
Cloudera Runtime 7.0.3

Apache Atlas Reference
Date published: 2019-11-22
Date modified:

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

Apache Atlas Advanced Search language reference... 4

Apache Atlas Statistics reference..6

HiveServer metadata collection...9
HiveServer actions that produce Atlas entities.. 9
HiveServer entities created in Atlas...10
HiveServer relationships...15
HiveServer lineage..16
HiveServer audit entries... 17

HBase metadata collection...18
HBase actions that produce Atlas entities... 19
HBase entities created in Atlas.. 19
Hbase lineage..22
HBase audit entries...23

Impala metadata collection..23
Impala actions that produce Atlas entities... 23
Impala entities created in Atlas..24
Impala lineage...26
Impala audit entries.. 27

Spark metadata collection... 27
Spark actions that produce Atlas entities...27
Spark entities created in Apache Atlas.. 28
Spark lineage...29
Spark relationships..30
Spark audit entries.. 31
Spark troubleshooting... 31

Cloudera Runtime Apache Atlas Advanced Search language reference

Apache Atlas Advanced Search language reference

Atlas lets you search for metadata using a domain-specific language with a SQL-like format.

If you find that the Basic Search or Free-text Search doesn't allow you to search as precisely as you would like,
you can create a query in the Advanced Search interface to return exactly the results you are looking for. Advanced
Search queries use a domain-specific language that is intentionally SQL-like.

Each Advanced Search query is in the form of three clauses:

FROM WHERE SELECT

Additional keywords such as GROUPBY, ORDERBY, and LIMIT can be used to affect the output.

FROM clause

The value specified in the FROM clause acts as the scope of the query. You can specify any entity type in the FROM
clause. The possible entity types are the same list as in the Type search; the names are case-sensitive.

The FROM clause is required and also assumed: the first item included in the query (if not literally the word "from")
is assumed to be the object of the FROM clause.

Examples

With or without FROM: To retrieve all entities of type "hive_db" use one of the following queries:

hive_db
from hive_db

If you only specify a FROM clause, Atlas returns all entities of that type.

Note: To avoid unintentional load on the server because of an overly broad search, Atlas returns a maximum
of 100 results when no limit is set.

Where Clause

The WHERE clause allows for filtering over the result set identified in the FROM clause by specifying a condition of
the form:

identifier operator 'literal'

The identifier is the name of a property of the entity type specified in the FROM clause. The properties for a given
entity type are those shown in the Properties tab of an entity detail page. The names are case-sensitive.

Operators vary by the data type of the literal and include the following:

String: = LIKE

Numeric, Date: = < >

Boolean: =

The LIKE operator allows you to use wildcards in the literal. Asterisk (*) replaces zero to multiple values; question
mark (?) replaces a single value.

The literal must be enclosed in single or double quotes. Matches are case-sensitive. Literals can be lists of values. If
you specify comma-separated values in square brackets, they act as an OR operation.

Dates used in literals need to be specified using the ISO 8601 format and in single or double quotes.

Boolean values used in literals are lower case "true" and "false" without quotation marks.

4

Cloudera Runtime Apache Atlas Advanced Search language reference

You can specify multiple conditions using AND or OR operators. Note that making a list of values is more efficient
than using the same identifier in multiple conditions.

Examples:

Exact string: To retrieve all entities of type hive_table with a specific name "time_dim", use:

from hive_table where name = 'time_dim'

Multiple conditions: To retrieve entity of type hive_table with name that can be either "time_dim" or
"customer_dim":

from hive_table where name 'time_dim' or name = 'customer_dim'

List of values: The query in the example above can be written using a value array:

from hive_table where name = ["customer_dim", "time_dim"]

Wildcard filtering: To retrieve entity of type hive_table whose name ends with '_dim':

from hive_table where name LIKE '*_dim'

To retrieve a hive_db whose name starts with R followed by any 3 characters, followed by rt followed by at least 1
character, followed by none or any number of characters:

DB where name like "R???rt?*"

Date Literal: To retrieve entity of type hive_table created within 2019 and 2020, use the date portion of the time value
and specify a range using two phrases connected by AND:

from hive_table where createTime > '2019-01-01' and
 createTime < '2019-01-03'

Boolean Literal: To retrieve entity of type hdfs_path whose attribute isFile is set to true and whose name is Invoice:

from hdfs_path where isFile = true and name = "Invoice"

Select Clause

The select clause allows you to specify the properties you want returned in the search results. Properties with simple
values can be returned; properties that contain other entities are not available. The property names are case sensitive.

To display column headers that are more meaningful that the system property names, you can use aliases using 'as.'

