
Cloudera Runtime 7.1.1

Managing Cloudera Search
Date published: 2019-11-19
Date modified:

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

Managing Cloudera Search... 4
Generating Solr collection configuration using instance directories... 4
Creating Collections..5
Using Custom JAR Files with Search... 5
Cloudera Search Configuration Files... 6
Managing Configuration Using Configs or Instance Directories.. 7

Managing Configs...8
Managing Instance Directories...8
Securing configs with ZooKeeper ACLs and Ranger... 9
Config Templates..10
Updating the Schema in a Solr Collection.. 10

Managing Collections in Cloudera Search...10
Creating a Solr Collection..11
Viewing Existing Solr Collections...11
Deleting All Documents in a Solr Collection..12
Backing Up and Restoring Solr Collections.. 12
Deleting a Solr Collection..12

Example solrctl Usage..13
Using solrctl with an HTTP proxy.. 13
Creating Replicas of Existing Shards...13
Converting Instance Directories to Configs...13

Migrating Solr Replicas..14
Backing Up and Restoring Cloudera Search... 17

Backing Up a Solr Collection.. 17
Restoring a Solr Collection.. 19
Cloudera Search Backup and Restore Command Reference... 20

solrctl Reference... 23

Cloudera Runtime Managing Cloudera Search

Managing Cloudera Search

Most Cloudera Search configuration is managed using solrctl, a wrapper script included with Cloudera Search. You
can manipulate collections, instance directories, configs, individual cores, and so on.

A SolrCloud collection is the top-level object for indexing documents and providing a query interface. Each
collection must be associated with a configuration, using either an instance directory or a config object. Different
collections can use the same configuration. Each collection is typically replicated among several SolrCloud instances.
Each replica is called a core and is assigned to an individual Solr service. The assignment process is managed
automatically, but you can apply fine-grained control over individual cores using the solrctl core command.

A typical deployment workflow with solrctl consists of:

1. Establishing a configuration

• If using configs, creating a config object from a template.
• If using instance directories, generating an instance directory and uploading it to ZooKeeper.

2. Creating a collection associated with the name of the config or instance directory.

For a comparison of configs and instance directories, see Managing Configuration Using Configs or Instance
Directories on page 7.

Generating Solr collection configuration using instance directories
You must create a collection configuration prior to creating a Solr collection. The configuration files for a Solr
collection are stored in a directory called instance directories. Learn how to create the directory and make it available
to Solr by uploading the contents to Zookeeper.

Before you begin

Note:

If you want to control access to configuration sets, you must enable ZooKeeper ACLs and use configs
instead.

Important: Although you can create a collection directly in /var/lib/solr, Cloudera recommends using the
solrctl utility instead.

About this task
In this case, configuration files for a collection are contained in a directory called an instance directory. An instance
directory is a named set of configuration files. You can generate an instance directory template locally, edit the
configuration, and then upload the directory to ZooKeeper as a named configuration set. You can then reference this
named configuration set when creating a collection.

Procedure

1. If you are using Kerberos, kinit as a user with permission to create the collection configuration:

kinit solradmin@[***EXAMPLE.COM***]

Replace [***EXAMPLE.COM***] with your Kerberos realm name.

2. To generate a template instance directory, run the following command:

solrctl instancedir --generate $HOME/solr_configs

4

Cloudera Runtime Managing Cloudera Search

3. Customize the collection by directly editing the solrconfig.xml and schema.xml files created in $HOME/solr_c
onfigs/conf.

4. After completing the configuration, make it available to Solr by running the following command, which uploads
the contents of the instance directory to ZooKeeper:

solrctl config --upload [***COLLECTION_NAME***] $HOME/solr_configs

For example:

solrctl config --upload weblogs $HOME/solr_configs

5. Use the solrctl utility to verify that your instance directory uploaded successfully and is available to ZooKeeper.
List the uploaded instance directories as follows:

solrctl instancedir --list

If you used the --create command to create a collection named weblogs, the --list command returns weblogs.

Creating Collections

The Solr server does not include any default collections. Create a collection using the following command:

solrctl collection --create <collection_name> -s <shard_count>

To use the configuration that you provided to Solr in previous steps, use the same collection name (weblogs in our
example). The -s <shard_count> parameter specifies the number of SolrCloud shards you want to partition the
collection across. The number of shards cannot exceed the total number of Solr servers in your SolrCloud cluster.

To verify that the collection is active, go to http://search01.example.com:8983/solr/<collection_name>/sel
ect?q=*%3A*&wt=json&indent=true in a browser. For example, for the collection weblogs, the URL is http
://search01.example.com:8983/solr/weblogs/select?q=*%3A*&wt=json&indent=true. Replace search01.example.com
with the hostname of one of the Solr server hosts.

You can also view the SolrCloud topology using the URL http://search01.example.com:8983/solr/#/~cloud.

For more information on completing additional collection management tasks, see Managing Cloudera Search.

Using Custom JAR Files with Search

About this task

Search supports custom plug-in code. You load classes into JAR files and then configure Search to find these files. To
correctly deploy custom JARs, ensure that:

• Custom JARs are pushed to the same location on all hosts in your cluster that are hosting Cloudera Search (Solr
Service).

• Supporting configuration files direct Search to find the custom JAR files.
• Any required configuration files such as schema.xml or solrconfig.xml reference the custom JAR code.

The following procedure describes how to use custom JARs. Some cases may not require completion of every step.
For example, indexer tools that support passing JARs as arguments may not require modifying xml files. However,
completing all configuration steps helps ensure the custom JARs are used correctly in all cases.

Procedure

1. Place your custom JAR in the same location on all hosts in your cluster.

5

https://docs.cloudera.com/runtime/7.1.1/search-managing/topics/search-solrctl-managing-solr.html

Cloudera Runtime Managing Cloudera Search

2. For all collections where custom JARs will be used, modify solrconfig.xml to include references to the new JAR
files. These directives can include explicit or relative references and can use wildcards. In the solrconfig.xml file,
add <lib> directives to indicate the JAR file locations or <path> directives for specific jar files.

<lib path="/usr/lib/solr/lib/MyCustom.jar" />

or

<lib dir="/usr/lib/solr/lib" />

or

<lib dir="../../../myProject/lib" regex=".*\.jar" />

3. For all collections in which custom JARs will be used, reference custom JAR code in the appropriate Solr
configuration file. The two configuration files that most commonly reference code in custom JARs are solrconf
ig.xml and schema.xml.

4. For all collections in which custom JARs will be used, use solrctl to update ZooKeeper's copies of configuration
files such as solrconfig.xml and schema.xml

solrctl instancedir --update name path

• name specifies the instancedir associated with the collection using solrctl instancedir --create.
• path specifies the directory containing the collection's configuration files.

