Managing Apache Kudu Security

Date published:
Date modified:

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

| Contents | iii

Kudu SeCUrity CONSIAEr @tIONS......c.ueiieeriieeieerieeeeeeseeeeeesiee e sree e e see s e sneeenes 4
Kudu security lIMIitationS........ccocceeiieiiiccee et 4
Kudu authentiCation............oooeeiiiiie e 4
Kudu authentication With KErDEIOS..........couiiriiiriier s 5
Kudu aUtNeNtiCatioN TOKENS...........oeiiteiiteietere ettt ettt b e et et et r et r et r e 5
Client authentication t0 SECUre KUU CIUSIENS..........cceiiiieririerineseeiere ettt 5
Kudu coarse-grained authorization...........cccecveieeeieenee s 5
Kudu fine-grained authoriZation...........cccccveiieeieeciie e 6
Kudu and Apache RaNger INTEQratioN.........c.cecvieiiiriirieseriesesieseeseeeeseeessessessesrestesaessesteseeseessessessesssssssessesssssenses 6
KUudu aUtNOFIZBEION TOKENS......c.civreeiiirereereiesese ettt b st n s rer et r e 7
SPECITYING TIUSLEA USEIS......eecviiieieiitiiesesiesete e et e s e et e e s re st e s teseestestesae e enseaeneesseseeseeseesessesaestesteseeseeteneesennen 8
Kudu authoriZation POLICIES........cciiiieieeeeeiee st st e e e e sbesteseeseesteste st e ntense e eneeseeneeneerenees 8
1016 1= 10 LTS3 o g N U o [S 9
D1 o [Lo TR = F= ot o) o TSR 10
Configuring a secure Kudu cluster using Cloudera Managerc.ccccevcvveeene 10
Enabling Kerberos authentication and RPC enCIyPLioN..........cooereirieineineeneese e 10
Configuring custom Kerberos prinCipal fOr KUAU...........coreireiieiriieeseseee s 11
Configuring coarse-grained authorization With ACLS.........cociiiiriiineireeee e 11
Configuring TLS/SSL encryption for Kudu using Cloudera Manager..........cooeereereenieenieiesiee e 12
ENnabling RaNGEr QUENOMZALTION.coviuiieiieirei bbb bbb 13

Configuring HTTPS ENCIYPHION.ciuiuiiiiiriiiriiirie ettt bbbt b e 13

Kudu security considerations

Kudu includes security features that allow Kudu clusters to be hardened against access from unauthorized users.

Kudu uses strong authentication with Kerberos, and authorization with Ranger. Communication between Kudu clients
and servers, and between servers to other servers, can be encrypted with TLS. Kudu also supports HTTPS on the web
Ul.

These security features should work seamlessly in Impalaas well, aslong as Impala’ s user is given permission to
access Kudu.

Here are some limitations related to data encryption and authorization in Kudu.

» Dataencryption at rest is not directly built into Kudu. Encryption of Kudu data at rest can be achieved through the
use of local block device encryption software such as dmcrypt.

* Row-level authorization is not available.

* Kudu usesaninterna PKI system to issue X.509 certificatesto serversin the cluster. Asaresult you cannot run
Kudu with public I Ps.

» Server certificates generated by Kudu IPKI are incompatible with bouncycastle version 1.52 and earlier.

» Server certificates generated by Kudu IPKI are incompatible with bouncycastle version 1.52 and earlier.

» The highest supported version of the TLS protocol is TLSv1.2

« When you are creating a new Kudu service using the Ranger web Ul, the Test Connection button is displayed.
However, the TestConnection tab is not implemented in the Kudu Ranger plugin. Asaresult if you try to useit
with Kudu it will fails, but that does not mean that the service is not working.

Configure Kudu to enforce secure authentication among servers, and between clients and servers.

Authentication prevents untrusted actors from gaining access to Kudu, and securely identifies connecting users or
services for authorization checks. Authentication in Kudu is designed to interoperate with other secure Hadoop
components by utilizing Kerberos.

