
Cloudera Runtime 7.0.2

Securing Apache Hive
Date published: 2019-08-21
Date modified:

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

Authorizing Apache Hive Access.. 4

HDFS ACL permissions model and YARN queues.. 5
Configure storage-based authorization...6
Storage-based operation permissions... 7

Configure HiveServer for ETL using YARN queues..8

Transactional table access... 8

External table access.. 8

Apache Spark access to Apache Hive.. 9

Hive Authentication..10
Secure HiveServer using LDAP...10
Client connections to HiveServer...12
JDBC connection string syntax..13

Encrypting Communication...15
Enable TLS/SSL for HiveServer..15
Enable SASL in HiveServer...17

Secure Hive Metastore... 18

Cloudera Runtime Authorizing Apache Hive Access

Authorizing Apache Hive Access

As administrator, you can choose whether or not to set up Apache Ranger authorization or use another authorization
model to limit Apache Hive access to approved users. Cloudera recommends Ranger.

Authorization is the process that checks user permissions to perform select operations, such as creating, reading, and
writing data, as well as editing table metadata. Apache Ranger provides centralized authorization for all Cloudera
Runtime Services.

Preloaded Ranger Policies

In Ranger, preloaded Hadoop SQL policies are available by default. Users covered by these policies can perform Hive
operations. All users need to use the default database, perform basic operations such as listing database names, and
query the information schema. To provide this access, preloaded default database tables columns and information_
schema database policies are enabled for group public (all users). Keeping these policies enabled for group public is
recommended. For example, if the default database tables columns policy is disabled preventing use of the default
database, the following error appears:

hive> USE default;
Error: Error while compiling statement: FAILED: HiveAccessControlException
Permission denied: user [hive] does not have [USE] privilege on [default]

Apache Ranger policy authorization

Apache Ranger provides centralized policy management for authorization and auditing of all Cloudera Runtime
services, including Hive. All Cloudera Runtime services are installed with a Ranger plugin used to intercept
authorization requests for that service, as shown in the following illustration.

Authorizing Hive through Ranger instead of using SBA is highly recommended.

4

Cloudera Runtime HDFS ACL permissions model and YARN queues

Storage based authorization

Storage-based authorization is LDAP-based. As the name implies, storage-based authorization relies on the
authorization provided by the storage layer. In CDP Private Cloud Base, the storage layer is HDFS, which provides
both POSIX and ACL permissions. Hive is one of many Cloudera Runtime services that share storage on HDFS. By
enabling this model on the Hive Metastore Server, Hadoop administrators can provide consistent data and metadata
authorization. The model controls access to metadata and checks permissions on the corresponding directories of the
HDFS file system. Traditional POSIX permissions for the HDFS directories where tables reside determine access to
those tables. This authorization model doesn't support column-level security.

In addition to the traditional POSIX permissions model, HDFS also provides ACLs, or access control lists, as
described in ACLs on HDFS. An ACL consists of a set of ACL entries, and each entry names a specific user or group
and grants or denies read, write, and execute permissions for the specified user or group. These ACLs are also based
on POSIX specifications, and they are compatible with the traditional POSIX permissions model.

HDFS ACL permissions provide administrators with authentication control over databases, tables, and table partitions
on the HDFS file system. For example, an administrator can create a role with a set of grants on specific HDFS
tables, then grant the role to a group of users. Roles allow administrators to easily reuse permission grants. Cloudera
recommends relying on POSIX permissions and a small number of ACLs to augment the POSIX permissions for
exceptions and edge cases.

A file with an ACL incurs additional memory cost to the NameNode due to the alternate algorithm used for
permission checks on such files.

Authorization model comparison

In addition to Apache Ranger, Hive supports storage-based authorization (SBA) for external tables. Ranger and SBA
can co-exist in CDP Private Cloud Base. The following table compares authorization models:

Authorization model Secure? Fine-grained
authorization (column,
row level)

Privilege management
using GRANT/REVOKE
statements

Centralized management
GUI

Apache Ranger Secure Yes Yes Yes

Storage-based Secure No authorization at SQL
layer in HiveServer.
Provides Metastore server
authorization for the
Metastore API only.