For example:

solrctl instancedir --update collection1 $HOME/solr_configs

5. For all collections in which custom JARs will be used, use RELOAD to refresh information. When the RELOAD
command is issued to any host that hosts a collection, that host sends subcommands to all replicas in the
collection. All relevant hosts refresh their information, so this command must be issued once per collection.

http://example.com:8983/solr/admin/collections?action=RELOAD&name=collec
tion1

6. Ensure that the class path includes the location of the custom JAR file.

a) For example, if you store the custom JAR file in /opt/myProject/lib/, add that path as a line to the ~/.profile for
the Solr user.

b) Restart the Solr service to reload the PATH variable.
c) Repeat this process of updating the PATH variable for all hosts.

What to do next

The system is now configured to find custom JAR files. Some command-line tools included with Cloudera Search
support specifying JAR files. For example, when using MapReduceIndexerTool, use the --libjars option to specify
JAR files to use. Tools that support specifying custom JARs include:

• MapReduceIndexerTool
• Lily HBase Indexer
• CrunchIndexerTool

Cloudera Search Configuration Files
Cloudera Search configuration is primarily controlled by several configuration files, that are mostly stored in Apache
ZooKeeper.

6

https://docs.cloudera.com/runtime/7.1.1/search-managing/topics/search-solrctl-ref.html

Cloudera Runtime Managing Cloudera Search

Table 1: Cloudera Search configuration files

Configuration File Description

solr.xml This file is stored in ZooKeeper, and controls global properties for
Apache Solr. To edit this file, you must download it from ZooKeeper,
make your changes, and then upload the modified file back to
ZooKeeper using the solrctl cluster command. For information about
the solr.xml file, see Solr Configuration Files and Solr Cores and
solr.xml in the Solr documentation.

solrconfig.xml Each collection in Solr uses a solrconfig.xml file, stored in ZooKeeper,
to control collection behavior. For information about the solrconfig.xml
file, see Solr Configuration Files and Configuring solrconfig.xml in the
Solr documentation.

managed-schema or schema.xml Cloudera recommends using a managed schema, and making schema
changes using the Schema API (Apache Solr documentation).
Collections use either a managed schema or the legacy schema.xml
file. These files, also stored in ZooKeeper and assigned to a collection,
define the schema for the documents you are indexing. For example,
they specify which fields to index, the expected data type for each
field, the default field to query when the field is unspecified, and so on.
For information about managed-schema and schema.xml, see Schema
Factory Definition in SolrConfig in the Solr documentation.

core.properties Unlike other configuration files, this file is stored in the local
filesystem rather than ZooKeeper, and is used for core discovery.
For more information on this process and the structure of the file, see
Defining core.properties in the Solr documentation.

Managing Configuration Using Configs or Instance Directories

The solrctl utility includes the config and instancedir commands for managing configuration. Configs and instance
directories refer to the same thing: named configuration sets used by collections, as specified by the solrctl collection
--create -c <configName> command.

Although configs and instance directories are functionally identical from the perspective of the Solr server, there are a
number of important administrative differences between these two implementations:

Table 2: Config and Instance Directory Comparison

Attribute Config Instance Directory

Security • In a Kerberos-enabled cluster, the
ZooKeeper znodes associated with
configurations created using the solrctl
config command automatically have
proper ZooKeeper ACLs.

• No ZooKeeper security support. Any user
can create, delete, or modify an instance
dir directly in ZooKeeper.

• Because instancedir updates ZooKeeper
directly, it is the client's responsibility
to add the proper ACLs, which can be
cumbersome.

Creation method Generated from existing configs or instance
directories in ZooKeeper using the ConfigSets
API.

Manually edited locally and re-uploaded
directly to ZooKeeper using solrctl utility.

7

https://lucene.apache.org/solr/guide/7_0/solr-configuration-files.html
https://lucene.apache.org/solr/guide/7_0/solr-cores-and-solr-xml.html
https://lucene.apache.org/solr/guide/7_0/solr-cores-and-solr-xml.html
https://lucene.apache.org/solr/guide/7_0/solr-configuration-files.html
https://lucene.apache.org/solr/guide/7_0/configuring-solrconfig-xml.html
https://lucene.apache.org/solr/guide/7_0/schema-api.html
https://lucene.apache.org/solr/guide/7_0/schema-factory-definition-in-solrconfig.html
https://lucene.apache.org/solr/guide/7_0/schema-factory-definition-in-solrconfig.html
https://lucene.apache.org/solr/guide/7_0/defining-core-properties.html

Cloudera Runtime Managing Cloudera Search

Attribute Config Instance Directory

Template support • Several predefined templates are
available. These can be used as the basis
for creating additional configs. Additional
templates can be created by creating
configs that are immutable.

• Mutable configs that use a managed
schema can only be modified using
the Schema API as opposed to being
manually edited. As a result, configs are
less flexible, but they are also less error-
prone than instance directories.

One standard template.

Managing Configs

You can manage configuration objects directly using the solrctl config command, which is a wrapper script for the
ConfigSets API.

Configs are named configuration sets that you can reference when creating collections. The solrctl config command
syntax is as follows:

solrctl config [--create <name> <baseConfig> [-p <name>=<value>]...]
 [--delete <name>]

• --create <name> <baseConfig> : Creates a new config based on an existing config. The config is created with
the specified <name>, using <baseConfig> as the template. For more information about config templates, see
Config Templates on page 10.

• -p <name>=<value> : Overrides a <baseConfig> setting. The only config property that you can override
is immutable, so the possible options are -p immutable=true and -p immutable=false. If you are copying an
immutable config, such as a template, use -p immutable=false to make sure that you can edit the new config.

• --delete <name> : Deletes the specified config. You cannot delete an immutable config without accessing
ZooKeeper directly as the solr super user.

Managing Instance Directories

An instance directory is a named set of configuration files. You can generate an instance directory template locally,
edit the configuration, and then upload the directory to ZooKeeper as a named configuration set. You can then
reference this named configuration set when creating a collection.

If you want to control access to configuration sets, you must enable ZooKeeper ACLs and use configs instead.

The solrctl instancedir command syntax is as follows:

solrctl instancedir [--generate <path> [-schemaless]]
 [--create <name> <path>]
 [--update <name> <path>]
 [--get <name> <path>]
 [--delete <name>]
 [--list]

• --generate <path> : Generates an instance directory template on the local filesystem at <path>. The
configuration files are located in the conf subdirectory under <path>.

• -schemaless: Generates a schemaless instance directory template.
• --create <name> <path> : Uploads a copy of the instance directory from <path> on the local filesystem to

ZooKeeper. If an instance directory with the specified <name> already exists, this command fails. Use --update to
modify existing instance directories.

