: csp-connect
• Partitions: 1
• Availability: Low
• Cleanup Policy: delete

Important: You can only create topics using the Low preset or the Custom preset with REPLICATION
FACTOR and MIN.INSYNC.REPLICAS set to 1. This is because CSP Community Edition has a single
Kafka broker deployed. Additionally, the name of the topic can only contain ASCII alphanumeric
characters (a-z, A-Z, 0-9), dots (.), underscores(_), and minus signs (-).

4. Click Save.

5. Verify that the topic was created.

This can be done by typing csp-connect in the search field. If the topic was successfully created, it will be listed
under Topics.

6. Open a terminal session and run the following command:

docker exec -it [***KAFKA CONTAINER NAME OR ID***] /bin/bash

7. Run the Kafka console producer.

/opt/kafka/bin/kafka-console-producer.sh --bootstrap-server localhost:9094
 --topic csp-connect

8. Produce the following messages:

{"Name":"Jim","Role":"Developer","Age":"23"}
{"Name":"Mary","Role":"Data Engineer","Age":"42"}
{"Name":"Jane","Role":"Developer","Age":"37"}

Notice how the schema of the messages matches the schema of the database table created in the previous section.
This is required as otherwise the connector would not know where to put the data in the table. Ensure that each
line in the example is produced as a single Kafka message.

9. Using the SMM UI, verify that the messages were produced.

a) Go Topics and find the csp-connect topic.
b)

Click (Profile) and go to Data Explorer.

If message production was successful, you should see the messages produced on the UI.

Deploying the connector
After both the topic and database is set up, it's time to deploy the JDBC Sink connector using the SMM UI.

18

Cloudera Stream Processing Community Edition Getting started with Streams Messaging

Procedure

1.
Click (Connect) on the navigation sidebar of the SMM UI.

2. Click +New Connector.

Clicking +New Connector opens the Select A Template page. This page contains all connectors available for
deployment in the form of selectable cards.

3. Navigate to the Sink templates section and select JDBC Sink.

After a connector is selected, you are presented with the Connector Configuration page.

Most connectors are shipped with a default configuration template to ease configuration. If a template is available
for a specific connector, the property keys and values are automatically populated when you select the connector.
The properties and values included in the templates depend on the selected connector.

In addition, the page has various features and options that are designed to help you with configuration. For

example, hovering over (Help), found next to some property values, displays information about that property.

19

Cloudera Stream Processing Community Edition Getting started with Streams Messaging

For more information on what each UI option and icon does, see Monitoring Kafka Connect Using Streams
Messaging Manager in the Related Information section at the bottom of this page.

4. Click Import Connector Configuration....

5. Copy and paste the following configuration in the Import Connector Config… dialog.

{
 "connector.class": "org.apache.nifi.kafka.connect.StatelessNiFiSinkConnec
tor",
 "extensions.directory": "/tmp/nifi-stateless-extensions",
 "failure.ports": "Retry from PutDatabaseRecord",
 "key.converter": "org.apache.kafka.connect.storage.StringConverter",
 "meta.smm.predefined.flow.name": "JDBC Sink",
 "meta.smm.predefined.flow.version": "1.0.0",
 "name": "sink-demo",
 "nexus.url": "https://repository.cloudera.com/artifactory/repo",
 "parameter.JDBC Sink Parameters:Database Connection URL": "jdbc:postgresq
l://postgresql:5432/csp",
 "parameter.JDBC Sink Parameters:Database Driver Class Name": "org.postgre
sql.Driver",
 "parameter.JDBC Sink Parameters:Database Driver Location": "/opt/connect/
plugin/libs/debezium-connector-postgres/postgresql-connector-java.jar",
 "parameter.JDBC Sink Parameters:Database Table Name": "demo",
 "parameter.JDBC Sink Parameters:Database Type": "PostgreSQL",
 "parameter.JDBC Sink Parameters:Database User Name": "smm",
 "parameter.JDBC Sink Parameters:Database User Password": "cloudera",
 "parameter.JDBC Sink Parameters:Kafka Message Data Format": "JSON",
 "parameter.JDBC Sink Parameters:Schema Access Strategy": "Infer Schema",
 "tasks.max": "1",
 "topics": "csp-connect",
 "value.converter": "org.apache.kafka.connect.converters.ByteArrayConver
ter",
 "working.directory": "/tmp/nifi-stateless-working"
}

Notice that Schema Access Strategy is set to Infer Schema. This tells the connector to figure out the schema of
the data based on the data in the topic. Based on the format of the data, the connector will know how to match the
data in the topic with the table columns. Note, however, that the connector is capable of retrieving the schema by
other means, for example from Schema Registry. For more information regarding Schema Access Strategy as well
as the other properties included in this example, see JDBC Sink connector reference in the Related Information
section at the bottom of this page.

6. Click Import.

7. Click Validate.

8. Click Next.

9. Click Deploy.

A pop-up window appears notifying you that deployment was successful. At this point, the connector is running.
You can click View Connector Profile to close the dialog.

10. Query the database.

After the connector is deployed, switch over to the terminal session you used to set up the database and run the
following command:

SELECT * FROM public.demo;

Note: You might need to wait a few minutes until the entries become visible.

20

Cloudera Stream Processing Community Edition Getting started with Streams Messaging

Monitoring and managing the connector
Once the connector is deployed, you can monitor its activity using the SMM UI.

Procedure

1.
In the SMM UI click (Connect) on the navigation sidebar.

Clicking on opens the Connect Cluster page with the Connectors tab open. This page provides a high level
overview and metrics of all your connectors as well as the connect cluster.

21

Cloudera Stream Processing Community Edition Getting started with Streams Messaging

2.
Click (Connector Profile) next to the connector’s name.

The Connector Profile page enables you to monitor details of the connector and its tasks as well as its
configuration. The page consists of two tabs Connector Profile and Connector Settings. The following points give
a quick introduction of the UI and its features. Feel free to experiment and explore.

For Connector Profile

• The Connector Profile section provides you with details regarding the Classname, Assigned Worker,
Status, Total Tasks, Running Tasks, Failed Tasks, and Paused Tasks.

• Using the buttons in the top right-hand corner you can pause, resume, restart, or delete the connector.
• In the Tasks section, you can view and monitor Status, Worker ID, Task ID, and various other details

regarding connector tasks. Clicking next to a task displays detailed information and metrics about
the selected task. In addition to viewing status and metrics, the Tasks section also allows you to restart

22

Cloudera Stream Processing Community Edition Getting started with Streams Messaging

a particular task. This can be done by selecting the task you want to restart and then clicking the Restart
option found within the Tasks section.

