Planning for Apache Kudu

Date published:
Date modified:

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

| Contents | iii

KUudu SChema deSigN.......cocee it 4
THE PETECT SCHEIMAL......e bbbt bbbt bt b e 4
(000110 10 Je (== To o SRRSO 4

DECIME LY. ettt ettt b et b e b e bt s e e bt s e bt s e e bt s bt ebeae e b e st b et et et et et eb e 5
RV o0 O 1Y o= OSSPSR 5
COlUMN ENCOTING. ¢ttt ettt b a e bbbt bt b et b e b e e b b e bt b e bt b et bt s b et st e e 5
COlUIMN COMPIESSION......utteueeteseeteeetese et seesese et se st e ese s b et sb et eb e eb e s eb e seebe s e eb e s e es e b ene b eaeebeneeb e s eb e s ebenneneneens 6
PrIMEIY KEY OBSIGN....c ittt b b e e bbbt b et b et b e bt e bt b e s e b e et e b e e nnn 6
PrIMary KEY INOEX.......cu ettt st b e e b e bt s e et se et e et b et b et b e ebeneebe e 7
Considerations for DaCKFill TNSEITS...........ciiie e 7
PAITITIONING. ... vttt b et b et b e b e s e b e s e e b s e e bt s e bt s e e b e s E e Rt R Rt b e e b e e b e et ebeneebe e ebeneene e 7
RANGE PAITITIONING. ...c.eieeteeeeeieeietee ettt ettt st b et st b et b et b et e b ne b e s e s e 8
HESh PArtitiONiNG.c.eiveeeieeiree e bbbt b e e b et e 8
MUILHEVE] PAITITIONING.cveeetirieteriet ettt b et b e b e bbbt b bt st ne e e nnenes 8
PatitioN PrUNING......civeeeiieiteee ettt bbbt s ek s b bt s e e st s b et s b et et e e eb et ebeseebeseebeneas 8
Partitioning EXAIMPIES.......c.ciuiiiteiiteret ettt b et bt b e e b e st b e se b e bt e st b st e b et b e b e b e 8
SCNEMEA AITEIBIIONS.......eeeeeeeiiteiert ettt sttt ettt bbbt b st bt b et b et b e e e b e e b e b e b et e st b e st b et et e b 12
SChEmMa AESIGN TIMITALIONS.......eeitiietere ettt s bbbt b e bbbt b et eb e e enennenes 13
Partitioning [HMITBLIONS..........ceiiiieieeret ettt et e b e s b e bbb it et b et e b e e b e ne b e seebeseebe e 14

Kudu transaction SEMEAaNTICS.......ccviiiieriierieeie et 14
Single tablEt WITE OPEratiONS......cceiveiieieececee e r s e s ae st e st e s ee st e e ae e enseneenneneenenns 14
WIiting tO MUIIPIE tADIELS........eeeeeciceee ettt s e e e e e e e e seeseesesnenresaesnens 15
READ OPEIELIONS (SCANS)...veuveureueereeeereererseeseetestessestestessessetessessessessesseseesessessessessessessessessessessensessensessmssssesessessenns 16
KNOWN iSSUES 8N THMITALIONS......cvvereiiirireieisese ettt e 17

VUTTEES. .ttt E e R R R R R Rt R R ens 17
Sz 0 S o)T 18

SCAING KUAU. ...ttt et b e e e re e sneeenns 18
L= £SO T TP T TP RUSURPRURURIN 18
EX@MPIE WOIKIOBM. ...ttt bttt ae bbbt b e b e se et e b e se et e e e e e ene 18
V1= 000 TR PO PRUPPROPTPITOt 19

Verifying if amemory limit iS SUFFICIENT........ccoiri s 19
TSN (S o 1 0] (0 =TSRSS 20
TRFEAAS. ...ttt b e bbbt e b b e bR e SR bR R A bR A b e Rt A bRt Rt b Rt e e b re s 20

Kudu schema design

Kudu tables have a structured data model similar to tablesin atraditional relational database. With Kudu, schema
designiscritical for achieving the best performance and operational stability. Every workload is unique, and there
is no single schema design that is best for every table. This topic outlines effective schema design philosophies for
Kudu, and how they differ from approaches used for traditional relational database schemas.