8

https://lucene.apache.org/solr/guide/7_0/configsets-api.html

Cloudera Runtime Managing Cloudera Search

• --update <name> <path> : Overwrites an existing instance directory in ZooKeeper using the specified files on
the local filesystem. This command is analogous to first running --delete <name> followed by --create <name>
 <path> .

• --get <name> <path> : Downloads the specified instance directory from ZooKeeper to the specified path on
the local filesystem. You can then edit the configuration and then re-upload it using --update.

• --delete <name> : Deletes the specified instance directory from ZooKeeper.
• --list: Lists existing instance directories as well as configs created by the solrctl config command.

Securing configs with ZooKeeper ACLs and Ranger
Learn how you can restrict access to configuration sets by setting ZooKeeper Acces control Lists (ACLs) on all
znodes under and including the /solr directory and using Ranger to control access to the ConfigSets API.

Before you begin
Ranger requires Kerberos authentication.

About this task

The solrctl instancedir command interacts directly with ZooKeeper, and therefore cannot be protected by Ranger.
Because the solrctl config command is a wrapper script for the ConfigSets API, it can be protected by Ranger.

To force users to use the ConfigSets API, you must set all ZooKeeper znodes under and including /solr to read-only
(except for the solr user).

After completing these steps, you cannot run commands such as solrctl instancedir --create or solrctl instancedir
--delete without first authenticating as the solr@EXAMPLE.COM super user principal. Unauthenticated users can
still run solrctl instancedir --list and solrctl instancedir --get, because those commands only perform read operations
against ZooKeeper.

Procedure

1. Create a jaas.conf file containing the following:

Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=false
 useTicketCache=true
 principal="solr@[***EXAMPLE.COM***]";
 };

Replace [***EXAMPLE.COM***] with your Kerberos realm name.

2. Set the LOG4J_PROPS environment variable so that it points to a log4j.properties file:

export LOG4J_PROPS=/etc/zookeeper/conf/log4j.properties

3. Set the ZKCLI_JVM_FLAGS environment variable:

export ZKCLI_JVM_FLAGS="-Djava.security.auth.login.config=[***PATH TO
 JAAS.CONF FILE***] \
 -DzkACLProvider=org.apache.solr.common.cloud.SaslZkACLProvid
er \
 -Droot.logger=INFO,console"

Replace [***PATH TO JAAS.CONF FILE***] with the path pointing to the jaas.conf file you just created.

9

Cloudera Runtime Managing Cloudera Search

4. Authenticate as the solr user:

kinit solr@[***EXAMPLE.COM***]

Replace [***EXAMPLE.COM***] with your Kerberos realm name.

5. Run the zkcli.sh script as follows:

/opt/cloudera/parcels/CDH/lib/solr/bin/zkcli.sh -zkhost [***ZOOKEEPER
 SERVER HOSTNAME***]:2181 -cmd updateacls /solr

Replace [***ZOOKEEPER SERVER HOSTNAME***] with the hostname of a ZooKeeper server.

Config Templates

Configs can be declared as immutable, which means they cannot be deleted or have their Schema updated by the
Schema API. Immutable configs are uneditable config templates that are the basis for additional configs. After a
config is made immutable, you cannot change it back without accessing ZooKeeper directly as the solr (or solr@EXA
MPLE.COM principal, if you are using Kerberos) super user.

Solr provides a set of immutable config templates. These templates are only available after Solr initialization, so
templates are not available in upgrades until after Solr is initialized or re-initialized. Templates include:

Table 3: Available Config Templates and Attributes

Template Name Supports Schema API Uses Schemaless Solr

managedTemplate

schemalessTemplate

managedTemplateSecure

schemalessTemplateSecure

Note: schemalessTemplate is the same as the template generated by the solrctl instancedir --generate
command.

Config templates are managed using the solrctl config command. For example:

• To create a new config based on the managedTemplateSecure template:

solrctl config --create newConfig managedTemplateSecure -p immutable=false

• To create a new template (immutable config) from an existing config:

solrctl config --create newTemplate existingConfig -p immutable=true

Updating the Schema in a Solr Collection

If your collection was configured using an instance directory, you can download the instance directory, edit schema.x
ml, then re-upload it to ZooKeeper. For instructions, see Managing Instance Directories on page 8.

If your collection was configured using a config, you can update the schema using the Schema API. For information
on using the Schema API, see Schema API in the Apache Solr Reference Guide.

Managing Collections in Cloudera Search

10

https://lucene.apache.org/solr/guide/7_0/schema-api.html

Cloudera Runtime Managing Cloudera Search

A collection in Cloudera Search refers to a repository for indexing and querying documents. Collections typically
contain the same types of documents with similar schemas. For example, you might create separate collections for
email, Twitter data, logs, forum posts, customer interactions, and so on.

Collections are managed using the solrctl command. For a reference to the solrctl commands and options, see solrctl
Reference.

Creating a Solr Collection

Before you begin
If you have enabled Ranger for authorization, you must have Solr Admin permission to be able to create collections.

About this task

Note: Although it is not currenly strictly enforced, you are strongly recommended to observe the following
limitations on collection names:

• Use only ASCII alphanumeric characters (A-Za-z0-9), hyphen (-), or underscore (_).
• Avoid using the strings shard and replica.

Procedure

1. If you are using Kerberos, kinit as a user with permission to create the collection:

kinit solradmin@EXAMPLE.COM

Replace EXAMPLE.COM with your Kerberos realm name.

2. On a host running a Solr server, make sure that the SOLR_ZK_ENSEMBLE environment variable is set in /etc/sol
r/conf/solr-env.sh. For example:

cat /etc/solr/conf/solr-env.sh
export SOLR_ZK_ENSEMBLE=zk01.example.com:2181,zk02.example.com:2181,zk03.
example.com:2181/solr

If you are using Cloudera Manager, this is automatically set on hosts with a Solr Server or Gateway role.

3. Generate configuration files for the collection:

• Using Configs:

solrctl config --create logs_config managedTemplate -p immutable=false

• Using Instance Directories:

solrctl instancedir --generate $HOME/logs_config
Edit the configuration files as needed
solrctl instancedir --create logs_config $HOME/logs_config

For more information on configs and instance directories, see Managing Configuration Using Configs or Instance
Directories on page 7.

4. Create a new collection using the specified configuration:

solrctl collection --create logs -s <numShards> -c logs_config

Viewing Existing Solr Collections

You can view existing collections using the solrctl collection --list command.

11

https://docs.cloudera.com/runtime/7.1.1/search-managing/topics/search-solrctl-ref.html
https://docs.cloudera.com/runtime/7.1.1/search-managing/topics/search-solrctl-ref.html

Cloudera Runtime Managing Cloudera Search

Deleting All Documents in a Solr Collection

Before you begin
If you have enabled Ranger for authorization, you must have Solr Admin permission to be able to delete documents in
a collection.