For Connector Settings

• The Connector Settings tab enables you to view and edit the configuration of the connector.
• Clicking Edit in the bottom left-hand corner allows you to reconfigure the connector.
• Using the buttons in the top right-hand corner you can pause, resume, restart, or delete the connector.

What to do next
Now that you are familiar with the basics of connector deployment and monitoring, Cloudera recommends that
you explore and learn about the various other connectors that are included with CSP Community Edition. For more
information on each of the connectors, see Connectors in the related information section.
Related Information
Cloudera Runtime - Connectors

Cloudera Runtime - JDBC Sink connector

Cloudera Runtime - JDBC Sink connector reference

Cloudera Runtime - Monitoring Kafka Connect Using Streams Messaging Manager

Getting Started with Streams Messaging Manager Alert Policies
Learn how to set up Alert Policies and Notifiers, how to view generated alerts, and how to disable an Alert Policy in
Streams Messaging Manager (SMM).

About this task

Alert Policies in SMM are user configured alerts that automatically trigger when configured conditions are met. An
alert contains the details of the policy including the alert message and the conditions that triggered the alert. Once an
alert is triggered, a notification is sent out by SMM using the Notifier associated with the Alert Policy. You can use
these alerts and notifications to monitor the health of Kafka, as well as to identify and troubleshoot problems.

For example, assume that you want to monitor your Kafka topics to ensure that data production and consumption is
happening without interruptions. To do this you could set up an Alert Policy that triggers if the bytes consumed from

23

https://docs.cloudera.com/runtime/7.2.16/kafka-connect/topics/kafka-connect-connector.html
https://docs.cloudera.com/runtime/7.2.16/kafka-connect/topics/kafka-connect-connector-jdbc-sink.html
https://docs.cloudera.com/runtime/7.2.16/kafka-connector-reference/topics/kafka-connector-reference-jdbc-sink.html
https://docs.cloudera.com/runtime/7.2.16/monitoring-kafka-connect/topics/smm-kafka-connect-overview.html

Cloudera Stream Processing Community Edition Getting started with Streams Messaging

or produced to your topics fall below a specified threshold. When the alert is triggered, SMM sends out a notification
using the Notifier associated with the Alert Policy immediately notifying you of a potential issue.

The following steps walk you through how to set up a simple Alert Policy that uses an HTTP Notifier, how to view
the generated alerts within SMM, and how to disable an Alert Policy.

Procedure

1. Access the SMM UI by entering the following in a browser window:

http://localhost:9991

2.
Click (Alerts) on the navigation sidebar.

3. Create a notifier.

a) Go to NOTIFIERS.
b) Click ADD NEW.
c) Configure the notifier as follows:

Take note of the URL property. This property specifies the URL where this notifier sends alerts. You do not
need to add the URL of an actual service to create and test Alert Policies. As a result, for this tutorial, you
can set this property to a placeholder value. For example http://my-service.com/endpoint. In a production
environment however, the URL you enter would be an endpoint of a target service that can consume and
process the alerts that SMM sends.

d) Click Save.

24

Cloudera Stream Processing Community Edition Getting started with Streams Messaging

4. Create an Alert Policy.

a) Go to ALERT POLICIES.
b) Click ADD NEW.
c) Configure the Alert policy as follows:

d) Click Save.

5. View alerts.

Go to History. Wait a few seconds and refresh the page, alerts should appear on the page.

6. Disable the Alert Policy.

a) Go to Alert Policies.
b) Find the alert policy that you want to disable, and click the toggle button beside the alert policy.

What to do next
To learn more about Alert Policies and Notifiers, see Managing Alert Policies Using Streams Messaging Manager.
Related Information
Managing Alert Policies Using Streams Messaging Manager

25

https://docs.cloudera.com/runtime/7.2.16/managing-alert-policies/topics/smm-alert-policies-overview.html

Cloudera Stream Processing Community Edition Getting started with Streams Messaging

Setting up connectors that use JDBC drivers
The Debezium and JDBC Kafka Connect connectors shipped with CSP Community Edition require a JDBC driver
to function. However, by default only the PostgreSQL JDBC driver is available for use. If you want to deploy a
connector that requires a different JDBC driver to function, you must copy the driver to the Kafka Connect container
before you deploy the connector.

About this task

The following Kafka Connect connectors require a JDBC driver that does not come shipped with CSP Community
Edition:

• Debezium Db2 Source
• Debezium MySQL Source
• Debezium Oracle Source
• Debezium SQL Server Source
• JDBC Source
• JDBC Sink

Before you can deploy any of these connectors you must copy the associated JDBC driver to the Kafka Connect
Container. For the Debezium connectors, the location where you copy the driver JAR is fixed. Additionally, the
Debezium connectors require that the JAR file is deployed within the container using a specific file name.

Important: The PostgreSQL JDBC driver comes bundled with CSP Community Edition. It is deployed at
the following location in the Kafka Connect container.

/opt/connect/plugin/libs/debezium-connector-postgres/postgresql-conn
ector-java.jar

This means that you do not need to complete the following steps if:

• You are deploying the Debezium PostgreSQL Source connector.
• You are deploying the JDBC Source or Sink connectors and use them to source or sink data from a

PostgreSQL database.

Before you begin

Find out the name or ID of the Kafka Connect container. You will need to pass the container name or ID as a
parameter in some of the commands you will be running.The container name and ID can be listed using docker ps.
For example:

docker ps -a --format '{{.ID}}\t{{.Names}}' --filter "name=kafka-connect"

The Kafka Connect container will either be called cspce-kafka-connect-1 or cspce_kafka-connect_1.

Steps
Debezium Db2 Source

1. Download the Db2 JDBC driver.

The JDBC driver can be downloaded from Maven Central. Cloudera recommends that you use
version 11.5.0.0.

