
Cloudera Runtime 7.1.0

Troubleshooting Apache Kudu
Date published: 2020-02-28
Date modified:

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

Troubleshooting Apache Kudu... 4
Issues starting or restarting the master or the tablet server... 4

Errors during hole punching test..4
Already present: FS layout already exists..5
NTP clock synchronization.. 5

Disk space usage.. 9
Reporting Kudu crashes using breakpad..10
Troubleshooting performance issues.. 11

Kudu tracing... 11
Memory limits...12
Block cache size... 13
Heap sampling.. 14
Slow name resolution and nscd..14

Usability issues... 14
ClassNotFoundException: com.cloudera.kudu.hive.KuduStorageHandler.. 14
Runtime error: Could not create thread: Resource temporarily unavailable (error 11)..........................15
Tombstoned or STOPPED tablet replicas..15
Corruption: checksum error on CFile block.. 15

Cloudera Runtime Troubleshooting Apache Kudu

Troubleshooting Apache Kudu

The basic Apache Kudu troubleshooting information is covered here. For more details, see the official Kudu
documentation for troubleshooting.

Issues starting or restarting the master or the tablet server
You may face issues while starting or restarting the master or the tablet server in case there are errors in the hole
punching tests, or if the FS layout already exists, or if the master and tablet server's clocks are not synchronized using
NTP.

Errors during hole punching test
Kudu requires hole punching capabilities in order to be efficient. Hole punching support depends upon your operation
system kernel version and local filesystem implementation.

• RHEL or CentOS 6.4 or later, patched to kernel version of 2.6.32-358 or later. Unpatched RHEL or CentOS 6.4
does not include a kernel with support for hole punching.

• Ubuntu 14.04 includes version 3.13 of the Linux kernel, which supports hole punching.
• Newer versions of the ext4 and xfs filesystems support hole punching. Older versions that do not support hole

punching will cause Kudu to emit an error message such as the following and to fail to start:

Error during hole punch test. The log block manager requires a
filesystem with hole punching support such as ext4 or xfs. On el6,
kernel version 2.6.32-358 or newer is required. To run without hole
punching (at the cost of some efficiency and scalability), reconfigure
Kudu with --block_manager=file. Refer to the Kudu documentation for more
details. Raw error message follows.

Note:

ext4 mountpoints may actually be backed by ext2 or ext3 formatted devices, which do not support hole
punching. The hole punching test will fail when run on such filesystems. There are several different ways to
determine whether an ext4 mountpoint is backed by an ext2, ext3, or ext4 formatted device. See the Stack
Exchange post for more details.

Without hole punching support, the log block manager is unsafe to use. It won’t ever delete blocks, and will consume
ever more space on disk.

If you can’t use hole punching in your environment, you can still try Kudu. Enable the file block manager instead
of the log block manager by adding the --block_manager=file flag to the commands you use to start the master and
tablet servers. The file block manager does not scale as well as the log block manager.

Attention:

The file block manager is known to scale and perform poorly, and should only be used for small-scale
evaluation and development, and only on systems where hole punching is unavailable.

The file block manager uses one file per block. As multiple blocks are written for each rowset, the number of
blocks can be very high, especially for actively written tablets. This can cause performance issues compared
to the log block manager even with a small amount of data. And it is impossible to switch between block
managers without wiping and reinitializing the tablet servers.

4

https://unix.stackexchange.com/q/60723
https://unix.stackexchange.com/q/60723

Cloudera Runtime Troubleshooting Apache Kudu

Already present: FS layout already exists
When Kudu starts, it checks each configured data directory, expecting either for all to be initialized or for all to be
empty. If a server fails to start with a log message such as the following, then this precondition check has failed.

Check failed: _s.ok() Bad status: Already present: Could not create new FS l
ayout: FSManager root is not empty: /data0/kudu/data

This could be because Kudu was configured with non-empty data directories on first startup, or because a previously-
running, healthy Kudu process was restarted and at least one data directory was deleted or is somehow corrupted,
perhaps because of a disk error. If it is the latter, see Changing directory configuration.

NTP clock synchronization
The local clock of the machine where Kudu master or tablet server is running must be synchronized using the
Network Time Protocol (NTP) if you are using the system time source. The time source is controlled by the --time_s
ource flag and is set to system, by default.

Kudu requires the maximum clock error (not to be mistaken with the estimated error) of the NTP-synchronized clock
to be below a configurable threshold. The default threshold value is 10 seconds and it can be customized using the --
max_clock_sync_error_usec flag.

When running Kudu with the system time source, Kudu will not start and will display the following message if the
local clock is reported unsynchronized:

F0924 20:24:36.336809 14550 hybrid_clock.cc:191 Couldn't get the current tim
e: Clock unsynchronized. Status: Service unavailable: Error reading clock. C
lock considered unsynchronized.