About this task

Deleting all documents in a Solr collection does not delete the collection or its configuration files. It only deletes the
index. This can be useful for rapid prototyping of configuration changes in test environments.

Procedure

1. If you are using Kerberos, kinit as a user with permission to delete the collection:

kinit solradmin@EXAMPLE.COM

Replace EXAMPLE.COM with your Kerberos realm name.

2. On a host running Solr Server, make sure that the SOLR_ZK_ENSEMBLE environment variable is set in /etc/sol
r/conf/solr-env.sh. For example:

$ cat /etc/solr/conf/solr-env.sh
export SOLR_ZK_ENSEMBLE=zk01.example.com:2181,zk02.example.com:2181,zk0
3.example.com:2181/solr

If you are using Cloudera Manager, this is automatically set on hosts with a Solr Server or Gateway role.

3. Delete the documents:

solrctl collection --deletedocs logs

Backing Up and Restoring Solr Collections

Cloudera Search includes a backup/restore mechanism primarily designed to provide disaster recovery capability for
Apache Solr. You can create a backup of a Solr collection and restore from this backup if the index is corrupted due
to a software bug, or if an administrator accidentally or maliciously deletes a collection or a subset of documents. This
procedure can also be used as part of a cluster migration (for example, if you are migrating to a cloud environment),
or to recover from a failed upgrade.

For more information, see Backing Up and Restoring Cloudera Search on page 17.

Deleting a Solr Collection

Before you begin
If you have enabled Ranger for authorization, you must have Solr Admin permission to be able to delete collections.

About this task

Deleting a Solr collection deletes the collection and its index, but does not delete its configuration files.

Procedure

1. If you are using Kerberos, kinit as a user with permission to delete the collection:

kinit solradmin@EXAMPLE.COM

Replace EXAMPLE.COM with your Kerberos realm name.

12

Cloudera Runtime Managing Cloudera Search

2. On a host running Solr Server, make sure that the SOLR_ZK_ENSEMBLE environment variable is set in /etc/sol
r/conf/solr-env.sh. For example:

$ cat /etc/solr/conf/solr-env.sh
export SOLR_ZK_ENSEMBLE=zk01.example.com:2181,zk02.example.com:2181,zk0
3.example.com:2181/solr

If you are using Cloudera Manager, this is automatically set on hosts with a Solr Server or Gateway role.

3. Delete the collection:

solrctl collection --delete logs

Example solrctl Usage

This topic includes some examples of:

• Configuration changes that may be required for solrctl to function as desired.
• Common tasks completed with solrctl.

Using solrctl with an HTTP proxy

About this task

Using solrctl to manage a deployment in an environment that uses an HTTP proxy fails because solrctl uses curl,
which attempts to use the proxy. You can disable the proxy so solrctl succeeds:

Procedure

• Modify the settings for the current shell by exporting the NO_PROXY environment variable. For example:

export NO_PROXY='*'

• Modify the settings for single commands by prefacing solrctl with NO_PROXY='*'. For example:

NO_PROXY='*' solrctl collection --create collectionName -s 3

Creating Replicas of Existing Shards

Procedure

You can create additional replicas of existing shards using a command of the following form:

solrctl core --create <newCore> -p collection=<name> \
-p shard=<shard_to_replicate>

For example, to create a new replica of the collection named collection1 that is comprised of shard1, use the
following command:

solrctl core --create collection1_shard1_replica2 \
-p collection=collection1 -p shard=shard1

Converting Instance Directories to Configs

13

https://docs.cloudera.com/runtime/7.1.1/search-managing/topics/search-solrctl-ref.html

Cloudera Runtime Managing Cloudera Search

About this task

Cloudera Search supports converting existing deployments that use instance directories to use configs:

Procedure

1. Create a temporary config based on the existing instance directory. For example, if the instance directory name is
weblogs_config:

solrctl config --create weblogs_config_temp weblogs_config \
-p immutable=false

2. Delete the existing instance directory. For example:

solrctl instancedir --delete weblogs_config

3. Create a config using the same name as the instance directory you just deleted, based on the temporary config you
created earlier.

solrctl config --create weblogs_config weblogs_config_temp \
-p immutable=false

4. Delete the temporary config:

solrctl config --delete weblogs_config_temp

5. Reload the affected collection (weblogs in this example):

solrctl collection --reload weblogs

Migrating Solr Replicas
When you replace a host, migrating replicas on that host to the new host, instead of depending on failure recovery,
can help ensure optimal performance.

Where possible, the Solr service routes requests to the proper host. Both ADDREPLICA and DELETEREPLICA
Collections API calls can be sent to any host in the cluster. For more information on the Collections API, see
Collections API in Apache Solr Reference Guide.

• For adding replicas, the node parameter ensures the new replica is created on the intended host. If no host is
specified, Solr selects a host with relatively fewer replicas.

• For deleting replicas, the request is routed to the host that hosts the replica to be deleted.

Adding replicas can be resource intensive. For best results, add replicas when the system is not under heavy load. For
example, do not add replicas when heavy indexing is occurring or when MapReduceIndexerTool jobs are running.

Cloudera recommends using API calls to create and unload cores. Do not use the Cloudera Manager Admin Console
or the Solr Admin UI for these tasks.

This procedure uses the following names:

• Host names:

• Origin: solr01.example.com.
• Destination: solr02.example.com.

• Collection name: email
• Replicas:

• The original replica email_shard1_replica1, which is on solr01.example.com.
• The new replica email_shard1_replica2, which will be on solr02.example.com.

14

https://lucene.apache.org/solr/guide/8_4/collections-api.html

Cloudera Runtime Managing Cloudera Search

To migrate a replica to a new host:

1. (Optional) If you want to add a replica to a particular node, review the contents of the live_nodes directory on
ZooKeeper to find all nodes available to host replicas. Open the Solr Administration User interface, click Cloud,
click Tree, and expand live_nodes. The Solr Administration User Interface, including live_nodes, might appear as
follows:

Note: Information about Solr nodes can also be found in clusterstate.json, but that file only lists nodes
currently hosting replicas. Nodes running Solr but not currently hosting replicas are not listed in clusters
tate.json.

2. Add the new replica on solr02.example.com using the ADDREPLICA API call.

http://solr01.example.com:8983/solr/admin/collections?action=ADDREPLICA&
collection=email&shard=shard1&node=solr02.example.com:8983_solr

15

Cloudera Runtime Managing Cloudera Search

3. Verify that the replica creation succeeds and moves from recovery state to ACTIVE. You can check the replica
status in the Cloud view, which can be found at a URL similar to: http://solr02.example.com:8983/solr/#/~cloud.

