
Cloudera Runtime 7.0.0

Managing Apache Hive
Date published: 2019-08-21
Date modified:

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

ACID operations... 4
Configure partitions for transactions..4
View transactions..4
View transaction locks... 5

Data compaction... 6
Compaction prerequisites..6
Enable automatic compaction...7
Start compaction manually... 8
View compaction progress... 9
Disable automatic compaction..9
Compactor properties..10

Query vectorization.. 12
Configuring query vectorization...13
Check query execution... 14

Cloudera Runtime ACID operations

ACID operations

You can perform ACID (atomicity, consistency, isolation, and durability) v2 transactions at the row level without any
configuration. By default, managed tables are ACID tables. You cannot disable transactions.

The Data Warehouse service in CDP Public Cloud includes mature versions of Hive ACID transaction processing
and low latency analytical processing (LLAP). LLAP is not available in CDP Private Cloud Base. Application
development and operations are simplified with strong transactional guarantees and simple semantics for SQL
commands. You do not need to bucket ACID v2 tables, so maintenance is easier. With improvements in transactional
semantics, advanced optimizations, such as materialized view rewrites and automatic query cache, are available. With
these optimizations, you can deploy new Hive application types.

A Hive operation is atomic. The operation either succeeds completely or fails; it does not result in partial data. A Hive
operation is also consistent: After an application performs an operation, the results are visible to the application in
every subsequent operation. Hive operations are isolated. Your operations do not cause unexpected side effects for
other users. Finally, a Hive operation is durable. A completed operation is preserved in the event of a failure.

Hive operations are atomic at the row level instead of the table or partition level. A Hive client can read from a
partition at the same time another client adds rows to the partition. Transaction streaming rapidly inserts data into
Hive tables and partitions.

Configure partitions for transactions
To include INSERT, UPDATE, and DELETE statements in your transaction applications, you must set your dynamic
partition mode to nonstrict.

Before you begin
Change the following parameters to meet your needs:

• hive.exec.max.dynamic.partitions
• hive.exec.max.dynamic.partitions.pernode

Procedure

1. In Cloudera Manager Clusters select the Hive service. Click Configuration, and search for hive-site.xml.

2. In HiveServer2 Advanced Configuration Snippet (Safety Valve) for hive-site.xml, click + and add the hive.exe
c.dynamic.partition.mode property.

3. Set the value to nonstrict.

4. Save the changes and restart the Hive service.

Related Information
Hive Configuration Properties documentation on the Apache wiki

View transactions
As Administrator, you can view a list of open and aborted transactions.

Procedure

Enter a query to view transactions.
SHOW TRANSACTIONS
The following information appears in the output:

• Transaction ID

4

https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.exec.dynamic.partition

Cloudera Runtime ACID operations

• Transaction state
• Hive user who initiated the transaction
• Host machine or virtual machine where transaction was initiated

View transaction locks
As a Hive administrator, you can get troubleshooting information about locks on a table, partition, or schema.

About this task
Hive transactions, enabled by default, disables Zookeeper locking. DbLockManager stores and manages all
transaction lock information in the Hive Metastore. Heartbeats are sent regularly from lock holders and transaction
initiators to the Hive Metastore to prevent stale locks and transactions. The lock or transaction is aborted if the
metastore does not receive a heartbeat within the amount of time specified by the hive.txn.timeout configuration
property.

Before you begin
Check that transactions are enabled (the default).

Procedure

1. Enter a Hive query to check table locks.

SHOW LOCKS mytable EXTENDED;

2. Check partition locks.

SHOW LOCKS mytable PARTITION(ds='2018-05-01', hr='12') EXTENDED;

3. Check schema locks.

SHOW LOCKS SCHEMA mydatabase;

The following information appears in the output unless ZooKeeper or in-memory lock managers are used.

• Database name
• Table name
• Partition, if the table is partitioned
• Lock state:

• Acquired - transaction initiator hold the lock
• Waiting - transaction initiator is waiting for the lock
• Aborted - the lock has timed out but has not yet been cleaned

• Lock type:

• Exclusive - the lock cannot be shared
• Shared_read - the lock cannot be shared with any number of other shared_read locks
• Shared_write - the lock may be shared by any number of other shared_read locks but not with other

shared_write locks
• Transaction ID associated with the lock, if one exists
• Last time lock holder sent a heartbeat
• Time the lock was acquired, if it has been acquired
• Hive user who requested the lock
• Host machine or virtual machine on which the Hive user is running a Hive client
• Blocked By ID - ID of the lock causing current lock to be in Waiting mode, if the lock is in this mode

5

Cloudera Runtime Data compaction

Related Information
Apache wiki transaction configuration documentation

Data compaction

As administrator, you need to manage compaction of delta files that accumulate during data ingestion. Compaction is
a process that performs critical housekeeping of files.