No. Table privilege based
on HDFS permission

No

Hive default Not secure. No restriction
on which users can run
GRANT statements

Yes Yes No

When you run grant/revoke commands and Apache Ranger is enabled, a Ranger policy is created/removed.

Related Information
HDFS ACLS

Configure a Resource-based Policy: Hive

Row-level Filtering and Column Masking in Hive

Query Hive

HDFS ACL permissions model and YARN queues

As administrator, you must understand the permissions model supported in CDP Private Cloud Base and later. If
you do not use Ranger for security, you need to add users to an HDFS access control list to permit access to the Hive
warehouse for running DML queries.

5

https://docs.cloudera.com/runtime/7.0.2/hdfs-acls/topics/hdfs-acls.html
https://docs.cloudera.com/runtime/7.0.2/security-ranger-authorization/topics/security-ranger-resource-policy-configure-hive.html
https://docs.cloudera.com/runtime/7.0.2/security-ranger-authorization/topics/security-ranger-row-level-filtering-and-column-masking-in-hive.html
https://docs.cloudera.com/runtime/7.0.2/starting-hive/topics/hive_start_hive_as_authorized_user.html

Cloudera Runtime HDFS ACL permissions model and YARN queues

Hive 3 supports the HDFS access control model instead of the legacy Hive permission inheritance based on the
hive.warehouse.subdir.inherit.perms parameter setting. In Apache Hive 3, a directory inherits permissions from the
Default ACL.

Configure services for this behavior, as described below:

Disable impersonation to use Ranger

When you enable Ranger, you disable user impersonation (doAs=false). This is the Hive default and Ranger is the
recommended security model. Managed, ACID tables as well as external tables, secured by Ranger, are supported in
this configuration. Impersonation of the end user is disabled, which is the state required by Hive for managing ACID
tables.

In Cloudera Manager, click Hive on Tez Configuration and search for (hive.server2.enable.doAs).

Uncheck Hive (Service-Wide) to disable impersonation.

With no impersonation, HiveServer authorizes only the hive user to access Hive tables.

Enable impersonation to use SBA

As administrator, if you do not use the recommended Ranger security, you simply enable the doAs impersonation
parameter to use SBA: In Cloudera Manager, click Hive on Tez Configuration and for HiveServer2 Enable
Impersonation, check Hive (Service-Wide) to enable impersonation (doAs=true).

External tables are supported in this configuration. ACID, managed tables are not supported. Impersonation of the end
user is enabled.

Related Information
HDFS ACLS

Apache Software Foundation HDFS Permissions Guide

Configure storage-based authorization
You need to set parameters to enable storage-based authorization (SBA).

About this task
Hive performs authorization checks on the client, rather than the server when you use SBA. This allows malicious
users to circumvent these checks. Some metadata operations do not check for authorization. See Apache JIRA
HIVE-3009. DDL statements for managing permissions have no effect on storage-based authorization, but they do not
return error messages (HIVE-3010).

Before you begin

• You obtained admin role privileges.

6

https://docs.cloudera.com/runtime/7.0.2/hdfs-acls/topics/hdfs-acls.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html

Cloudera Runtime HDFS ACL permissions model and YARN queues

Procedure

1. Set authorization configuration parameters to enable storage-based authorization using the Cloudera Manager
Safety Valve feature (see link below).

<property>
 <name>hive.security.authorization.enabled</name>
 <value>false</value>
</property>

<property>
 <name>hive.security.authorization.manager</name>
 <value>org.apache.hadoop.hive.ql.security.authorization.\
StorageBasedAuthorizationProvider</value>
</property>

<property>
 <name>hive.server2.enable.doAs</name>
 <value>true</value>
</property>

<property>
 <name>hive.metastore.pre.event.listeners</name>
 <name>org.apache.hadoop.hive.ql.security.authorization.\
AuthorizationPreEventListener</name>
</property>

<property>
 <name>hive.security.metastore.authorization.manager</name>
 <value>org.apache.hadoop.hive.ql.security.authorization.\
StorageBasedAuthorizationProvider</value>
</property>

2. Determine the required permissions of the tables and databases in your environment.

3. Create a table or database in the Hive, then manually modify the POSIX permissions using the HDFS file system
commands.