Note: Do not delete the original replica until the new one is in the ACTIVE state. When the newly added
replica is listed as ACTIVE, the index has been fully replicated to the newly added replica. The total time
to replicate an index varies according to factors such as network bandwidth and the size of the index.
Replication times on the scale of hours are not uncommon and do not necessarily indicate a problem.

You can use the details command to get an XML document that contains information about replication
progress. Use curl or a browser to access a URI similar to:

http://solr02.example.com:8983/solr/email_shard1_replica2/replicatio
n?command=details

Accessing this URI returns an XML document that contains content about replication progress. A snippet
of the XML content might appear as follows:

...
<str name="numFilesDownloaded">126</str>
<str name="replication StartTime">Tue Jan 21 14:34:43 PST 2014</str>
<str name="timeElapsed">457s</str>
<str name="currentFile">4xt_Lucene41_0.pos</str>
<str name="currentFileSize">975.17 MB</str>
<str name="currentFileSizeDownloaded">545 MB</str>
<str name="currentFileSizePercent">55.0</str>
<str name="bytesDownloaded">8.16 GB</str>
<str name="totalPercent">73.0</str>
<str name="timeRemaining">166s</str>
<str name="downloadSpeed">18.29 MB</str>
...

4. Use the CLUSTERSTATUS API call to retrieve information about the cluster, including current cluster status:

http://solr01.example.com:8983/solr/admin/collections?action=clusterstat
us&wt=json&indent=true

Review the returned information to find the correct replica to remove. An example of the JSON file might appear
as follows:

16

Cloudera Runtime Managing Cloudera Search

5. Delete the old replica on solr01.example.com server using the DELETEREPLICA API call:

http://solr01.example.com:8983/solr/admin/collections?action=DELETEREPLI
CA&collection=email&shard=shard1&replica=core_node2

The DELETEREPLICA call removes the datadir.

Backing Up and Restoring Cloudera Search

Important: The following documentation is about backing up and restoring Cloudera Search, which is based
on the SolrCloud implementation of Apache Solr. Cloudera Search does not support backups using the Solr
replication handler.

Cloudera Search includes a backup/restore mechanism primarily designed to provide disaster recovery capability for
Apache Solr. You can create a backup of a Solr collection and restore from this backup if the index is corrupted due
to a software bug, or if an administrator accidentally or maliciously deletes a collection or a subset of documents. This
procedure can also be used as part of a cluster migration (for example, if you are migrating to a cloud environment),
or to recover from a failed upgrade.

At a high level, the steps to back up a Solr collection are as follows:

1. Create a snapshot.
2. If you are exporting the snapshot to a remote cluster, prepare the snapshot for export.
3. Export the snapshot to either the local cluster or a remote one. This step uses the Hadoop DistCP utility.

The backup operation uses the native Solr snapshot capability to capture a point-in-time, consistent state of index data
for a specified Solr collection. You can then use the Hadoop DistCp utility to copy the index files and the associated
metadata for that snapshot to a specified location in HDFS or a cloud object store (for example, Amazon S3).

The Solr snapshot mechanism is based on the Apache Lucene IndexDeletionPolicy abstraction, which enables
applications such as Cloudera Search to manage the lifecycle of specific index commits. A Solr snapshot assigns a
user-specified name to the latest hard-committed state. After the snapshot is created, the Lucene index files associated
with the commit are retained until the snapshot is explicitly deleted. The index files associated with the snapshot are
preserved regardless of document updates and deletions, segment merges during index optimization, and so on.

Creating a snapshot does not take much time because it only preserves the snapshot metadata and does not copy the
associated index files. A snapshot does have some storage overhead corresponding to the size of the index because the
index files are retained indefinitely until the snapshot is deleted.

Solr snapshots can help you recover from some scenarios, such as accidental or malicious data modification or
deletion. They are insufficient to address others, such as index corruption and accidental or malicious administrative
action (for example, deleting a collection, changing collection configuration, and so on). To address these situations,
export snapshots regularly and before performing non-trivial administrative operations such as changing the schema,
splitting shards, or deleting replicas.

Exporting a snapshot exports the collection metadata as well as the corresponding Lucene index files. This operation
internally uses the Hadoop DistCp utility to copy the Lucene index files and metadata, which creates a full backup at
the specified location. After the backup is created, the original Solr snapshot can be safely deleted if necessary.

Important: If you create a snapshot and do not export it, you do not have a complete backup, and cannot
restore index files if they are accidentally or maliciously deleted.

Backing Up a Solr Collection

About this task

Use the following procedure to back up a Solr collection. For more information on the commands used, see Cloudera
Search Backup and Restore Command Reference on page 20.

17

https://lucene.apache.org/solr/guide/7_0/making-and-restoring-backups.html#standalone-mode-backups
https://lucene.apache.org/solr/guide/7_0/making-and-restoring-backups.html#standalone-mode-backups
https://lucene.apache.org/core/7_0_0/core/org/apache/lucene/index/IndexDeletionPolicy.html

Cloudera Runtime Managing Cloudera Search

Before you begin

If you are using a secure (Kerberos-enabled) cluster, specify your jaas.conf file by adding the following parameter to
each command:

--jaas /path/to/jaas.conf

If TLS is enabled for the Solr service, specify the truststore and password using the ZKCLI_JVM_FLAGS
environment variable before you begin the procedure:

export ZKCLI_JVM_FLAGS="-Djavax.net.ssl.trustStore=/path/to/truststore \
-Djavax.net.ssl.trustStorePassword=trustStorePassword"

Procedure

1. Create a snapshot. On a host running Solr Server, run the following command:

solrctl collection --create-snapshot <snapshotName> -c <collectionName>

For example, to create a snapshot for a collection named tweets:

solrctl collection --create-snapshot tweets-$(date +%Y%m%d%H%M) -c tweets
Successfully created snapshot with name tweets-201803281043 for collection
 tweets

2. If you are backing up the Solr collection to a remote cluster, prepare the snapshot for export. If you are backing up
the Solr collection to the local cluster, skip this step.

solrctl collection --prepare-snapshot-export <snapshotName> -
c <collectionName> -d <destDir>

The destination HDFS directory path (specified by the -d option) must exist on the local cluster before you run
this command. Make sure that the Solr superuser (solr by default) has permission to write to this directory.

For example:

hdfs dfs -mkdir -p /path/to/backup-staging/tweets-201803281043
hdfs dfs -chown :solr /path/to/backup-staging/tweets-201803281043
solrctl collection --prepare-snapshot-export tweets-201803281043 -c twe
ets \
-d /path/to/backup-staging/tweets-201803281043

3. Export the snapshot. This step uses the DistCp utility to back up the collection metadata as well as the
corresponding index files. The destination directory must exist and be writable by the Solr superuser (solr by
default).

