Cloudera Runtime 7.2.16

Introduction to HBase MCC

Date published: 2022-08-10
Date modified: 2022-08-10

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

I ntroduction to HBase Multi-cluster Client.........cccoveiiiieneeneeeeeeeee 4
HBase MCC Usage With KEMEIOS.........c.iiiiiicree et e 5
HBase MCC Usage in Spark With SCAlL.........ccurueirieiieicee e e 7
HBase MCC Usage in SPark WIth JAVAL..........eciiiiiiiie e 13
ZOOKEEDE!r CONFIGUIBLIONS.cueeieeteeerteiete ettt sttt ettt e e bbb e bt e bt se bt s b e st b st b e et e et e s ebenenan 14
HBESE MCC CONFIQUIBLIONS........eutiteuirteeeteestereete sttt sttt se et see e sb ettt b et b et b e st et st b e se e b se bt ne st s b e st be st be et 14

HBASE MCC RESITICHIONS. ... uviiiiueieiitiieeetteeseeeeseitesessseesseseessastessasssessaseessaseeesasssssbesssasesssasessssbeessssenssasseesssenes 15

Cloudera Runtime Introduction to HBase Multi-cluster Client

Introduction to HBase Multi-cluster Client

Learn about the HBase Multi-cluster Client (MCC) and ways to switch between the single HBase clusters and Multi-
HBase clients. Explore HBase MCC usage with Kerberos with examples. Implement your HBase clientsin Spark
using Scala or Java.

Cloudera Operational Database (COD) supports HBase MCC that ensures high availability and better performance.
HBase MCC relies on the existing HBase replication functionality to provide an eventually consistent solution in
cases of primary cluster downtime.

HBase MCC offers the following benefits:

» Switch between single HBase clusters and Multi-HBase Client with limited code changes.
e Support multiple number of linked HBase clusters.
« Continue to keep applications running without disrupting a cluster during an upgrade or outage.

Figure 1: HBase MCC architecture

Cluster1
TableMultiCluster

Primary: Cluster 1
Failover: Cluster 2

HBase Replication

Cluster 2
TableMultiCluster

Primary: Cluster 1
Failover: Cluster 2

Cluster 1 - Offline

TableMultiCluster
Primary: Cluster 1
Failover: Cluster 2

HBase Replication

TableMultiCluster
Primary: Cluster 1
Failover: Cluster 2

Cloudera Runtime Introduction to HBase Multi-cluster Client

Y ou can configure HBase M CC with Kerberos authentication for enhanced security and better performance.

When you build a client application and want to add the configurations as resources, you must configure the client
resources as follows:

¥ (B src/main/resources
¥ (= cluster
X| core-site.xml
|X| hbase-site.xm
|=| kerberos.properties
Pk (= cluster2
» = cluster3

» Each cluster folder inside the client application (src/main/resources) must be named with a lowercase "cluster”
followed by a sequence starting with 1 and through the “n” number of clusters.

» Thefirst cluster directory is configured as primary, each additional as afailover.

« There must be at least one folder available in the classpath.

Each folder must contain the following threefiles:

1. hbase-site.xml
2. core-sitexml
3. kerberos.properties

The kerberos.properties file must be configured as a key value property using the folowing two configurations:

1. principal
2. keytab

For example,

pri nci pal =your user/your host @GEXAMPLE. COM
keyt ab=/ pat h/t o/ your user . keyt ab

The following Java example of amulti-cluster client MultiClusterConf multiClusterConf = new Multi ClusterConf
(true) shows that the default constructor is passed as true that creates an instance of an HBase configuration for each
cluster assuming default configurations and no override.

package org. your. donmi n.test package;

i mport org.apache. conmons. | ang. StringUtils;

i mport org.apache. commons. | oggi ng. Log;

i mport org. apache. conmons. | oggi ng. LogFact orvy;
i mport org. apache. hadoop. hbase. Tabl eNane;

i nport org. apache. hadoop. hbase. cl i ent. *;

i mport org. apache. hadoop. hbase. util . Bytes;

public class AutoConfigd assPath {
static final Log | og = LogFactory. get Log(Aut oConfi gCl assPat h. cl ass);
public static void main(String[] args) throws Exception{
Mul ti ClusterConf nultiC usterConf = new Multi C usterConf(true); //autoCo
nfigure = true
Connecti on connection = ConnectionFactoryMilti d usterWapper. creat eConn
ectionMil ti Ugi (nmul ti C usterConf);

Cloudera Runtime Introduction to HBase Multi-cluster Client

String tabl eNane = "test_table";
String fani | yNane = "cf1";
i nt number Of Puts = 10;
int mlliSecondsOFWait = 200;
Tabl e tabl e = connecti on. get Tabl e(Tabl eNane. val ueX (t abl eNane)) ;
for (int i =1; i <= nunberOPuts; i++) {
| og.info("PUT");
Put put = new Put (Bytes.toBytes(i %10 + ".key." + StringUils.|eftPad(
String.valueO (i), 12)));
put . addCol unm(Byt es. t oByt es(fami | yNane), Bytes.toBytes("C'), Bytes.toBy
tes("Value:" +1i));
tabl e. put (put);
Thread. sl eep(mi | li SecondsOf Wait);

| og.info("d osing Connection");
connection. cl ose();

| og.info(" - Connection O osed");
System exit(0);

}

java -cp "hbase-ntc-0. 2. 0- SNAPSHOT. j ar:/path/to/clusters/:/opt/clouderal parc
el s/ CDH/ jars/*" org. your.donai n.testpackage. Aut oConfi gCl assPat h

E Note: You can aso build and execute with src/main/resources configured with cluster directories.