If the machine's clock is synchronized, but the maximum clock error is too high, you will see a message such as:

Sep 17, 8:13:09.873 PM FATAL hybrid_clock.cc:196 Couldn't get the current ti
me: Clock synchronized, but error: 11130000, is past the maximum allowable e
rror: 10000000

or

Sep 17, 8:32:31.135 PM FATAL tablet_server_main.cc:38 Check failed: _s.ok()
Bad status: Service unavailable: Cannot initialize clock: Cannot initialize
HybridClock. Clock synchronized but error was too high (11711000 us).

Installing NTP-related packages
Kudu has been well-tested to work on machines whose clock is synchronized with ntpd, the NTP server from the
ubiquitous NTP suite.

To install ntpd and other NTP-related utilities, use the command appropriate for your operating system:

OS Command

Debian/Ubuntu sudo apt-get install ntp

RHEL/CentOS sudo yum install ntp

If ntpd is installed but not running, update it by running the ntpdate command and then restart it by using command
appropriate for your operating system:

OS Command

Debian/Ubuntu sudo service ntp restart

RHEL/CentOS sudo service ntpd restart

5

https://docs.cloudera.com/runtime/7.1.0/administering-kudu/topics/kudu-changing-directory-configuration.html

Cloudera Runtime Troubleshooting Apache Kudu

Make sure that the ntpdate is in the list of services running when the machine starts. The ntpdate command should
be run first before starting ntpd to avoid long synchronization delay of the machine's local clock with the true time.
The smaller the offset between local machine's clock and the true time, the faster the NTP server can synchronize the
clock.

When talking about the 'synchronization' with true time using NTP, we are referring to:

• The synchronization status of the NTP server which drives the local clock of the machine
• The synchronization status of the local machine's clock itself as reported by the kernel's NTP discipline

The former can be retrieved using the ntpstat, ntpq, and ntpdc utilities (they are included in the ntp package). The
latter can be retrieved using the ntptime utility (the ntptime utility is also a part of the ntp package). For more
information, see the manual pages of the mentioned utilities and the following section:

Sometime it takes too long to synchronize the machine's local clock with the true time even if the ntpstat utility
reports that the NTP daemon is synchronized with one of the reference NTP servers. This manifests as the following:
the utilities which report on the synchronization status of the NTP daemon claim that all is well, but ntptime claims
that the status of the local clock is unsynchronized and Kudu tablet servers and masters refuse to start, outputting an
error like the one mentioned above. This situation often happens if the ntpd is run with the -x option. According to the
manual page of ntpd, the -x flag configures the NTP server to only slew the clock. Without -x, the NTP server would
do a step adjustment instead:

-x
Normally, the time is slewed if the offset is less than the step threshold,
 which is 128 ms by default, and is stepped if the offset is above the thr
eshold. This option sets the threshold to 600 s, which is well within the ac
curacy window to set the clock manually.

Note:

Since the slew rate of typical Unix kernels is limited to 0.5 ms/s, each second of adjustment requires an
amortization interval of 2000 s. Thus, an adjustment as much as 600 s will take almost 14 days to complete.

In such cases, removing the -x flag will help synchronize the local clock faster.

For more information on best practices and examples of practical resolution of various NTP synchronization issues,
see clock-drift

Monitoring NTP status
When the ntp package is installed, you can monitor the synchronization status of the machine's clock by running ntpt
ime.

For example, a system with a local clock that is synchronized may report:

ntp_gettime() returns code 0 (OK)
 time de24c0cf.8d5da274 Tue, Feb 6 2018 16:03:27.552, (.552210980),
 maximum error 224455 us, estimated error 383 us, TAI offset 0
ntp_adjtime() returns code 0 (OK)
 modes 0x0 (),
 offset 1279.543 us, frequency 2.500 ppm, interval 1 s,
 maximum error 224455 us, estimated error 383 us,
 status 0x2001 (PLL,NANO),
 time constant 10, precision 0.001 us, tolerance 500 ppm,

Note the following most important parts of output:

• maximum error 22455 us: This value is well under the 10-second maximum error required by Kudu
• status 0x2001 (PLL,NANO): This indicates that the local clock is synchronized with the true time up to the

maximum error above

In contrast, a system without NTP properly configured and running will output something like the following:

ntp_gettime() returns code 5 (ERROR)

6

https://www.redhat.com/en/blog/avoiding-clock-drift-vms

Cloudera Runtime Troubleshooting Apache Kudu

 time de24c240.0c006000 Tue, Feb 6 2018 16:09:36.046, (.046881),
 maximum error 16000000 us, estimated error 16000000 us, TAI offset 0
ntp_adjtime() returns code 5 (ERROR)
 modes 0x0 (),
 offset 0.000 us, frequency 2.500 ppm, interval 1 s,
 maximum error 16000000 us, estimated error 16000000 us,
 status 0x40 (UNSYNC),
 time constant 10, precision 1.000 us, tolerance 500 ppm,

The UNSYNC status means that the local clock is not synchronized with the true time. Because of that, the maximum
reported error doesn't convey any meaningful estimation of the actual error.