To export the snapshot to a remote cluster, run the following command:

solrctl collection --export-snapshot <snapshotName> -s <sourceDir> -
d <protocol>://<namenode>:<port>/<destDir>

For example:

• HDFS protocol:

solrctl collection --export-snapshot tweets-201803281043 -s /path/to/bac
kup-staging/tweets-201803281043 \

18

Cloudera Runtime Managing Cloudera Search

-d hdfs://nn01.example.com:8020/path/to/backups

• WebHDFS protocol:

solrctl collection --export-snapshot tweets-201803281043 -s /path/to/bac
kup-staging/tweets-201803281043 \
-d webhdfs://nn01.example.com:20101/path/to/backups

To export the snapshot to the local cluster, run the following command:

solrctl collection --export-snapshot <snapshotName> -c <collectionName> -
d <destDir>

For example:

solrctl collection --export-snapshot tweets-201803281043 -c tweets -d /p
ath/to/backups/

4. Delete the snapshot:

solrctl collection --delete-snapshot <snapshotName> -c <collectionName>

For example:

solrctl collection --delete-snapshot tweets-201803281043 -c tweets

Restoring a Solr Collection

About this task

Use the following procedure to restore a Solr collection. For more information on the commands used, see Cloudera
Search Backup and Restore Command Reference on page 20.

Before you begin

If you are using a secure (Kerberos-enabled) cluster, specify your jaas.conf file by adding the following parameter to
each command:

-jaas /path/to/jaas.conf

If TLS is enabled for the Solr service, specify the truststore and password by using the ZKCLI_JVM_FLAGS
environment variable before you begin the procedure:

export ZKCLI_JVM_FLAGS="-Djavax.net.ssl.trustStore=/path/to/truststore \
-Djavax.net.ssl.trustStorePassword=trustStorePassword"

Procedure

1. If you are restoring from a backup stored on a remote cluster, copy the backup from the remote cluster to the local
cluster. If you are restoring from a local backup, skip this step.

Run the following commands on the cluster to which you want to restore the collection:

hdfs dfs -mkdir -p /path/to/restore-staging

19

Cloudera Runtime Managing Cloudera Search

hadoop distcp <protocol>://<namenode>:<port>/path/to/backup /path/to/re
store-staging

For example:

• HDFS protocol:

hadoop distcp hdfs://nn01.example.com:8020/path/to/backups/tweets-201803
281043 /path/to/restore-staging

• WebHDFS protocol:

hadoop distcp webhdfs://nn01.example.com:20101/path/to/backups/tweets-20
1803281043 /path/to/restore-staging

2. Start the restore procedure. Run the following command:

solrctl collection --restore <restoreCollectionName> -l <backupLocation> -
b <snapshotName> -i <requestId>

Make sure that you use a unique <requestID> each time you run this command.

For example:

solrctl collection --restore tweets -l /path/to/restore-staging -b tweet
s-201803281043 -i restore-tweets

3. Monitor the status of the restore operation. Run the following command periodically:

solrctl collection --request-status <requestId>

Look for <str name="state"> in the output. For example (emphasis added):

solrctl collection --request-status restore-tweets
 <?xml version="1.0" encoding="UTF-8"?> <response> <lst name="responseHea
der"> <int name="status"> 0</int> <int name="QTime"> 1</int> </lst> \
<lst name="status"> <str name="state"> completed</str> <str name="msg"> fo
und restore-tweets in completed tasks</str> </lst> </response>

The state parameter can be one of the following:

• running: The restore operation is running.
• completed: The restore operation is complete.
• failed: The restore operation failed.
• notfound: The specified <requestID> does not exist.

Cloudera Search Backup and Restore Command Reference
Use the following commands to create snapshots, back up, and restore Solr collections.

Note:

If you are using a secure (Kerberos-enabled) cluster, specify your jaas.conf file by adding the following
parameter to the command:

-jaas /path/to/jaas.conf

20

Cloudera Runtime Managing Cloudera Search

Note:

If TLS is enabled for the Solr service, specify the truststore and password by using the ZKCLI_JVM_FLAGS
environment variable:

export ZKCLI_JVM_FLAGS="-Djavax.net.ssl.trustStore=/path/to/truststore
 \
-Djavax.net.ssl.trustStorePassword=trustStorePassword"

Create a snapshot

Command: solrctl collection --create-snapshot <snapshotName> -c <collectionName>

Description: Creates a named snapshot for the specified collection.

Delete a snapshot

Command: solrctl collection --delete-snapshot <snapshotName> -c <collectionName>

Description: Deletes the specified snapshot for the specified collection.

Describe a snapshot

Command: solrctl collection --describe-snapshot <snapshotName> -c <collectionName>

Description: Provides detailed information about a snapshot for the specified collection.

List all snapshots

Command: solrctl collection --list-snapshots <collectionName>

Description: Lists all snapshots for the specified collection.

Prepare snapshot for export to a remote cluster

Command: solrctl collection --prepare-snapshot-export <snapshotName> -c <collectionName> -d <destDir>

Description: Prepares the snapshot for export to a remote cluster. If you are exporting the snapshot to the local cluster,
you do not need to run this command. This command generates collection metadata as well as information about the
Lucene index files corresponding to the snapshot.

The destination HDFS directory path (specified by the -d option) must exist on the local cluster before you run this
command. Make sure that the Solr superuser (solr by default) has permission to write to this directory.

If you are running the snapshot export command on a remote cluster, specify the HDFS protocol (such as WebHDFS
or HFTP) to be used for accessing the Lucene index files corresponding to the snapshot on the source cluster. This
configuration is driven by the -p option which expects a fully qualified URI for the root filesystem on the source
cluster, for example webhdfs://namenode.example.com:20101/.

Export snapshot to local cluster

Command: solrctl collection --export-snapshot <snapshotName> -c <collectionName> -d <destDir>

Description: Creates a backup copy of the Solr collection metadata as well as the associated Lucene index files at the
specified location. The -d configuration option specifies the directory path where this backup copy is be created. This
directory must exist before exporting the snapshot, and the Solr superuser must be able to write to it.

Export snapshot to remote cluster

Command: solrctl collection --export-snapshot <snapshotName> -s <sourceDir> -d <destDir>

21

Cloudera Runtime Managing Cloudera Search

Description: Creates a backup copy of the Solr collection snapshot, which includes collection metadata as well as
Lucene index files at the specified location. The -d configuration option specifies the directory path where this backup
copy is to be created.

Make sure that you prepare the snapshot for export before exporting it to a remote cluster.

You can run this command on either the source or destination cluster, depending on your environment and the DistCp
utility requirements. If the destination cluster does not have the solrctl utility, you must run the command on the
source cluster. The exported snapshot state can then be copied using standard tools, such as DistCp.