Y ou can use autoConfigure to override any parameter in the configuration file, and if the parameter impacts MCC,
you must configure with "cluster1”.

Y ou can use the multiClusterConf method to change the parameter in the Java program directly. The following
exampl e shows setting the parameter and referencing the index of "clusterl" to impact MCC.

Mul ti d usterConf nultid usterConf = new Multi ClusterConf(true, false); //au
toConfigure = true, addResourceOnStart = fal se
mul ti Cl ust er Conf . set ("hbase. ntc. fail over. node", "fal se", 0);

However, it is recommended not to use the previous method; instead update the Java configuration files. Refer to the
following code snippet.

package com cl ouder a. hbase. ntc. exanpl es;

i mport com cl ouder a. hbase. ntc. *;

i mport org. apache. hadoop. hbase. client. *;

i mport org. apache. hadoop. hbase. Tabl eNane;
i mport org. apache. hadoop. hbase. util . Bytes;
i mport org.slf4j.Logger;

i mport org.slf4j.LoggerFactory;

public class Buil derPatternExanpl e {
private static final Logger LOG = Logger Factory. get Logger (Buil derPattern
Exanpl e. cl ass) ;
public static void main(String[] args) throws Exception {
Mul ti C usterConf nultiC usterConf = new Multi ClusterConf.MiltiCu
st er Conf Bui | der ()
. addd ust er Confi g(new O ust er Confi g. d ust er Confi gBui | der ()
.coreSite("/Users/tkreutzer/Docunent s/ hbase/ cl uster
1/ core-site.xnm ™)
. hbaseSi te("/ Users/tkreutzer/ Docunent s/ hbase/ cl ust
er 1/ hbase-site. xm")
.principal ("clusterltls/serverl. exanple.sited@LSl1.C
ov')

Cloudera Runtime Introduction to HBase Multi-cluster Client

. keytab("/ Users/tkreutzer/Docunment s/ hbase/ cl uster 1/
clusterltls_host. keytab")

L bui 1 d()
.set("hbase.client.retries.nunber", "1")
.set ("hbase. cl i ent. pause", "1"))

.set ("zookeeper.recovery.retry", "0"))

. addd ust er Confi g(new C ust er Confi g. d ust er Confi gBui | der ()

.coreSite("/Users/tkreutzer/Docunents/hbase/ cl ust
er2/core-site.xm")

. hbaseSi te("/ Users/tkreut zer/ Docunent s/ hbase/ cl ust er
2/ hbase-site.xnm ™)

.principal ("cluster2tls/server?2. exanpl e.site@LS2
. Cav')

. keytab("/ Users/tkreutzer/Docunment s/ hbase/ cl ust er 2/
cluster2tls_host. keytab")

Lbui 1 d()
.set("hbase.client.retries. nunber”, "1")
.set ("hbase. cl i ent. pause", "1"))

Cbui 1 d();

Connecti on connecti on = Connecti onFactoryMul ti C uster W apper. creat
eConnectionMil ti Ugi (nul ti C uster Conf);
String tabl eNane = "test _table";
String fam | yName = "cf1";
i nt number Of Puts = 3000;
int mlliSecondsOFWait = 200;
Tabl e tabl e = connecti on. get Tabl e(Tabl eNane. val ue (t abl eNane)) ;
for (int i =1; i <= nunberOPuts; i++) {
LOG i nf o(" PUT");
Put put = new Put (Bytes.toBytes("key" + i));
put . addCol uim(Byt es. t oByt es(fam | yNane), Bytes.toBytes("C'),
Bytes.toBytes("Value:" + i));
tabl e. put (put);
Thread. sl eep(milli SecondsOfWait);

}

LOG i nfo("d osi ng Connection");
connecti on. cl ose();

LOG info(" - Connection d osed");
System exit(0);

The Spark implementation does not support multiple keytabs. Y ou must configure and enable the cross-realm
kerberos for Spark to operate properly.

Y ou do not need to distribute the keytabs or configuration files on the cluster, instead make them available on the
edge node from which you start the Spark application. The principa and keytab are referenced twice. First, the
credentials must be passed to start the application on the cluster and second, they must be made available to the code
responsible for creating credentials for each cluster.