Related Information
Storage-based authorization information on the Apache Wiki

Example of using the Cloudera Manager Safety Valve

Storage-based operation permissions

Table 1: Required Minimum Permissions for Hive Operations

Operation Database READ Access Database WRITE Access Table READ Access Table WRITE Access

LOAD X

EXPORT X

IMPORT X

CREATE TABLE X

CREATE TABLE AS
SELECT

X X (source table)

DROP TABLE X

7

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Authorization#LanguageManualAuthorization-1StorageBasedAuthorizationintheMetastoreServer
https://docs.cloudera.com/runtime/7.0.2/configuring-apache-hive/topics/hive_limit_hive_connections.html

Cloudera Runtime Configure HiveServer for ETL using YARN queues

Operation Database READ Access Database WRITE Access Table READ Access Table WRITE Access

SELECT X

ALTER TABLE X

SHOW TABLES X

Configure HiveServer for ETL using YARN queues

You need to set several configuration properties to allow placement of the Hive workload on the Yarn queue
manager, which is common for running an ETL job.

About this task
Hive configuration properties affect mapping users and groups to YARN queues. You set the properties as part of this
four-part mapping process:

• Setting up queues
• Manage cluster capacity with queues
• Define queue mapping policies
• Set up ACLs

To set Hive properties for YARN queues:

Procedure

1. In Cloudera Manager, click Clusters Hive-on-Tez Configuration .

2. Search for the Hive Service Advanced Configuration Snippet (Safety Valve) for hive-site.xml setting.

3. In the Hive Service Advanced Configuration Snippet (Safety Valve) for hive-site.xml setting, click +.

4. In Name enter the property hive.server2.tez.initialize.default.sessions and in value enter false.

5. In Name enter the property hive.server2.tez.queue.access.check and in value enter true.

6. In Name enter the property hive.server2.tez.sessions.custom.queue.allowed and in value enter true.

Transactional table access

As administrator, you must enable the Apache Ranger service to authorize users who want to work with transactional
tables. These types of tables are the default and ACID-compliant tables in Hive 3 and later.

ACID tables reside by default in /warehouse/tablespace/managed/hive on HDFS in CDP Private Cloud Base. Only the
Hive service can own and interact with files in this directory. Storage-based authorization (SBA) does not work for
giving users access ACID tables.

Ranger is the only available authorization mechanism for ACID tables.

External table access

As administrator, you must set up one of several authorization options to allow users to access external tables.

8

https://docs.cloudera.com/runtime/7.0.2/yarn-allocate-resources/topics/yarn-set-up-queues.html
https://docs.cloudera.com/runtime/7.0.2/yarn-allocate-resources/topics/yarn-manage-cluster-capacity-with-queues.html
https://docs.cloudera.com/runtime/7.0.2/yarn-allocate-resources/topics/yarn-define-queue-mapping-policies.html
https://docs.cloudera.com/runtime/7.0.2/yarn-allocate-resources/topics/yarn-control-access-to-queues-with-acls.html

Cloudera Runtime Apache Spark access to Apache Hive

External tables reside by default in /warehouse/tablespace/external on HDFS (CDP Private Cloud Base) or S3 (CDP
Public Cloud). To specify some other location of the external table, you need to include the specification in the table
creation statement as shown in the following example:

CREATE EXTERNAL TABLE my_external_table (a string, b string)
LOCATION '/users/andrena';

Hive assigns a default permission of 777 to the hive user, sets a umask to restrict subdirectories, and provides a
default ACL to give Hive read and write access to all subdirectories. External tables in CDP Private Cloud Base
support the following permissions and authorization models:

• SBA
• SBA and Ranger
• Ranger

You can use the mixed mode, SBA and Ranger, for low-level analytical processing of external tables.

