Developing Applications with Apache Kudu

Date published:
Date modified:

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

| Contents | iii

View the APl dOCUMENTALION........cccueeiiiiiiiie et e e e e e e e e e e e s e s sesaresereeees 4
Kudu example appliCations..........ccecceeiieiiiesie et ere e 4
Y 2 \VZ= IV = (o 6T 5
KUudu PYthon CHENT........ooo e s 5
Kudu integration With Spark........ccccceieiiieie i 7
Spark integration Known issues and limMitationS............cueieiirieierereieee e e e e e e enens 8
Spark iNtegration DESE PraCliCES.......uciiieicieie s e ettt sae st te s tese et esae e e e eseeseeneerensesaesrens 9
Upsert option iN KUAU SPArK........ccccoieiriiiieiesise s se st e sae e se e e sre e s aesrestesbeseessentesaeneenseneensensssenses 9
Use Spark With @ SECUre KUAU CIUSLEYcviiceicire e e ettt s e e e e e enaeneeneenens 10

Spark tuning

View the APl documentation

This topic provides you information on how to find the APl documentation for C++ and Java.

Warning: Use of server-side or private interfacesis not supported, and interfaces which are not part of
public APIs have no stability guarantees.

The documentation for the C++ client APIsisincluded in the header filesin /usr/include/kudu/ if you installed Kudu
using packages or subdirectories of src/kudu/client/ if you built Kudu from source. If you installed Kudu using
parcels, no headers are included in your installation. and you will need to build Kudu from source in order to have
access to the headers and shared libraries.

The following command is a naive approach to finding relevant header files. Use of any APIs other than the client
APIsis unsupported.

find /usr/include/kudu -type f -name *.h

View the Java API documentation online. Alternatively, after building the Java client, Java APl documentation is
available in javalkudu-client/target/apidocs/index.html.

Java APl documentation

Severa example applications are provided in the examples directory of the Apache Kudu git repository. Each
example includes a README that shows how to compile and runit. The following list includes some of the
examples that are available today. Check the repository itself in case thislist goes out of date.

cpp/example.cc:

A simple C++ application which connects to a Kudu instance, creates a table, writes datato it, then
dropsthe table.

javaljava-example:

A simple Java application which connects to a Kudu instance, creates atable, writes datato it, then
dropsthe table.

javalinsert-loadgen:

A small Java application which listens on a TCP socket for time series data corresponding to the
Collectl wire protocol. The commonly-available collectl tool can be used to send example datato
the server.

python/dstat-kudu:
A Java application that generates random insert load.
python/graphite-kudu:

An example program that shows how to use the Kudu Python API to load datainto anew / existing
Kudu table generated by an external program, dstat in this case.

https://kudu.apache.org/apidocs/index.html

Maven artifacts

python/graphite-kudu:
An example plugin for using graphite-web with Kudu as a backend.

These examples should serve as helpful starting points for your own Kudu applications and integrations.

Kudu examples

The following Maven <dependency> element is valid for the Apache Kudu GA release:

<dependency>
<gr oupl d>or g. apache. kudu</ gr oupl d>
<artifactld>kudu-client</artifactld>
<ver si on><kudu- cdp- ver si on></ ver si on>
</ dependency>

For <kudu-cdp-version>, check Cloudera Runtime component versions in Release Notes.

Convenience binary artifacts for the Java client and various Javaintegrations (e.g. Spark, Flume) are also now
available viathe ASF Maven repository and the Central Maven repository.

ASF Maven repository
Central Maven repository

The Kudu Python client provides a Python friendly interface to the C++ client API. To install and use the Kudu

Python client, you need to install the Kudu C++ client libraries and headers.

See Install Using Packages topic for installing the Kudu C++ client libraries.