Spark driver writes the credentials to HDFS and later executors obtain and apply them before any code is executed. A
process for both the driver and executor is started to ensure the credentials are refreshed in atimely manner.

The following example uses a constructor method for the HBase M CC configuration. It assumes that you are passing
hbase-site.xml and core-site.xml into your executable main method. While using this utility, you must modify the
configurations using the configuration files only. This utility does not support Spark streaming.

Cloudera Runtime Introduction to HBase Multi-cluster Client

To start the Spark application when the primary cluster's HBase is down, use the following parameter:
--conf "spark.security.credential s. hbase. enabl ed=f al se"

Y ou must override the HBase User Pr ovi der classwiththe User Provi der Mul ti Cl ust er class. If you are
using the constructor method, thisis set automatically.

val HBASE_CLI ENT_USER_PROVI DER CLASS = "hbase. client. userprovider.cl ass"
nccConf . set (HBASE CLI ENT_USER PROVI DER_CLASS, Confi gConst. HBASE MCC USER PR
OVl DER)

Example command:

spark-submit --class com cl oudera. hbase. ntc. scal a. t est. Spar kToHbase \
--jars "/tnp/ hbase-ntc-0. 2. 0- SNAPSHOT. j ar" \

--driver-class-path "hbase-ntc-0.2. 0- SNAPSHOT. j ar" \

--conf "spark. executor. extraC assPat h=hbase-ntc-0. 2. 0- SNAPSHOT. j ar " \
--conf "spark. hbase. connector. security.credential s. enabl ed=true" \

--conf "spark.yarn. princi pal =exanpl euser/ exanpl e. kdc. server. com@&XAMPLE. COM'
\

--conf "spark.yarn. keyt ab=/t np/ confi gs/ exanpl euser. keyt ab" \

--conf "spark.security.credential s. hbase. enabl ed=f al se" \

--files /tnp/configs/hbase-sitel.xm ,/tnp/configs/core-sitel.xm ,/tnp/con
figs/ hbase-site2.xm ,/tnp/configs/core-site2. xm \

--princi pal exanpl euser/ exanpl e. kdc. server. coma@&XAMPLE. COM \

--keytab /tnp/configs/exanpl euser. keytab \

--master yarn --depl oy-node cluster /tnp/Scal aHbaseTest.jar hbase-sitel. xm
core-sitel. xm hbase-site2.xm core-site2.xmn

Example code: you can view the example code on this GitHub repository.
Breakdown of the code execution:

« Thefirst part of the code sets up HBase to override the connection implementation in hbase-spark along
with setting up variables containing configuration information for the two clusters. A recent addition is
HBASE CLI ENT_USER PROVI DER_CLASS used in MCC to allow Spark to start jobs where an HBase cluster
may be down for maintenance.

val HBASE_CLI ENT_CONNECTI ON_| MPL = "hbase. cl i ent. connection.inpl”
val HBASE CLI ENT_USER PROVI DER CLASS = "hbase. client. userprovider.cl as

5"

val CONNECTI ON_| MPL = "com cl ouder a. hbase. ntc. Connecti onMul ti Cl uster”

val prinmaryHBaseSite = args(0)

val prinmaryCoreSite = args(1)

val failoverHBaseSite = args(2)

val failoverCoreSite = args(3)

» HBase MCC provides a base configuration that stores the configurations for the MCC applications. The first step
isto create an instance of the configuration and set the override from the variables above. For spark, it isaso
required to set the hbase. ntc. user Nanme and hbase. ncc. appl i cati onl d. These are used to write the
delegation tokensinto HDFS; in addition, it isrequired to set f s. def aul t FS from the current Spark execution.

val nccConf = new Mil ti C ust er Conf
nccConf . set (HBASE_CLI ENT_CONNECTI ON_| MPL, CONNECTI ON_| MPL)
//Sets the default FS to that of the cluster subnitting the spark job
nccConf . set (CommonConfi gurati onKeysPubl i c. FS_DEFAULT _NAME_KEY, sc. ha
doopConfi gurati on. get (CommonConf i gur ati onKeysPubl i c. FS_DEFAULT_NAME_KEY))
nccConf . set ("hbase. mt. user Nane", sc. sparkUser)
nccConf . set ("hbase. ntc. appl i cationld", sc.applicationld)

8

https://github.com/cloudera/cod-examples/blob/main/hbase-mcc/SparkToHbase.scala

Cloudera Runtime Introduction to HBase Multi-cluster Client

» TheHBase configurations are stored independently and prefixed when loaded into the application to maintain
isolation between each cluster configuration and the base MCC configuration. The following code segment shows
HBase execution related parameters, which you plan to override.

