Managing Apache Hadoop YARN Services

Date published:
Date modified:

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

| Contents | iii

Configure YARN Services API to Manage L ong-running Applications............. 4
Configure YARN Services using Cloudera Managerccceeveeecieeseesieeesiensnnnn 4
Configuring Node Attribute for Application Master Placement............cccce...... 5
Migrating database configuration to a new location..........cccceceveeeerireceeseeceenne 5
RUNNING YARN SEIVICES.....cccuiiiiiectie ettt ee et e e nree s 9
Deploy and manage SErVICES ON YARN . ..o sttt be b sr e besee s e et e e e nneneenenns 9
LAUNCH @ YARN SEIVICE.....uiuiiiiiitiieteiete sttt sttt sttt sttt ettt s e beseebese ke seebe st e se st ene st et s be e ebeneebenenbenens 10

Save @ YARN SErVICE AEfiNITION.....cciciiei ettt sttt et et 10

Create New YARN SEIVICES USING Ul...o.viiiiiiccesceeee et st e ne s snesrennennen 10
Create a standard Y ARN SEIVICE.....couiiiiieieriee ettt sttt st st st 10

Create a CUSIOM YARN SEIVICE.....oiiiiieeieriee ettt st sttt st st ettt 11

Manage the YARN service life cycle through the REST APlccooecieiccreecese e 11
YARN SEVICES APl EXAMPIES.....ccuiiieieiitiieieseeete et e ettt esr et e e s aesa e aesae e eseeseeseeseeressesaessenteseeseens 12

Configure YARN Services APl to Manage Long-running
Applications

Y ou can usethe YARN Services API to manage long-running Y ARN applications.

Y ou can use the YARN Services API to deploy and manage the Y ARN services.

1. Usethe YARN Services API to run a POST operation on your application, specifying along or unlimited lifetime
in the POST attributes.

2. Usethe YARN Services API to manage your application.

« Increase or decrease the number of application instances.
« Perform other application life cycle tasks.

Configure YARN for long-running applications

Y ou can enable and configure the Y ARN Services feature using Cloudera Manager.

YARN Servicesis enabled by default to ensure that any program that is dependent on it, for example Hive LLAP, can
be installed. However you can disable it using Cloudera Manager.

If you want to actively use the YARN Services feature, Cloudera recommends to use Capacity Scheduler, whichis
the default scheduler, as only that scheduler type can fully support this feature.

In Cloudera Manager, select the Y ARN service.
Click the Configuration tab.

Select the YARN Services Management filter.
Ensure that Enable Y ARN Servicesis checked.

Configure the Y ARN Services Dependencies Path to specify the path where the Y ARN services dependencies
tarball is uploaded.

Cloudera recommends using the default path:

SEFCENE -

/user/yarn/services/service-framework/ ${ cdhVer si on}/servi ce-dep.tar. gz

6. Click Save Changes.

If you changed the Y ARN Services Dependencies path, do the following:
7. Click the Actions button.

8. Select Install YARN Services Dependencies.

https://docs.cloudera.com/runtime/7.2.15/yarn-security/topics/yarn-long-running-applications.html

Configuring Node Attribute for Application Master Placement

9. Confirm that you want to run the Install Y ARN Servioces Dependencies comment by clicking the Install YARN
Services Dependencies button.

10. Once the command is run successfully, close the status window.

11. Click the Stale Service Restart icon that is next to the service to invoke the cluster restart wizard.
12. Click Restart Stale Services.

13. Select Re-deploy client configuration.

14. Click Restart Now.

Use the Node Attribute property to describe the attributes of a Node. The placement preference assigns nodes as
worker nodes or compute nodes using the Node Attribute property. Application Master (AM) container is placed to
run on worker nodes instead of compute nodes. The worker group is more stable because Y ARN ResourceM anager
and HDFS NameNode run in it. Also, the worker group nodes are less likely to be shut down due to autoscaling.

By default, a script runs to tag nodes as worker nodes or compute nodes using the node attribute mapping rule. AM
containers are placed to run on worker nodes instead of compute nodes. Y ou can disable the script to not make a
placement preference for running AM containers.

1. In Cloudera Manager, click Clusters > YARN.

2. Go to the Configuration tab.

3. Search for NM YARN-STE.XML.

4. Set the below property using advanced configuration snippet (safety-valve).

Nane: yarn.nodemanager. node-attri butes. provi der
Val ue: config

5. Click Save.
Click Actions and select Restart to restart the service.

o

Note: To enable the node attribute placement preference again, follow the above steps and delete the
yar n. nodemanager . node- attri but es. provi der and confi g configuration. Restart the YARN
service after updating the configuration.