1. Update all the packages on your system by using the following command:
yum -y update
2. Install the extra packages for the Enterprise Linux distribution:
sudo yum -y install epel-release
3. Install the Python package manager:
sudo yum -y install python-pip
4. Verify the version of the PIP manager that you just installed:
pip --version
5. Install Cython:
sudo pip install cython

https://github.com/apache/kudu/tree/master/examples
https://repository.apache.org/
https://mvnrepository.com/artifact/org.apache.kudu
https://kudu.apache.org/releases/1.8.0/docs/installation.html#install_packages

Kudu Python client

6. Download the following files using wget:

e Kudu artifact: http://username:password@archive.cloudera.com/p/cdp-public/RUNTIME_VERS ON/redhat 7/
yum/kudu/KUDU_ARTIFACT

e Kudu-client artifact: http://username: password@archive.cloudera.com/p/cdp-public/RUNTIME_VERS ON/red
hat7/yum/kudu/KUDU-CLIENT_ARTIFACT

e Kudu-client-devel artifact: http://username: password@archive.cloudera.com/p/cdp-publ
ic/RUNTIME_VERS ON/redhat7/yum/kudu/KUDU-CLIENT-DEVEL _ARTIFACT

7. Install the kudu package from the local directory:
sudo yum -y localinstall ./kudu-*
8. Install the package used for devel oping Python extensions:
sudo yum -y install python-devel
9. Upgrade the setup tools:
sudo pip install --upgrade pip setuptools
10. Install the C++ compiler:
sudo yum -y install gcc-c++
11. Install the Kudu-python client:
sudo pip install kudu-python==<kudu-version>
12. Install kudu-python: sudo pip install kudu-python.
The following sample demonstrates the use of part of the Python client:

i mport kudu
fromkudu.client inport Partitioning
fromdatetine inport datetine

Connect to Kudu naster server
client = kudu. connect (host =" kudu. naster', port=7051)

Define a schema for a new table

bui | der = kudu. schema_bui | der ()

bui | der. add_col um(' key').type(kudu.int64). null abl e(Fal se). pri mary_key()
bui | der.add_colum('ts_val', type_=kudu.unixtine_nicros, nullabl e=Fal se,
conpression='12z4")

schema = buil der. buil d()

Define partitioning schem
partitioning = Partitioning().add _hash_partitions(colum_nanmes=["'key'],
num bucket s=3)

Create new table
client.create_tabl e(' python-exanple', schena, partitioning)

Open a table
table = client.tabl e(' pyt hon-exanpl e')

Create a new session so that we can apply wite operations
session = client.new session()

Insert a row

op = table.new.insert({'key': 1, '"ts val': datetime.utcnow)})

sessi on. appl y(op)

Upsert a row

op = table.new upsert({'key': 2, "ts_val': "2016-01-01T00: 00: 00. 000000"})
sessi on. appl y(op)

Updating a row

op = table.new update({'key': 1, '"ts val': ("2017-01-01", "%-%n %l")})
sessi on. appl y(op)

Delete a row

Kudu integration with Spark

op = table.new del ete({' key': 2})
sessi on. appl y(op)
Flush wite operations, if failures occur, capture print them
try:
session. flush()
except kudu. KuduBadSt atus as e:
print (session.get_pending_errors())

Create a scanner and add a predicate

scanner = tabl e.scanner()

scanner. add_predicate(table['ts_val'] == datetinme(2017, 1, 1))
Open Scanner and read all tuples

Note: This doesn't scale for |arge scans

result = scanner.open().read_all _tuples()

Kudu integrates with Spark through the Data Source API as of version 1.0.0. Include the kudu-spark dependency
using the --packages or --jars option.

Note that Spark 1 isno longer supported in Kudu starting from version 1.6.0. So in order to use Spark 1 integrated
with Kudu, version 1.5.0 is the latest to go to.

Use kudu-spark3_2.12 artifact if using Spark 3 with Scala2.12.
For --packages option:

spar k3-shel | --packages org. apache. kudu: kudu- spark3_2. 12: <kudu- ¢
dp-version> --repositories https://repository.cloudera.confartif
act ory/ cl ouder a- r epos/

For <kudu-cdp-version>, check Cloudera Runtime component versions in Release Notes.