val primary = HBaseConfiguration.create()
pri mary. addResour ce(new Pat h(pri mar yHBaseSi t e))
pri mary. addResour ce(new Pat h(pri maryCoreSite))

primary.set ("hbase.client.retries.nunber", "1"); //Override Default
Par anet er s
primary. set ("hbase. client.pause", "1"); //Override Default Parameters
primary. set ("zookeeper.recovery.retry", "0"); //COverride Default Param
eters

val failover = HBaseConfiguration.create()
fail over. addResource(new Pat h(fail over HBaseSite))
fail over.addResour ce(new Pat h(fail overCoreSite))

fail over.set("hbase.client.retries. nunber", "1"); //COverride Default
Par anmet er s
fail over.set("hbase.client.pause", "1"); //Override Default Parameters

« Once the configurations for each HBase cluster have been created, it istimeto call the code that manages the
delegation tokens for the clusters. This process returns the token name to the configuration and ensures that the
executor is reading the proper tokens and applying the credentials.

val credential sManager = Credenti al sManager. getl nstance

pri mary. set (Confi gConst . HBASE MCC TOKEN FI LE_NAME, credenti al sManage
r. conf TokenFor Cl ust er (pri maryHBaseSite, primaryCoreSite, sc))

fail over.set(ConfigConst. HBASE_ MCC_ TOKEN_FI LE_NAME, credenti al sManager
. conf TokenFor Cl uster (fail overHBaseSite, failoverCoreSite, sc))

« Each of the final cluster configurations must be added to the MCC configuration and the following function
prefixes al of the parameters for each cluster. As the hbase-spark implementation only takes asingle
configuration, everything is merged into an Uber configuration.

nccConf . addd ust er Confi g(pri mary)
nccConf . addd ust er Confi g(fail over)

« TheHBaseCont ext from hbase-spark is created and the dataframe APl is used asin any other case for Spark.
i mport spark.inplicits.

new HBaseCont ext (sc, nctcConf. get Confi guration())

val rdd = sc.parallelize(Seq(("rowkey","SparkToHbase","0","","1")))

val df _wi thcol = rdd.toDF("rowKey", "application", "batchld", "tinmeS
tanmp", "l oaded events")

| ogger.info("Data frame to Hbase : " + df_withcol.show))

val hbaseTabl eNanme = "test table"

val hbaseTabl eSchema ="""rowKey STRI NG : key, application STRI NG cf 1:
APP, batchld STRING cf1:BID, tinmeStanp STRING cf1: TS, |oaded_events STRI NG

cf1: PR'""

| ogger.info("Started witing to Hbase")
df _withcol.wite.format("org.apache. hadoop. hbase. spar k")
.options(Map("hbase. col ums. mappi ng" -> hbaseTabl eSchema, "hbase.tab
| e" -> hbaseTabl eNane))
. save()
| ogger.info("Conpleted witing to hbase")

The following example shows an application to an HDFS directory for new files. When afile is added, it counts each
of the words, keeping record of the count for any previously read file and then updates HBase with the new count.

9

Cloudera Runtime Introduction to HBase Multi-cluster Client

Example command:

spar k-submit --class com cl ouder a. hbase. ntc. scal a. t est. Spar kSt r eani ngExanpl e
\

--jars "/tnp/ hbase-ntc-0. 2. 0- SNAPSHOT. j ar" \

--driver-class-path "hbase-ntc-0.2. 0- SNAPSHOT. j ar" \

--conf "spark. executor. extraC assPat h=hbase-ntc-0. 2. 0- SNAPSHOT. j ar " \

--conf "spark. hbase. connector. security.credential s. enabl ed=true" \

--conf "spark.yarn. princi pal =exanpl euser/ exanpl e. kdc. server. com@&XAMPLE. COM'
\

--conf "spark. yarn. keyt ab=/t np/ confi gs/ exanpl euser. keyt ab" \

--conf "spark.security.credential s. hbase. enabl ed=f al se" \

--files /tnp/configs/hbase-sitel.xm ,/tnp/configs/core-sitel.xm 6 /tnp/config

s/ hbase-site2. xm ,/tnp/configs/core-site2. xm \

--princi pal exanpl euser/ exanpl e. kdc. server. com@&XAMPLE. COM \

--keytab /tnp/configs/exanpl euser. keytab \

--master yarn --depl oy-node cluster /tnp/Scal aHbaseTest.jar hbase-sitel. xmn
core-sitel.xm hbase-site2.xm core-site2.xn

Example code: you can view the example code on this GitHub repository.

In this example the configuration must be executed inside the put HBase function. That iswhy the variables for
the token file names must be set outside of the function. If you try to use the Spark Streaming Context inside that
function, it throws an error as MCC is not serializable. This does not happen in structured streaming which is shown
in the following examples.

In this example an application is created that will listen to an HDFS directory for new files. When afileis added, it
will read the file into amicro-batch using structured streaming and push the results into HBase.