2. Navigate to the directory where the driver was extracted.
3. Copy the driver to the Kafka Connect container and rename it.

docker cp ./jcc-[***VERSION***].jar [***KAFKA CONNECT
 CONTAINER NAME OR ID***]:/opt/connect/plugin/libs/debezium-c
onnector-db2/db2-connector-java.jar

26

Cloudera Stream Processing Community Edition Getting started with Streams Messaging

4. Log in to the Kafka Connect container as the root user.

docker exec -it --user root [***KAFKA CONNECT CONTAINER ID OR
 NAME***] /bin/bash

5. Change the owner of the driver to the kafka user.

chown kafka:cloudera /opt/connect/plugin/libs/debezium-conne
ctor-db2/db2-connector-java.jar

Debezium MySQL Source

1. Download the MySQL JDBC driver.

The JDBC driver can be downloaded from the MySQL Community Downloads page. Download
the platform independent version. Cloudera recommends that you use version 8.0.27.

2. Extract the files from the downloaded archive.

You can use the tar command or any other archive manager to extract the archive. For example:

tar -xf mysql-connector-java-[***VERSION***].tar.gz

3. Navigate to the directory where the driver was extracted.

cd mysql-connector-java-[***VERSION***]

4. Copy the driver to the Kafka Connect container and rename it.

docker cp ./mysql-connector-java-[***VERSION***].jar [***KAFKA
 CONNECT CONTAINER NAME OR ID***]:/opt/connect/plugin/libs/de
bezium-connector-mysql/mysql-connector-java.jar

5. Log in to the Kafka Connect container as the root user.

docker exec -it --user root [***KAFKA CONNECT CONTAINER ID OR
 NAME***] /bin/bash

6. Change the owner of the driver to the kafka user.

chown kafka:cloudera /opt/connect/plugin/libs/debezium-conne
ctor-mysql/mysql-connector-java.jar

Debezium Oracle Source

1. Download the Oracle JDBC driver.

The JDBC driver can be downloaded from Maven Central. Cloudera recommends that you use
version 12.2.0.1, 19.8.0.0, or 21.1.0.0.

2. Navigate to the directory where the driver was downloaded.
3. Copy the driver to the Kafka Connect container and rename it.

docker cp ./ojdbc8-[***VERSION***].jar [***KAFKA CONNECT
 CONTAINER NAME OR ID***]:opt/connect/plugin/libs/debezium-co
nnector-oracle/oracle-connector-java.jar

4. Log in to the Kafka Connect container as the root user.

docker exec -it --user root [***KAFKA CONNECT CONTAINER ID OR
 NAME***] /bin/bash

27

Cloudera Stream Processing Community Edition Getting started with Streams Messaging

5. Change the owner of the driver to the kafka user.

chown kafka:cloudera /opt/connect/plugin/libs/debezium-conne
ctor-oracle/oracle-connector-java.jar

Debezium SQL Server source

1. Download the SQL Server JDBC driver.

The JDBC driver can be downloaded from the Microsoft JDBC Driver for SQL Server
downloads page. Cloudera recommends that you use version 7.2.2.jre8. Download the zipped tar
file, do not download the executable version.

2. Extract the files from the downloaded archive.

You can use the tar command or any other archive manager to extract the archive. For example:

tar -xf sqljdbc_[***VERSION***]_enu.tar.gz

3. Navigate to the directory where the driver was extracted.

cd sqljdbc_[***VERSION***]/enu

4. Copy the driver to the Kafka Connect container and rename it.

docker cp ./mssql-jdbc-[***VERSION***].jre8.jar [***KAFKA
 CONNECT CONTAINER NAME OR ID***]:/opt/connect/plugin/libs/de
bezium-connector-sqlserver/sqlserver-connector-java.jar

5. Log in to the Kafka Connect container as the root user.

docker exec -it --user root [***KAFKA CONNECT CONTAINER ID OR
 NAME***] /bin/bash

6. Change the owner of the driver to the kafka user.

chown kafka:cloudera /opt/connect/plugin/libs/debezium-conne
ctor-sqlserver/sqlserver-connector-java.jar

JDBC Source and Sink

1. Download the driver.

The driver you need to download will depend on your use case and how you plan on using the
JDBC Source or Sink connector. For example. if you want the connector to connect to a MySQL
database, you need to download and deploy the MySQL JDBC driver.

2. Extract the files from the downloaded archive. You can use the tar command or any other
archive manager to extract the archive. For example:

tar -xf [***PATH TO JDBC DRIVER ARCHIVE***]

Depending on the driver you downloaded, this step might not be required.
3. Copy the driver to the Kafka connect container. For example:

docker cp [***PATH TO JDBC DRIVER JAR***] [***KAFKA CONNECT
 CONTAINER NAME OR ID***]:/opt/connect/plugin/libs/

You can copy the driver to any location within the container. Cloudera recommends that you
copy it to a directory that has no other JAR files. Additionally, ensure that you take note of the
path as you must provide it in the connector's configuration during connector deployment.

28

Cloudera Stream Processing Community Edition Getting started with Streaming Analytics

4. Change the owner of the driver to the kafka user.

chown kafka:cloudera [***PATH TO DRIVER JAR***]

Results
The selected drivers are copied within the Kafka Connect container. Deploying the Debezium, JDBC Source, and
JDBC Sink connectors is now possible.

What to do next
Deploy your selected connector. For more information on how to deploy the connectors, their configuration, and
features, see the Related Information section at the bottom of this page.
Related Information
Debezium - Debezium connector for Db2

Debezium - Debezium connector for MySQL

Debezium - Debezium Connector for Oracle

Debezium - Debezium connector for SQL Server

Cloudera Runtime - JDBC Sink connector

Cloudera Runtime - JDBC Source connector

MySQL Community Downloads

Maven Central - Db2 JDBC driver

Maven Central - Oracle JDBC driver

Microsoft JDBC Driver for SQL Server

Getting started with Streaming Analytics

Get started with Streaming Analytics in CSP Community Edition.

The Getting Started with SQL Stream Builder tutorial walks you through the basic usage and features of SQL Stream
Builder powered by Apache Flink. Complete the Getting Started guide to learn how to use Streaming SQL Console,
and how to query streams of data using SQL Stream Builder, and then you can try out the different supported
connectors, or learn how to manage and monitor your SQL jobs.

Getting started with SQL Stream Builder
Get started with SQL Stream Builder in CSP Community Edition.

The Getting Started guide walks you through the following steps from which you can learn how to use SQL Stream
Builder (SSB):

• How to access Streaming SQL Console
• How to create a project
• How to create a SQL job
• How to generate data to SSB
• How to create tables and views
• How to query data
• How to output the queried results using different solutions

1. Creating a project
As a first step to use SQL Stream Builder, learn how to create a project with git synchronization where you can create
and manage jobs, resources and experience the SDLC of SSB applications.