The source and destination directory paths (specified by the -s and -d options, respectively) must be specified relative
to the cluster from which you are running the command. Directories on the local cluster are formatted as /path/to/dir,
and directories on the remote cluster are formatted as <protocol>://<namenode>:<port>/path/to/dir. For example:

• Local path: /solr-backup/tweets-2016-10-19
• Remote HDFS path: hdfs://nn01.example.com:8020/solr-backup/tweets-2016-10-19
• Remote WebHDFS path: webhdfs://nn01.example.com:20101/solr-backup/tweets-2016-10-19

The source directory (specified by the -s option) is the directory containing the output of the solrctl collection --pre
pare-snapshot-export command. The destination directory (specified by the -d option) must exit on the destination
cluster before running this command.

If your cluster is secured (Kerberos-enabled), initialize your Kerberos credentials by using kinit before executing this
command.

Restore from a local snapshot

Command: solrctl collection --restore <restoreCollectionName> -l <backupLocation> -b <snapshotName> -i
 <requestId>

Description: Restores the state of an earlier created backup as a new Solr collection. Run this command on the cluster
on which you want to restore the backup.

The -l configuration option specifies the local HDFS directory where the backup is stored. If the backup is stored on a
remote cluster, you must copy it to the local cluster before restoring it. The Solr superuser (solr by default) must have
permission to read from this directory.

The -b configuration option specifies the name of the backup to be restored.

Because the restore operation can take a long time to complete depending on the size of the exported snapshot, it is
run asynchronously. The -i configuration parameter specifies a unique identifier for tracking operation. For more
information, see Check the status of an operation on page 22.

The optional -a configuration option enables the autoAddReplicas feature for the new Solr collection.

The optional -c configuration option specifies the configName for the new Solr collection. If this option is not
specified, the configName of the original collection at the time of backup is used. If the specified configName does
not exist, the restore operation creates a new configuration from the backup.

The optional -r configuration option specifies the replication factor for the new Solr collection. If this option is not
specified, the replication factor of the original collection at the time of backup is used.

The optional -m configuration option specifies the maximum number of replicas (maxShardsPerNode) to create on
each Solr Server. If this option is not specified, the maxShardsPerNode configuration of the original collection at the
time of backup is used.

If your cluster is secured (Kerberos-enabled), initialize your Kerberos credentials using kinit before running this
command.

Check the status of an operation

Command: solrctl collection --request-status <requestId>

Description: Displays the status of the specified operation. The status can be one of the following:

22

Cloudera Runtime Managing Cloudera Search

• running: The restore operation is running.
• completed: The restore operation is complete.
• failed: The restore operation failed.
• notfound: The specified requestID is not found.

If your cluster is secured (Kerberos-enabled), initialize your Kerberos credentials (using kinit) before running this
command.

solrctl Reference
The solrctl utility is a wrapper shell script included with Cloudera Search for managing collections, instance
directories, configs, and more.

For some examples of common tasks using solrctl, see Example solrctl Usage.

Make sure that the host on which you are running the solrctl utility has either a Gateway or Solr Server role assigned.

In general, if an operation succeeds, solrctl exits silently with a success exit code. If an error occurs, solrctl prints a
diagnostics message combined with a failure exit code. solrctl supports specifying a log4j.properties file by setting
the LOG4J_PROPS environment variable. By default, the LOG4J_PROPS setting specifies the log4j.properties in the
Solr configuration directory (for example, /etc/solr/conf/log4j.properties). Many solrctl commands redirect stderr to /
dev/null, so Cloudera recommends that your log4j properties file specify a location other than stderr for log output.

You can run solrctl on any host that is configured as part of the SolrCloud deployment (the Solr service in Cloudera
Manager environments) . To run any solrctl command on a host outside of SolrCloud deployment, ensure that
SolrCloud hosts are reachable and provide --zk and --solr command line options.

If you are using solrctl to manage your deployment in an environment that requires Kerberos authentication, you must
have a valid Kerberos ticket, which you can get using kinit.

For collection configuration, users have the option of interacting directly with ZooKeeper using the instancedir option
or using the Solr ConfigSets API using the config option. For more information, see Managing Configuration Using
Configs or Instance Directories.

Command Syntax

The general solrctl command syntax is:

solrctl [options] command [command-arg] [command [command-arg]] ...

Each element and its possible values are described in the following sections.

solrctl Options

If used, the following options must precede commands:

Table 4: solrctl options

Option Description

--solr <solr_uri> Directs solrctl to a SolrCloud web API available at the specified URI.
This option is required for hosts running outside of SolrCloud. A
sample URI might be: http://search01.example.com:8983/solr.

--zk <zk_ensemble> Directs solrctl to a particular ZooKeeper quorum. This option is
required for hosts running outside of SolrCloud. For example: zk01.exa
mple.com:2181,zk02.example.com:2181,zk03.example.com:2181/solr.
Output from solrctl commands that use the --zk option is sent to /dev/
null, so no results are displayed.

23

https://docs.cloudera.com/runtime/7.1.1/search-managing/topics/search-solrctl-examples.html
https://docs.cloudera.com/runtime/7.1.1/search-managing/topics/search-managing-configuration-using-configs-or-instance-directories.html
https://docs.cloudera.com/runtime/7.1.1/search-managing/topics/search-managing-configuration-using-configs-or-instance-directories.html

Cloudera Runtime Managing Cloudera Search

Option Description

--jaas /path/to/jaas.conf Used to identify a JAAS configuration that specifies the principal
with permissions to modify Solr metadata. The principal is typically
solr@EXAMPLE.COM. In Kerberos-enabled environments where
ZooKeeper ACLs protect Solr metadata, you must use this parameter
when modifying metadata.

--help Prints help.

--quiet Suppresses most solrctl messages.

--debug Prints errors to stdout.

--trace Prints the executed commands to stdout.

Commands and Arguments

The solrctl commands init, instancedir, config, collection and cluster affect the entire SolrCloud deployment and only
need to be run once per required operation.

The solrctl core command affects a single SolrCloud host.

Table 5: solrctl commmands and arguments

Command Argument Description

Initializes a SolrCloud deployment. Must be
run before starting solr-server daemons for
the first time. The command has a built-in
security check that prevents it from running on
a deployment that has already been initialized.

init

[--force] Allows you to re-initialize an already
initialized SolrCloud deployment. Use this
command cautiously because it erases all
SolrCloud deployment state information from
ZooKeeper, including all configuration files. It
does not delete collections.

instancedir Manipulates instance directories.