Examples

Select clause only: To retrieve entities of type "hive_table" with some of its properties:

from hive_table select owner, name, qualifiedName

WHERE and SELECT clauses: To retrieve entity of type hive_table for a specific table with some properties:

from hive_table where name = 'customer_dim' select owner, name, qualifie
dName

Change output names using AS: To display column headers as 'Owner', 'Name' and 'FullName'.

from hive_table select owner as Owner, name as Name, qualifiedName as FullNa
me

5

Cloudera Runtime Apache Atlas Statistics reference

Advanced Searches using Classifications

You can search for entities that are tagged with a specific classification using "is" or "isa" keywords in either the
From or Where clauses. Is and Isa are interchangeable.

Examples

FROM or WHERE clause: To retrieve all entities of type "hive_table" that are tagged with the "Dimension"
classification, you could use any of the following queries:

hive_table is Dimension
from hive_table where hive_table isa Dimension

Related Information
Apache Atlas Advanced Search

Apache Atlas Statistics reference

Atlas collects statistics on the metadata it processes. Use this information to help troubleshoot problems and to gauge
performance.

To view statistics, click the graph button in the top right corner:

The statistics available are categorized into Entity Statistics and Server Statistics:

Entity Statistics

The distribution of entity across their types. A second column gives the number of these entities that have been
marked as deleted.

6

https://atlas.apache.org/2.0.0/Search-Advanced.html

Cloudera Runtime Apache Atlas Statistics reference

Classification Statistics

A list of classifications assigned to entities and the count of entities marked with that classification. The count for
each classification is a hyperlink that runs a search for entities marked with the classification.

Server Statistics

Server statistics reflect the current server session and the metadata collection messages that Atlas reads from a
dedicated Kafka topic.

Server Details
startTimeStampThe

7

Cloudera Runtime Apache Atlas Statistics reference

The timestamp of the most recent start of the Atlas server.

activeTimeStamp

Same as the startTimeStamp unless Atlas was disabled.

upTime

The amount of time between startTimeStamp and the current time when the server was running.

statusBackendStore

The status of the Atlas server connection to the HBase namespace where entity metadata is stored.

statusIndexStore

The status of the Atlas server connection to the Solr collection where entity metadata is indexed.

collectionTime

The last time metrics were calculated.

lastMessageProcessedTime

The timestamp of the last message Atlas recorded from the Kafka topic where services publish
metadata.

offsetCurrent

The index in the Kafka partition that was most recently read.

offsetStart

The index in the Kafka partition that was first read.

Notification Details: Kafka Topic-Partition
Atlas Hook

The primary topic through which services send metadata to Atlas and Atlas sends metadata to
Ranger.

Spark-Atlas Hook Topic

A supplementary topic provided for Spark communication to Atlas.

Notification Details: Message Statistics
Period

The interval that the statistic applies to, including the total lifetime of Atlas. Each period indicated
includes a timestamp for when the period started.

Count

The number of messages processed by Atlas during the period.

Avg Time (ms)

The average duration between the time that a hook published a message to the Kafka topic to the
time entities where successfully created or updated.

Creates

The number of entities produced from the messages processed during the period.

Updates

The number of entities updated based on the messages processed during the period.

Deletes

The number of entities updated based on the messages processed during the period.

Failed

The number of messages that were received but not processed. For more information on what might
have prevented these messages from being processed.

8

Cloudera Runtime HiveServer metadata collection

HiveServer metadata collection

Atlas can collect metadata from HiveServer, including queries and the data assets the queries affect.

An Atlas hook runs in each HiveServer instance. This hook sends metadata to Atlas for both Hive operations and
Hive data assets. Operations are represented by process and process execution entities in Atlas. Hive databases,
tables, views, and columns are represented by entities in Atlas. When a Hive operation involves files, the metadata for
the file system and files are represented in Atlas as file system paths.

1. When an action occurs in the HiveServer instance...
2. The corresponding Atlas hook collects information for the action into metadata entities.
3. The hook publishes the metadata on a Kafka topic.
4. Atlas reads the message from the topic and determines what information will create new entities and what

information updates existing entities.
5. Atlas creates and updates the appropriate entities and determines lineage from existing entities to the new entities.

The Atlas bridge for HBase pulls the same metadata as the hook, but instead of sending the metadata through Kafka,
it passes message in bulk in an API call. The bridge creates entities in Atlas for all of the existing HBase namespaces,
tables, columns, and column families.

HiveServer actions that produce Atlas entities
Operations that create, update, or delete Hive metadata will affect Atlas entities; operations that only affect data do
not show up in Atlas.

The following table lists the HiveServer actions that produce or update metadata in Atlas.

This Action in HiveServer... ...Produces metadata for these Atlas entities

ALTER DATABASE,
CREATE DATABASE,
DROP DATABASE

hive_db, hive_db_ddl

ALTER TABLE,
CREATE TABLE,
CREATE TABLE AS SELECT,
DROP TABLE

hive_process, hive_process_execution, hive_table, hive_table_ddl, hive_column,
hive_column_lineage, hive_storagedesc, hdfs_path

9

Cloudera Runtime HiveServer metadata collection

This Action in HiveServer... ...Produces metadata for these Atlas entities

ALTER VIEW,
ALTERVIEW_AS_SELECT,
CREATE VIEW,
CREATE VIEW AS SELECT,
DROP VIEW

hive_process, hive_process_execution, hive_table, hive_column, hive_column_lineage,
hive_table_ddl

INSERT INTO (SELECT),
INSERT OVERWRITE

hive_process, hive_process_execution

Notable actions in HiveServer that do NOT produce process or process execution entities in Atlas, meaning that no
lineage is produced for these operations:

• SELECT

HiveServer entities created in Atlas
Each HiveServer entity in Atlas includes detailed metadata collected from Hive.