29

https://debezium.io/documentation/reference/1.9/connectors/db2.html
https://debezium.io/documentation/reference/1.8/connectors/mysql.html
https://debezium.io/documentation/reference/1.8/connectors/oracle.html
https://debezium.io/documentation/reference/1.8/connectors/sqlserver.html
https://docs.cloudera.com/runtime/7.2.16/kafka-connect/topics/kafka-connect-connector-jdbc-sink.html
https://docs.cloudera.com/runtime/7.2.16/kafka-connect/topics/kafka-connect-connector-jdbc-source.html
https://dev.mysql.com/downloads/connector/j/
https://repo1.maven.org/maven2/com/ibm/db2/jcc/11.5.0.0/
https://repo1.maven.org/maven2/com/oracle/database/jdbc/ojdbc8/
https://www.microsoft.com/en-us/download/details.aspx?id=57782

Cloudera Stream Processing Community Edition Getting started with Streaming Analytics

After accessing Streaming SQL Console using http://localhost:18121 from your browser and signing in, you are
redirected to the Projects page of Streaming SQL Console.

What are the benefits of Projects in SSB?
Providing Software Development Lifecycle (SDLC)

Projects allow you to group together resources for a task based on for example a business logic that
you would like to solve with SSB. Resources are data sources, tables, user-defined functions, and
Materialized Views that are needed for SQL jobs in a project.

Version control and backups with Git

You can export and import the project to a Git repository, track versions using different branches
and push your changes with commit messages as with any software project.

Enabling collaboration within a project

You can invite team members to your project to work together with the shared resources. The
members you invite to a project can work with the same resources, and you can also assign an
admin to the team who has the same privileges as the owner of the project.

Customizing environments with variables

You can create environment files that contain project-specific configurations as key-value pairs that
are used for substituting cluster specific information.

As an example, you can create a transaction_monitoring project using the Community Edition in your local
environment, set up the resources such as tables, data sources and jobs, and then migrate the project using a Git
repository to a CDP cluster or environment.

When you access the Streaming SQL Console, there are already existing projects on the My Projects page. The ssb_
default and [***USERNAME***]_default projects are automatically generated projects. The ssb_default project
and its resources are visible to every user, while the [***USERNAME***]_default project and its resources are only
visible to that user. Every user has its own project generated by default where members can be invited.

To create a project in Streaming SQL Console, you need to click on New Project on the Projects page and provide
the Name of the project, add a description if necessary and set up the dedicated Git repository for synchronization.
For example, you can name the project transaction_monitoring, add Monitoring orders and transactions as
description, and use a dedicated Git repository with a main branch.

30

Cloudera Stream Processing Community Edition Getting started with Streaming Analytics

Click Create, and click Switch Switch Project to be redirected to the Explorer view of the created project.

Within the created project, you can use the tree structure on the left side to review and manage the resources in a
project. You can also use the home page of the project on the right side, and manage the resources of the project in a
tab view.

2. Creating a job and table
When you created your project and set up Git for version control, learn how to create a job and a table that generates
random data using the included Faker connector after accessing the Streaming SQL Console.

You can easily create a new job using the Explorer view of your project by clicking on the button next to
Jobs and select New Job.

31

Cloudera Stream Processing Community Edition Getting started with Streaming Analytics

This opens the Create New Job window where you have the following options to name your SQL job:

• Use the predefined name in the Job Name field when opening the Streaming SQL Console
• Use the Generate Job Name button to generate a new random name for your job
• Manually provide the name of the job to the Job Name field

After naming your job, click on the Create button to be redirected to the SQL Editor that enables you to create tables
and query data, create Materialized Views, change job settings and manage jobs.

32

Cloudera Stream Processing Community Edition Getting started with Streaming Analytics

As a first step in executing a SQL query, you need to create a table. At this point, you can use the predefined
templates under the SQL Editor.

In the following CREATE TABLE statement, the faker template is used, with the properties already filled out. You
can copy and paste it to the SQL Editor.

DROP TABLE IF EXISTS orders;
CREATE TABLE orders (
 order_id INTEGER,
 city STRING,
 street_address STRING,
 amount INTEGER,
 order_time TIMESTAMP(3),
 order_status STRING,
 WATERMARK FOR `order_time` AS order_time - INTERVAL '15' SECOND
) WITH (
 'connector' = 'faker',
 'rows-per-second' = '1',
 'fields.order_id.expression' = '#{number.numberBetween ''0'',''99999999
''}',
 'fields.city.expression' = '#{Address.city}',
 'fields.street_address.expression' = '#{Address.street_address}',
 'fields.amount.expression' = '#{number.numberBetween ''0'',''100''}',
 'fields.order_time.expression' = '#{date.past ''15'',''SECONDS''}',
 'fields.order_status.expression' = '#{regexify ''(RECEIVED|PREPARING|DEL
IVERING|DELIVERED|CANCELED){1}''}'
);

To create the table, you need to click on the Execute button under the SQL Editor.

After executing the CREATE TABLE statement, there are two ways to view the created table:

33

Cloudera Stream Processing Community Edition Getting started with Streaming Analytics

• You can view the table under Virtual Tables of the project by clicking the arrow to expand the table properties:

• In the SQL Editor window, you can replace the earlier statement by DESCRIBE orders;, and click Execute again:

Optional: Synchronizing your changes to Git

Now that you have created a job and a table, you can push your changes to your Git repository using the Source
Control view and selecting the Push tab. Provide a commit message that describes the changes, and click Push to
synchronize your changes to Git.

34

Cloudera Stream Processing Community Edition Getting started with Streaming Analytics

If someone else would work on this project in their local SSB Community Edition instance or SSB on a CDP cluster,
they can use the Import button to pull the changes and have the latest version of the project in their SSB.

3. Running a SELECT query
After creating a table, learn how to run a SELECT query that outputs a sample of the resulting data in Streaming SQL
Console.

You have created your table using the Faker template that currently generates data. As a next step, you can run a
SELECT query and output the results at the SQL Editor under the Results tab.

Copy and paste the following SQL query to the SQL Editor:

SELECT * FROM orders;

To execute the query, you need to click on the Execute button under the SQL Editor.

After a short amount of time, the samples of the result continuously show up under the Results tab.

35

Cloudera Stream Processing Community Edition Getting started with Streaming Analytics

When you execute a query, a Flink job is created in the background. You can see more details about the created Flink
job by clicking on the Flink Dashboard button for the running job. You can also reload the SQL job into the SQL
Editor to edit the job, or stop the job from the Jobs tab that lists all of the running and finished jobs in a project.