The ntpstat utility reports a summary on the synchronization status of the NTP daemon itself. For example, a system
which has ntpd running and synchronized with one of its reference servers may report:

$ ntpstat
synchronised to NTP server (172.18.7.3) at stratum 4
 time correct to within 160 ms
 polling server every 1024 s

Keep in mind that the synchronization status of the NTP daemon itself doesn't reflect the synchronization status of
the local clock. The way NTP daemon drives the local clock is subject to many constraints, and it may take the NTP
daemon some time to synchronize the local clock after it itself has latched to one of the reference servers.

If more detailed information is needed on the synchronization status of the NTP server (but not the synchronization
status of the local clock), the ntpq or ntpdc tools can be used to get detailed information about what NTP server is
currently acting as the source of the true time and which are considered as candidates (either viable or not):

$ ntpq -nc lpeers
 remote refid st t when poll reach delay offset ji
tter

-108.59.2.24 130.133.1.10 2 u 13 64 1 71.743 0.373 0.0
16
+192.96.202.120 129.6.15.28 2 u 12 64 1 72.583 -0.426
0.028
-69.10.161.7 204.26.59.157 3 u 11 64 1 15.741 2.641 0
.021
-173.255.206.154 45.56.123.24 3 u 10 64 1 43.502 0.199 0.
029
-69.195.159.158 128.138.140.44 2 u 9 64 1 53.885 -0.016 0.0
13
*216.218.254.202 .CDMA. 1 u 6 64 1 1.475 -0.400
0.012
+129.250.35.250 249.224.99.213 2 u 7 64 1 1.342 -0.640 0
.018

$ ntpq -nc opeers
 remote local st t when poll reach delay offset di
sp

-108.59.2.24 10.17.100.238 2 u 17 64 1 71.743 0.373 187
.573
+192.96.202.120 10.17.100.238 2 u 16 64 1 72.583 -0.426 187.
594
-69.10.161.7 10.17.100.238 3 u 15 64 1 15.741 2.641 187.5
69
-173.255.206.154 10.17.100.238 3 u 14 64 1 43.502 0.199 18
7.580
-69.195.159.158 10.17.100.238 2 u 13 64 1 53.885 -0.016 187
.561

7

Cloudera Runtime Troubleshooting Apache Kudu

*216.218.254.202 10.17.100.238 1 u 10 64 1 1.475 -0.400 187.
543
+129.250.35.250 10.17.100.238 2 u 11 64 1 1.342 -0.640 187.5
88

Note: Both lpeers and opeers may be helpful as lpeers lists refid and jitter, while opeers lists clock
dispersion.

Using chrony for time synchronization
Some operating systems offer chronyd as an alternative to ntpd for network time synchronization. The OS package is
called chrony and contains both the NTP server chronyd and the chronyc utilities.

If using chronyd for time synchronization at Kudu nodes, the rtcsync option must be enabled in chrony.conf. Without
rtcsync, the local machine's clock will always be reported as unsynchronized and Kudu masters and tablet servers will
not be able to start. The following code explains the observed behavior of chronyd when setting the synchronization
status of the clock on Linux.

Note: Kudu has been tested most thoroughly using ntpd. Use of chronyd is viable as well, but it's still
considered experimental at this time. See KUDU-2573 for status updates and more information about this
topic.

NTP configuration best practices
In order to provide stable time synchronization with low maximum error, follow the NTP configuration best practices
listed in this topic.

• Run ntpdate before running NTP server. If the offset of the local clock is too far from the true time, it can take a
long time before the NTP server synchronizes the local clock, even if it's allowed to perform step adjustments.

• In certain public cloud environments, use the highly-available NTP server accessible via link-local IP address or
other dedicated NTP server provided as a service. If your cluster is running in a public cloud environment, consult
the cloud provider's documentation for the recommended NTP setup. Both AWS and GCE clouds offer dedicated
highly available NTP servers accessible from within a cloud instance via link-local IP address.

• Unless using highly-available NTP reference server accessible via link-local address, always configure at least
four time sources for NTP server at the local machine. In addition to providing redundancy in case one of time
sources becomes unavailable, this might make the configuration more robust since the NTP is designed to increase
its accuracy with a diversity of sources in networks with higher round-trip times and jitter.

• Use the iburst option for faster synchronization at startup. The iburst option instructs ntpd to send an initial "burst"
of time queries at startup. This results in a faster synchronization of the ntpd with its reference servers upon
startup.