The following diagrams show a summary of the entities created in Atlas for Hive operations and assets. The
supertypes that contribute attributes to the entity types are shaded.

Figure 1: Atlas Entity Types for HiveServer Data Sets

10

Cloudera Runtime HiveServer metadata collection

Figure 2: Atlas Entity Types for HiveServer Processes

11

Cloudera Runtime HiveServer metadata collection

The metadata collected for each entity type is as follows:

Hive Process

Identifier Example content

typeName hive_process

guid System generated ID. This value is used to identify the entity in the Atlas Dashboard URL.

qualifiedName <database>.<target table>@<clustername>:<generated ID>

The generated ID is distinct from the GUID.

name Text of the query.

inputs List of the input tables or views, including each entity’s type name and the qualified name.

outputs List of the output objects, including each entity’s type name and the qualified name.

recentQueries Last query executed (duplicated in process_execution).

operationType One of the operations that triggers metadata collection.

queryPlan Reserved for future use.

12

Cloudera Runtime HiveServer metadata collection

Hive Process Execution

Identifier Example Content

typeName hive_process_execution

guid System generated ID. This value is used to identify the entity in the Atlas Dashboard URL.

qualifiedName <database>.<target table>@<clustername>:<ID from process qualified name>:<ID from the process ex
ecution name>:<generated ID for this process execution>

name Text of the query with a system-generated ID added to the end.

queryText Text of the query.

queryPlan Reserved for future use.

queryId impala_<date as yyyymmddhhmmss>_<generated id>

startTime Query start time.

endTime Query end time.

userName The user who ran the query.

Relationship: Process One process to one or more process executions. hive_process_process_execution

Hive Database

Identifier Example Content

typeName hive_db

guid System generated ID. This value is used to identify the entity in the Atlas Dashboard URL.

qualifiedName <database>@<clustername>

name Database name as reported from Hive.

clusterName Cluster name.

location The file system path where the backing files for the database are stored. This could be an HDFS path, an AWS
S3 object, or an Azure data storage location.

owner The user who initially created the database.

ownerType The principal type of the database owner. Could be USER, ROLE, or GROUP.

parameters Additional key-value pair metadata that comes from Hive such as table size, number of rows, and number of
storage files.

Relationship: Table One database to many tables. hive_table_db

Relationship: Database DDL One database to many database DDL entities. hive_db_ddl_queries

Hive Table

Identifier Example Content

typeName hive_table

guid System generated ID. This value is used to identify the entity in the Atlas Dashboard URL.

qualifiedName <database>.<tablename>@<clustername>

name Table name.

columns List of the columns defined in the table. The Atlas Dashboard shows these as links to the column entity
details.

owner The user who created the table.

13

Cloudera Runtime HiveServer metadata collection

Identifier Example Content

parameters Table details from HiveServer such as:

• totalSize
• External
• numFiles
• transient_lastDdlTime
• bucketing_version

retention Provided by HS2. Integer value

sd The location of the table data, the storage description.

<database>.<table>@<clustername>_storage

tableType How the table was created: one of EXTERNAL_TABLE, VIRTUAL_VIEW, or MANAGED_TABLE.

Relationship: Database One database to many tables. hive_table_db

Relationship: Columns One table to one or more columns. hive_table_columns

Relationship: Partition Key
Column

One table to one or more columns that are partition keys. hive_table_partitionkeys

Relationship: Storage Description One table to one storage description. hive_table_storagedesc

Relationship: DDL One table to many DDL entities. hive_table_ddl_queries

Hive Column

Identifier Example Content

typeName hive_column

comment Metadata from Hive from the column description.

name Column name as reported by HMS.

owner Table owner name as reported by HMS.

position This column’s position in the list of columns in a zero-based index.

qualifiedName <database>.<table>.<column>@<clustername>

table Table name. Also modeled as relationship.

type Column data type as reported by HMS.

Relationship: table One table to one or more columns. hive_table_columns

Relationship: inputToProcesses The hive_column_lineage entities that include this column in the input to a transformation. The relationship
type is dataset_process_inputs.

Relationship:
outputFromProcesses

The hive_column_lineage entities that include this column in the output to a transformation. The relationship
type is process_dataset_outputs.