Example command:

spar k-submit --class com cl oudera. hbase. ntc. scal a. test. Struct uredSt ream ngHD

FSToHBase \

--jars "/tnp/ hbase-ntc-0.2. 0- SNAPSHOT. j ar" \

--driver-class-path "hbase-ntc-0. 2. 0- SNAPSHOT. j ar" \

--driver-nenory 2g \

--executor-nmenory 2g \

--conf "spark. executor. extraC assPat h=hbase-ntc-0. 2. 0- SNAPSHOT. j ar" \

--conf "spark. hbase. connector. security.credential s. enabl ed=true" \

--conf "spark.yarn. princi pal =exanpl euser/ exanpl e. kdc. server. com@&XAMPLE. C

oM\

--conf "spark.yarn. keyt ab=/t np/ confi gs/ exanpl euser. keyt ab" \

--conf "spark.security.credential s. hbase. enabl ed=f al se" \

--files /tnp/clusterl/ hbase-sitel.xm ,/tnp/clusterl/core-sitel.xm ,/tnp/clu

ster2/ hbase-site2.xm ,/tnp/cluster2/core-site2. xm \

--princi pal exanpl euser/ exanpl e. kdc. server. com@&XAMPLE. COM \

--keytab /tnp/configs/exanpl euser. keytab \

--master yarn \

--depl oy-node cluster /tnp/Scal aHbaseTest.jar hbase-sitel.xnl core-sitel.xnl
hbase-site2. xm core-site2. xm \

[user/ exanpl euser/ St ruct ur edSt r eam ngExanpl eSour ce/ /user/exanpl euser/ Spa

r kSt r eam ngExanpl eCheckpoi nt/

Example code: you can view the example code on this GitHub repository.

The following example shows how to create an application that pulls messages from Kafka. When you push a set of
messages to Kafka, this process creates a micro-batch using the structured streaming and push the results into HBase.

10

https://github.com/cloudera/cod-examples/blob/main/hbase-mcc/SparkStreamingExample.scala
https://github.com/cloudera/cod-examples/blob/main/hbase-mcc/StructuredStreamingHDFSToHBase.scala

Cloudera Runtime Introduction to HBase Multi-cluster Client

For this use case, apropertiesfileis set up to passinto the application for the required Kafka configurations. Example
propertiesfile:

spar k. kaf kat ohbase. t ar get . hbase. tabl e test _table

spar k. kaf kat ohbase. t arget . hbase. cf cf1l

spar k. kaf kat ohbase. sour ce. kaf ka. topi ¢ spark_2

spar k. kaf kat ohbase. checkpoi nt. dir /user/exanpl euser/ Spar kSt r eam ngExanpl eC
heckpoi nt /

spar k. kaf kat ohbase. kaf ka. ssl . truststore. | ocati on ./cm auto-gl obal _trustst
ore.jks

spar k. kaf kat ohbase. kaf ka. boot st rap. servers yourzookeeper 1: 9093, your zookeeper
2: 9093, your zookeeper 3: 9093

spar k. kaf kat ohbase. kaf ka. security. protocol SASL_SSL

spar k. kaf kat ohbase. kaf ka. ssl . trust st ore. password trustorepasswordhere

spar k. kaf kat ohbase. starti ngOf f sets earl i est

spar k. kaf kat ohbase. keyt ab kaf ka. keyt ab

spar k. kaf kat ohbase. pri nci pal kaf ka/ exanpl e. server. com@&XAMPLE. COM

A jaas.conf file aso need to be set.

Kaf kad i ent {
com sun. security. aut h. nodul e. Kr b5Logi nMbdul e requi red
debug =true
useKeyTab=t r ue
st or eKey=t rue
keyTab="/t np/ kaf ka. keyt ab"
useTi cket Cache=f al se
servi ceNanme="kaf ka"
princi pal =" kaf ka/ exanpl e. server. com@&XAMPLE. COM';

}i
Example command:

hdfs dfs -rm-r /user/cluster1tl s/ SparkStreani ngExanpl eCheckpoi nt/

hdf s dfs -nkdir /user/cluster1tl s/ SparkStrean ngExanpl eCheckpoi nt/
spark-submit --class com cl oudera. hbase. ntc. scal a. test. StructuredStreani ng
Exanpl eKaf kaToHBase \

--jars "/tnp/ hbase-ntc-0. 2. 0- SNAPSHOT. j ar " \

--driver-class-path "hbase-ntc-0.2. 0- SNAPSHOT. j ar" \

--driver-nmenory 2g \

--executor-nmenory 2g \

--conf spark. streani ng.receiver. maxRat e=20 \

--conf spark.dynani cAl | ocati on. mi nExecut ors=5 \

--conf spark.dynam cAl | ocation.initial Executors=5 \

--conf spark.dynani cAl | ocati on. maxExecut or s=10 \

--conf "spark. executor. extraC assPat h=hbase-ntc-0. 2. 0- SNAPSHOT. j ar" \

--conf "spark. hbase. connector. security.credential s. enabl ed=true" \

--conf "spark.yarn. princi pal =exanpl euser/ exanpl e. server. com@&xXAMPLE. COM' \
--conf "spark.yarn. keyt ab=/t np/ confi gs/ exanpl euser. keyt ab" \