• If the maximum clock error goes beyond the default threshold set by Kudu (10 seconds), consider setting lower
value for the maxpoll option for every NTP server in ntp.conf. For example, consider setting the maxpoll to 7
which will cause the NTP daemon to make requests to the corresponding NTP server at least every 128 seconds.
The default maximum poll interval is 10 (1024 seconds).

Note: If using custom maxpoll interval, don't set maxpoll too low (e.g., lower than 6) to avoid flooding
NTP servers, especially the public ones. Otherwise they may disallow the client (i.e. the ntpd daemon at
your machine) and cease providing NTP service at all. If in doubt, consult the ntp.conf manual page.

Following are a few examples of the ntpd configuration files:

Use my organization's internal NTP server (server in a local network).
server ntp1.myorg.internal iburst maxpoll 7
Add servers from the NTP public pool for redundancy and robustness.
server 0.pool.ntp.org iburst maxpoll 8
server 1.pool.ntp.org iburst maxpoll 8
server 2.pool.ntp.org iburst maxpoll 8
server 3.pool.ntp.org iburst maxpoll 8

AWS case: use dedicated NTP server available via link-local IP address.

8

https://github.com/mlichvar/chrony/blob/994409a03697b8df68115342dc8d1e7ceeeb40bd/sys_timex.c#L162-L166
https://issues.apache.org/jira/browse/KUDU-2573

Cloudera Runtime Troubleshooting Apache Kudu

server 169.254.169.123 iburst

GCE case: use dedicated NTP server available from within cloud instance.
server metadata.google.internal iburst

Note: After configuring ntpd, first run the ntpdate tool with the same set of NTP servers (it's assumed that
ntpd is not running when the ntpdate tool is run). Make sure the tool reports success: check its exit status
and output. In case of issues connecting to the NTP servers, make sure NTP traffic is not being blocked by a
firewall (NTP generates UDP traffic on port 123 by default) or other network connectivity issue. Then start
the ntpd daemon and use the ntpq tool described above to verify that the NTP daemon is able to connect to its
reference servers.

Troubleshooting NTP stability problems
As of Kudu 1.6.0, Kudu daemons can continue to operate during a brief loss of clock synchronization. If clock
synchronization is lost for several hours, the Kudu daemons may crash. If a daemon crashes due to clock
synchronization issues, consult the ERROR log for a dump of related information which may help to diagnose the
issue.

Note: If using other than link-local NTP server, it may take some time for ntpd to synchronize with one of its
reference servers in case of network connectivity issues. In case of a spotty network between the machine and
the reference NTP servers, ntpd may become unsynchronized with its reference NTP servers. If that happens,
consider finding other set of reference NTP servers: the best bet is to use NTP servers in the local network or
*.pool.ntp.org servers.

Disk space usage
When using the log block manager (the default on Linux), Kudu uses sparse files to store data. A sparse file has a
different apparent size than the actual amount of disk space it uses. This means that some tools may inaccurately
report the disk space used by Kudu. For example, the size listed by ls -l does not accurately reflect the disk space used
by Kudu data files:

$ ls -lh /data/kudu/tserver/data
total 117M
-rw------- 1 kudu kudu 160M Mar 26 19:37 0b9807b8b17d48a6a7d5b16bf4ac4e6d.da
ta
-rw------- 1 kudu kudu 4.4K Mar 26 19:37 0b9807b8b17d48a6a7d5b16bf4ac4e6d
.metadata
-rw------- 1 kudu kudu 32M Mar 26 19:37 2f26eeacc7e04b65a009e2c9a2a8bd20.
data
-rw------- 1 kudu kudu 4.3K Mar 26 19:37 2f26eeacc7e04b65a009e2c9a2a8bd20.m
etadata
-rw------- 1 kudu kudu 672M Mar 26 19:37 30a2dd2cd3554d8a9613f588a8d136ff.da
ta
-rw------- 1 kudu kudu 4.4K Mar 26 19:37 30a2dd2cd3554d8a9613f588a8d136ff
.metadata
-rw------- 1 kudu kudu 32M Mar 26 19:37 7434c83c5ec74ae6af5974e4909cbf82.
data
-rw------- 1 kudu kudu 4.3K Mar 26 19:37 7434c83c5ec74ae6af5974e4909cbf82.m
etadata
-rw------- 1 kudu kudu 672M Mar 26 19:37 772d070347a04f9f8ad2ad3241440090.da
ta
-rw------- 1 kudu kudu 4.4K Mar 26 19:37 772d070347a04f9f8ad2ad3241440090
.metadata
-rw------- 1 kudu kudu 160M Mar 26 19:37 86e50a95531f46b6a79e671e6f5f4151.
data
-rw------- 1 kudu kudu 4.4K Mar 26 19:37 86e50a95531f46b6a79e671e6f5f4151.m
etadata
-rw------- 1 kudu kudu 687 Mar 26 19:26 block_manager_instance

9

Cloudera Runtime Troubleshooting Apache Kudu

Notice that the total size reported is 117MiB, while the first file’s size is listed as 160MiB. Adding the -s option to ls
will cause ls to output the file’s disk space usage.