Relationship: Table One table to one or more columns. hive_table_columns

Relationship: Partition Key
Column

One table to one or more columns that are partition keys. hive_table_partitionkeys

Hive Column Lineage

Identifier Example Content

typeName hive_column_lineage

dependencyType The type of relationship between the input and output columns; one of SIMPLE, EXPRESSION, or
SCRIPT.

name <database>.<table>@<clustername>:<generated ID>:<output_column>

14

Cloudera Runtime HiveServer metadata collection

Identifier Example Content

inputs List of 0 or more hive_column entities that contributed to the output columns. This is a legacy model
component: the more current model uses a relationship attribute.

outputs This is a legacy model component: the more current model uses a relationship attribute.

qualifiedName Same as name.

query Name of the hive_process entity that produced this lineage. This is a legacy model component: the more
current model uses a relationship attribute.

Relationship: Process Name of the hive_process entity that produced this lineage. hive_process_column_lineage

Relationship: inputToProcesses List of 0 or more hive_column entities that contributed to the output columns.

Relationship: outputFromProcesses List of 0 or more hive_column entities that were produced in the process.

Hive Storage Description

Identifier Example Content

typeName hive_storagedesc

compressed Metadata from Hive indicating whether the table is stored compressed.

inputFormat Metadata from Hive indicating the storage input format.

outputFormat Metadata from Hive indicating the storage output format.

parameters Additional metadata from Hive in the form of key-value pairs.

qualifiedName <database>.<table>@<clustername>_storage

serdeInfo Metadata from Hive indicating the serialization/deserialization implementation used to write/read table data.

sortCols Metadata from Hive listing the column or columns used to sort the table data.

storedAsSubDirectories Metadata from Hive indicating whether a skewed table uses the list bucketing feature, which creates
subdirectories for skewed values.

numBuckets Metadata from Hive indicating the number of buckets for bucketed tables. Non-bucketed tables are indicated
by -1.

table The table that this storage description holds data for. Also represented as a relationship.

Relationship: table The table that this storage description holds data for.

HiveServer relationships
Atlas shows the entities related to this entity in the Relationships tab in the Dashboard.

The Relationship tab shows the relationships that exist for an entity. Use this view to navigate among related entities.

15

Cloudera Runtime HiveServer metadata collection

HiveServer lineage
Atlas collects metadata from HiveServer to represent the lineage among data assets.

The Atlas lineage graph shows the input and output processes that the current entity participated in, specifically those
relationships modeled as “inputToProcesses” and “outputFromProcesses.” Entities are included if they were inputs
to processes that lead to the current entity or they are output from processes for which the current entity was an input.
HiveServer processes follow this pattern.

16

Cloudera Runtime HiveServer metadata collection

Related Information
Viewing lineage

HiveServer audit entries
Atlas lists changes to metadata entities in the Audit tab in the Dashboard.

Atlas tracks the lifecycle of each Hive entity, including its creation, update, and deletion. User access and actions that
affect the data content of the source asset are not included in the audit.

17

https://docs.cloudera.com/runtime/7.0.3/atlas-exploring-using-lineage/topics/atlas-viewing-lineage.html

Cloudera Runtime HBase metadata collection

HBase metadata collection

Atlas can collect metadata from HBase that describes the data assets HBase manages.

An Atlas hook runs in each HBase instance. This hook sends metadata to Atlas for HBase data assets. HBase
namespaces, tables, columns, and column families are represented by entities in Atlas.

18

Cloudera Runtime HBase metadata collection

1. When an action occurs in the HBase instance...
2. The corresponding Atlas hook collects information for the action into metadata entities.
3. The hook publishes the metadata on a Kafka topic.
4. Atlas reads the message from the topic and determines what information will create new entities and what

information updates existing entities.
5. Atlas creates and updates the appropriate entities.

The Atlas bridge for HBase pulls the same metadata as the hook, but instead of sending the metadata through Kafka,
it passes message in bulk in an API call. The bridge creates entities in Atlas for all of the existing HBase namespaces,
tables, columns, and column families.

HBase actions that produce Atlas entities
As data assets are created in HBase, Atlas generates entities to represent those assets. Atlas does not create processes
to represent HBase operations.

The following table lists the HBase actions that produce or update metadata in Atlas.

This Action in HBase... ...Produces metadata for these Atlas entities

alter_async
hbase_namespace,
hbase_table,
hbase_column_family

create_namespace,
alter_namespace,
drop_namespace

hbase_namespace

create table,
alter table,
drop table,
drop_all tables

alter table (create column family),
alter table (alter column family),
alter table (delete column family)

alter table (create column family),
alter table (alter column family),
alter table (delete column family)

hive_process, hive_process_execution

Notable actions in HBase that do NOT produce metadata entities include any actions that affect only data and not
metadata. In addition, Atlas does not collect metadata for HBase columns. Actions that do not create Atlas entities
include:

• Truncate table
• Put (cell value)]
• Disable/enable table

HBase entities created in Atlas
Each HBase data set entity in Atlas includes detailed metadata collected from HBase.