4. Creating and querying a view
Now that you know the basics of creating a table and querying data from a table, learn how to create a more complex
query using views.

In the following example, you will use the columns from the created Faker table. In this derived computation that can
be saved as a view, the orders are aggregated in half minute intervals based on their status.

Copy and paste the following CREATE VIEW statement to the SQL Editor:

DROP VIEW IF EXISTS summaries;
CREATE VIEW summaries AS
SELECT window_start, window_end, order_status, COUNT(*) as order_count, SUM(
amount) as total_amount
FROM TABLE(TUMBLE(TABLE orders, DESCRIPTOR(order_time), INTERVAL '20' SECOND
S))
GROUP BY window_start, window_end, order_status;

If your previous query is still running, click on the Stop button under the SQL Editor to stop the job. Afterwards, to
create the view, you need to click on the Execute button under the SQL Editor.

When you execute a query, not all the records produced by the query are shown in the Results window. By default,
1 record is sampled every second to be displayed. Before selecting data from this view, you can change the Sample
Behavior to Sample all messages. You need to click on the Job Settings button to open the settings that can be
updated for a job. This way the Results window will contain all messages, up to the specified count.

36

Cloudera Stream Processing Community Edition Getting started with Streaming Analytics

Add the following SQL query to the SQL Editor to run the query:

SELECT * FROM summaries

To execute the query, you need to click on the Execute button under the SQL Editor.

After a short amount of time, the samples of the aggregated result continuously show up under the Results tab. As it is
an aggregated view, the results can appear slower after another.

5. Outputting results of SQL query
As you already know how to query tables and views, the next step is to write the queried results into a sink or create a
Materialized View.

37

Cloudera Stream Processing Community Edition Getting started with Streaming Analytics

Adding a sink using a Local Kafka template
So far you have sampled the results to the Results tab of Streaming SQL Console, so the next step is to learn how to
create a sink using one of the predefined templates to output the results of the executed SQL queries.

Previously, you created the summaries view, executed the SELECT * FROM summaries query, and examined its
results on the Streaming SQL Console.

Now, the next step is to stream the aggregated records to an external system, such as Kafka. The Community Edition
comes with a preconfigured Kafka container that can be selected from the predefined templates.

The created view has a complex schema. It would be tedious to describe it, and manually create a Kafka table with a
matching schema. Luckily, SQL Stream Builder can do this task automatically.

As you can add more statements in one SQL window, you can create the Kafka table and add a SELECT query at the
same time.

Add the following SQL query to the SQL window, but do not execute it. At this point the statement is only used to
match the schema from summaries table with the schema of the kafka_sink that will be created at the next step:

SELECT * FROM summaries;

As the kafka_sink does not exist yet, you need to import the CREATE TABLE statement to the SQL window by
selecting Templates > local-kafka > json . SSB automatically inserts the appropriate CREATE TABLE statement
with the schema retrieved from the summaries table. Before executing the statement, you must fill out the topic in the
connector option. This means you need to replace '...' in the template with 'mytopic' as it is shown in the following
example:

Click on the Execute button to run the script, both statements will be executed.

Add the SELECT query after the CREATE TABLE statement:

INSERT INTO kafka_sink SELECT * FROM summaries;

Optional: Creating an Environment configuration for your project

Before moving forward, you can create Environment variables that can be used to store environment-specific
configurations. You can add key-value pairs to create placeholders for the following properties:

• Properties of tables in DDL, for example topic names, connector types and so on

38

Cloudera Stream Processing Community Edition Getting started with Streaming Analytics

• Kafka data source and catalog properties, for example brokers, schema registry url and so on

This helps you import and export your project between environments and users. For example, you can create a
variable for the Kafka topic name. For example, you could use a placeholder to distinguish between the Kafka
topic in a development or production environment. This means that instead of specifying the Kafka topic name in
the CREATE TABLE statement as my_topic, you would use a placeholder based on the key and value provided
in the environment file as shown below. When the project is synchronized to Git, and imported to a production
environment, the topic name will be substituted with the applicable Kafka topic name, if an Environment is also
configured on that SSB instance. You can also export and import Environments as JSON files, which make the
management of environments easier for users.

To create an Environment configuration, select the Environments view and click New Environment.

Provide a name to the Environment, and add a key with dedicated value, and click on the plus button.

39

Cloudera Stream Processing Community Edition Getting started with Streaming Analytics

40

Cloudera Stream Processing Community Edition Getting started with Streaming Analytics

Click on the Save button, and you are redirected to the Environments view. Click on Activate next to the
Environment you would like to use to the currently working on project.

Now that you have an Environment, you can use the variable (prefixed with ssb.env.) in the CREATE TABLE
statement as shown in the following example:

CREATE TABLE `kafka_sink` (
 `window_start` TIMESTAMP(3) NOT NULL,
 `window_end` TIMESTAMP(3) NOT NULL,
 `order_status` VARCHAR(2147483647),
 `order_count` BIGINT NOT NULL,
 `total_amount` INT
) WITH (
'connector' = 'kafka: Local Kafka',
'format' = 'json',
'scan.startup.mode' = 'group-offsets',
'topic' = '${ssb.env.kafka_topic}'
);

Adding a sink using a Schema Registry catalog
You can use Schema Registry as a catalog to read data or output results to a Kafka topic based on a defined schema in
Schema Registry.

SQL Stream Builder (SSB) in the CSP Community Edition comes with a preconfigured Schema Registry catalog,
which is available by default in the ssb_default project. This means that if you are working in the ssb_default project,
you do not have to register the local Schema Registry service running in the Community Edition as it is already set
up.

If you have created a new project, you need to register the Schema Registry catalog using the Catalog page that can

be accessed from the Explorer by expanding the Data Sources, and clicking New Catalog .

41

Cloudera Stream Processing Community Edition Getting started with Streaming Analytics

Provide the following information to register the Schema Registry catalog:

Setting Value

Name schema-reg

Catalog Type Schema Registry

Kafka Cluster Local Kafka

Schema Registry URL http://schema-registry:7788/api/v1

After providing every needed information, click on the Validation button to verify the catalog. If it is successful, click
on the Create button to add Schema Registry as a catalog.