The du and df utilities report the actual disk space usage by default.

$ du -h /data/kudu/tserver/data118M /data/kudu/tserver/data

The apparent size can be shown with the --apparent-size flag to du.

$ du -h --apparent-size /data/kudu/tserver/data1.7G /data/kudu/tserver/data

Reporting Kudu crashes using breakpad
Kudu uses the Google breakpad library to generate a minidump whenever Kudu experiences a crash. A minidump file
contains important debugging information about the process that crashed, including shared libraries loaded and their
versions, a list of threads running at the time of the crash, the state of the processor registers and a copy of the stack
memory for each thread, and CPU and operating system version information. These minidumps are typically only a
few MB in size and are generated even if core dump generation is disabled. Currently, generating minidumps is only
possible on Linux deployments.

By default, Kudu stores its minidumps in a subdirectory of the configured glog directory called minidumps.
This location can be customized by setting the --minidump_path flag. Kudu will retain only a certain number of
minidumps before deleting the older ones, in an effort to avoid filling up the disk with minidump files. The maximum
number of minidumps that will be retained can be controlled by setting the --max_minidumps gflag.

Minidumps contain information specific to the binary that created them and are therefore not useful without access to
the exact binary that crashed, or a very similar binary.

Kudu developers can access the minidump tools in their development environment because they are installed as part
of the Kudu thirdparty build. They can be found in the Kudu development environment under uninstrumented/bin.
For example, thirdparty/installed/uninstrumented/bin/minidump-2-core.

If minidumps are enabled, it is possible to force Kudu to create a minidump without killing the process. To do that,
send a USR1 signal to the kudu-tserver or kudu-master process. For example:

sudo pkill -USR1 kudu-tserver

Viewing the minidump stack trace with the GNU debugger

Although a minidump contains no heap information, it does contain thread and stack information. You can convert a
minidump to a core file to view it with GDB.

To convert the minidump (.dmp file) to a core file:

minidump-2-core -o 02cb4a97-ee37-6454-73a9d9cb-590c7dde.core \
02cb4a97-ee37-6454-73a9d9cb-590c7dde.dmp

To view the core file with GDB (on a parcel deployment):

gdb /opt/cloudera/parcels/KUDU/lib/kudu/sbin-release/kudu-master \
-s /opt/cloudera/parcels/KUDU/lib/debug/usr/lib/kudu/sbin-release/kudu-ma
ster.debug \
02cb4a97-ee37-6454-73a9d9cb-590c7dde.core

10

Cloudera Runtime Troubleshooting Apache Kudu

Troubleshooting performance issues
This topic helps you to troubleshoot issues and improve performance using Kudu tracing, memory limits, block size
cache, heap sampling, and name service cache daemon (nscd).

Kudu tracing
The Kudu master and tablet server daemons include built-in support for tracing based on the open source Chromium
Tracing framework. You can use tracing to diagnose latency issues or other problems on Kudu servers.

Accessing the tracing web interface
The tracing interface is part of the embedded web server in each of the Kudu daemons, and can be accessed using
a web browser. Note that while the interface has been known to work in recent versions of Google Chrome, other
browsers may not work as expected.

Daemon URL

Tablet Server <tablet-server-1.example.com>:8050/tracing.html

Master <master-1.example.com>:8051/tracing.html

RPC timeout traces
If client applications are experiencing RPC timeouts, the Kudu tablet server WARNING level logs should contain a
log entry which includes an RPC-level trace.

For example:

W0922 00:56:52.313848 10858 inbound_call.cc:193] Call kudu.consensus.Consens
usService.UpdateConsensus
from 192.168.1.102:43499 (request call id 3555909) took 1464ms (client tim
eout 1000).
W0922 00:56:52.314888 10858 inbound_call.cc:197] Trace:
0922 00:56:50.849505 (+ 0us) service_pool.cc:97] Inserting onto call que
ue
0922 00:56:50.849527 (+ 22us) service_pool.cc:158] Handling call
0922 00:56:50.849574 (+ 47us) raft_consensus.cc:1008] Updating replica
 for 2 ops
0922 00:56:50.849628 (+ 54us) raft_consensus.cc:1050] Early marking co
mmitted up to term: 8 index: 880241
0922 00:56:50.849968 (+ 340us) raft_consensus.cc:1056] Triggering prepare
for 2 ops
0922 00:56:50.850119 (+ 151us) log.cc:420] Serialized 1555 byte log entry
0922 00:56:50.850213 (+ 94us) raft_consensus.cc:1131] Marking committed
 up to term: 8 index: 880241
0922 00:56:50.850218 (+ 5us) raft_consensus.cc:1148] Updating last rece
ived op as term: 8 index: 880243
0922 00:56:50.850219 (+ 1us) raft_consensus.cc:1195] Filling consensus
response to leader.
0922 00:56:50.850221 (+ 2us) raft_consensus.cc:1169] Waiting on the repl
icates to finish logging
0922 00:56:52.313763 (+1463542us) raft_consensus.cc:1182] finished
0922 00:56:52.313764 (+ 1us) raft_consensus.cc:1190] UpdateReplicas() fi
nished
0922 00:56:52.313788 (+ 24us) inbound_call.cc:114] Queueing success re
sponse