The operations performed on queues in Queue Manager Ul are stored as Queue Manager versions. Y ou can either
store these versions in the default database location on the host or configure a new location using Cloudera M anager
Ul.

By default, Queue Manager stores the operations performed on queues as versions in the config-service.mv.db
database file on the host. Alternatively, you can configure a new database file in a new location and migrate the
version information to the new file.

For security reasons, if you do not want to allow users to access the default database, you can move the database file
to an alternative location. During an upgrade, you can move the database file to some other location and then restore
thisfile to the default location after the upgrade.

Migrating database configuration to a new location

1. (Optional) You can view the version information in the Queue Manager Ul that needs to be migrated to a new
location.

M CLOUDZRA Cluster 1

Manager

Overview Configuration PlacementRules Partitions Schedule (EEIZETE)

Partition default Q sortby Capacity - High to Low

Level 1 Level 2

90% @ default

100% @ root

Mon Nov 22 09:05:35 UTC 2021 (current): Added root.Development

Mon Nov 22 09:04:53 UTC 2021: Deleted root.test

Mon Nov 22 09:04:52 UTC 2021: Changed child capacities for root
Wed Nov 17 17:17:53 UTC 2021: Deleted root.doctest

Wed Nov 17 17:17:52 UTC 2021: Changed child capacities for root
Wed Nov 17 17:17:44 UTC 2021: Stopped root.doctest

Wed Nov 17 17:17:40 UTC 2021: Deleted root.doctest.doc2

Wed Nov 17 17:17:34 UTC 2021: Stopped root.doctest.doc2

Wed Nov 17 17:17:30 UTC 2021: Deleted root.doctest.doc1

Wed Nov 17 17:17:29 UTC 2021: Changed child capacities for root.doctest

© Versions [Mon Nov 22 09:05:35 UTC 2021 (current): Added root.Development v]

Note: The following steps explain how to change the database to a new location and copy the existing
Queue Manager version information to the new database file. If you want to backup the currently used
database file to another location and not migrate, perform only Steps 7, 8, 9 to backup thefile.

Migrating database configuration to a new location

2. In Cloudera Manager, click Clusters > queuemanager

m CLOUD=RA
Manager

Charts

Administr

3. Go to the Configuration tab.

Home

ranger-v69oha

Hive

Hive Metastore
Knox
ZooKeeper

das

hdfs

hue

livy

00Zie
queuemanager
ranger-dwzvuy
spark_on_yarn
sgoop

tez

! yam

zeppelin

Compute Cluster, Cloudera Runtime 7.2.10 (Parcels)

Hosts

Roles

Host Templates
Parcels

Send Diagnostic Data

Reports

Utilization Report

YARN Applications

YARN Queue Manager Ul

Static Service Pools

Cloudera Management Service

Migrating database configuration to a new location

4. Specify the new filelocation like in Location for config-service DB. The config-service database location
should be prefixed with jdbc:h2:. For example: jdbc:h2:~/testDb,jdbc:h2:/var/lib/dbdir/test, and jdbc:h2:/var/lib/
***username* ** /db/config-service.

Note: The config-service database file name should not contain only special characters and dot (.)
E characters. Even though the file name is allowed during the creation of database from the Ul, in the
backend the .mv.db file is not created. Y ou must have the required permissions to the specified new file

L& queuemanager Actons- May 11, 6:34 AM UTC
Status Instances Configuration ~ Commands Charts Library Quick Links +
Q @ Filters Role Groups History & Rollback
Filters
Show All Descriptions
ZooKeeper Service ueuemanager (Service-Wide! o]
SCOPE p q g Wide) 0]
o zookeeper_service
queuemanager (Service-Wide) 11
YARN Queue k e 42
YARN Queue Manager Webapp 44 Enable Kerberos Authentication queuemanager (Service-Wide) * @
kerberos.auth.enabled
CATEGORY 02 kerberos.auth.enabled
Advanced 17 Location for config-service DB YARN Queue Manager Store Default Group o}
Logs 8
Main jdbeh2:~/config-service
Monitoring 18

5. Click Save Changes.
6. Click Actions and select Restart.

CLOUDZRA ¢
ranner-vAanh:
o] GETerE ranger-v69oha

searcn | ‘2 queuemanager |-

B Clusters

Status Instances Configuration Cd
Restart
| Stop
Q
Enter Maintenance Mode
Filters
Refresh YARN Queue Manager Webapp
SCOPE Refresh YARN Queue Manager Store
queuemanager (Service-Wide) 11

After you add the new database |ocation in the Queue Manager service configuration, there will be asimilar
.mv.db fileand .trace.db file in the new location.