--conf "spark.security.credential s. hbase. enabl ed=f al se" \

--conf "spark.security.credential s. hi ve. enabl ed=f al se" \

--conf "spark.security.credential s. hdf s. enabl ed=f al se" \
--driver-java-options "-D ava.security.auth.login.config=./producer_jaas2
.conf -Djava.io.tnpdir=/tm" \

--conf "spark. executor. extralavaOpti ons=-Dj ava. security. auth. | ogin.config=./
producer jaas2.conf -Djava.io.tnpdir=/tnp" \

--files /tnp/clusterl/ hbase-sitel.xm ,/tnp/clusterl/core-sitel.xm ,/tnp/clu
ster 2/ hbase-site2. xm ,/tnp/cluster2/core-site2.xm ,/tnp/producer_jaas. conf#p
roducer _jaas.conf,/var/lib/cl oudera-scm agent/agent-cert/cm auto-gl obal trus
tstore.jks,/tnp/kafka. keytab \

--princi pal exanpl euser/ exanpl e. server. com@&XAVPLE. COM' \

--keytab /tnp/clusterl/exanpl euser. keytab \

11

Cloudera Runtime Introduction to HBase Multi-cluster Client

--master yarn \

--depl oy-node cluster \

--properties-file /tnp/properties.conf \

/tnp/ Scal aHbaseTest.jar hbase-sitel. xnl core-sitel.xm hbase-site2.xm core-
site2. xn

Example code: you can view the example code on this GitHub repository.

Example command:

spark-submt --class com cl oudera. hbase. ntc. scal a. t est. HBaseMCCBul kPut Exanpl

e\

--jars "/tnp/ hbase-ntc-0. 2. 0- SNAPSHOT. j ar" \

--driver-class-path "hbase-ntc-0.2. 0- SNAPSHOT. j ar" \

--conf "spark. executor. extraC assPat h=hbase-ntc-0. 2. 0- SNAPSHOT. j ar" \

--conf "spark. hbase. connector. security.credential s. enabl ed=true" \

--conf "spark.yarn. princi pal =exanpl euser/ exanpl e. kdc. server. com@&XAMPLE. C

oM\

--conf "spark.yarn. keyt ab=/t np/ confi gs/ exanpl euser. keyt ab” \

--conf "spark.security.credential s. hbase. enabl ed=f al se" \

--files /tnp/configs/hbase-sitel.xm ,/tnp/configs/core-sitel.xm 6 /tnp/confi

gs/ hbase-site2.xm ,/tnp/ configs/core-site2. xm \

--princi pal exanpl euser/ exanpl e. kdc. server. com@&xXAMPLE. COM \

--keytab /tnp/configs/exanpl euser. keytab \

--master yarn --depl oy-node cluster /tnp/Scal aHbaseTest.jar hbase-sitel. xm
core-sitel. xm hbase-site2. xm core-site2. xni

E Note: This example isusing the MCC configurations constructor to eliminate the boilerplate configurations.

Example code: you can view the example code on this GitHub repository.

Example command:

spar k-submit --class com cl ouder a. hbase. ncc. scal a. t est. HBaseMCCBul kGet Exanpl

e\

--jars "/tnp/ hbase-ntc-0. 2. 0- SNAPSHOT. j ar" \

--driver-class-path "hbase-ntc-0. 2. 0- SNAPSHOT. j ar" \

--conf "spark. executor. extraC assPat h=hbase-ntc-0. 2. 0- SNAPSHOT. j ar" \

--conf "spark. hbase. connector. security.credential s. enabl ed=true" \

--conf "spark.yarn. princi pal =exanpl euser/ exanpl e. kdc. server. com@&XAMPLE. C

oM\

--conf "spark.yarn. keyt ab=/t np/ confi gs/ exanpl euser . keyt ab" \

--conf "spark.security.credential s. hbase. enabl ed=f al se" \

--files /tnp/configs/hbase-sitel.xm ,/tnp/configs/core-sitel.xm ,/tnp/confi

gs/ hbase-site2.xm ,/tnp/ configs/core-site2. xm \

--princi pal exanpl euser/exanpl e. kdc. server. com@XAMPLE. COM \

--keytab /tnp/configs/exanpl euser. keytab \

--master yarn --depl oy-node cluster /tnp/Scal aHbaseTest.jar hbase-sitel. xn
core-sitel. xm hbase-site2. xm core-site2. xnl

IE Note: Thisexampleis using the MCC configurations constructor to eliminate the boilerplate configurations.

Example code: you can view the example code on this GitHub repository.