These traces can indicate which part of the request was slow. Make sure you include them when filing bug reports
related to RPC latency outliers.

11

Cloudera Runtime Troubleshooting Apache Kudu

Kernel stack watchdog traces
Each Kudu server process has a background thread called the Stack Watchdog, which monitors other threads in the
server in case they are blocked for longer-than-expected periods of time. These traces can indicate operating system
issues or bottle-necked storage.

When the watchdog thread identifies a case of thread blockage, it logs an entry in the WARNING log as follows:

W0921 23:51:54.306350 10912 kernel_stack_watchdog.cc:111] Thread 10937 stuck
 at /data/kudu/consensus/log.cc:505 for 537ms:
Kernel stack:
[<ffffffffa00b209d>] do_get_write_access+0x29d/0x520 [jbd2]
[<ffffffffa00b2471>] jbd2_journal_get_write_access+0x31/0x50 [jbd2]
[<ffffffffa00fe6d8>] __ext4_journal_get_write_access+0x38/0x80 [ext4]
[<ffffffffa00d9b23>] ext4_reserve_inode_write+0x73/0xa0 [ext4]
[<ffffffffa00d9b9c>] ext4_mark_inode_dirty+0x4c/0x1d0 [ext4]
[<ffffffffa00d9e90>] ext4_dirty_inode+0x40/0x60 [ext4]
[<ffffffff811ac48b>] __mark_inode_dirty+0x3b/0x160
[<ffffffff8119c742>] file_update_time+0xf2/0x170
[<ffffffff8111c1e0>] __generic_file_aio_write+0x230/0x490
[<ffffffff8111c4c8>] generic_file_aio_write+0x88/0x100
[<ffffffffa00d3fb1>] ext4_file_write+0x61/0x1e0 [ext4]
[<ffffffff81180f5b>] do_sync_readv_writev+0xfb/0x140
[<ffffffff81181ee6>] do_readv_writev+0xd6/0x1f0
[<ffffffff81182046>] vfs_writev+0x46/0x60
[<ffffffff81182102>] sys_pwritev+0xa2/0xc0
[<ffffffff8100b072>] system_call_fastpath+0x16/0x1b
[<ffffffffffffffff>] 0xffffffffffffffff
User stack:
 @ 0x3a1ace10c4 (unknown)
 @ 0x1262103 (unknown)
 @ 0x12622d4 (unknown)
 @ 0x12603df (unknown)
 @ 0x8e7bfb (unknown)
 @ 0x8f478b (unknown)
 @ 0x8f55db (unknown)
 @ 0x12a7b6f (unknown)
 @ 0x3a1b007851 (unknown)
 @ 0x3a1ace894d (unknown)
 @ (nil) (unknown)

These traces can be useful for diagnosing root-cause latency issues in Kudu especially when they are caused by
underlying systems such as disk controllers or filesystems.

Memory limits
Kudu has a hard and soft memory limit. The hard memory limit is the maximum amount a Kudu process is allowed
to use, and is controlled by the --memory_limit_hard_bytes flag. The soft memory limit is a percentage of the hard
memory limit, controlled by the flag memory_limit_soft_percentage and with a default value of 80%, that determines
the amount of memory a process may use before it will start rejecting some write operations.

If the logs or RPC traces contain messages such as the following example, then Kudu is rejecting writes due to
memory back pressure. This may result in write timeouts.

Service unavailable: Soft memory limit exceeded (at 96.35% of capacity)

There are several ways to relieve the memory pressure on Kudu:

• If the host has more memory available for Kudu, increase --memory_limit_hard_bytes.
• Increase the rate at which Kudu can flush writes from memory to disk by increasing the number of disks or

increasing the number of maintenance manager threads --maintenance_manager_num_threads. Generally, the
recommended ratio of maintenance manager threads to data directories is 1:3.

• Reduce the volume of writes flowing to Kudu on the application side.