Hive creates a set of delta files for each transaction that alters a table or partition and stores them in a separate
delta directory. By default, Hive automatically compacts delta and base files at regular intervals. Compaction is a
consolidation of files. You can configure automatic compactions, as well as perform manual compactions of base and
delta files. To submit compaction Jobs, Hive uses Tez as the execution engine, and uses MapReduce algorithms in the
Stack. Compactions occur in the background without affecting concurrent reads and writes. The compactor initiator
should run on only one HMS instance.

There are two types of compaction:

• Minor

Rewrites a set of delta files to a single delta file for a bucket.
• Major

Rewrites one or more delta files and the base file as a new base file for a bucket.

Related Information
Apache Wiki transactions and compaction documentation

Compaction prerequisites
To prevent data loss or an unsuccessful compaction, you must meet the prerequisites before compaction occurs.

Exclude compaction users from Ranger policies

Compaction causes data loss if Apache Ranger policies for masking or row filtering are enabled and the user hive or
any other compaction user is included in the Ranger policies.

1. Set up Ranger masking or row filtering policies to exclude the user hive from the policies.

The user (named hive) appears in the Users list in the Ranger Admin UI.

2. Identify any other compaction users from the masking or row filtering policies for tables as follows:

• If the hive.compaction.run.as.user property is configured, the user runs compaction.
• If a user is configured as owner of the directory on which the compaction will run, the user runs compaction.
• If a user is configured as the table owner, the user runs compaction

3. Exclude compaction users from the masking or row filtering policies for tables.

Failure to perform these critical steps can cause data loss. For example, if a compaction user is included in an enabled
Ranger masking policy, the user sees only the masked data, just like other users who are subject to the Ranger
masking policy. The unmasked data is overwritten during compaction, which leads to data loss of unmasked content
as only the underlying tables will contain masked data. Similarly, if Ranger row filtering is enabled, you do not see,
or have access to, the filtered rows, and data is lost after compaction from the underlying tables.

6

https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions#HiveTransactions-Configuration
https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions/

Cloudera Runtime Data compaction

The worker process executes queries to perform compaction, making Hive data subject to data loss (HIVE-27643).
MapReduce-based compactions are not subject to the data loss described above as these compactions directly use the
MapReduce framework.

Related Information
Row-level filtering and column masking in Hive with Ranger policies

Enable automatic compaction
Several properties in the Hive and Hive metastore service configurations must be set to enable automatic compaction.
You need to check that the property settings are correct and to add one of the properties to the Hive on Tez service.
Automatic compaction will then occur at regular intervals, but only if necessary.

About this task
The following properties must be set in Hive metastore (Hive-1) and Hive on Tez services as follows:

• hive.compactor.initiator.on = true (default)
• hive.compactor.worker.threads = <a value greater than 0> (default and recommended value = 5)
• hive.metastore.runworker.in = hs2 (default)

Before you begin
Tables or partitions you are compacting must be full ACID or insert-only ACID tables.

Procedure

1. In Cloudera Manager, select the Hive metastore service: Clusters Hive-1 Configuration .

2. Search for compact.

3. Check that Turn on Compactor Initiator Thread (hive.compactor.initiator.on), Number of Threads Used by
Compactor (hive.compactor.worker.threads), and Run Compactor on Hive Metastore or HiveServer2 (hive.met
astore.runworker.in) are set to the values shown above.

4. Save the changes.

5. In Cloudera Manager, select the Hive metastore service: Clusters HIVE_ON_TEZ-1 Configuration .

7

https://issues.apache.org/jira/browse/HIVE-27643
https://docs.cloudera.com/runtime/7.0.3/security-ranger-authorization/topics/security-ranger-row-level-filtering-and-column-masking-in-hive.html

Cloudera Runtime Data compaction

6. Search for compact.

7. Check that the Number of Threads Used by Compactor (hive.compactor.worker.threads), and Run compactor on
Hive Metastore or HiveServer2 (hive.metastore.runworker.in) is set to hs2.