Note: solrctl instancedir
commands talk directly to
ZooKeeper. Starting from CDH
version 6.0, the ZooKeeper
node that stores the instance
configuration files (e.g.: /solr/
configs) is only writable by the
user 'solr'. This means that in a
Kerberized environment you will
have to create a Java Authentication
and Authorization Service (JAAS)
configuration file and a keytab for
the solr user, and specifying this
jaas.conf file when using solrctl.
For example: solrctl --jaas jaas.conf
 instancedir --create myInstance
Dir /tmp/myInstanceDir.

Cloudera recommends using the
solrctl config --upload command
insterad, as it does not require a
keytab of the solr user (a simple
kinit is enough) and additionally it
can utilize Ranger to control who
is authorized to modify instance
configurations.

24

Cloudera Runtime Managing Cloudera Search

Command Argument Description

--generate <path> [-schemaless] --generate <path>: Generates an instance
directory template on the local filesystem at
<path>. The configuration files are located in
the conf subdirectory under <path>. If used
with the -schemaless option, it generates a
schemaless instance directory template. For
more information on schemaless support,
see Schemaless Mode Overview and Best
Practices.

--create <name> <path> Uploads a copy of the instance directory from
<path> on the local filesystem to ZooKeeper.
If an instance directory with the specified
<name> already exists, this command fails.
Use --update to modify existing instance
directories.

--update <name> <path> Overwrites an existing instance directory in
ZooKeeper using the specified files on the
local filesystem. This command is analogous
to first running --delete <name> followed by
--create <name> <path>.

--get <name> <path> Downloads the specified instance directory
from ZooKeeper to the specified path on
the local filesystem. You can then edit the
configuration and then re-upload it using --up
date.

--delete <name> Deletes the specified instance directory from
ZooKeeper.

--list Lists existing instance directories, including
configs created by the solrctl config command.

Manipulates configs.config

--create name <baseConfig> [-p
 <name>=<value>

Creates a new config based on an existing
config. The config is created with the specified
name, using <baseConfig> as the template.
For more information about config templates,
see Config Templates. The -p name=va
lue option overrides a <baseConfig> setting.
The only config property that you can override
is immutable, so the possible options are -p i
mmutable=true and -p immutable=false. If
you are copying an immutable config, such as
a template, use -p immutable=false to make
sure that you can edit the new config.

25

https://docs.cloudera.com/runtime/7.1.1/search-deployment-planning/topics/search-deployment-planning-schemaless-mode.html
https://docs.cloudera.com/runtime/7.1.1/search-deployment-planning/topics/search-deployment-planning-schemaless-mode.html
https://docs.cloudera.com/runtime/7.1.1/search-managing/topics/search-config-templates.html

Cloudera Runtime Managing Cloudera Search

Command Argument Description

--upload name path Uploads a new configset in zip file format.
You cannot use this option to update an
existing config. The script will ask you to
delete the existing version before allowing you
to upload the new one.

The path argument of this command needs
to point to the local directory containing the
instance configuration (meaning it has a conf
subdirectory and the config files like conf/
solrconfig.xml). This can also be an instance
configuration directory generated using solrctl
instancedir --generate name or downloaded
using solrctl instancedir --get name
 path. The underlying Solr API requires a .zip
archive to be created, this is automatically
performed by the command.

Note: This function needs the
zip binary to be installed and
executable by the user running the
solrctl config --upload command.

--delete name Deletes the specified config. You cannot
delete an immutable config without accessing
ZooKeeper directly as the solr super user.

Manipulates collections.

--create <name> -s <numShards>
[-a] [-c <configName>] [-r
 <replicationFactor>] [-m
 <maxShardsPerHost>] [-n <hostList>]]

Creates a new collection with <numShards>
shards.

The -a option enables automatic addition of
replicas (autoAddReplicas=true) if machines
hosting existing shards become unavailable.

The collection uses the specified
<configName> for its configuration set, and
the specified <replicationFactor> controls the
number of replicas for the collection. Keep in
mind that this replication factor is on top of
the HDFS replication factor.

The maximum shards per host is determined
by <maxShardsPerHost>, and you can
specify specific hosts for the collection in the
<hostList>.

The only required parameters are <name> and
-s <numShards>. If -c <configName>
is not provided, it is assumed to be the same as
the name of the collection.

--delete <name> Deletes a collection.

--reload <name> Reloads a collection.

--stat <name> Outputs SolrCloud specific run-time
information for a collection.

--deletedocs <name> Purges all indexed documents from a
collection.

--list Lists all collections.

collection

--*-snapshot The snapshot-related commands are covered in
detail in Cloudera Search Backup and Restore
Command Reference.

core Manipulates cores.

26

https://docs.cloudera.com/runtime/7.1.1/search-managing/topics/search-cloudera-search-backup-and-restore-command-reference.html
https://docs.cloudera.com/runtime/7.1.1/search-managing/topics/search-cloudera-search-backup-and-restore-command-reference.html

Cloudera Runtime Managing Cloudera Search

Command Argument Description

--create <name> [-p <name>=<value>] Creates a new core. The core is configured
using <name>=<value> pairs. For more
information about configuration options, see
Solr documentation

--reload <name> Reloads a core.

--unload <name> Unloads a core.

--status <name> Prints status of a core.

cluster Manages cluster configuration.

--get-solrxml <file> Downloads the cluster configuration file solr
.xml from ZooKeeper to the local system.

--put-solrxml <file> Uploads the specified file to ZooKeeper as the
cluster configuration file solr.xml.

--set-property <name> <value> Sets property names and values. For example,
to configure a cluster to use TLS/SSL:

solrctl cluster --set-
property urlScheme htt
ps

--remove-property <name> Removes the specified property.

--get-clusterstate <file> Downloads the clusterstate.json file from
ZooKeeper to the local system.

27

https://lucene.apache.org/solr/resources.html

	Contents
	Managing Cloudera Search
	Generating Solr collection configuration using instance directories
	Creating Collections
	Using Custom JAR Files with Search
	Cloudera Search Configuration Files
	Managing Configuration Using Configs or Instance Directories
	Managing Configs
	Managing Instance Directories
	Securing configs with ZooKeeper ACLs and Ranger
	Config Templates
	Updating the Schema in a Solr Collection

	Managing Collections in Cloudera Search
	Creating a Solr Collection
	Viewing Existing Solr Collections
	Deleting All Documents in a Solr Collection
	Backing Up and Restoring Solr Collections
	Deleting a Solr Collection

	Example solrctl Usage
	Using solrctl with an HTTP proxy
	Creating Replicas of Existing Shards
	Converting Instance Directories to Configs

	Migrating Solr Replicas
	Backing Up and Restoring Cloudera Search
	Backing Up a Solr Collection
	Restoring a Solr Collection
	Cloudera Search Backup and Restore Command Reference

	solrctl Reference