Using the SBA permissions model

You must add Access ACLs to allow groups or users to create databases and tables in the space governed by SBA.
You are authorized to query a table if you have file-level access to the underlying data. You configure impersonation
in HiveServer to run operations on behalf of an end user. You cannot use LLAP.

Using the SBA and Ranger example

Assume that you are an administrator who creates a sales database and gives the sales group read-write permissions to
the sales directory. This includes Default ACLs for the sales group to read from and write to the database. Users in the
sales group set doAs=true, and are authorized under SBA to create external tables. Given the ACLs, both Hive and
sales users can access all files and partitions.

To restrict certain users from accessing all files and partitions, you can use Ranger. Hive enforces access; however,
if you give a sales user fewer options for accessing the tables through SBA, for example by setting a user's HDFS
access to tables to read-only, Ranger cannot control that user's access.

Using the Ranger authorization model

If you disable SBA and use only Ranger to give a specific user, who is not in the sales group, permission to create
external tables in the sales-report database, the user can log in, and create a database. With Default ACLs in place,
sales group users can also access the table.

Related Information
HDFS ACL permissions model and YARN queues

Apache Spark access to Apache Hive

From Apache Spark, you access ACID tables and external tables in Apache Hive 3 using the Hive Warehouse
Connector.

The HiveWarehouseConnector library is a Spark library built on top of Apache Arrow for reading and writing Hive
ACID and external tables from Spark.

In CDP Public Cloud, the Hive Warehouse Connector is designed to leverage the LLAP cache and optimized for
fast transmission of data using low-latency analytical processing (LLAP). The connector orchestrates a distributed
read from LLAP daemons. The read from cache occurs after applying security rules and ACID transformations. CDP
Public Cloud uses LLAP to read ACID, or other Hive-managed tables, from Spark. You do not need LLAP to write to
ACID, or other managed tables, from Spark. You do not need LLAP to access external tables from Spark. The HWC
library internally uses the Hive Streaming API and LOAD DATA Hive commands to write the data.

9

Cloudera Runtime Hive Authentication

In CDP Private Cloud Base, the Hive Warehouse Connector uses JDBC to transmit data.

Related Information
Hive Warehouse Connector for accessing Apache Spark data

Hive Authentication

HiveServer supports authentication of clients using Kerberos or user/password validation backed by LDAP.

If you configure HiveServer to use Kerberos authentication, HiveServer acquires a Kerberos ticket during startup.
HiveServer requires a principal and keytab file specified in the configuration. Client applications (for example, JDBC
or Beeline) must have a valid Kerberos ticket before initiating a connection to HiveServer2. JDBC-based clients must
include principal=<hive.server2.authentication.principal> in the JDBC connection string. For example:

String url = "jdbc:hive2://node1:10000/default;principal=hive/HiveServerHost
@YOUR-REALM.COM"
Connection con = DriverManager.getConnection(url);

where hive is the principal configured in hive-site.xml and HiveServerHost is the host where HiveServer is running.

To start Beeline and connect to a secure HiveServer, enter a command as shown in the following example:

beeline -u "jdbc:hive2://10.65.13.98:10000/default;principal=hive/_HOST@CLOU
DERA.SITE"

In CDP Private Cloud Base, under certain circumstances, you can query remote clusters that use a different version
of Hive than the version installed on your cluster. You can query the data on the remote cluster and include WRITE
operations from the local cluster.

Examples of Supported Queries

CREATE TABLE orders_ctas AS SELECT * FROM orders_ext;

INSERT INTO orders_ctas SELECT * FROM orders_ext;

INSERT OVERWRITE TABLE orders_ctas SELECT * FROM orders_ext;

Related Information
Encrypting Communication

Enable TLS/SSL for HiveServer

Enable SASL in HiveServer

Secure HiveServer using LDAP
You can secure the remote client connection to Hive by configuring HiveServer to use authentication with LDAP.