8. Save the changes and restart the Hive on Tez and Hive (HIVE-1) metastore services at an appropriate time.

Related Information
Example of using the Cloudera Manager Safety Valve

Start compaction manually
You manually start compaction when automatic compaction fails for some reason. You can start compaction by
running a Hive statement.

About this task
Carefully consider the need for a major compaction as this process can consume significant system resources and take
a long time. Start a major compaction during periods of low traffic. Base and delta files for a table or partition are
compacted.

Start compaction using a query

You use the following syntax to issue a query that starts compaction:

 ALTER TABLE tablename [PARTITION (partition_key='partition_value' [,...])]
COMPACT 'compaction_type'

Before you begin
Tables or partitions you are compacting must be full ACID or insert-only ACID tables.

Procedure

1. In Cloudera Manager, select the Hive metastore service: Clusters Hive-1 Configuration .

8

https://docs.cloudera.com/runtime/7.0.3/configuring-apache-hive/topics/hive_limit_hive_connections.html

Cloudera Runtime Data compaction

2. Search for compact.

3. Check that the Hive Metastore Server Default Group is selected (hive.compactor.initiator.on=true).

4. Execute a query to start a major compaction of a table.

ALTER TABLE mytable COMPACT 'major'

ALTER TABLE compacts tables even if the NO_AUTO_COMPACTION table property is set.

Related Information
Example of using the Cloudera Manager Safety Valve

View compaction progress
You view the progress of compactions by running a Hive query.

Procedure

Enter the query to view the progress of compactions.
SHOW COMPACTIONS;

• Unique internal ID
• Database name
• Table name
• Partition name
• Major or minor compaction
• Compaction state:

• Initiated - waiting in queue
• Working - currently compacting
• Ready for cleaning - compaction completed and old files scheduled for removal
• Failed - the job failed. Details are printed to the metastore log.
• Succeeded
• Attempted - initiator attempted to schedule a compaction but failed. Details are printed to the metastore log.

• Thread ID
• Start time of compaction
• Duration
• Job ID - ID of the submitted MapReduce job

Disable automatic compaction
You can disable automatic compaction of a particular Hive table by setting the NO_AUTO_COMPACTION property
in TBLPROPERTIES of a table. Disabling automatic compaction does not prevent you from performing manual
compaction.

9

https://docs.cloudera.com/runtime/7.0.3/configuring-apache-hive/topics/hive_limit_hive_connections.html

Cloudera Runtime Data compaction

Procedure

Start the Hive shell, and in the database of the target table, alter the TBLPROPERTIES.

ALTER TABLE my_t SET TBLPROPERTIES ('NO_AUTO_COMPACTION'='true');

Compactor properties
You check and change a number of Apache Hive properties to configure the compaction of delta files that accumulate
during data ingestion. You need to know the defaults, valid values, and where to set these properties: Cloudera
Manager, TBLPROPERTIES, hive-site.xml, or core-site.xml. When properties do not appear in Cloudera Manager
search of configuration properties for a runtime service, you add the property to hive-site or core-site using the
Cloudera Manager Safety Valve.

Basic compactor properties
hive.compactor.initiator.on

Default=false

Whether to run the initiator and cleaner threads on this metastore instance or not.

hive.compactor.worker.threads

Default=0

Set this to a positive number to enable Hive transactions, which are required to trigger transactions.
Worker threads spawn jobs to perform compactions, but do not perform the compactions
themselves. Increasing the number of worker threads decreases the time that it takes tables or
partitions to be compacted. However, increasing the number of worker threads also increases the
background load on the CDP cluster because they cause more jobs to run in the background.

hive.metastore.runworker.in

Default=HS2

Specifies where to run the Worker threads that spawn jobs to perform compactions. Valid values are
HiveServer (HS2) or Hive metastore (HMS).

hive.compactor.abortedtxn.threshold

Default=1000

The number of aborted transactions involving a given table or partition that will trigger a major
compaction.

Advanced compactor properties
hive.compactor.worker.timeout

Default=86400s

Expects a time value using d/day, h/hour, m/min, s/sec, ms/msec, us/usec, or ns/nsec (default is sec).
Time in seconds after which a compaction job will be declared failed and the compaction re-queued.

hive.compactor.check.interval

Default=300s

A valid value is a time with unit (d/day, h/hour, m/min, s/sec, ms/msec, us/usec, ns/nsec), which is
sec if not specified.