Kudu authentication is designed to scale to thousands of nodes, which means it must avoid unnecessary coordination
with a central authentication authority (such as the Kerberos KDC) for each connection.

Instead, Kudu servers and clients use Kerberos to establish initial trust with the Kudu master, and then use alternate
credentials for subsequent connections. The Kudu master issuesinternal X.509 certificates to tablet servers on startup,
and temporary authentication tokens to clients on first contact.

Kudu uses an internal PKI to issue X.509 certificates to serversin the cluster. Connections between peers who have
both obtained certificates will use TLS for authentication. In such cases, neither peer needs to contact the Kerberos
KDC.

X.509 certificates are only used for internal communication among Kudu servers, and between Kudu clients and
servers. These certificates are never presented in a public facing protocol. By using internally-issued certificates,

Kudu coarse-grained authorization

Kudu offers strong authentication which scales to huge clusters, and allows TL S encryption to be used without
reguiring you to manually deploy certificates on every node.

Y ou can configure authentication on Kudu servers. Authentication in Kudu is designed to interoperate with other
secure Hadoop components by utilizing Kerberos.

The --rpc_authentication flag is used to configure authentication on Kudu servers. In a Cloudera Manager managed
cluster that flag is configured using the Enable Secure Authentication And Encryption property. This property can
have the following values:

e Optional: Kudu will attempt to use strong authentication, but will allow unauthenticated connections. The
connection between servers will be encrypted. Thisisthe default value which isindicated by a clear checkbox.

* Required: Kudu will reject connections from clients and servers who lack authentication credentials. If you want
to secure your cluster you have to set the --rpc_authentication flag to this value, meaning that you have to select
the Enable Secure Authentication And Encryption property.

After authenticating to a secure cluster, the Kudu client will automatically request an authentication token from
the Kudu master. An authentication token encapsul ates the identity of the authenticated user and carries the Kudu
master's RSA signature so that its authenticity can be verified. This token will be used to authenticate subsequent
connections.

By default, authentication tokens are only valid for seven days, so that even if atoken were compromised, it cannot
be used indefinitely. For the most part, authentication tokens should be completely transparent to users. By using
authentication tokens, Kudu is able to take advantage of strong authentication, without paying the scalability cost of
communicating with a central authority for every connection.

When used with distributed compute frameworks such as Apache Spark, authentication tokens can simplify
configuration and improve security. For example, the Kudu Spark connector will automatically retrieve an
authentication token during the planning stage, and distribute the token to tasks. This allows Spark to work against a
secure Kudu cluster where only the planner node has Kerberos credentials.

Users running client Kudu applications must first run the kinit command to obtain a Kerberos ticket-granting ticket.
For example: kinit admin@EXAMPLE.COM

Once authenticated, you use the same client code to read from and write to Kudu servers with and without the
Kerberos configuration.

Kudu supports coarse-grained authorization checks for client requests based on the client's authenticated Kerberos
principal (user or service). Access levels are granted based on whitelist-style Access Control Lists (ACLS), one for
each level. Each ACL specifies acomma-separated list of users, or may be set to ™' to indicate that all authenticated
users have access rights at the specified level.

The two levels of access which can be configured are:

e Superuser - Principals authorized as a superuser can perform certain administrative functions such as using the
kudu command line tool to diagnose and repair cluster issues.

Kudu fine-grained authorization

e User - Principals authorized as a user are able to access and modify all datain the Kudu cluster. Thisincludes
the ability to create, drop, and alter tables, aswell as read, insert, update, and delete data. The default value for
the User ACL is"™*', which allows all users access to the cluster. However, if authentication is enabled, this will
restrict access to only those users who are able to successfully authenticate using Kerberos. Unauthenticated users
on the same network as the Kudu servers will be unable to access the cluster.

Note: Internally, Kudu has athird access level for the daemons themselves called Service. Thisisused to
ensure that users cannot connect to the cluster and pose astablet servers.

Kudu can be configured to enforce fine-grained authorization across servers.

Fine-grained authorization ensures that users can see only the data they are explicitly authorized to see. Kudu
supports this by leveraging policies defined in Apache Ranger.