About this task
When you configure HiveServer to use user and password validation backed by LDAP, the Hive client sends a
username and password during connection initiation. HiveServer validates these credentials using an external LDAP
service. You can enable LDAP Authentication with HiveServer using Active Directory or OpenLDAP.

Procedure

1. In Cloudera Manager, select Hive Configuration .

10

https://docs.cloudera.com/runtime/7.0.2/integrating-hive-and-bi/topics/hive_hivewarehouseconnector_for_handling_apache_spark_data.html

Cloudera Runtime Hive Authentication

2. Search for ldap.

3. Check Enable LDAP Authentication for HiveServer2 for Hive (Service Wide).

4. Enter your LDAP URL in the format ldap[s]://<host>:<port>.

LDAP_URL is the access URL for your LDAP server. For example, ldap://ldap_host_name.xyz.com:389

5. Enter the Active Directory Domain or LDAP Base DN for your environment.

• Active Directory (AD)
• LDAP_BaseDN

Enter the domain name of the AD server. For example, corp.domain.com.

Enter the base LDAP distinguished name (DN) for your LDAP server. For example, ou=dev, dc=xyz.

6. Click Save Changes.

7. Restart the Hive service.

8. Construct the LDAP connection string to connect to HiveServer.
The following simple example is insecure because it sends clear text passwords.

String URL = "jdbc:hive2://node1:10000/default;user=LDAP_Userid;password
=LDAP_Password"
Connection con = DriverManager.getConnection(url);

The following example shows a secure connection string that uses encrypted passwords.

String url ="jdbc:hive2://node1:10000/default;ssl=true;sslTrustStore=/my
truststore_path;trustStorePassword=my_truststore_password"
Connection con = DriverManager.getConnection(url);

For information about encrypting communication, see links below.

Related Information
Example of using the Cloudera Manager Safety Valve

Encrypting Communication

Enable TLS/SSL for HiveServer

Enable SASL in HiveServer

11

https://docs.cloudera.com/runtime/7.0.2/configuring-apache-hive/topics/hive_limit_hive_connections.html

Cloudera Runtime Hive Authentication

Client connections to HiveServer
You can use Beeline, a JDBC, or an ODBC connection to HiveServer.

JDBC Client-HiveServer Authentication

The JDBC client requires a connection URL as shown below. JDBC-based clients must include a user name and
password in the JDBC connection string. For example:

String url = "jdbc:hive2://node1:10000/default;user=LDAP_Userid;password=LDA
P_Password" Connection con = DriverManager.getConnection(url);

where the LDAP_Userid value is the user ID and LDAP_Password is the password of the client user.

HiveServer modes of operation

CDP Private Cloud Base supports a number of modes for interacting with Hive, including Ranger-based
authorization.

Operating Mode Description

Embedded The Beeline client and the Hive installation reside on the same host
machine or virtual machine. No TCP connectivity is required.

Remote Use remote mode to support multiple, concurrent clients executing
queries against the same remote Hive installation. Remote transport
mode supports authentication with LDAP and Kerberos. It also
supports encryption with SSL. TCP connectivity is required.

Transport Modes

As administrator, you can start HiveServer in one of the following transport modes:

Transport Mode Description

TCP HiveServer uses TCP transport for sending and receiving Thrift RPC
messages.

HTTP HiveServer uses HTTP transport for sending and receiving Thrift RPC
messages.

Pluggable Authentication Modules in HiveServer

While running in TCP transport mode, HiveServer supports Pluggable Authentication Modules (PAM). Using
Pluggable Authentication Modules, you can integrate multiple authentication schemes into a single API. You use the
Cloudera Manager Safety Valve technique on HIVE_ON_TEZ-1 Configuration to set the following properties:

• hive.server2.authentication

Value = CUSTOM
• hive.server2.custom.authentication.class

Value = <the pluggable auth class name>

The class you provide must be a proper implementation of the org.apache.hive.service.auth.PasswdAuthenticatio
nProvider. HiveServer calls its Authenticate(user, passed) method to authenticate requests. The implementation can
optionally extend the Hadoop's org.apache.hadoop.conf.Configured class to grab the Hive Configuration object.