12

Cloudera Runtime Troubleshooting Apache Kudu

Finally, in Kudu versions 1.7 and lower, check the value of the --block_cache_capacity_mb setting. This setting
determines the maximum size of Kudu's block cache. While a higher value can help with read and write performance,
setting it too high as a percentage of the --memory_limit_hard_bytes setting is harmful. Do not raise --block_cach
e_capacity_mb above --memory_pressure_percentage (default 60%) of --memory_limit_hard_bytes, as this will cause
Kudu to flush aggressively even if write throughput is low. The recommended value for --block_cache_capacity_mb
is below the following:

(50% * --memory_pressure_percentage) * --memory_limit_hard_bytes

With the defaults, this means the --block_cache_capacity_mb should not exceed 30% of --memory_limit_hard_bytes.

In Kudu 1.8 and higher, servers will refuse to start if the block cache capacity exceeds the memory pressure threshold.

Block cache size
Kudu uses an LRU cache for recently read data. On workloads that scan a subset of the data repeatedly, raising the
size of this cache can offer significant performance benefits. To increase the amount of memory dedicated to the
block cache, increase the value of the --block_cache_capacity_mb flag. The default is 512 MiB.

Kudu provides a set of useful metrics for evaluating the performance of the block cache, which can be found on the /
metrics endpoint of the Web UI. The following is an example set:

{
 "name": "block_cache_inserts",
 "value": 64
},
{
 "name": "block_cache_lookups",
 "value": 512
},
{
 "name": "block_cache_evictions",
 "value": 0
},
{
 "name": "block_cache_misses",
 "value": 96
},
{
 "name": "block_cache_misses_caching",
 "value": 64
},
{
 "name": "block_cache_hits",
 "value": 0
},
{
 "name": "block_cache_hits_caching",
 "value": 352
},
{
 "name": "block_cache_usage",
 "value": 6976
}

To judge the efficiency of the block cache on a tablet server, first wait until the server has been running and serving
normal requests for some time, so the cache is not cold. Unless the server stores very little data or is idle, block_ca
che_usage should be equal or nearly equal to block_cache_capacity_mb. Once the cache has reached steady state,
compare block_cache_lookups to block_cache_misses_caching. The latter metric counts the number of blocks that
Kudu expected to read from cache but which weren’t found in the cache. If a significant amount of lookups result in
misses on expected cache hits, and theblock_cache_evictions metric is significant compared to block_cache_inserts,

13

Cloudera Runtime Troubleshooting Apache Kudu

then raising the size of the block cache may provide a performance boost. However, the utility of the block cache is
highly dependent on workload, so it’s necessary to test the benefits of a larger block cache.

Attention: Do not raise the block cache size --block_cache_capacity_mb higher than the memory pressure
threshold (defaults to 60% of --memory_limit_hard_bytes). As this would cause poor flushing behavior, Kudu
servers version 1.8 and higher will refuse to start when misconfigured in this way.

Heap sampling
For advanced debugging of memory usage, administrators may enable heap sampling on Kudu daemons. This allows
Kudu developers to associate memory usage with the specific lines of code and data structures responsible. When
reporting a bug related to memory usage or an apparent memory leak, heap profiling can give quantitative data to
pinpoint the issue.

Caution: Heap sampling is an advanced troubleshooting technique and may cause performance degradation
or instability of the Kudu service. Currently it is not recommended to enable this in a production environment
unless specifically requested by the Kudu development team.

To enable heap sampling on a Kudu daemon, pass the flag --heap-sample-every-n-bytes=524588. If heap sampling is
enabled, the current sampled heap occupancy can be retrieved over HTTP by visiting http://tablet-server.example.com
:8050/pprof/heap or http://master.example.com:8051/pprof/heap. The output is a machine-readable dump of the stack
traces with their associated heap usage.

Rather than visiting the heap profile page directly in a web browser, it is typically more useful to use the pprof tool
that is distributed as part of the gperftools open source project. For example, a developer with a local build tree can
use the following command to collect the sampled heap usage and output an SVG diagram:

thirdparty/installed/uninstrumented/bin/pprof -svg 'http://localhost:8051/p
prof/heap' > /tmp/heap.svg

The resulting SVG may be visualized in a web browser or sent to the Kudu community to help troubleshoot memory
occupancy issues.

Tip: Heap samples contain only summary information about allocations and do not contain any data from the
heap. It is safe to share heap samples in public without fear of exposing confidential or sensitive data.

Slow name resolution and nscd
For better scalability on nodes hosting many replicas, we recommend that you use nscd (name service cache daemon)
to cache both DNS name resolution and static name resolution (via /etc/hosts).

When DNS lookups are slow, you will see a log message similar to the following:

W0926 11:19:01.339553 27231 net_util.cc:193] Time spent resolve address for
kudu-tserver.example.com: real 4.647s user 0.000s sys 0.000s

nscd can alleviate slow name resolution by providing a cache for the most common name service requests, such as for
passwords, groups, and hosts.