The following diagrams show a summary of the entities created in Atlas for Hive operations and assets. The
supertypes that contribute attributes to the entity types are shaded.

Figure 3: Atlas Entity Types for HBase Data Sets

19

Cloudera Runtime HBase metadata collection

The metadata collected for each entity type is as follows:

HBase Namespace

Identifier Example content

typeName hbase_namespace

guid System generated ID. This value is used to identify the entity in the Atlas Dashboard URL.

qualifiedName <name>@<clustername>

name Namespace name as reported from HBase.

20

Cloudera Runtime HBase metadata collection

Identifier Example content

description String description metadata from HBase.

modifiedTime Time from HBase indicating a change to the namespace. Formatted as in this example: “Wed Apr 17 2019
18:32:14 GMT-0700 (Pacific Daylight Time)”

owner Owner as reported from HBase.

parameters Reserved for future use.

replicatedFrom Reserved for future use.

replicatedTo Reserved for future use.

Relationship: tables One namespace to many tables. hbase_table_namespace

HBase Table

Identifier Example content

typeName hbase_table

guid System generated ID. This value is used to identify the entity in the Atlas Dashboard URL.

qualifiedName <namespace>:<tablename>@<clustername>

name Table name as reported from HBase.

description String description metadata from HBase.

modifiedTime Time from HBase indicating a change to the table. Formatted as in this example: “Wed Apr 17 2019 18:32:14
GMT-0700 (Pacific Daylight Time)”

owner Owner as reported from HBase.

parameters Reserved for future use.

replicatedFrom Reserved for future use.

replicatedTo Reserved for future use.

durability Storage property as reported from HBase. Values include true or false.

isCompactionEnabled Storage property as reported from HBase. Values include true or false.

isNormalizationEnabled Storage property as reported from HBase. Values include true or false.

isReadOnly

maxFileSize Storage property as reported from HBase. -1 indicates that no maximum was set.

uri Table name.

Relationship: namespace One namespace to many tables. hbase_table_namespace

Relationship: column
families

Column families associated with this table. hbase_table_column_families

HBase Column Family

Identifier Example content

typeName hbase_column_family

guid System generated ID. This value is used to identify the entity in the Atlas Dashboard URL.

qualifiedName <namespace>:<tablename>.<columnfamily>@<clustername>

name Column family name as reported from HBase.

description String description metadata from HBase.

modifiedTime Time from HBase indicating a change to the column family. Formatted as in this example: “Wed Apr 17 2019
18:32:14 GMT-0700 (Pacific Daylight Time)”

21

Cloudera Runtime HBase metadata collection

Identifier Example content

owner Owner as reported from HBase.

StoragePolicy Value for the storagePolicy property for the column family. Values include N/A, ALL_SSD, ONE_SSD, HOT,
WARM, COLD.

blockCacheEnabled Storage property as reported from HBase. Values include true or false.

bloomFilterType Value for the BLOOM_FILTER_TYPE property for the column family. Values include NONE, ROW, or
ROWCOL.

cacheBloomsOnWrite Boolean value for the CACHE_BLOOMS_ON_WRITE property for the column family.

cacheDataOnWrite Boolean value for the CACHE_DATA_ON_WRITE property for the column family.

cacheIndexesOnWrite Boolean value for the CACHE_INDEX_ON_WRITE property for the column family.

columns List of columns included in the column family.

compactionCompressionType Storage property as reported from HBase.

compressionType Value for the COMPRESSION property for the column family. Values include NONE, SNAPPY, LZO, LZ4, GZ.

createTime Time from HBase indicating when the column family was created. Formatted as in this example: “Wed Apr 17
2019 18:32:14 GMT-0700 (Pacific Daylight Time)”

dataBlockEncoding The DATA_BLOCK_ENCODING property for the column family. Values include NONE, PREFIX, DIFF,
FAST_DIFF, ROW_INDEX_V1.

encryptionType Column family encryption property. Values include “N/A”, and AES.

evictBlocksOnClose Boolean value for the EVICT_BLOCKS_ON_CLOSE property for the column family.

inMemoryCompactionPolicy In memory compaction behavior (IN_MEMORY_COMPACTION) set for the column family. Values include
NONE, BASIC, EAGER, ADAPTIVE, or “N/A”.

isMobEnabled Boolean value for Medium OBject (MOB) properties for the column family (IS_MOB).

keepDeletedCells Boolean value for the KEEP_DELETED_CELLS property of the column family.

maxVersions The maximum number of row versions this column family is configured to store.

minVersions The minimum number of row versions this column family is configured to store.

mobCompactPartitionPolicy The MOB_COMPACT_PARTITION_POLICY for this column family. Values include DAILY, WEEKLY,
MONTHLY.

modifiedTime Time from HBase indicating a change to the column family. Formatted as in this example: “Wed Apr 17 2019
18:32:14 GMT-0700 (Pacific Daylight Time)”

newVersionBehavior Boolean value for the NEW_VERSION_BEHAVIOR property for this column family.

prefetchBlocksOnOpen Boolean value for PREFETCH_BLOCKS_ON_OPEN property of the column family.

replicatedFrom Not used.

replicatedTo Not used.

table The table that the column family corresponds to. Also modeled as a relationship.

ttl Time to live (TTL) length in seconds. The TTL time encoded in the HBase for the row is specified in UTC.