Time in seconds between checks to see if any tables or partitions need to be compacted. This value
should be kept high because each check for compaction requires many calls against the NameNode.
Decreasing this value reduces the time it takes to start compaction for a table or partition that
requires it. However, checking if compaction is needed requires several calls to the NameNode for

10

Cloudera Runtime Data compaction

each table or partition involved in a transaction done since the last major compaction. Consequently,
decreasing this value increases the load on the NameNode.

hive.compactor.delta.num.threshold

Default=10

Number of delta directories in a table or partition that triggers a minor compaction.

hive.compactor.delta.pct.threshold

Default=0.1

Percentage (fractional) size of the delta files relative to the base that triggers a major compaction.
(1.0 = 100%, so the default 0.1 = 10%.)

hive.compactor.max.num.delta

Default=500

Maximum number of delta files that the compactor attempts to handle in a single job.

hive.compactor.wait.timeout

Default=300000

The value must be greater than 2000 milliseconds.

Time out in milliseconds for blocking compaction.

hive.compactor.initiator.failed.compacts.threshold

Default=2

A valid value is between 1 and 20, and must be less than hive.compactor.history.retention.failed.

The number of consecutive compaction failures (per table/partition) after which automatic
compactions are not scheduled any longer.

hive.compactor.cleaner.run.interval

Default=5000ms

A valid value is a time with unit (d/day, h/hour, m/min, s/sec, ms/msec, us/usec, ns/nsec), which is
msec if not specified.

The time between runs of the cleaner thread.

hive.compactor.job.queue

Specifies the Hadoop queue name to which compaction jobs are submitted. If the value is an empty
string, Hadoop chooses the default queue to submit compaction jobs.

Providing an invalid queue name results in compaction job failures.

hive.compactor.compact.insert.only

Default=true

The compactor compacts insert-only tables, or not (false). A safety switch.

hive.compactor.crud.query.based

Default=false

Performs major compaction on full CRUD tables as a query, and disables minor compaction.

hive.split.grouping.mode

Default=query

A valid value is either query or compactor.

This property is set to compactor from within the query-based compactor. This setting enables
the Tez SplitGrouper to group splits based on their bucket number, so that all rows from different
bucket files for the same bucket number can end up in the same bucket file after the compaction.

hive.compactor.history.retention.succeeded

11

Cloudera Runtime Query vectorization

Default=3

A valid value is between 0 and 100.

Determines how many successful compaction records are retained in compaction history for a given
table/partition.

hive.compactor.history.retention.failed

Default=3

A valid value is between 0 and 100.

Determines how many failed compaction records are retained in compaction history for a given
table/partition.

hive.compactor.history.retention.attempted

Default=2

A valid value is between 0 and 100.

Determines how many attempted compaction records are retained in compaction history for a given
table/partition.

hive.compactor.history.reaper.interval

Default=2m

A valid value is a time with unit (d/day, h/hour, m/min, s/sec, ms/msec, us/usec, ns/nsec), which is
msec if not specified.

Determines how often compaction history reaper runs.

Related Information
Example of using the Cloudera Manager Safety Valve

Query vectorization

You can use vectorization to improve instruction pipelines and cache use. Vectorization enables certain data and
queries to process batches of primitive types on entire column rather than one row at a time.

Default vectorized query execution

CDP enables vectorization by default and the value of hive.vectorized.execution.enabled is set to true. Vectorized
query execution processes Hive data in batch, channeling a large number of rows of data into columns, foregoing
intermediate results. This technique is more efficient than the MapReduce execution process that stores temporary
file.

Unsupported functionality on vectorized data

Some functionality is not supported on vectorized data:

• DDL queries
• DML queries other than single table, read-only queries
• Formats other than Optimized Row Columnar (ORC)

Supported functionality on vectorized data

The following functionality is supported on vectorized data:

• Single table, read-only queries

Selecting, filtering, and grouping data is supported.
• Partitioned tables

12

https://docs.cloudera.com/runtime/7.0.3/configuring-apache-hive/topics/hive_limit_hive_connections.html

Cloudera Runtime Query vectorization

• The following expressions:

• Comparison: >, >=, <, <=, =, !=
• Arithmetic plus, minus, multiply, divide, and modulo
• Logical AND and OR
• Aggregates sum, avg, count, min, and max

Supported data types

You can query data of the following types using vectorized queries:

• tinyint
• smallint
• int
• bigint
• date
• boolean
• float
• double
• timestamp
• stringchar
• varchar
• binary

Configuring query vectorization
You can manage query vectorization by setting HiveServer properties in Cloudera Manager.