Refer to your operating system documentation for how to install and enable nscd.

Usability issues
This topic lists some common exceptions and errors that you may encounter while using Kudu and helps you to
resolve issues related to usability.

ClassNotFoundException: com.cloudera.kudu.hive.KuduStorageHandler
You will encounter this exception when you try to access a Kudu table using Hive. This is not a case of a missing
jar, but simply that Impala stores Kudu metadata in Hive in a format that is unreadable to other tools, including Hive

14

Cloudera Runtime Troubleshooting Apache Kudu

itself. and Spark. Currently, there is no workaround for Hive users. Spark users can work around this by creating
temporary tables.

Runtime error: Could not create thread: Resource temporarily unavailable (error 11)
You may encounter this error when Kudu is unable to create more threads, usually on versions older than Kudu 1.7. It
happens on tablet servers, and is a sign that the tablet server hosts too many tablet replicas.

To fix the issue, you can raise the nproc ulimit as detailed in the documentation for your operating system or
distribution.

However, the better solution is to reduce the number of replicas on the tablet server. This may involve rethinking
the table's partitioning schema. For the recommended limits on number of replicas per tablet server, see the Scaling
recommendations and limitations topic.

Tombstoned or STOPPED tablet replicas
You may notice some replicas on a tablet server are in a STOPPED state and remain on the server indefinitely. These
replicas are tombstones. A tombstone indicates that the tablet server once held a bona fide replica of its tablet.

For example, in case a tablet server goes down and its replicas are re-replicated elsewhere, if the tablet server rejoins
the cluster, its replicas will become tombstones. A tombstone will remain until the table it belongs to is deleted, or
a new replica of the same tablet is placed on the tablet server. A count of tombstoned replicas and details of each
one are available on the /tablets page of the tablet server web UI. The Raft consensus algorithm that Kudu uses for
replication requires tombstones for correctness in certain rare situations. They consume minimal resources and hold
no data. They must not be deleted.

Corruption: checksum error on CFile block
In versions prior to Kudu 1.8.0, if the data on disk becomes corrupt, you will encounter warnings containing
"Corruption: checksum error on CFile block" in the tablet server logs and client side errors when trying to scan tablets
with corrupt CFile blocks. Fixing this corruption is a manual process.

To fix the issue, first identify all the affected tablets by running a checksum scan on the affected tables or tablets
using the ksck tool.

sudo -u kudu kudu cluster ksck <master_addresses> -checksum_scan -tables=<ta
bles>
sudo -u kudu kudu cluster ksck <master_addresses> -checksum_scan -tablets=
<tablets>

If there is at least one replica for each tablet that does not return a corruption error, you can repair the bad copies by
deleting them and forcing them to be re-replicated from the leader using the remote_replica delete tool.

sudo -u kudu kudu remote_replica delete <tserver_address> <tablet_id> "Cfile
 Corruption"

If all of the replica are corrupt, then some data loss has occurred. Until KUDU-2526 is completed, this can happen if
the corrupt replica became the leader and the existing follower replicas are replaced.

If data has been lost, you can repair the table by replacing the corrupt tablet with an empty one using the unsafe_repla
ce_tablet tool.

sudo -u kudu kudu tablet unsafe_replace_tablet <master_addresses> <table
t_id>

From versions 1.8.0 onwards, Kudu will mark the affected replicas as failed, leading to their automatic re-replication
elsewhere.

15

https://docs.cloudera.com/runtime/7.1.0/kudu-overview/topics/kudu-scaling-recommendations-and-limitations.html
https://docs.cloudera.com/runtime/7.1.0/kudu-overview/topics/kudu-scaling-recommendations-and-limitations.html
https://kudu.apache.org/docs/command_line_tools_reference.html#cluster-ksck
https://issues.apache.org/jira/browse/KUDU-2526

	Contents
	Troubleshooting Apache Kudu
	Issues starting or restarting the master or the tablet server
	Errors during hole punching test
	Already present: FS layout already exists
	NTP clock synchronization
	Installing NTP-related packages
	Monitoring NTP status
	Using chrony for time synchronization

	NTP configuration best practices
	Troubleshooting NTP stability problems

	Disk space usage
	Reporting Kudu crashes using breakpad
	Troubleshooting performance issues
	Kudu tracing
	Accessing the tracing web interface
	RPC timeout traces
	Kernel stack watchdog traces

	Memory limits
	Block cache size
	Heap sampling
	Slow name resolution and nscd

	Usability issues
	ClassNotFoundException: com.cloudera.kudu.hive.KuduStorageHandler
	Runtime error: Could not create thread: Resource temporarily unavailable (error 11)
	Tombstoned or STOPPED tablet replicas
	Corruption: checksum error on CFile block