Relationship: columns Not used.

Relationship: table One table to many column families. hbase_table_column_families

Hbase lineage
Atlas collects lineage information for HBase data assets when HBase tables are referenced in HiveServer or Impala
operations.

The Atlas lineage graph shows the input and output processes that the current entity participated in, specifically those
relationships modeled as “inputToProcesses” and “outputFromProcesses.” Entities are included if they were inputs to
processes that lead to the current entity or they are output from processes for which the current entity was an input.

22

Cloudera Runtime Impala metadata collection

No lineage metadata is collected directly from HBase.

Related Information
Viewing lineage

HBase audit entries
Atlas lists changes to metadata entities in the Audit tab in the Dashboard.

Atlas tracks the lifecycle of each HBase entity, including its creation, update, and deletion. User access and actions
that affect the data content of the source asset are not included in the audit.

Impala metadata collection

Atlas can collect metadata for queries from Impala. It collects metadata for affected data assets from Hive Metastore
(HMS).

An Atlas hook runs in each Impalad instance. This hook sends metadata to Atlas for Impala operations, which are
represented by process and process execution entities in Atlas.

In addition, an Atlas hook runs in Hive Metastore (HMS). Before sending metadata to Atlas, Impala synchronizes its
metadata with HMS. This synchronization makes sure that Impala uses the same names and IDs as HMS.

1. When an action occurs in the Impala instance...
2. Impala updates HMS with information about the assets affected by the action.
3. The Atlas hook for HMS collects information for the changed and new assets and forms it into metadata entities. It

publishes the metadata to a Kafka topic.
4. The Atlas hook for the Impala instance collects information for the action and forms it into metadata entities. It

publishes the metadata to a Kafka topic.
5. Atlas reads the messages from the topic and determines what information will create new entities and what

information updates existing entities. Atlas is able to determine the correct entities regardless of the order in which
Atlas receives messages from the Kafka topic.

6. Atlas creates the appropriate entities and determines lineage from existing entities to the new entities.

Impala actions that produce Atlas entities
Impala operations that create, update, or delete Hive metadata will affect Atlas entities; operations that only affect
data do not show up in Atlas.

The following table lists the Impala actions that produce or update metadata in Atlas.

23

https://docs.cloudera.com/runtime/7.0.3/atlas-exploring-using-lineage/topics/atlas-viewing-lineage.html

Cloudera Runtime Impala metadata collection

This Action in Impala... ...Produces metadata for these
Atlas entities

...Triggers HMS to produce
metadata for these Atlas entities

...Produces metadata for these
Atlas relationships

CREATETABLE_AS_SELECT
impala_process,
impala_process_execution,
impala_column_lineage,
hive_db
hive_table_ddl

hive_table,
hive_column(s),
hive_storagedesc,
hive_db
hive_table_ddl

hive_table_db,
hive_table_columns,
hive_table_partitionkeys,
hive_table_storagedesc,
hive_process_process_execution,
hive_process_columnlineage,
hive_table_ddl_queries,
hive_db_ddl_queries

CREATEVIEW
impala_process,
impala_process_execution,
impala_column_lineage,
hive_table_ddl

hive_table,
hive_column(s),
hive_db

hive_table_db,
hive_table_columns,
hive_table_partitionkeys,
hive_process_process_execution,
hive_process_columnlineage,
hive_table_ddl_queries

ALTERVIEW_AS_SELECT
impala_process,
impala_process_execution,
impala_column_lineage,
hive_table_ddl

Updates to:
hive_table,
hive_column(s)

hive_process_process_execution,
hive_process_columnlineage,
hive_table_ddl_queries

INSERT INTO,
INSERT,
OVERWRITE

impala_process,
impala_process_execution

If not already in Atlas, HMS sends
metadata for data assets indicated
in the query:

hive_table,
hive_column(s),
hive_storagedesc,
hive_db

hive_process_process_execution

Notable actions in Impala that do NOT produce process or process execution entities in Atlas, meaning that no
lineage is produced for these operations:

• LOAD DATA INPATH
• CREATE TABLE (table metadata produced by HMS)
• ALTER VIEW (table metadata produced by HMS)
• SELECT or other queries that don’t produce output

Impala entities created in Atlas
Each Impala entity in Atlas includes detailed metadata for Impala queries.

The following diagrams show a summary of the entities created in Atlas for Impala operations. The supertypes that
contribute attributes to the entity types are shaded.