12

Cloudera Runtime Hive Authentication

HiveServer Trusted Delegation

HiveServer determines the identity of the connecting user from the authentication subsystem (Kerberos or LDAP).
Any new session started for this connection runs on behalf of this connecting user. If the server is configured to proxy
the user, the identity of the connecting user is used to connect to Hive. Users with Hadoop superuser privileges can
request an alternate user for the given session. HiveServer checks that the connecting user can proxy the requested
userid, and if so, runs the new session as the alternate user.

Related Information
Encrypting Communication

Enable TLS/SSL for HiveServer

Enable SASL in HiveServer

JDBC connection string syntax
The JDBC connection string for connecting to a remote Hive client requires a host, port, and Hive database name.
You can optionally specify a transport type and authentication.

jdbc:hive2://<host>:<port>/<dbName>;<sessionConfs>?<hiveConfs>#<hiveVars>

Connection string parameters

The following table describes the parameters for specifying the JDBC connection.

JDBC Parameter Description Required

host The cluster node hosting HiveServer. yes

port The port number to which HiveServer listens. yes

dbName The name of the Hive database to run the
query against.

yes

sessionConfs Optional configuration parameters for the
JDBC/ODBC driver in the following format:
<key1>=<value1>;<key2>=<key2>...;

no

hiveConfs Optional configuration parameters for Hive on
the server in the following format: <key1>=<
value1>;<key2>=<key2>; ...

The configurations last for the duration of the
user session.

no

hiveVars Optional configuration parameters for Hive
variables in the following format: <key1>=<
value1>;<key2>=<key2>; ...

The configurations last for the duration of the
user session.

no

TCP and HTTP Transport

The following table shows variables for use in the connection string when you configure HiveServer. The JDBC
client and HiveServer can use either HTTP or TCP-based transport to exchange RPC messages. Because the default
transport is TCP, there is no need to specify transportMode=binary if TCP transport is desired.

transportMode Variable Value Description

http Connect to HiveServer2 using HTTP transport.

binary Connect to HiveServer2 using TCP transport.

13

Cloudera Runtime Hive Authentication

The syntax for using these parameters is:

jdbc:hive2://<host>:<port>/<dbName>;transportMode=http;httpPath=<http_endpoi
nt>;<otherSessionConfs>?<hiveConfs>#<hiveVars>

User Authentication

If configured in remote mode, HiveServer supports Kerberos, LDAP, Pluggable Authentication Modules (PAM), and
custom plugins for authenticating the JDBC user connecting to HiveServer. The format of the JDBC connection URL
for authentication with Kerberos differs from the format for other authentication models. The following table shows
the variables for Kerberos authentication.

User Authentication Variable Description

principal A string that uniquely identifies a Kerberos user.

saslQop Quality of protection for the SASL framework. The level of quality is
negotiated between the client and server during authentication. Used by
Kerberos authentication with TCP transport.

user Username for non-Kerberos authentication model.

password Password for non-Kerberos authentication model.

The syntax for using these parameters is:

jdbc:hive://<host>:<port>/<dbName>;principal=<HiveServer2_kerberos_principal
>;<otherSessionConfs>?<hiveConfs>#<hiveVars>

Transport Layer Security

HiveServer2 supports SSL and Sasl QOP for transport-layer security. The format of the JDBC connection string for
SSL uses these variables:

SSL Variable Description

ssl Specifies whether to use SSL

sslTrustStore The path to the SSL TrustStore.

trustStorePassword The password to the SSL TrustStore.

The syntax for using the authentication parameters is:

jdbc:hive2://<host>:<port>/<dbName>;\
ssl=true;sslTrustStore=<ssl_truststore_path>;trustStorePassword=<truststor
e_password>;\
<otherSessionConfs>?<hiveConfs>#<hiveVars>

When using TCP for transport and Kerberos for security, HiveServer2 uses Sasl QOP for encryption rather than SSL.