12

https://github.com/cloudera/cod-examples/blob/main/hbase-mcc/StructuredStreamingExampleKafkaToHBase.scala
https://github.com/cloudera/cod-examples/blob/main/hbase-mcc/HBaseMCCBulkPutExample.scala
https://github.com/cloudera/cod-examples/blob/main/hbase-mcc/HBaseMCCBulkGetExample.scala

Cloudera Runtime Introduction to HBase Multi-cluster Client

Example command:

spark-submt --class com cl oudera. hbase. ntc. scal a. t est. HBaseMCCBul kDel et eExa

mpl e \

--jars "/tnp/ hbase-ntc-0. 2. 0- SNAPSHOT. j ar" \

--driver-class-path "hbase-ntc-0.2. 0- SNAPSHOT. j ar" \

--conf "spark. executor. extraC assPat h=hbase-ntc-0. 2. 0- SNAPSHOT. j ar " \

--conf "spark. hbase. connector. security.credential s. enabl ed=true" \

--conf "spark.yarn. princi pal =exanpl euser/ exanpl e. kdc. server. com@&XAMPLE. COM'
\

--conf "spark.yarn. keyt ab=/t np/ confi gs/ exanpl euser. keyt ab" \

--conf "spark.security.credential s. hbase. enabl ed=f al se" \

--files /tnp/configs/hbase-sitel.xm ,/tnp/configs/core-sitel.xm 6 /tnp/config

s/ hbase-site2. xm ,/tnp/configs/core-site2. xm \

--princi pal exanpl euser/ exanpl e. kdc. server. com@&XAMPLE. COM \

--keytab /tnp/configs/exanpl euser. keytab \

--master yarn --depl oy-node cluster /tnp/Scal aHbaseTest.jar hbase-sitel. xmn
core-sitel.xm hbase-site2.xm core-site2.xn

Example code: you can view the example code on this GitHub repository.

Example command:

spark-subnmit --class com cl oudeara. hbase. ntc. j ava. HBaseMCCBul kPut Exanpl e \

--jars "/tnp/ hbase-ntc-0. 2. 0- SNAPSHOT. j ar" \

--driver-class-path "hbase-ntc-0.2. 0- SNAPSHOT. j ar" \

--conf "spark. executor. extraC assPat h=hbase-ntc-0. 2. 0- SNAPSHOT. j ar" \

--conf "spark. hbase. connector. security.credential s. enabl ed=true" \

--conf "spark.yarn. princi pal =exanpl euser/ exanpl e. kdc. server. com@&XAMPLE. COM'
\

--conf "spark.yarn. keyt ab=/t np/ confi gs/ exanpl euser. keyt ab" \

--conf "spark.security.credential s. hbase. enabl ed=f al se" \

--files /tnp/configs/hbase-sitel.xm ,/tnp/configs/core-sitel.xm , /tnp/config

s/ hbase-site2. xm ,/tnp/configs/core-site2. xm \

--princi pal exanpl euser/exanpl e. kdc. server. com@&XAMPLE. COM \

--keytab /tnp/configs/exanpl euser. keytab \

--master yarn --depl oy-node cluster /tnp/JavaMCCExanpl es-0. 0. 1- SNAPSHOT. j ar
hbase-sitel. xm core-sitel. xm hbase-site2. xm core-site2. xnl

Example code: you can view the example code on this GitHub repository.

Example command:

spark-subnmit --class com cl oudeara. hbase. ntc. j ava. HBaseMCCBul kGet Exanpl e \

--jars "/tnp/ hbase-ntc-0. 2. 0- SNAPSHOT. j ar" \

--driver-class-path "hbase-ntc-0.2. 0- SNAPSHOT. j ar" \

--conf "spark. executor. extraC assPat h=hbase-ntc-0. 2. 0- SNAPSHOT. j ar" \

--conf "spark. hbase. connector. security.credential s. enabl ed=true" \

--conf "spark.yarn. princi pal =exanpl euser/ exanpl e. kdc. server. com@&XAMPLE. COM'
\

--conf "spark.yarn. keyt ab=/t np/ confi gs/ exanpl euser. keyt ab" \

--conf "spark.security.credential s. hbase. enabl ed=f al se" \

13

https://github.com/cloudera/cod-examples/blob/main/hbase-mcc/HBaseMCCBulkDeleteExample.scala
https://github.com/cloudera/cod-examples/blob/main/hbase-mcc/HBaseMCCBulkPutExample.java

Cloudera Runtime Introduction to HBase Multi-cluster Client

--files /tnp/configs/hbase-sitel.xm ,/tnp/configs/core-sitel.xm , /tnp/config

s/ hbase-site2. xm ,/tnp/configs/core-site2. xnm \

--princi pal exanpl euser/ exanpl e. kdc. server. com@&XAMPLE. COM \

--keytab /tnp/configs/exanpl euser. keytab \

--master yarn --depl oy-node cluster /tnp/JavaMCCExanpl es-0. 0. 1- SNAPSHOT. j ar
hbase-sitel. xm core-sitel.xm hbase-site2.xnml core-site2.xnl

Example code: you can view the example code on this GitHub repository.

HBase MCC uses the zookeeper.recovery.retry parameter to monitor the number of retries when Zookeeper is down.