For --jars option:

spark-shell --jars /opt/clouderalparcels/CDH |i b/ kudu/ kudu-spar k
3.2.12.jar

Below isaminimal Spark SQL "select" example for a Kudu table created with Impalain the "default” database. Y ou
first import the kudu spark package, then create a DataFrame, and then create a view from the DataFrame. After those
steps, the table is accessible from Spark SQL. Y ou can also refer to the Spark quickstart guide or this Kudu-Spark
example.

Note: You can use the Kudu CLI tool to create table and generate data by kudu perf loadgen kudu.master:70
51 -keep_auto_table for the following two examples:

i nport org. apache. kudu. spar k. kudu. _
/]l Create a DataFrane that points to the Kudu table we want to query.
val df = spark.read.options(Map("kudu. master" -> "kudu. master: 7051",
"kudu. table" -> "default.my_table")).format(
"kudu") .| oad
/l Create a view fromthe DataFrane to nake it accessible from Spark SQ..
df . creat eOr Repl aceTenpVi ew("ny_t abl e")
/1 Now we can run Spark SQ. queries agai nst our view of the Kudu table.
spark.sql ("select * fromny_table").show)

Below is amore sophisticated example that includes both reads and writes:

i mport org.apache. kudu. client.
i mport org.apache. kudu. spar k. kudu. KuduCont ext

7

https://github.com/apache/kudu/tree/master/examples/quickstart/spark
https://github.com/apache/kudu/tree/master/examples/scala/spark-example
https://github.com/apache/kudu/tree/master/examples/scala/spark-example

Kudu integration with Spark

i mport coll ection.JavaConverters. _

/'l Read a table from Kudu
val df = spark.read

.options(Map("kudu. master"” -> "kudu. master:7051", "kudu.table" -> "kudu_ta
bl e"))

.format ("kudu") .| oad

/1l Query using the Spark API...
df . sel ect("key").filter("key >= 5").show)

[l ...or register a tenporary table and use SQ
df . creat eOr Repl aceTenpVi ew(" kudu_t abl e")
val filteredDF = spark.sql ("sel ect key from kudu_t abl e where key >= 5").show

0

/] Use KuduContext to create, delete, or wite to Kudu tables
val kuduCont ext = new KuduCont ext (" kudu. mast er: 7051", spark. spar kCont ext)
/]l Create a new Kudu table from a DataFrane schenma
/1 NB: No rows fromthe DataFrane are inserted into the table
kuduCont ext . cr eat eTabl ¢(
"test _table", df.schemn, Seq("key"),
new Creat eTabl eOpti ons()
. set NunmRepl i cas(1)
.addHashPartitions(List("key").asJava, 3))

/'l Check for the existence of a Kudu table
kuduCont ext . t abl eExi st s("test _tabl e")

/1 Insert data
kuduCont ext . i nsert Rows(df, "test_table")

/| Delete data
kuduCont ext . del et eRows(df, "test table")

/1 Upsert data

kuduCont ext . upsert Rows(df, "test_table")

/1l Update data

val updateDF = df.select($"key", ($"int_val" + 1).as("int_val"))

kuduCont ext . updat eRows(updat eDF, "test table")

/[l Data can also be inserted into the Kudu table using the data source, tho
ugh the net hods on

// KuduContext are preferred

/1 NB: The default is to upsert rows; to performstandard inserts instead, s
et operation = insert

/1 in the options nmap

/1 NB: Only node Append is supported

df . write
.options(Map("kudu. master"-> "kudu. master: 7051", "kudu.table"-> "test ta
bl e"))

. node(" append")
.format ("kudu"). save
/] Delete a Kudu table
kuduCont ext . del et eTabl e("test _tabl e")

Here are the limitations that you should consider while integrating Kudu and Spark.

« Spark 2.2 (and higher) requires Java 8 at runtime even though Kudu Spark 2.x integration is Java 7 compatible.
Spark 2.2 isthe default dependency version as of Kudu 1.5.0.

Kudu integration with Spark

» Kudu tables with a name containing upper case or non-ASCI| characters must be assigned an alternate name when
registered as atemporary table.

» Kudu tables with a column name containing upper case or non-ASCI| characters must not be used with
SparkSQL . Columns can be renamed in Kudu to work around thisissue.