Sasl QOP Variable Description

principal A string that uniquely identifies a Kerberos user.

saslQop The level of protection desired. For authentication, checksum, and
encryption, specify auth-conf. The other valid values do not provide
encryption.

14

Cloudera Runtime Encrypting Communication

The JDBC connection string for Sasl QOP uses these variables.

jdbc:hive2://fqdn.example.com:10000/default;principal=hive/_H
OST@EXAMPLE.COM;saslQop=auth-conf

The _HOST is a wildcard placeholder that gets automatically replaced with the fully qualified domain name (FQDN)
of the server running the HiveServer daemon process.

Encrypting Communication

Encryption between HiveServer2 and its clients is independent from Kerberos authentication. HiveServer supports the
following types of encryption between the service and its clients (Beeline, JDBC/ODBC):

• SASL (Simple Authentication and Security Layer)
• TLS/SSL (Transport Layer Security/Secure Sockets Layer)

TLS/SSL requires certificates. SASL QOP encryption does not. SASL QOP is aimed at protecting core Hadoop RPC
communications. SASL QOP might cause performance problems when handling large amounts of data. You can
configure HiveServer to support TLS/SSL connections from JDBC/ODBC clients using Cloudera Manager.

Client connections to HiveServer2 over TLS/SSL

A client connecting to a HiveServer2 over TLS/SSL must access the trust store on HiveServer to establish a chain of
trust and verify server certificate authenticity. The trust store is typically not password protected. The trust store might
be password protected to prevent its contents from being modified. However, password protected trust stores can be
read from without using the password.

The client needs the path to the trust store when attempting to connect to HiveServer2 using TLS/SSL. You can
specify the trust store in one of the following ways:

• Pass the path to the trust store each time you connect to HiveServer in the JDBC connection string:

jdbc:hive2://fqdn.example.com:10000/default;ssl=true;\
 sslTrustStore=$JAVA_HOME/jre/lib/security/jssecacerts;trustStorePassword
=extraneous

• Set the path to the trust store one time in the Java system javax.net.ssl.trustStore property:

java -Djavax.net.ssl.trustStore=/usr/java/jdk1.8.0_141-cloudera/jre/lib/
security/jssecacerts \
 -Djavax.net.ssl.trustStorePassword=extraneous MyClass \
 jdbc:hive2://fqdn.example.com:10000/default;ssl=true

Enable TLS/SSL for HiveServer
You can secure client-server communications using symmetric-key encryption in the TLS/SSL (Transport Layer
Security/Secure Sockets Layer) protocol. To encrypt data exchanged between HiveServer and its clients, you can use
Cloudera Manager to configure TLS/SSL.

Before you begin

• HiveServer has the necessary server key, certificate, keystore, and trust store set up on the host system.

15

Cloudera Runtime Encrypting Communication

• The hostname variable ($(hostname -f)-server.jks) was used with Java keytool commands to create keystore, as
shown in this example:

$ sudo keytool -genkeypair -alias $(hostname -f)-server -keyalg RSA -key
store \
 /opt/cloudera/security/pki/$(hostname -f)-server.jks -keysize 2048 -
dname \
 "CN=$(hostname -f),OU=dept-name-optional,O=company-
name,L=city,ST=state,C=two-digit-nation" \
 -storepass password -keypass password

About this task
On the beeline command line, the JDBC URL requirements include specifying ssl=true;sslTrustStore=<path_to_trus
tstore>. Truststore password requirements depend on the version of Java running in the cluster:

• Java 11: the truststore format has changed to PKCS and the truststore password is required; otherwise, the
connection fails.

• Java 8: The trust store password does not need to be specified.