There are three main concerns when creating Kudu tables: column design, primary key design, and partitioning.

The perfect schemawould accomplish the following:

« Datawould be distributed such that reads and writes are spread evenly across tablet servers. This can be achieved
by effective partitioning.

« Tabletswould grow at an even, predictable rate, and load across tablets would remain steady over time. This can
be achieved by effective partitioning.

» Scanswould read the minimum amount of data necessary to fulfill aquery. Thisisimpacted mostly by primary
key design, but partitioning also plays arole via partition pruning.

The perfect schema depends on the characteristics of your data, what you need to do with it, and the topology of your

cluster. Schemadesign is the single most important thing within your control to maximize the performance of your

Kudu cluster.

A Kudu table consists of one or more columns, each with a defined type. Columns that are not part of the primary key
may be nullable.

Supported column types include:

* boolean

e 8-hit signed integer

e 16-bit signed integer

e 32-bit signed integer

* 64-bit signed integer

o date (32-hit days since the Unix epoch)

e unixtime_micros (64-bit microseconds since the Unix epoch)
» single-precision (32-bit) |EEE-754 floating-point number

» double-precision (64-bit) | EEE-754 floating-point number

e decima

e varchar

* UTF-8 encoded string (up to 64KB uncompressed)

e binary (up to 64KB uncompressed)

* VARCHAR type with configurable maximum length (up to 64KB uncompressed)

Kudu takes advantage of strongly-typed columns and a columnar on-disk storage format to provide efficient encoding
and serialization. To make the most of these features, columns should be specified as the appropriate type, rather

than simulating a 'schemaless' table using string or binary columns for data which could otherwise be structured. In
addition to encoding, Kudu allows compression to be specified on a per-column basis.

Attention: Kudu does not provide a version or timestamp column to track changesto arow. If version or
timestamp information is needed, the schema should include an explicit version or timestamp column.

Kudu schema design

The decimal type is anumeric data type with fixed scale and precision suitable for financial and other arithmetic
calculations where the impreci se representation and rounding behavior of float and double make those types
impractical. The decimal typeis aso useful for integers larger than int64 and cases with fractional valuesin a primary
key.

The decimal type is a parameterized type that takes precision and scal e type attributes.

Precision represents the total number of digits that can be represented by the column, regardless of the location of
the decimal point. This value must be between 1 and 38 and has no default. For example, aprecision of 4 isrequired
to represent integer values up to 9999, or to represent values up to 99.99 with two fractional digits. Y ou can also
represent corresponding negative values, without any change in the precision. For example, the range -9999 to 9999
still only requires aprecision of 4.

Scal e represents the number of fractional digits. This value must be between 0 and the precision. A scale of 0
produces integral values, with no fractional part. If precision and scale are equal, al of the digits come after the
decimal point. For example, adecimal with precision and scale equal to 3 can represent values between -0.999 and
0.999.

Performance considerations:

Kudu stores each value in as few bytes as possible depending on the precision specified for the decimal column. For
that reason it is not advised to just use the highest precision possible for convenience. Doing so could negatively
impact performance, memory and storage.

Before encoding and compression:

» Decimal values with precision of 9 or less are stored in 4 bytes.
« Decimal vaues with precision of 10 through 18 are stored in 8 bytes.
* Decimal values with precision greater than 18 are stored in 16 bytes.

IE Note: The precision and scale of decimal columns cannot be changed by altering the table.

The varchar type isa UTF-8 encoded string (up to 64KB uncompressed) with afixed maximum character length. This
typeis especially useful when migrating from or integrating with legacy systems that support the varchar type. If a
maximum character length is not required the string type should be used instead.

The varchar type is a parameterized type that takes a length attribute.