7. SSH into the host machine running the Y ARN Queue Manager service.

ssh [***your usernane***] @ ***queue_nanager host i p_address***]

8. Navigate to the directory where the configuration databasefile is stored.

cd /var/lib/hadoop-yarn/
9. Find the default location of the initial database file.

find / -name "config-service.nv.db"
/var/li b/ hadoop-yarn/config-service. nv. db

The complete path to the .db file is displayed.

Running YARN Services

10. Replicate the permission at the directory level for the new database |ocation and verify if the database directory
level permissions are the same.
11. Copy the contents of the old file .mv.db file to the new .mv.db file.

cp config-service.mv.db new | ocation-config-service.nv.db

12. Typey to overwrite thefile.
13.In Cloudera Manager, click Clusters > queue manager. Click Actions and select Restart to restart the service.

Y ou have now changed the location of the database file. All queue information is now available in the new file and
can be viewed from the Queue Manager Ul.

You can use YARN Services API to manage Y ARN services. You can use the YARN CLI to view the logs for
running applications. In addition, you can use YARN distributed cache to deploy multiple versions of Mapreduce.

Previoudly, deploying a new service on Y ARN was not a simple experience. The APIs of existing frameworks
were either too low level (native Y ARN), required writing new code (for frameworks with programmatic APIs), or
reguired writing a complex specification (for declarative frameworks). Apache Slider was developed to run services
such as HBase, Storm, Accumulo, and Solr on Y ARN by exposing higher-level APIsthat supported running these
services on YARN without modification.

The new YARN Services APl greatly simplifies the deployment and management of Y ARN services.

Using the YARN Services API, you can run simple and complex template-based apps on containers.

Without having the need to write new code or modify your apps, you can create and manage the life cycle of these
YARN services.

"name": "sl eeper-service",

"version": "1.0.0",

"conmponents" : [

{

"nanme": "sl eeper",
"nunber of containers": 2,
"l aunch_command": "sleep 900000",
"resource": {
"cpus": 1,
"menory": "256"

Each servicefile contains, at aminimum, a name, version, and list of components. Each component of a service has
aname, anumber of containers to be launched (also referred to as component instances), a launch command, and an
amount of resources to be requested for each container.

Components optionally also include an artifact specification. The artifact can be the default type (with no artifact
specified, like the sleeper-service example above) or can have other artifact types such as TARBALL, or SERVICE.

Running YARN Services

Launching a service saves the service file to HDFS and starts the service.

Run the following command to launch the sleeper service example. This sleeper example is provided with YARN, so
it can be referred to by the name ;deeper; or the path to the JSON file can be specified:

yarn app -launch sl eeper-service <sleeper OR /path/to/sleeper.json>

This command saves and starts the sleeper service with two instances of the sleeper component. The service could
also be launched by making callsto the REST API instead of using the command line. The service can be stopped and
destroyed as follows. The stop command stops the service from running, but leaves the service JSON file stored in
HDFS so that the service could be started again using a start command. The destroy command stops the serviceif it is
running and removes the service information entirely.

yarn app -stop sl eeper-service

yarn app -destroy sl eeper-service

You can save aservice YARN fileinitially without starting the service and later refer to this service YARN file while
launching other services.

Run the following command to save the simple-httpd-service YARN file:
yarn app -save sinple-httpd-service /path/to/sinple-httpd-service.json

Saving or launching the service from a'Y ARN file stores amodified version of the YARN filein HDFS. This service
specification can then be referenced by other services, alowing users to assemble more complex services.

The YARN Web User Interface enables you to define new services. Y ou can either create standard services by
providing their details or custom services by using JSON files containing the required definitions.

Y ou can create a standard service as atemplate and deploy it based on your requirements.

1. On the Services page of the Y ARN Web User Interface, click New Service.
2. Inthe User name for service field, specify the name of the user who launches the service.
3. Enter the service definition details.

» Service Name: Enter a unique name for the application.

* Queue Name: Enter the name of the Y ARN queue to which this application should belong.

» ServiceLifetime: Life time of the application from thetimeitisin STARTED statetill thetimeitis
automatically destroyed by YARN. If you want to have unlimited life time, do not enter any value.

« Service Components. Enter the details of the service components such as component name, CPU required,
memory, number of containers, artifact ID, and launch command. If it is an application like HBase, the

10

Running YARN Services

components can be asimple role like master or RegionServer. For a complex application, the components can
be other nested applications with their own details.