Note: Fine-grained authorization policies are not enforced when accessing the web Ul. User data may appear
E on various pages of the web Ul (for example, in logs, metrics, scans). As such, it isrecommended to either
limit access to the web Ul ports, or redact or disable the web Ul entirely, as desired.

Learn about how Apache Ranger isintegrated with Kudu in order to provide fine-grained authorization across servers.
The Ranger models tabular objects are stored in a Kudu cluster in the following hierarchy: Database, Table, Column.

Note: Ranger allows you to add separate service repositories to manage privileges for different Kudu

B clusters. Depending on the value of the ranger.plugin.kudu.service.name configuration in the Ranger client,
Kudu knows which service repository to connect to. For more details about Ranger service repository, seethe
Apache Ranger documentation.

Database: Kudu does not have the concept of a database. Therefore, a database isindicated as a prefix of table names
with the format <database>.<table>. Since Kudu's only restriction on table names s that they be valid UTF-8 encoded
strings, Kudu considers special charactersto be valid parts of database or table names. For example, if a managed
Kudu table created from Impalais named impala::bar.foo, its database will be impala::bar.

Table: Isasingle Kudu table.
Column: Is a column within a Kudu table.

In Ranger, privileges are also associated with specific actions. Access to Kudu tables may rely on privileges on the
following actions:

« ALTER

» CREATE
« DELETE
« DROP

* INSERT
« UPDATE
e SELECT

There are two additional access types:

« ALL
« METADATA

If auser hasthe ALL privilege on aresource, they implicitly have privileges to perform any action on that resource
that does not require the users to be a delegated admin.

https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=57901344

Kudu fine-grained authorization

If auser isgranted any privilege, they are able to perform actions requiring METADATA (for example, opening a
table) without having to explicitly grant them METADATA privileges.

Ranger supports a delegate admin flag which is independent of the action type. It is not implied by ALL and does not
imply METADATA. Thisissimilar to the GRANT OPTION part of the ALL WITH GRANT OPTION in SQL asit
isrequired to modify privileges in Ranger and change the owner of a Kudu table.

Table creation requires CREATE ON DATABASE privilege. If the user creates a table with a different owner, ALL
and delegate admin are required.

Warning: A user with delegate admin privilege on aresource can grant any privilege to themselves and
others.

While the action types are hierarchical, in terms of privilege evaluation, Ranger does not have the concept of
hierarchy. For instance, if auser has SELECT privilege on a database, it does not imply that the user has SELECT
privilege on every table belonging to that database.

However, Ranger supports privilege wildcard matching. For example, db=a->table=* matches all the tables that
belong to database a. Therefore, in Ranger users actually need the SELECT privilege granted on db=a->table=*->c
olumn=* to allow SELECT on every table and every column in database a.

Nevertheless, with Ranger integration, when a Kudu master receives a request, it consults Ranger to determine what
privileges a user has. And the required policies documented in the <<security.adoc#policy-for-kudu-masters, policy
section>> are enforced to determine whether the user is authorized to perform the requested action or not.

Note: Even though Kudu table names remain case sensitive with Ranger integration, policies authorization is
E considered case-insensitive.

In addition to granting privileges to a user by username, privileges can also be granted to table owners using the
special { OWNER} username. These policies are evaluated only when a user tries to perform an action on atable
that they own. For example, apolicy can be defined for the { OWNER} user and db=*->table=* resource, and it will
automatically be applied when any table is accessed by its owner. Thisway administrators do not need to choose
between creating policies one by one for each table, and granting access to awide range of users.

Warning: If auser has ALL and delegate admin privileges on atable only by ownership and no privileges by
username, they can effectively lock themselves out by giving away the ownership.

Ranger User Guide

Learn about authorization tokens which are used by Ranger to propagate and check privileges.

Rather than having every tablet server communicate directly with the underlying authorization service (Ranger),
privileges are propagated and checked via authorization tokens. These tokens encapsulate what privileges a user has
on agiven table. Tokens are generated by the master and returned to Kudu clients upon opening a Kudu table. Kudu
clients automatically attach authorization tokens when sending requests to tablet servers.