L ength represents the maximum number of UTF-8 characters allowed. Vaues with characters greater than the limit
will be truncated. This value must be between 1 and 65535 and has no default. Note that some other systems may
represent the length limit in bytesinstead of characters. That means that Kudu may be able to represent longer values
in the case of multi-byte UTF-8 characters.

Depending on the type of the column, Kudu columns can be created with the following encoding types.
Plain Encoding

Datais stored in its natural format. For example, int32 values are stored as fixed-size 32-bit little-
endian integers.

Bitshuffle Encoding

A block of valuesis rearranged to store the most significant bit of every value, followed by the
second most significant bit of every value, and so on. Finally, theresult is LZ4 compressed.
Bitshuffle encoding is a good choice for columns that have many repested values, or values that
change by small amounts when sorted by primary key. The bitshuffle project has a good overview
of performance and use cases.

Kudu schema design

Run Length Encoding

Runs (consecutive repeated values) are compressed in a column by storing only the value and the
count. Run length encoding is effective for columns with many consecutive repeated values when
sorted by primary key.

Dictionary Encoding

Dictionary encoding can be used for BINARY or STRING columns. A dictionary of unique values
is built, and each column value is encoded as its corresponding index in the dictionary. Dictionary

encoding is effective for columns with low cardinality. If the column values of a given row set are

unable to be compressed because the number of unique valuesistoo high, Kudu will transparently

fall back to plain encoding for that row set. Thisis evaluated during flush.

Prefix Encoding

Common prefixes are compressed in consecutive column values. Prefix encoding can be effective
for values that share common prefixes, or the first column of the primary key, since rows are sorted
by primary key within tablets.

Each column in a Kudu table can be created with an encoding, based on the type of the column. Starting with Kudu
1.3, default encodings are specific to each column type.

int8, int16, int32, int64 plain, bitshuffle, run length bitshuffle
date, unixtime_micros plain, bitshuffle, run length bitshuffle
float, double plain, bitshuffle bitshuffle
bool plain, run length run length
string, varchar, binary plain, prefix, dictionary dictionary

Kudu allows per-column compression using the LZ4, Snappy, or zlib compression codecs.

By default, columns that are Bitshuffle-encoded are inherently compressed with the LZ4 compression. Otherwise,
columns are stored uncompressed. Consider using compression if reducing storage space is more important than raw
scan performance.

Every data set will compress differently, but in general LZ4 isthe most efficient codec, while zlib will compress
to the smallest data sizes. Bitshuffle-encoded columns are automatically compressed using LZ4, so it is not
recommended to apply additional compression on top of this encoding.

Every Kudu table must declare a primary key comprised of one or more columns. Like an RDBMS primary key, the
Kudu primary key enforces a uniqueness constraint. Attempting to insert arow with the same primary key values as
an existing row will result in a duplicate key error.

Primary key columns must be non-nullable, and may not be a boolean or floating-point type.
Once set during table creation, the set of columnsin the primary key may not be altered.

Unlike an RDBM S, Kudu does not provide an auto-incrementing column feature, so the application must always
provide the full primary key during insert.

Row delete and update operations must also specify the full primary key of the row to be changed. Kudu does not
natively support range deletes or updates.

Kudu schema design

The primary key values of a column may not be updated after the row is inserted. However, the row may be deleted
and re-inserted with the updated value.

Aswith many traditional relational databases, Kudu's primary key isin a clustered index. All rows within atablet are
sorted by its primary key.

When scanning Kudu rows, use equality or range predicates on primary key columns to efficiently find the rows.

Attention: Primary key indexing optimizations apply to scans on individual tablets. See the Partitioning
pruning topic for details on how scans can use predicates to skip entire tablets.

Partition pruning

This section discuss a primary key design consideration for timeseries use cases where the primary key isa
timestamp, or the first column of the primary key is atimestamp.