The following illustration also details how you need to fill out the Catalog page:

42

Cloudera Stream Processing Community Edition Getting started with Streaming Analytics

After adding Schema Registry as a catalog, you need to create a schema and a topic that will be used as the output
sink.

Navigate to the Schema Registry user interface by opening http://localhost:7788 from your browser. Click on the Add
New Schema button, and provide the schema and the necessary information to the window:

Setting Value

NAME sr_summaries

DESCRIPTION Provide a description based on your requirements.

TYPE Avro schema provider

SCHEMA GROUP Kafka

COMPATIBILITY BACKWARD

The following illustration also details how you need to fill out the Add New Schema settings.

43

Cloudera Stream Processing Community Edition Getting started with Streaming Analytics

The following schema was used in the example:

{
 "doc": "Default schema - modify as necessary",
 "namespace": "com.cloudera.exampleschema",
 "type": "record",
 "name": "exampleSchema",
 "fields": [
 {
 "type": "string",
 "name": "status"
 },
 {
 "type": "int",
 "name": "total"
 }
]
}

After you created the schema, you need to create a new Kafka topic with the same name. You can easily create a
Kafka topic using Streams Messaging Manager (SMM). Navigate to the SMM user interface by opening http://l
ocalhost:9991 from your browser. Select Topics from the main menu, and click on the Add New button. Fill out the
fields, and click Save to create the topic:

Setting Value

TOPIC NAME sr_summaries

PARTITIONS 3

Availability LOW

CLEANUP POLICY delete

The following illustration also details how you need to fill out the Add Topic settings.

44

Cloudera Stream Processing Community Edition Getting started with Streaming Analytics

Important: Make sure that the name of the topic matches the name of the schema you have previously
created.

Navigate back to the Streaming SQL Console using http://localhost:18121 or refresh the browser window, and the
table will appear under External Resources > Virtual Tables.

45

Cloudera Stream Processing Community Edition Getting started with Streaming Analytics

Note:

To view the tables created from catalogs, you need to expand the External Resources directory and then drill
down to the Schema Registry catalog.

When you describe the created table, you can see the added schema and also that it is automatically connected to the
local Kafka and Kafka topic.

46

Cloudera Stream Processing Community Edition Getting started with Streaming Analytics

After setting up the schema and topic, you can submit a SELECT query where the order_status and total_amount are
inserted into the sr_summaries table.

INSERT INTO `schema-reg`.`default_database`.`sr_summaries`
SELECT order_status, total_amount FROM summaries

A sample of the results is displayed on the browser under the Results tab, however you can also view the messages
generated to the Kafka topic using SMM.

When you navigate to the SMM user interface, search for the sr_summaries topic, and click on the Data Explorer
view to see the received messages. Set the Values deserializer type to Avro for the messages to be shown correctly.
SMM will automatically fetch the schema from Schema Registry to deserialize the messages.

47

Cloudera Stream Processing Community Edition Getting started with Streaming Analytics

Adding a Materialized View
One of the features of SQL Stream Builder is creating Materialized Views. Materialized Views let you create a
persistent snapshot of the stream that can be queried through a REST endpoint. This can then be queried by external
applications and tools. Now that you know how to query simple and aggregated data, learn how to create Materialized
Views.

In the following example, you will create a Materialized View that shows the latest order count and total amount for
each order status. The key will be the status, and the other fields will be updated with the value from the latest 20
second interval.

First, you need a New Job with a SELECT query. Add the following SQL query to the SQL Editor to run the query:

SELECT * FROM summaries

Before executing the query, you need to enable the Materialized View feature. Click on the Materialized View button,
set the Materialized View configuration to Enabled, and select the order_status as the primary key.

48

Cloudera Stream Processing Community Edition Getting started with Streaming Analytics

You also must add an API key to the configuration that will be a part of the generated URL. Click on the Add API
Key button, and provide any type of name to the API key. For example orders_api_key, and click Save. After the API
key is created, select it as the API Key of the current Materialized View.

After configuring the Materialized View, you can add a query by clicking on the Add New Query button. On the
Query Configuration page, specify the URL Pattern and select the fields that you want to include in the Materialized
View. You can also add filters to further narrow down the result. In the following example, summary_query is the
URL Pattern, order_status, order_count, total_amount and window_start columns are selected as fields. You can add
these fields by clicking Select All, and removing window_end with the red bin icon under Actions. You also have the
option to select the fields from the drop-down menu under Query Builder, and add the fields individually. A filter is
also added to exclude the orders with a CANCELED status.

For Columns tab

For Filters tab

49

Cloudera Stream Processing Community Edition Getting started with Streaming Analytics

Click on the Create button to add the query to the Materialized View. The URL will appear under the Materialized
View Queries.

When you click on the URL, you are redirected to the http://localhost:18131 address. You will receive an error
message that no data is generated, because the SELECT query is not executed yet. Go back to the SQL Editor using
the arrows on the Materialized View window, and click on the Execute button to start the SQL job. After a couple of
seconds, the endpoint becomes active and the results show up on the localhost address.

50

Cloudera Stream Processing Community Edition Getting started with Streaming Analytics

Next step

You have completed the Getting Started guide of Streaming Analytics. As you already know the basic steps to use
SSB, feel free to experiment more and get more familiar with the features of SSB by trying out the PostgreSQL CDC
and Filesystem connectors, or learning how to monitor your SQL jobs.

Using different connectors in SSB
You can use the supported connectors to create end-to-end streaming analytics processes based on your requirement.

Using Filesystem source
You can use the Filesystem connector in the Community Edition to process files which are stored on the filesystem.

To use the Filesystem connector, you need to either copy the files to the persistent docker volume provided with the
Community Edition, or map bind mounts from the host filesystem.

For Copy files to Docker volume
How to copy files to the Docker volume?

To copy existing files directly to the cluster for processing, you can use the docker command to
copy them directly to the persistent volume.

First, determine the name of the Job Manager container. You can do this by running the following
command:

$ docker ps -f "label=com.docker.compose.service=flink-jobmanage
r" --format="{{.Names}}"
csp-ce_flink-jobmanager-1

In the examples below, csp-ce_flink-jobmanager-1 is the name of the container.

51

Cloudera Stream Processing Community Edition Getting started with Streaming Analytics

Next, copy your file to the shared volume in the container. For example, if you have a file in your
local directory called example.json that you would like to process, you can copy it to the cluster
with the following docker command:

docker cp example.json csp-ce_flink-jobmanager-1:/persistent

Make sure to substitute the container name for the one you located in the previous step.