Vectorization properties
hive.vectorized.groupby.checkinterval

In vectorized group-by, the number of row entries added to the hash table before re-checking
average variable size for memory usage estimation.

hive.vectorized.groupby.flush.percent

Ratio between 0.0 and 1.0 of entries in the vectorized group-by aggregation hash that is flushed
when the memory threshold is exceeded.

hive.vectorized.execution.enabled

Enable optimization that vectorizes query execution by streamlining operations by processing a
block of 1024 rows at a time.

hive.vectorized.execution.reduce.enabled

Whether to vectorize the reduce side of query execution.

hive.vectorized.use.vectorized.input.format

If enabled, Hive uses the native vectorized input format for vectorized query execution when it is
available.

hive.vectorized.use.checked.expressions

To enhance performance, vectorized expressions operate using wide data types like long and
double. When wide data types are used, numeric overflows can occur during expression evaluation
in a different manner for vectorized expressions than they do for non-vectorized expressions.
Consequently, different query results can be returned for vectorized expressions compared to results
returned for non-vectorized expressions. When this configuration is enabled, Hive uses vectorized
expressions that handle numeric overflows in the same way as non-vectorized expressions are
handled.

13

Cloudera Runtime Query vectorization

hive.vectorized.adaptor.usage.mode

Vectorized Adaptor Usage Mode specifies the extent to which the vectorization engine tries to
vectorize UDFs that do not have native vectorized versions available. Selecting the "none" option
specifies that only queries using native vectorized UDFs are vectorized. Selecting the "chosen"
option specifies that Hive choses to vectorize a subset of the UDFs based on performance benefits
using the Vectorized Adaptor. Selecting the "all" option specifies that the Vectorized Adaptor be
used for all UDFs even when native vectorized versions are not available.

hive.vectorized.use.vector.serde.deserialize

If enabled, Hive uses built-in vector SerDes to process text and sequencefile tables for vectorized
query execution.

hive.vectorized.input.format.excludes

Specifies a list of file input format classnames to exclude from vectorized query execution using the
vectorized input format. Note that vectorized execution can still occur for an excluded input format
based on whether row SerDes or vector SerDes are enabled.

Check query execution
You can determine if query vectorization occurred during execution by running the EXPLAIN VECTORIZATION
query statement.

Procedure

1. Start Hive from Beeline.

$ hive

2. Set hive.explain.user to false to see vector values.

SET hive.explain.user=false;

3. Run the EXPLAIN VECTORIZATION statement on the query you want CDP to process using vectorization.

EXPLAIN VECTORIZATION SELECT COUNT(*) FROM employees where emp_no>10;

The following output confirms that vectorization occurs:

+--+
| Explain |
+--+
| Plan optimized by CBO. |
| |
| Vertex dependency in root stage |
| Reducer 2 <- Map 1 [CUSTOM_SIMPLE_EDGE] *vectorized* |
| File Output Operator [FS_14] |
| Group By Operator [GBY_13] (rows=1 width=12) |
| Output:["_col0"],aggregations:["count(VALUE._col0)"] |
| <-Map 1 [CUSTOM_SIMPLE_EDGE] vectorized |
| PARTITION_ONLY_SHUFFLE [RS_12] |
| Group By Operator [GBY_11] (rows=1 width=12) |
| Output:["_col0"],aggregations:["count()"] |
| Select Operator [SEL_10] (rows=1 width=4) |
| Filter Operator [FIL_9] (rows=1 width=4) |
| predicate:(emp_no > 10) |
| TableScan [TS_0] (rows=1 width=4) |
| default@employees,employees,Tbl:COMPLETE,Col:NONE,Ou
tput:["emp_no"] |
| |

14

Cloudera Runtime Query vectorization

+--+
23 rows selected (1.542 seconds)

15

	Contents
	ACID operations
	Configure partitions for transactions
	View transactions
	View transaction locks

	Data compaction
	Compaction prerequisites
	Enable automatic compaction
	Start compaction manually
	View compaction progress
	Disable automatic compaction
	Compactor properties

	Query vectorization
	Configuring query vectorization
	Check query execution