Authorization tokens are a means to limit the number of nodes directly accessing the authorization serviceto retrieve
privileges. As such, since the expected number of tablet serversin a cluster is much higher than the number of Kudu
masters, they are only used to authorize requests sent to tablet servers. Kudu masters fetch privileges directly from the
authorization service or cache.

Similar to the validity interval for authentication tokens, to limit the window of potential unwanted accessif atoken
becomes compromised, authorization tokens are valid for five minutes by default. The acquisition and renewal of a
token is hidden from the user, as Kudu clients automatically retrieve new tokens when existing tokens expire.

When atablet server that has been configured to enforce fine-grained access control receives arequest, it checksthe
privilegesin the attached token, rejecting it if the privileges are not sufficient to perform the requested operation, or if
itisinvalid (e.g. expired).

https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=57901344

Kudu fine-grained authorization

Specifying trusted users

Y ou can specify which users can view and modify data stored in Kudu. Additionally, some services that interact with
Kudu may authorize requests on behalf of their end users.

About this task

It may be desirable to allow certain users to view and modify any data stored in Kudu. Such users can be specified
viathe --trusted_user_acl master configuration. Trusted users can perform any operation that would otherwise require
fine-grained privileges, without Kudu consulting the authorization service.

Furthermore, some services that interact with Kudu can authorize requests on behalf of their end users. For example,
Apache Impala authorizes queries on behalf of its users, and sends requests to Kudu as the Impala service user,
commonly "impala’. Since Impala authorizes requests on its own, to avoid extraneous communication between the
authorization service and Kudu, the Impala service user should be listed as atrusted user.

Note: When accessing Kudu through Impala, Impala enforces its own fine-grained authorization policy. This
E policy issimilar to Kudu's and can be found in the Impala authorization documentation.

Procedure

1. In Cloudera Manager, navigateto Kudu Configuration .
2. Find the Master Advanced Configuration Snippet (Safetz Valve) for gflagfile propertz.
3. Click View as XML and add the following configuration:

--trusted_user_acl =i npal a, hi ve, kudu, rangeradm n, [*** TRUSTED USER***]

e

Click Save Changes.
Restart the Kudu service.

o

Kudu authorization policies

Review the authorization policies that are enforced by Kudu masters and Kudu tablet servers.

Policy for Kudu masters

The following authorization policy is enforced by Kudu masters:

Table 1: Authorization Policy for Masters

Operation Required Privilege

CreateTable CREATE ON DATABASE

CreateTable with a different owner specified than the requesting user ALL ON DATABASE with the Sentry GRANT OPTION.

DeleteTable DROP ON TABLE

AlterTable (with no rename) ALTER ON TABLE

AlterTable (with rename) ALL ON TABLE <old-table> and CREATE ON DATABASE <new-
database>

|sCreateTableDone METADATA ON TABLE

IsAlterTableDone METADATA ON TABLE

ListTables METADATA ON TABLE

GetTablel ocations METADATA ON TABLE

GetTableSchema METADATA ON TABLE

https://impala.apache.org/docs/build/html/topics/impala_authorization.html#authorization

Kudu fine-grained authorization

Operation Required Privilege

GetTabletL ocations METADATA ON TABLE

Policy for Kudu tablet servers

The following authorization policy is enforced by Kudu tablet servers:
Table 2: Authorization Policy for Tablet Servers

Operation Required Privilege

Scan SELECT ON TABLE, or

METADATA ON TABLE and SELECT ON COLUMN for each
projected column and each predicate column

Scan (no projected columns, equivalent to COUNT (*)) SELECT ON TABLE, or
SELECT ON COLUMN for each column in the table

Scan (with virtual columns) SELECT ON TABLE, or
SELECT ON COLUMN for each column in the table

Scan (in ORDERED mode) <privileges required for a Scan> and SELECT ON COLUMN for
each primary key column

Insert INSERT ON TABLE

Update UPDATE ON TABLE

Upsert INSERT ON TABLE and UPDATE ON TABLE

Delete DELETE ON TABLE

SplitkeyRange SELECT ON COLUMN for each primary key column and SELECT O
N COLUMNfor each projected column

Checksum User must be configured in --superuser_acl

ListTablets User must be configured in --superuser_acl

Note: Unlike Impala, Kudu only supports all-or-nothing access to atable’' s schema, rather than showing only
authorized columns.