To check that the file is successfully copied, first connect to the container with the following
command:

docker exec -it csp-ce_flink-jobmanager-1 bin/bash

When you access the container, go to the persistent directory and list out the files there:

cd /persistent
ls

The example.json should be listed in the persistent directory.

When you create a table using the Filesystem connector as shown in Creating a Filesystem backed
table, you need to reference the path of the copied file in the container: file:///persistent/example.j
son

For Bind mounting in Docker
How to make files accessible using bind mount in Docker?

If you have many or large files, it is easier to reference a directory on the host machine using a bind
mount as you do not need to copy the files to the volumes. To make the directories available, open
the docker-compose.yml file in an editor, and locate the entry for the Flink Job Manager, and add
the references to your files:

flink-jobmanager:
 …
 volumes:
 - flink-volume:/persistent
 - /your/local/volume:/mnt/local0
 - /your/other/volume:/mnt/local1

Once you have added the volumes to the flink-jobmanager entry, you need to add them to the flink-
taskmanager entry as well.

When you create a table using the Filesystem connector as shown in Creating a Filesystem backed
table, you need to reference the path of the mounted file in the volume:

file:///mnt/local0/example.json

Creating a Filesystem backed table in Streaming SQL Console

After setting up the local file, open the Streaming SQL Console, and execute the following example:

DROP TABLE IF EXISTS my_file_source;
CREATE TABLE `ssb`.`ssb_default`.`my_file_source` (
 `foo` VARCHAR(2147483647)
) WITH (
 'format' = 'json',
 'path' = 'file:///persistent/example.json',
 'connector' = 'filesystem'
);

52

Cloudera Stream Processing Community Edition Getting started with Streaming Analytics

SELECT * FROM my_file_source;

This example parses JSON serialized input with rows delimited by a newline. When using JSON, the columns defined
match the keys in the JSON document.

The Filesystem connector also supports a number of other formats, such as CSV or raw. The raw format is a good
option for arbitrary format log files with no specific serialization. In this case, each line of data (delimited by newline)
is returned in a single column, and can be split or parsed using User Defined Functions, SQL string functions, regular
expressions, and so on.

Using PostgreSQL CDC connector
The Community Edition comes pre-configured with a PostgreSQL database that can be used to try Change Data
Capture (CDC). After setting up a table in the PostgreSQL database, you can use the connector for your SQL queries.

A database named ssb_cdc has been created with the necessary configuration. An ssb_cdc role (password: cloudera)
has also been added that can be used to access the changelog streams.

Before using the PostgreSQL connector, you need to up a CDC table in the PostgreSQL database.

After accessing the PostgreSQL instance, start the psql client and connect to the ssb_cdc database:

docker exec -it <psql_container_name_or_id> /bin/bash
psql
\c ssb_cdc

As an example, create the following table in PostgreSQL:

CREATE TABLE cdc_table (a varchar, b int);

Set the permissions to the created table:

ALTER TABLE cdc_table REPLICA IDENTITY FULL;

After setting up the database, you can use it in Streaming SQL Console.

To subscribe to the changelog stream in SSB, create a table and check the data in the database using the following
example:

CREATE TABLE `ssb`.`ssb_default`.`cdc_postgres_table` (
 `a` VARCHAR(2147483647),
 `b` INT,
 `ts` AS PROCTIME()
) WITH (
 'connector' = 'postgres-cdc',
 'hostname' = 'postgresql',
 'database-name' = 'ssb_cdc',
 'schema-name' = 'public',
 'table-name' = 'cdc_table',
 'username' = 'ssb_cdc',
 'password' = 'cloudera',
 'decoding.plugin.name' = 'pgoutput',
 'debezium.slot.name' = 'flink'
);

SELECT * from cdc_postgres_table;

Insert or update a row in the PostgreSQL table using your database tool of choice.

For example, you can use the psql client and manually insert values to the cdc_table:

psql
\c ssb_cdc

53

Cloudera Stream Processing Community Edition Getting started with Streaming Analytics

insert into cdc_table values ('Hello', 123);")

A row representing the change will show up in the Results tab.

Monitoring SQL results and jobs
You can check your SQL query results and monitor your SQL jobs with Streaming SQL Console, Flink Dashboard
and Streams Messaging Manager.

Sampling results in Streaming SQL Console
You can sample data from a running job to the Streaming SQL Console without writing it to any sink to inspect the
data and to make sure the job is running correctly, and producing the results you expect.

Sampling the results to your browser allows you to inspect the queried data and iterate on your query. You can sample
100 rows in the Results tab under the SQL Editor on the jobs page. Even if you do not specify any sink to the SQL
job, the results automatically appear in the Results tab.

Reviewing data in Streams Messaging Manager
When you create a job that sends results to a Kafka sink, you can review if the results are being written out to the
Kafka topic using Streams Messaging Manager (SMM).

Without stopping the previously started job that writes results from the summaries table, access the Streams
Messaging Manager (SMM) user interface from your browser: http://localhost:9991/#/topics

On the SMM user interface, navigate to Topics and search for the previously created Kafka topic: mytopic.

54

Cloudera Stream Processing Community Edition Getting started with Streaming Analytics

When the mytopic shows up, you can already see that there are messages already in the topic. However, you can
further look into the topic by clicking on the entry to see more details about the producers and messages.

Reviewing jobs in Flink Dashboard
As Flink is the engine running under SQL Stream Builder, you can use the Flink Dashboard to review your Flink jobs
running as SQL jobs on the Streaming SQL Cosole.

You can reach the Flink Dashboard from Streaming SQL Console main menu, from the SQL Editor or you can access
it using http://localhost:8081.

55

Cloudera Stream Processing Community Edition Getting started with Streaming Analytics

Other than checking the running and completed jobs, you can review detailed information about the Flink Task
Managers and Job Managers such as the memory model, memory consumption, configuration parameters and logs.

For Task Managers

For Job Managers

56

Cloudera Stream Processing Community Edition Getting started with Streaming Analytics

Managing SQL jobs
You can configure your SQL jobs with Flink features in the Streaming SQL Console or through REST API using the
API Explorer.

Configuring SQL job settings
If you need to further customize your SQL Stream job, you can add more advanced features to configure the job
restarting method and time, threads for parallelism, sample behavior, exactly once processing and restoring from
savepoint.

Before running a SQL query, you can configure advanced features by clicking on the Job Settings button at the SQL
Editor.