» Service Configurations: Set of configuration properties that can be ingested into the application components
through environments, files, and custom pluggable helper docker containers. Y ou can upload files of several
formats such as propertiesfiles, JSON files, XML files, Y AML files, and template files.

» FileConfigurations: Set of file configurations that needs to be created and made available asavolumein an
application component container. Y ou can upload JSON file configurations to add to the service.

4. Click Save.
5. Specify aname for the new service and click Add.
The newly created serviceis added to thelist of saved templates.

E Note: Click Reset if you do not want to save your changes and specify the service details again.

6. Select the service and click Deploy to deploy it.

Y ou can define aservice in JSSON format and save it as atemplate.

On the Services page of the YARN Web User Interface, click New Service.

Click the Custom tab.

In the User name for service field, specify the name of the user who launches the service.
In the Service Definition field, specify the service definition in JSON format.

The following example shows the sleeper service template definition.

{
"name": "sl eeper-service",
"version": "1.0.0",
"conponent s"
[
{
"name": "sl eeper",
"nunmber _of containers": 2,
"l aunch_command": "sleep 900000",
"resource": {
"cpus": 1,
"menory": "256"
}
}

> w DN

]
}

5. Click Save.
6. Specify aname for the new service and click Add.
The newly created service is added to the list of saved templates.

B Note: Click Reset if you do not want to save your changes and specify the service details again.

7. Select the service and click Deploy to deploy it.

Y ou can perform various operations to manage the life cycle of aY ARN service through the REST API.

11

Running YARN Services

Use the following endpoint to create a service:
POST /app/vl/services
The execution of this command confirms the success of the service creation request. Y ou cannot be sure if the service

will reach arunning state. Resource availability and other factors will determineif the service will be deployed in the
cluster. You haveto call the GET API to get the details of the service and determine its state.

Y ou can update the runtime properties of aservice. Y ou can update the lifetime, and start or stop a service. Y ou can
also upgrade the service containers to a newer version of their artifacts.

Use the following endpoint to update the service:

PUT /app/vl/services/{service_nane}

Use the following endpoint to destroy a service and release al its resources.

DELETE / app/ vl/ servi ces/ {service_nane}

Use the following endpoint to view the details (including containers) of arunning service.

CET /app/vl/ services/{servi ce_nane}

Use the following endpoint to set a component's desired number of instances:

PUT /app/vl/services/ {service_nane}/conponents/{conponent _nane}

You can usethe YARN Services API for situations such as creating a single-component service and performing
various operations on the service.

» Create asimple single-component service with most attribute values as defaults
POST URL — http://localhost:8088/app/v1/services
POST Request JSON

{

"nane": "hello-world",
"version": "1",
"conmponents": [

"name": "hello",
"nunmber _of containers": 1,
"artifact": {

12

Running YARN Services

"id": "nginx:|latest",
"type": "DOCKER'

"l aunch_conmmand": "./start ngi nx.sh",

"resource": {
"cpus": 1,
"menory": "256"

}

}
]
}
GET Response JSON

GET URL - http://local host:8088/app/v1/services/hello-world

Note that alifetime value of -1 means unlimited lifetime.

{
"nanme": "hello-world",
"version": "1",
"id": "application_ 1503963985568 0002",
"lifetime": -1,

"conponents": [

"name": "hello",

"dependencies": [],

"resource": {
"cpus": 1,
"menory": "256"

}

onfiguration": {
"properties": {},
"env": {},
"files": []

}l

"qui cklinks": [],

"containers": [

{

"id": "container_e03 1503963985568 0002 01 000001",
"“ip": "10.22.8.143",
"host name": "nyhost. | ocal ",
"state": "READY",
"launch_tinme": 1504051512412,
"bare_host": "10.22.8. 143",
"conmponent _nane": "hell o-0"

"id": "container_e03 1503963985568 0002 01 000002",
"ip": "10.22.8.143",

"host name": "nmyhost. | ocal ",

"state": "READY",

"l aunch_tinme": 1504051536450,

"bare_host": "10.22.8. 143",

"conmponent _name": "hell o-1"

}

aunch_comuand": "./start_ngi nx.sh",
"nunber _of containers": 1,
“run_privil eged_container": false

]

}

,onfi guration": {
“properties": {},

]

13

Running YARN Services

"env": {},

"files": []
l’uicklinks": 0
}

Update the lifetime of a service
PUT URL - http://localhost:8088/app/v1/services/hello-world
PUT Request JSON

Note that irrespective of what the current lifetime value is, this update request will set the lifetime of the service
to 3600 seconds (1 hour) from the time the request is submitted. Therefore, if a service has remaining lifetime
of 5 minutes (for example) and would like to extend it to an hour, OR if an application has remaining lifetime of
5 hours (for example) and would like to reduce it down to one hour, then for both scenarios you would need to

submit the following request.