Each time arow isinserted into a Kudu table, Kudu looks up the primary key in the primary key index storageto
check whether that primary key is already present in the table. If the primary key existsin the table, a"duplicate key"
error isreturned. In the typical case where data is being inserted at the current time as it arrives from the data source,
only asmall range of primary keys are "hot". So, each of these "check for presence” operationsis very fast. It finds
the cached primary key storage in memory and doesn’t require going to disk.

In the case when you load historical data, which is called "backfilling", from an offline data source, each row that is
inserted is likely to reach a cold area of the primary key index which is not resident in memory and will cause one or
more HDD disk seeks. For example, in anormal ingestion case where Kudu sustains afew million inserts per second,
the "backfill" use case might sustain only afew thousand inserts per second.

To alleviate the performance issue during backfilling, consider the following options:
« Makethe primary keys more compressible.

For example, with the first column of aprimary key being arandom ID of 32-bytes, caching one billion primary
keyswould require at least 32 GB of RAM to stay in cache. If caching backfill primary keys from several days
ago, you need to have several times 32 GB of memory. By changing the primary key to be more compressible,
you increase the likelihood that the primary keys can fit in cache and thus reducing the amount of random disk I/
Os.

» Use SSDsfor storage as random seeks are orders of magnitude faster than spinning disks.

» Changethe primary key structure such that the backfill writes find a continuous range of primary keys.

In order to provide scalability, Kudu tables are partitioned into units called tablets, and distributed across many
tablet servers. A row always belongsto asingle tablet. The method of assigning rows to tablets is determined by the
partitioning of the table, which is set during table creation.

Choosing a partitioning strategy requires understanding the data model and the expected workload of atable. For
write-heavy workloads, it isimportant to design the partitioning such that writes are spread across tablets in order
to avoid overloading a single tablet. For workloads involving many short scans, where the overhead of contacting
remote servers dominates, performance can beimproved if all of the data for the scan islocated on the same tablet.
Understanding these fundamental trade-offsis central to designing an effective partition schema.

Important: Kudu does not provide a default partitioning strategy when creating tables. It is recommended
that new tables which are expected to have heavy read and write workloads have at least as many tablets as
tablet servers.

Kudu schema design

Kudu provides two types of partitioning: range partitioning and hash partitioning. Tables may also have multilevel
partitioning, which combines range and hash partitioning, or multiple instances of hash partitioning.

Range partitioning distributes rows using a totally-ordered range partition key. Each partition is assigned a contiguous
segment of the range partition keyspace. The key must be comprised of a subset of the primary key columns. If the
range partition columns match the primary key columns, then the range partition key of arow will equal its primary
key. In range partitioned tables without hash partitioning, each range partition will correspond to exactly one tablet.

Theinitial set of range partitions is specified during table creation as a set of partition bounds and split rows. For
each bound, arange partition will be created in the table. Each split will divide arange partition in two. If no partition
bounds are specified, then the table will default to a single partition covering the entire key space (unbounded bel ow
and above). Range partitions must always be non-overlapping, and split rows must fall within arange partition.

Kudu allows range partitions to be dynamically added and removed from atable at runtime, without affecting the
availability of other partitions. Removing a partition will delete the tablets belonging to the partition, as well as the
data contained in them. Subsequent inserts into the dropped partition will fail. New partitions can be added, but they
must not overlap with any existing range partitions. Kudu allows dropping and adding any number of range partitions
in asingle transactional alter table operation.

Dynamically adding and dropping range partitions is particularly useful for time series use cases. Astime goes on,
range partitions can be added to cover upcoming time ranges. For example, atable storing an event log could add a
month-wide partition just before the start of each month in order to hold the upcoming events. Old range partitions
can be dropped in order to efficiently remove historical data, as necessary.

Hash partitioning distributes rows by hash value into one of many buckets. In single-level hash partitioned tables,
each bucket will correspond to exactly one tablet. The number of buckets is set during table creation. Typically the
primary key columns are used as the columns to hash, but as with range partitioning, any subset of the primary key
columns can be used.

Hash partitioning is an effective strategy when ordered access to the table is hot needed. Hash partitioning is effective
for spreading writes randomly among tablets, which helps mitigate hot-spotting and uneven tablet sizes.