Figure 4: Atlas Entity Types for Impala Operations

24

Cloudera Runtime Impala metadata collection

The metadata collected for each entity type is as follows:

Impala Process

Identifier Example content

typeName impala_process

guid System generated ID. This value is used to identify the entity in the Atlas Dashboard URL.

qualifiedName <database>.<target table>@<clustername>:<generated ID>

The generated ID is distinct from the GUID.

name Text of the query.

inputs List of the input tables or views, including each entity’s type name and the qualified name.

outputs List of the output objects, including each entity’s type name and the qualified name.

recentQueries Last query executed (duplicated in process_execution).

operationType One of the operations that triggers metadata collection.

queryPlan Reserved for future use.

startTime Most recent query start time.

endTime Most recent query end time.

Relationship: Process
Execution

One process to one or more process executions. impala_process_process_execution

Relationship: Column
Lineage

One process to one or more column lineages. impala_process_column_lineage

25

Cloudera Runtime Impala metadata collection

Impala Process Execution

Identifier Example Content

typeName impala_process_execution

guid System generated ID. This value is used to identify the entity in the Atlas Dashboard URL.

qualifiedName <database>.<target table>@<clustername>:<ID from process qualified name>:<ID from the process ex
ecution name>:<generated ID for this process execution>

name Text of the query with a system-generated ID added to the end.

queryText Text of the query.

queryPlan Reserved for future use.

queryId impala_<date as yyyymmddhhmmss>_<generated id>

startTime Query start time.

endTime Query end time.

userName The user who ran the query.

Relationship: Process One process to one or more process executions. impala_process_process_execution

Impala Column Lineage

Identifier Example Content

typeName impala_column_lineage

dependencyType The type of relationship between the input and output columns; one of SIMPLE, EXPRESSION, or
SCRIPT.

name <database>.<table>@<clustername>:<generated ID>:<output_column>

inputs List of 0 or more hive_column entities that contributed to the output columns. This is a legacy model
component: the more current model uses a relationship attribute.

outputs This is a legacy model component: the more current model uses a relationship attribute.

qualifiedName Same as name.

query Name of the impala_process entity that produced this lineage. This is a legacy model component: the
more current model uses a relationship attribute.

Relationship: Process Name of the impala_process entity that produced this lineage. impala_process_column_lineage

Relationship: inputToProcesses List of 0 or more hive_column entities that contributed to the output columns.

Relationship: outputFromProcesses List of 0 or more hive_column entities that were produced in the process.

Impala lineage
You can use the Atlas lineage graph to understand the source and impact of data and changes to data over time and
across all your data.

Atlas collects metadata from Impala to represent the lineage among data assets. The Atlas lineage graph shows the
input and output processes that the current entity participated in. Entities are included if they were inputs to processes
that lead to the current entity or they are output from processes for which the current entity was an input. Impala
processes follow this pattern.

Note that lineage is not updated between a table and views that the table is a part of when an Impala ALTER TABLE
operation runs on the table.

Related Information
Viewing lineage

26

https://docs.cloudera.com/runtime/7.0.3/atlas-exploring-using-lineage/topics/atlas-viewing-lineage.html

Cloudera Runtime Spark metadata collection

Impala audit entries
Atlas lists changes to metadata entities in the Audit tab in the Dashboard.

Atlas tracks the lifecycle of each Impala entity, including its creation, update, and deletion.

Spark metadata collection

Atlas can collect metadata from Spark, including queries on Hive tables. The Spark Atlas Connector (SAC) is
available as of Spark 2.4 and Atlas 2.1.

An Atlas hook runs in each Spark instance. This hook sends metadata to Atlas for Spark operations. Operations are
represented by process entities in Atlas. Hive databases, tables, views, and columns that are referenced in the Spark
operations are also represented in Atlas, but the metadata for these entities is collected from HMS. When a Spark
operation involves files, the metadata for the file system and files are represented in Atlas as file system paths.

1. When an action occurs in the Spark instance...
2. It updates HMS with information about the assets affected by the action.
3. The Atlas hook corresponding to HMS collects information for the changed and new assets and forms it into

metadata entities. It publishes the metadata to the Kafka topic named ATLAS_HOOK.
4. The Atlas hook corresponding to the Spark instance collects information for the action and forms it into metadata

entities. It publishes the metadata to a different Kafka topic named ATLAS_SPARK_HOOK.
5. Atlas reads the messages from the topics and determines what information will create new entities and what

information updates existing entities. Atlas is able to determine the correct entities regardless of the order in which
Atlas receives messages from the Kafka topics.

6. Atlas creates the appropriate entities and the relationships among them and determines lineage from existing
entities to the new entities.

Spark actions that produce Atlas entities
Operations that create Spark process entities and create, update, or delete the data assets affected by those operations
will affect Atlas entities; operations that only affect data do not show up in Atlas.

The following table lists the Spark actions that produce or update metadata in Atlas.