Ranger policies for Kudu
There are two Kudu related Ranger policies which are applied based on how you are accessing Kudu.
There are two resource-based services in Ranger that are used in relation to Kudu: cm_kudu and Hadoop SQL.

The Kudu service and its connected clients, such as Spark, native C++, and Java clients, use the cm_kudu resource-
based service.

The Hadoop SQL resource-based service is used by Hive and Impalawhen Kudu is accessed through them.

When Kudu is accessed by Impala, the Impala service performs actions as the impala user in Kudu. The impala user
isset asatrusted user in Kudu, meaning that privilege checks are completely bypassed and the impala user is granted
full access. Asaresult, thecm_kudu resource-based serviceis not applied, only the Hadoop SQL resource-based
service is used to check for permission and privileges.

Asaresult, when you are accessing Kudu through Hive or Impala, you must ensure that all applicable permission and
privileges are configured in the Hadoop SQL resource-based service.

Note: Ranger provides a client side cache that uses privileges and can periodically poll the privilege store for
any changes. When a change is detected, the cache is automatically updated.

Disabling redaction

Dataredaction is used to prevent sensitive data from being included in Kudu server logs or in the web Ul. Data
redaction is enabled by default but you can disable it using the —redact or the —webserver_enabled flag.

To prevent sensitive datafrom being included in Kudu server logs, all row datais redacted. Y ou can turn off log
redaction using the --redact flag.

To prevent sensitive data from being included in the web Ul, all row datais redacted. Table metadata, such astable
names, column names, and partitioning information is not redacted. Alternatively, you can choose to completely
disable the web Ul by setting the --webserver_enabled flag to false on the Kudu servers.

Note: Disabling the web Ul will also disable REST endpoints such as /metrics. Monitoring systems rely on
E these endpoints to gather metrics data.

1. In Cloudera Manager, navigateto Kudu Configuration .
2. Find the Kudu Service Advanced Configuration Snippet (Safety Valve) for gflagfile property.
3. If you want to disable log redaction, add the following configuration:

--redact =f al se

4, 1f you want to Web Ul disable redaction, add the following configuration:

--webserver enabl ed=f al se

5. Click Save Changes.
6. Restart the Kudu service.

Y ou can configure a secure Kudu cluster using Cloudera Manager. For that you need enabled Kerberos authentication
and RPC encryption, configure coarse-grained authorization, and configure HTTPS encryption. Optionally you can
configure custom Kerberos principal, TLS/SSL encryption or fine-grained authorization using Ranger.

Y ou must already have a secure Cloudera Manager cluster with Kerberos authentication enabled.

1. In Cloudera Manager, navigateto Kudu Configuration .
2. Inthe Search field, type Kerberos to show the relevant properties.

10

Configuring a secure Kudu cluster using Cloudera Manager

3.

Find and edit the following properties according to your cluster configuration:

Kerberos Principal Set to the default principal, kudu. Currently, Kudu does not support configuring a custom
service principal for Kudu processes.

Enable Secure Authentication And Select this checkbox to enable authentication and RPC encryption between all Kudu clients

Encryption and servers, as well as between individual servers. Only enable this property after you have

configured Kerberos.
If thisis not selected, security is not enforced but secured clients are not rejected either and the
connection will be encrypted if both sides support it.

Click Save Changes.
An error message displayed that tells you the Kudu keytab is missing.

Navigateto Administration Security .
Select the Kerberos Credentials tab.

On this page you will see alist of the existing Kerberos principals for services running on the cluster.

Click Generate Missing Credentials

Once the Generate Missing Credentials command has finished running, you will see the Kudu principal added to
thelist.

Y ou can configure a custom Kerberos principal for Kudu using Cloudera Manager.