Procedure

1. In Cloudera Manager, navigate to Clusters Hive Configuration .

2. In Filters, select HIVE for the scope.

3. Select Security for the category.

4. Accept the default Enable TLS/SSL for HiveServer2, which is checked for Hive (Service-Wide).

5. Enter the path to the Java keystore on the host system.
/opt/cloudera/security/pki/keystore_name.jks

6. Enter the password for the keystore you used on the Java keytool command-line when the key and keystore were
created.

The password for the keystore must match the password for the key.

16

Cloudera Runtime Encrypting Communication

7. Enter the path to the Java trust store on the host system.

Cloudera clusters are typically configured to use the alternative trust store, jssecacerts, set up at $JAVA_HOME/j
re/lib/security/jssecacerts.

8. Click Save Changes.

9. Restart the Hive service.

10. Construct a connection string for encrypting communications using TLS/SSL.

jdbc:hive2://#<host>:#<port>/#<dbName>;ssl=true;sslTrustStore=#<ssl_trus
tstore_path>;trustStorePassword=#<truststore_password>;#<otherSessionCon
fs>?#<hiveConfs>#<hiveVars>

Enable SASL in HiveServer
You can provide a Quality of Protection (QOP) that is higher than the cluster-wide default using SASL (Simple
Authentication and Security Layer).

About this task

HiveServer2 by default uses hadoop.rpc.protection for its QOP value. Setting hadoop.rpc.protection to a higher level
than HiveServer (HS2) does not usually make sense. HiveServer ignores hadoop.rpc.protection in favor of hive.ser
ver2.thrift.sasl.qop.

You can determine the value of hadoop.rpc.protection: In Cloudera Manager, click Clusters HDFS Configuration
Hadoop , and search for hadoop.rpc.protection.

If you want to provide a higher QOP than the default, set one of the SASL Quality of Protection (QOP) levels as
shown in the following table:

auth Default. Authentication only.

auth-int Authentication with integrity protection. Signed message digests (checksums) verify the integrity of
messages sent between client and server.

auth-conf Authentication with confidentiality (transport-layer encryption) and integrity. Applicable only if
HiveServer is configured to use Kerberos authentication.

17

Cloudera Runtime Secure Hive Metastore

Procedure

1. In Cloudera Manager, navigate to Clusters Hive Configuration .

2. In HiveServer2 Advanced Configuration Snippet (Safety Valve) for hive-site click + to add a property and value.

3. Specify the QOP auth-conf setting for the SASL QOP property.
For example,

Name:hive.server2.thrift.sasl.qop

Value: auth-conf

4. Click Save Changes.

5. Restart the Hive service.

6. Construct a connection string for encrypting communications using SASL.

jdbc:hive2://fqdn.example.com:10000/default;principal=hive/_HOST@EXAMPLE
.COM;saslqop=auth-conf

The _HOST is a wildcard placeholder that gets automatically replaced with the fully qualified domain name
(FQDN) of the server running the HiveServer daemon process.

Secure Hive Metastore

Cloudera recommends using Apache Ranger policies to secure Hive data in Hive MetaStore. You need to perform
a few actions to prevent users from bypassing HiveServer to access the Hive metastore and the Hive metastore
database.

Procedure

1. Add a firewall rule on the metastore service host to allow access to the metastore port only from the HiveServer2
host. You can do this using iptables.

2. Grant access to the metastore database only from the metastore service host.
For example, in MySQL: GRANT ALL PRIVILEGES ON metastore.* TO 'hive'@'metastorehost'; where
metastorehost is the host where the metastore service is running.

3. Make sure users who are not administrators cannot log into the HiveServer host.

18

	Contents
	Authorizing Apache Hive Access
	HDFS ACL permissions model and YARN queues
	Configure storage-based authorization
	Storage-based operation permissions

	Configure HiveServer for ETL using YARN queues
	Transactional table access
	External table access
	Apache Spark access to Apache Hive
	Hive Authentication
	Secure HiveServer using LDAP
	Client connections to HiveServer
	JDBC connection string syntax

	Encrypting Communication
	Enable TLS/SSL for HiveServer
	Enable SASL in HiveServer

	Secure Hive Metastore