"lifetime": 3600
}

Stop aservice
PUT URL - http://local host:8088/app/v1/services/hello-world
PUT Request JSSON

{
"state": " STOPPED"
}
Start aservice

PUT URL - http://localhost:8088/app/v1/services/hello-world
PUT Request JSON

{
}

Increase or decrease the number of containers (instances) of a component of a service
PUT URL - http://localhost:8088/app/v1/services/hello-world/components/hello
PUT Request JSON

"state": "STARTED'

"nunber _of containers": 3

}

Destroy a service

DELETE URL - http://localhost:8088/app/v1/services/hello-world
Create a complicated service — HBase

POST URL - http://local host:8088/app/v1/serviceshbase-app-1

"nanme": "hbase-app-1",
"lifetime": "3600",
"version": "2.0.0.3.0.0.0",
"artifact": {

"id": "hbase:2.0.0.3.0.0.0",

14

Running YARN Services

"type": " DOCKER'

"E:onfi guration": {
"env":
"HBASE_LOG DIR': "<LOG DI R>"

I
"files": [
{
"type": "TEMPLATE",
"dest file": "/etc/hadoop/conf/core-site.xm",
"src_file": "core-site.xm"
I
{
"type": "TEMPLATE",
"dest file": "/etc/hadoop/conf/hdfs-site.xm",
"src_file": "hdfs-site.xm"
¥
{
"type": "XM.",
"dest _file": "/etc/hbase/conf/hbase-site.xm",
"properties": {
"hbase. cluster.distributed": "true",
"hbase. zookeeper. quoruni: "${CLUSTER ZK_QUORUM ",
"hbase.rootdir": "${SERVI CE HDFS Dl R}/ hbase",
"zookeeper. znode. parent": "${SERVI CE_ZK PATH}",
"hbase. mast er. host nane": "hbasenmast er - 0. ${ SERVI CE_NAME} . ${ USER} .
${ DOVAI N} ",
"hbase. master.info.port": "16010"
}
}
]
1
"conponents": [
{
"nanme": "hbasenaster",
"nunber _of containers": 1,
"l aunch_command": "sl eep 15;/opt/cl ouderal parcel s/ CDH <ver si on>/ bi n/

hbase master start",
"resource": {
"cpus": 1,
"menory": "2048"

¥
"configuration": {
"env":
"HBASE_MASTER_OPTS": "-Xmx2048m - Xns1024nf
}
}
I
{ .
"nanme": "regionserver",
"nunmber _of containers": 1,
"l aunch_conmmand": "sleep 15; /opt/cl ouderal parcel s/ CDOH <ver si on>/ bi

n/ hbase master start”,
"dependenci es": |
"hbasenmast er"
]1
"resource": {
"cpus": 1,
"menory": "2048"

}l
"configuration": {
"files": [
{
"type": "XM",

15

Running YARN Services

"dest file": "/etc/hbase/conf/hbase-site.xm",
"properties": {
"hbase. r egi onserver. host nane": " ${ COVPONENT_| NSTANCE NAME} .
${ SERVI CE_NAMNE} . ${ USER} . ${ DOVAI N}
}

}

nv":
"HBASE REGQ ONSERVER OPTS": "-XX: CVBl niti ati ngCccupancyFracti on=
70 - Xmx2048m - Xms1024nt

}
}

]

3
{

"nane": "hbaseclient",
"nunber _of containers": 1,
"l aunch_command”: "sleep infinity",
"resource": {
"cpus": 1,
"menory": "1024"
}
}
1,
"qui cklinks": {
"HBase Master Status U ": "http://hbasemaster-0.${SERVI CE NAME}. ${ US
ER} . ${ DOVAI N} : 16010/ nast er - st at us"
}

}

16

	Contents
	Configure YARN Services API to Manage Long-running Applications
	Configure YARN Services using Cloudera Manager
	Configuring Node Attribute for Application Master Placement
	Migrating database configuration to a new location
	Running YARN Services
	Deploy and manage services on YARN
	Launch a YARN service
	Save a YARN service definition
	Create new YARN services using UI
	Create a standard YARN service
	Create a custom YARN service

	Manage the YARN service life cycle through the REST API
	YARN services API examples