B Note: By default, Cloudera Manager configures CDP services to use the default Kerberos principal names.

pw DN pR

Whileit is possible to customize the Kerberos principal names for most cluster services by setting various
configuration properties, it requires extensive custom configuration and, if absolutely required, we highly
recommend working closely with Cloudera Professional servicesin doing so.

In Cloudera Manager, navigateto Kudu Configuration .
Search for kerberos.
Find the Kerberos principal property and set it to the required name.

Click Save changes.
Custom Kerberos principal for Kudu is applied for not just the Kudu server but also for the Hive and Impala
clients.

For components that are not controlled by Cloudera Manager, configure the SASL protocol name.
Y ou must add the SASL protocol name configuration wherever the Kudu client properties, such as master
addresses, are configured.

For example, if the principal nameis kudu/_HOST set the protocol to kudu.

The coarse-grained authorization can be configured with the following two ACLs: the Superuser Access Control List
and the User Access Control List. The Superuser ACL isthelist of al the superusersthat can access the cluster. User-
level access can be controlled by using the User ACL. By default, all the users can access the clusters. But when you
enable authentication using Kerberos, only the users who are able to authenticate successfully can access the cluster.

11

Configuring a secure Kudu cluster using Cloudera M anager

Procedure

1. Go to the Kudu service.

2. Click the Configuration tab.

3. Select Category Security .

4. Inthe Search field, type ACL to show the relevant properties.

5. Edit the following properties according to your cluster configuration:

Field Usage Notes

Superuser Access Control List Add a comma-separated list of superusers who can access the cluster. By defaullt, this property is
left blank.

"' indicates that al authenticated users will be given superuser access.

User Access Control List Add a comma-separated list of users who can access the cluster. By default, this property is set
to"™*".

The default value of "*' allows all users access to the cluster. However, if authentication is
enabled, thiswill restrict access to only those users who are able to successfully authenticate
using Kerberos. Unauthenticated users on the same network as the Kudu servers will be unable
to access the cluster.

Add the impala user to thislist to allow Impalato query datain Kudu. Y ou might choose to add
any other relevant usernames if you want to give access to Spark Streaming jobs.

6. Click Save Changes.

Configuring TLS/SSL encryption for Kudu using Cloudera Manager

TLS/SSL encryption is enabled between Kudu servers and clients by default. Y ou can enable TLS/SSL encryption for
Kudu web Uls or configure the encryption using Cloudera Manager.

Procedure
1. In Cloudera Manager, navigateto Kudu Configuration .

2. Inthe Search field, type TLS/SSL to show the relevant properties.
3. Edit the following properties according to your cluster configuration:

Table 3: TLS/SSL Kudu properties

Property Description

Master TLS/SSL Server Private Key File (PEM Format) Set to the path containing the Kudu master host's private key
(Privacy Enhanced Mail (PEM)-format). Thisis used to enable TLS/
SSL encryption (over HTTPS) for browser-based connections to the
Kudu master web Ul.

Tablet Server TLS/SSL Server Private Key File (PEM Format) Set to the path containing the Kudu tablet server host's private key
(PEM-format). Thisis used to enable TLS/SSL encryption (over
HTTPS) for browser-based connections to Kudu tablet server web
Uls.

Master TLS/SSL Server Certificate File (PEM Format) Set to the path containing the signed certificate (PEM-format) for

the Kudu master host's private key (set in Master TLS/SSL Server
Private Key File). The certificate file can be created by concatenating
all the appropriate root and intermediate certificates required to
verify trust.

Tablet Server TLS/SSL Server Certificate File (PEM Format) Set to the path containing the signed certificate (PEM-format) for
the Kudu tablet server host's private key (set in Tablet Server TLS/
SSL Server Private Key File). The certificate file can be created by
concatenating all the appropriate root and intermediate certificates
required to verify trust.

Enable TLS/SSL for Master Server Enables HTTPS encryption on the Kudu master web UI.

12

Configuring a secure Kudu cluster using Cloudera M anager

Property Description

Enable TLS/SSL for Tablet Server Enables HTTPS encryption on the Kudu tablet server web Uls.