When acluster is online and an application is started, the HBase client communicates to the Zookeeper quorum.
When you perform aread or write operation on region servers and a failover happens, MCC runs a background thread
to check when HBase becomes available again. If an application is started and the cluster is down, MCC uses the
zookeeper.recovery.retry parameter to check Zookeeper multiple times. This might not be desired, especially for
Spark streaming which operates with a microbatch. Each batch needs to iterate over the default beforeit finally fails
over and hit the second cluster.

Y ou can set this parameter to either 1 or 0. Y ou can set the parameters differently for each cluster; set it as

default for the second cluster and O for the primary so that it may fail over quickly. In addition, when you set
zookeeper.recovery.retry to O with HBase, the number of client connections to Zookeeper increases and you might
want to monitor maxcl i ent cnxns. Thisis applicable for afailure scenario, when an application is starting and
Zookeeper is down.

HBase Multi-cluster Client (MCC) provides various configuration parameters to set up clusters, mode, and different
connection related properties.

Thisisacomma separated list of cluster names that represent the clusters available when running MCC. The first
cluster inthelist isthe primary cluster. If this cluster failsto respond, the requests are routed to the next cluster in
line. This configuration is automatically generated based on N+ number of clustersin the submission.

The following example shows an uber configuration.

hbase. f ai | over. cl ust er s=hbase. ntc. cl ust er 0, hbase. ntc. cl uster1
hbase. ntc. cl ust er 0. hbase. zookeeper . quor une1. 0. 0. 2
hbase. ntc. cl ust er 1. hbase. zookeeper. quorun¥1. 0. 0. 3

B Note: Auto-configuration does not support building uber configuration.

The default valueis set to true, this meansthat if the primary cluster fails, the code automatically attemptsto execute
on failover clusters until all failover clusters are exhausted. If set to false, the only attempt is on the primary or first
cluster. If you are executing a put or delete when set to true and culter failover happens, HBase MCC executes the put
or delete on the failover cluster.

This configuration is not applicable for the read or scan methods.

14

https://github.com/cloudera/cod-examples/blob/main/hbase-mcc/HBaseMCCBulkGetExample.java

Cloudera Runtime Introduction to HBase Multi-cluster Client

E Note: This configuration does not apply to reads or scans. Thisis applied to puts or deletes.

The default valueis set as 20. Part of j ava. uti | . concur rent . Execut or s creates athread pool that reuses a
fixed number of threads operating from a shared unbounded queue.

The default value is false that disables the check AndMut at e function on the Table class.

The default value is 30000 milliseconds (30 seconds). Thisisthe default amount of time in milliseconds that the
application waits before re-attempting the primary cluster after a failure and executing against afailover cluster. The
cluster tracker uses this thread to check and ensure that a cluster is available before calls are routed to that cluster.

The default value is 10000 milliseconds (10 seconds). This represents the wait time to read the metadata for a cluster
before the region server is actually available to read. If this number istoo low, the system detects that the cluster is
available from the metastore, tries to read or write from the cluster because the region server is decoupled from the
meta and is not yet available. This additional buffer allows some time before the metadatais available for the region
to become fully online.

The supported values are failover, replicate, and replay. The default value is failover. When Buf f er edMut at or
is used, there might be a data loss. When set to failover, HBase MCC writes to a single cluster connection. When a
flush fails for that connection, it starts writing new mutations to the new connection. Any mutations that are part of
thefailure flush arelost. Datalossin Buf f er edMut at or is caused when HBase puts are stored in client memory
up until the point that a flush takes place. If that flush fails when aregion server is down, datais not be persisted.

The second option isto configure Buf f er edMut at or with replicate, which replicates all calls for mutations to all
connections. When a connection fails, datais not |ost because we are writing to another connection automatically.

The third option is to configure replay, this operation stores data in a cache until flushis called. When flush is

called, HBase MCC attempts to write all data from the cache into the first available and active connection’s

Buf f er edut at or followed by animmediate flush. If the flush is a success, the cache is cleared. If the flush fails,
HBase MCC pushes the data to the next connection's Buf f er edMut at or . Thisalso helpsto prevent dataloss with
Buf f er edMut at or while not pushing to each cluster by default as an alternative to the replicate option.

In all caseswith Buf f er edMut at or, you could still have data loss on the cluster when services go down or if no
cluster is available to write the data. Y ou need to ensure that your application is ready to handle the failures as they

happen.

HBase MCC contains a few restrictions when you are executing it in Spark compared to executing it in a standard
Java application.

Only asingle keytab can be used with Spark. In the Javaimplementation multiple UGIs can be called aslong as a
proper krb5.conf can connect easily to different clustersin different realms with multiple keytabs.

15

	Contents
	Introduction to HBase Multi-cluster Client
	HBase MCC Usage with Kerberos
	HBase MCC Usage in Spark with Scala
	HBase MCC Usage in Spark with Java
	Zookeeper Configurations
	HBase MCC Configurations
	HBase MCC Restrictions