» <> and ORpredicates are not pushed to Kudu, and instead will be evaluated by the Spark task. Only LIKE
predicates with a suffix wildcard are pushed to Kudu. Thismeans LIKE "FOO%" will be pushed, but LIKE "FO
O%BAR" won't.

» Kudu does not support all the types supported by Spark SQL. For example, Date and complex types are not
supported.

* Kudu tables can only be registered as temporary tablesin SparkSQL.
» Kudu tables cannot be queried using HiveContext.

It is best to avoid multiple Kudu clients per cluster.

A common Kudu-Spark coding error isinstantiating extra KuduClient objects. In kudu-spark, a KuduClient is owned
by the KuduContext. Spark application code should not create another KuduClient connecting to the same cluster.
Instead, application code should use the KuduContext to access a KuduClient using KuduContext#syncClient.

To diagnose multiple KuduClient instances in a Spark job, look for signsin the logs of the master being overloaded

by many GetTablel ocations or GetTabletL ocations requests coming from different clients, usually around the same
time. This symptom is especialy likely in Spark Streaming code, where creating a KuduClient per task will result in
periodic waves of master requests from new clients.

The upsert operation in kudu-spark supports an extrawrite option of ignoreNull. If set to true, it will avoid setting
existing column values in Kudu table to Null if the corresponding DataFrame column values are Null. If unspecified,
ignoreNull isfalse by default.

val dataFrane = spark.read
.options(Map("kudu. master" -> "kudu. master:7051", "kudu.table" -> sinpl
eTabl eNane))
.format ("kudu") .| oad
dat aFr ane. cr eat eOr Repl aceTenpVi ew(si npl eTabl eNane)
dat aFr anme. show()

/'l Belowis the original data in the table 'sinpleTabl eNane'
Ho - m oo -+
| key]| val |
H- - - - -+
| 0] fool
Fom e - -+

/1 Upsert a rowwith existing key 0 and val Null with ignoreNull set to true
val nul | DF = spark. creat eDat aFrane(Seq((0, null.aslnstanceO[String]))).t
oDF("key", "val")

val wo = new KuduWiteOptions

wo.ignoreNull = true

kuduCont ext . upsert Rows(nul | DF, si npl eTabl eNane, wo)

dat aFr ame. show()

/1 The val field stays unchanged

H- - - - -+

| key]| val |

Fom e - -+

| O] fool

Ho - m oo -+

Kudu integration with Spark

/1 Upsert a rowwith existing key 0 and val Null with ignoreNull default/set
to fal se

kuduCont ext . upsert Rows(nul | DF, si npl eTabl eNane)

/1 Equival ent to:

/1 val wo = new KuduWiteQOptions

/1 wo.ignoreNull = fal se

/1 kuduCont ext . upsert Rows(nul | DF, si npl eTabl eNarme, wo)

df . show()

/1 The val field is set to Null this tine
foocodmocodp

| key| val |
e
| O] null]
ST ST

The Kudu-Spark integration is able to operate on secure Kudu clusters which have authentication and encryption
enabled, but the submitter of the Spark job must provide the proper credentials. For Spark jobs using the default
‘client' deploy mode, the submitting user must have an active Kerberos ticket granted through kinit. For Spark jobs
using the 'cluster' deploy mode, a Kerberos principal name and keytab location must be provided through the --princi
pal and --keytab arguments to spark2-submit.

In general the Spark jobs were designed to run with minimal tuning and configuration. Y ou can adjust the number of
executors and resources to increase parallelism and performance using Spark’ s configuration options.

If your tables are super wide and your default memory allocation isfairly low, you may see jobsfail. To resolve this,
increase the Spark executor memory. A conservative rule of thumbis 1 GiB per 50 columns.

If your Spark resources drastically outscale the Kudu cluster, then you may want to limit the number of concurrent
tasks allowed to run on restore.

10

	Contents
	View the API documentation
	Kudu example applications
	Maven artifacts
	Kudu Python client
	Kudu integration with Spark
	Spark integration known issues and limitations
	Spark integration best practices
	Upsert option in Kudu Spark
	Use Spark with a secure Kudu cluster
	Spark tuning