Enable Secure Authentication, Encryption, and Web Ul Enables Kerberos for Kudu servers, clients and web servers, and
enables encryption for Kudu servers and clients.

4. Click Save Changes.

Enabling Ranger authorization

Y ou can configure fine-grained authorization using Apache Ranger. This topic provides the steps to enable Kudu's
integration with Ranger from Cloudera Manager.

Procedure

1. From Cloudera Manager, goto Clusters Kudu Configurations .
2. Select the Ranger Service with which Kudu should authorize requests.

3. If Ranger high-availability is enabled for the cluster, add a Kudu service repository with the following
configurations through the Ranger Admin web Ul isrequired:

This exanpl e setup configures the Kudu service user as a privileged user
to be
able to retrieve authorization policies stored in Ranger.

<property>
<nanme>pol i cy. downl oad. aut h. user s</ nanme>
<val ue>kudu</ val ue>

</ property>

The name of the added Kudu service repository needs to match the one specified in ranger.plugin.kudu.service.n
ame of the Ranger client ranger-kudu-security.xml configuration file.

Note: When a Kudu client opens atable, the Kudu Master will authorize all possible actions the user

E may want to perform on the given table (ALL, and if it's not allowed, then INSERT, SELECT, UDPATE,
DELETE). Thisresultsin auditing these requests when a client opens atable, even if they’ll never do any
of these operations.

Configuring HTTPS encryption

Lastly, you enable TLS/SSL encryption (over HTTPS) for browser-based connections to both the Kudu master and
tablet server web Uls.

Procedure

1. Go to the Kudu service.

Click the Configuration tab.

Select Category Security .

In the Search field, type TLS/SSL to show the relevant properties.
Edit the following properties according to your cluster configuration:

Usage Notes

g s~ DN

Master TLS/SSL Server Private Key File | set to the path containing the Kudu master host's private key (PEM-format). Thisis used to
(PEM Format) enable TLS/SSL encryption (over HTTPS) for browser-based connections to the Kudu master
web Ul.

13

Configuring a secure Kudu cluster using Cloudera M anager

Field Usage Notes

Tablet Server TLS/SSL Server Private Set to the path containing the Kudu tablet server host's private key (PEM-format). Thisis used
Key File (PEM Format) to enable TLS/SSL encryption (over HTTPS) for browser-based connections to Kudu tablet
server web Uls.

Master TLS/SSL Server Certificate File | Set to the path containing the signed certificate (PEM-format) for the Kudu master host's private
(PEM Format) key (set in Master TLS/SSL Server Private Key File). The certificate file can be created by
concatenating all the appropriate root and intermediate certificates required to verify trust.

Tablet Server TLS/SSL Server Certificate | Set to the path containing the signed certificate (PEM-format) for the Kudu tablet server host's

File (PEM Format) private key (set in Tablet Server TLS/SSL Server Private Key File). The certificate file can be
created by concatenating all the appropriate root and intermediate certificates required to verify
trust.

Enable TLS/SSL for Master Server Enables HTTPS encryption on the Kudu master web Ul.

Enable TLS/SSL for Tablet Server Enables HTTPS encryption on the Kudu tablet server Web Uls.

6. Click Save Changes.

14

	Contents
	Kudu security considerations
	Kudu security limitations
	Kudu authentication
	Kudu authentication with Kerberos
	Kudu authentication tokens
	Client authentication to secure Kudu clusters

	Kudu coarse-grained authorization
	Kudu fine-grained authorization
	Kudu and Apache Ranger integration
	Kudu authorization tokens
	Specifying trusted users
	Kudu authorization policies
	Ranger policies for Kudu

	Disabling redaction
	Configuring a secure Kudu cluster using Cloudera Manager
	Enabling Kerberos authentication and RPC encryption
	Configuring custom Kerberos principal for Kudu
	Configuring coarse-grained authorization with ACLs
	Configuring TLS/SSL encryption for Kudu using Cloudera Manager
	Enabling Ranger authorization
	Configuring HTTPS encryption