57

Cloudera Stream Processing Community Edition Getting started with Streaming Analytics

58

Cloudera Stream Processing Community Edition Getting started with Streaming Analytics

Job parallelism (threads)

The number of threads to start to process the job. Each thread consumes a slot on the cluster. When
the Job Parallelism is set to 1, the job consumes the least resources. If the data source supports
parallel reads, increasing the parallelism can raise the maximum throughput. For example, when
using Kafka as a data source, setting the parallelism to the equal number as the partitions of the
topic can be a starting point for performance tuning.

Sample Count

The number of sample entries shown under the Results tab. To have an unlimited number of sample
entries, add 0 to the Sample Count value.

Sample Window Size

The number of sample entries to keep in under the Results tab. To have an unlimited number of
sample entries, add 0 to the Sample Window Size value.

Sample Behavior

You have the following options to choose the behavior of the sampled data under the Results tab:

• Sample all messages
• Sample one message every second
• Sample one message every five seconds

Restore From Savepoint

You can enable or disable restoring a SQL job from a Flink savepoint after stopping it.

Enable Checkpointing

You can enable and disable checkpointing for a SQL job. By default the checkpointing is enabled.

Checkpoint Mode

Switching between checkpointing modes. You can choose between At Least Once or Exactly Once.

Checkpoint Interval

The time in milliseconds between checkpointing attempts.

Checkpoint Timeout

The maximum time in milliseconds until a checkpointing attempt is timed out.

Tolerable Checkpoint Failures

The number of checkpointing attempts until the job is aborted.

Failure Restart Strategy

Switching between restarting strategies when checkpointing is failed. You can choose between
enabling and disabling auto recovery. By default auto recovery is enabled for checkpointing.

Managing SQL jobs
You can manage your SQL jobs and reload them regardless of success to the SQL Editor to make further and
additional changes, and execute them again.

You can manage the SQL Jobs on the Jobs tab if you need to stop them, restart them, delete them, duplicate them,
review their events and also reload them to the SQL Editor in case any change is needed to their configuration. To

reload a SQL job to the SQL Editor, you can simply click on it from the list of jobs or use Edit . The details
of the job are reloaded to the SQL Editor with the latest saved configuration and Materialized Views.

59

Cloudera Stream Processing Community Edition Getting started with Streaming Analytics

Loading SQL queries to SQL Editor
You can reuse an already submitted SQL query from SQL History view of Streaming SQL Console.

When you need to reuse a SQL query for a new job, you can load it and execute it in the SQL Editor. You can use
the SQL History view of Streaming SQL Console.

60

Cloudera Stream Processing Community Edition Getting started with Streaming Analytics

You can view the full submitted statement by hovering the mouse over the items. You can load the query to the editor
by simply clicking on the query and the statement will appear in the SQL Editor next to it.

61

Cloudera Stream Processing Community Edition Getting started with Streaming Analytics

Using SQL Stream Builder REST API
You can use the REST API to monitor, manage and configure the SQL Stream jobs with GET, POST and DELETE
HTTP methods. You can use the SQL Stream Builder (SSB) REST API in command line, import them to REST API
Tools or by accessing the Swagger UI.

The following HTTP methods are available for SSB:

• GET to query information about the specified endpoint
• POST to create resources for the specified endpoint
• PUT to update existing resources for the specified endpoint as a whole
• PATCH to partially update existing resources for the specified endpoint
• DELETE to remove objects from the specified endpoint

The REST API Reference document contains the available endpoints for SQL Stream Builder.

You can also reach the SSB REST API reference document from the main menu of Streaming SQL Console using the
API Explorer.

The Streaming SQL Engine API details the following operations for SQL Stream Builder and Flink:

• Heartbeat
• Admin Operations
• User Operations
• User Keytab Operations
• Data Source Operations
• Table Operations
• Project Operations
• Project Environment Operations
• Project Sync Operations
• Project Invitation Operations
• Project Permission Operations
• SQL Operations
• SSB Session Operations
• Job Operations
• Sampling Operations
• Flink Job Operations
• Flink Session Cluster Operations
• Artifact Operations
• UDF Artifact Operations
• UDF Operations
• API Key Operations
• Connector Operations
• Data Format Operations
• Diagnostic Operations

Materialized View Pagination
You can set a limit and order the results of a Materialized View query by adding values to the limit and offset
configurations.

62

https://docs.cloudera.com/cdf-datahub/7.2.16/sql-stream-builder-rest-api-reference/index.html

Cloudera Stream Processing Community Edition Getting started with Streaming Analytics

After creating a Materialized View, you can order and limit the results after opening the Materialized View. The
default limit of the results is 100 entries. You can set the limit and offset using the REST URL. You need to modify
the URL address in your browser by setting the value and the offset value as shown in the following example:

localhost:18131/api/v1/query/5275/summary_query?key=6ef33a7a-c82a-4a72-946b-
5fe0b33e033c&limit=20&offset=3

When you edit the Materialized View, the set limit and offset change based on the new filters set for the Materialized
View query. If you set an invalid number for the limit and offset, an error message is displayed.

63

	Contents
	Getting started with Streams Messaging
	Getting started with Kafka
	Creating a topic
	Producing and consuming data
	Monitoring Kafka topics with SMM

	Getting started with Schema Registry
	Creating a schema
	Evolving a schema
	Deleting a schema
	Integrating Schema Registry with a Kafka Java client

	Getting started with Kafka Connect
	Creating a database and table in PostgreSQL
	Creating a topic and producing messages
	Deploying the connector
	Monitoring and managing the connector

	Getting Started with Streams Messaging Manager Alert Policies
	Setting up connectors that use JDBC drivers

	Getting started with Streaming Analytics
	Getting started with SQL Stream Builder
	1. Creating a project
	2. Creating a job and table
	3. Running a SELECT query
	4. Creating and querying a view
	5. Outputting results of SQL query
	Adding a sink using a Local Kafka template
	Adding a sink using a Schema Registry catalog
	Adding a Materialized View

	Using different connectors in SSB
	Using Filesystem source
	Using PostgreSQL CDC connector

	Monitoring SQL results and jobs
	Sampling results in Streaming SQL Console
	Reviewing data in Streams Messaging Manager
	Reviewing jobs in Flink Dashboard

	Managing SQL jobs
	Configuring SQL job settings
	Managing SQL jobs
	Loading SQL queries to SQL Editor
	Using SQL Stream Builder REST API
	Materialized View Pagination