This Action in Spark... ...Produces metadata for these Atlas entities

CREATE TABLE USING
CREATE TABLE AS SELECT,
CREATE TABLE USING ... AS SELECT

spark_process, hive_table, hive_column, hive_storagedesc

27

Cloudera Runtime Spark metadata collection

This Action in Spark... ...Produces metadata for these Atlas entities

CREATE VIEW AS SELECT, spark_process, hive_table, hive_column, hive_storagedesc

INSERT INTO (SELECT),
LOAD DATA [LOCAL] INPATH

spark_process

Notable actions in Spark that do NOT produce process entities in Atlas, meaning that no lineage is produced for these
operations:

• LOAD DATA INPATH (when not coming from a local file source)
• CREATE TABLE (hive_table metadata produced by HMS)
• ALTER VIEW (hive_table metadata produced by HMS)
• SELECT or other queries that don’t change table metadata

Spark entities created in Apache Atlas
Each Spark entity in Atlas includes detailed metadata collected from Spark.

The following diagrams show a summary of the entities created in Atlas for Spark operations. The data assets that
Spark operations act upon are collected through HMS. The supertypes that contribute attributes to the entity types are
shaded.

Figure 5: Atlas Entity Types for Spark Data Sets

The metadata collected for each entity type is as follows:

Spark Process

Identifier Example content

typeName spark_process

28

Cloudera Runtime Spark metadata collection

Identifier Example content

guid System generated ID. This value is used to identify the entity in the Atlas Dashboard URL.

qualifiedName <generated ID>

The generated ID is distinct from the GUID.

name process_<generated ID>

description Metadata from Spark.

owner Metadata from Spark.

ownerType Metadata from Spark.

inputs List of the input tables or views, including each entity’s type name and the qualified name.

outputs List of the output objects, including each entity’s type name and the qualified name.

executionId Metadata from Spark.

currUser Metadata from Spark. In a Kerberized environment, this value contains the principal name.

remoteUser Metadata from Spark. In a Kerberized environment, this value contains the principal name.

executionTime Metadata from Spark.

details Query plan text, including parsed logical plan, analyzed logical plan, optimized logical plan, and physical plan.

sparkPlanDescription Physical plan text.

Spark lineage
Atlas collects metadata from Spark to represent the lineage among data assets.

The Atlas lineage graph shows the input and output processes that the current entity participated in, specifically those
relationships modeled as “inputToProcesses” and “outputFromProcesses.” Entities are included if they were inputs
to processes that lead to the current entity or they are output from processes for which the current entity was an input.
Spark processes follow this pattern.

29

Cloudera Runtime Spark metadata collection

Related Information
Viewing lineage

Spark relationships
Atlas shows the entities related to this entity in the Relationships tab in the Dashboard.

The Relationship tab shows the relationships that exist for an entity. Use this view to navigate among related entities.

30

https://docs.cloudera.com/runtime/7.0.3/atlas-exploring-using-lineage/topics/atlas-viewing-lineage.html

Cloudera Runtime Spark metadata collection

Spark audit entries
Atlas lists changes to metadata entities in the Audit tab in the Dashboard.

Atlas tracks the lifecycle of each Spark entity, including its creation, update, and deletion. User access and actions
that affect the data content of the source asset are not included in the audit.

Spark troubleshooting
What do you do if you don't see Atlas metadata from Spark?

Spark runs an Atlas "hook" or plugin on every host where it runs. To troubleshoot problems, consider the following
methods for narrowing down where the problem is:

• Are you missing all metadata?

Make sure that all the services supporting Atlas are configured and running. For CDP, the configuration is done
for you; look in Cloudera Manager to see that Kafka, Solr, and Atlas services are running in the Data Lake.

• Are you missing all Spark process metadata?

By default, Spark operations are configured to send metadata to Atlas. To check that these settings have not been
rolled back, look at the Spark configuration page in Cloudera Manager to ensure that Spark is configured to send
metadata to Atlas. Assuming this configuration is enabled, you can next check the Kafka topic queue to make sure
that metadata messages are being produced in Spark and making it to the Kafka topic.

• Missing only some Spark metadata?

Because each instance of Spark collects metadata independently of other instances, it is possible that one instance
failed to send metadata to Atlas. To determine if this is the problem, check the Kafka topic queue to see if one of
the Spark hosts is not sending metadata.

31

	Contents
	Apache Atlas Advanced Search language reference
	Apache Atlas Statistics reference
	HiveServer metadata collection
	HiveServer actions that produce Atlas entities
	HiveServer entities created in Atlas
	HiveServer relationships
	HiveServer lineage
	HiveServer audit entries

	HBase metadata collection
	HBase actions that produce Atlas entities
	HBase entities created in Atlas
	Hbase lineage
	HBase audit entries

	Impala metadata collection
	Impala actions that produce Atlas entities
	Impala entities created in Atlas
	Impala lineage
	Impala audit entries

	Spark metadata collection
	Spark actions that produce Atlas entities
	Spark entities created in Apache Atlas
	Spark lineage
	Spark relationships
	Spark audit entries
	Spark troubleshooting