Kudu allows atable to combine multiple levels of partitioning on asingle table. Zero or more hash partition levels
can be combined with an optional range partition level. The only additional constraint on multilevel partitioning
beyond the constraints of theindividual partition types, isthat multiple levels of hash partitions must not hash the
same columns.

When used correctly, multilevel partitioning can retain the benefits of the individual partitioning types, while
reducing the downsides of each. The total number of tabletsin a multilevel partitioned table is the product of the
number of partitionsin each level.

Kudu scans will automatically skip scanning entire partitions when it can be determined that the partition can

be entirely filtered by the scan predicates. To prune hash partitions, the scan must include equality predicates on
every hashed column. To prune range partitions, the scan must include equality or range predicates on the range
partitioned columns. Scans on multilevel partitioned tables can take advantage of partition pruning on any of the
levels independently.

To illustrate the factors and tradeoffs associated with designing a partitioning strategy for atable, we will walk
through some different partitioning scenarios.

Kudu schema design

Consider the following table schema for storing machine metrics data (using SQL syntax and date-formatted
timestamps for clarity):

CREATE TABLE netrics (
host STRI NG NOT NULL,
netric STRING NOT NULL,
tinme | NT64 NOT NULL,
val ue DOUBLE NOT NULL,
PRI MARY KEY (host, metric, tine)

)

A natural way to partition the metrics table is to range partition on the time column. Let’ s assume that we want to
have a partition per year, and the table will hold data for 2014, 2015, and 2016. There are at |east two ways that the
table could be partitioned: with unbounded range partitions, or with bounded range partitions.

2014-01-01 2015-01-01 2016-01-01 2017-01-01

I I | | -
I I I I -

Example 1 Tablet 1 Tablet 2 Tablet 3
Bounds: default

Splits: 2015, 2016 values before 2015 | values in 2015 values after 2015
Example 2 Tablet 1 Tablet 2 Tablet 3
Bounds: 2014 to 2017

Splits: 2015 and 2016 values in 2014 | values in 2015 | values in 2016

The image above shows the two ways the metrics table can be range partitioned on the time column. In the first
example (in blue), the default range partition bounds are used, with splits at 2015-01-01 and 2016-01-01. This results
in three tablets: the first containing values before 2015, the second containing values in the year 2015, and the third
containing values after 2016. The second example (in green) uses a range partition bound of [(2014-01-01), (2017
-01-01)], and splits at 2015-01-01 and 2016-01-01. The second example could have equivalently been expressed
through range partition bounds of [(2014-01-01), (2015-01-01)], [(2015-01-01), (2016-01-01)], and [(2016-01-01),
(2017-01-01)], with no splits. The first example has unbounded lower and upper range partitions, while the second
exampl e includes bounds.

Each of the range partition examples above allows time-bounded scans to prune partitions falling outside of the scan’'s
time bound. This can greatly improve performance when there are many partitions. When writing, both examples
suffer from potential hot-spotting issues. Because metrics tend to aways be written at the current time, most writes
will go into a single range partition.

The second exampleis more flexible, because it allows range partitions for future years to be added to the table. In
the first example, al writes for times after 2016-01-01 will fall into the last partition, so the partition may eventually
become too large for asingle tablet server to handle.

Another way of partitioning the metrics table is to hash partition on the host and metric columns.

Kudu schema design

HASH (host, metric)

Tablet 1

Tablet 2 Tablet 3 Tablet 4

bucket: O bucket: 1 bucket: 2 bucket: 3

In the example above, the metrics table is hash partitioned on the host and metric columns into four buckets. Unlike
the range partitioning example earlier, this partitioning strategy will spread writes over all tabletsin the table evenly,
which helps overall write throughput. Scans over a specific host and metric can take advantage of partition pruning
by specifying equality predicates, reducing the number of scanned tablets to one. One issue to be careful of with a
pure hash partitioning strategy, is that tablets could grow indefinitely as more and more datais inserted into the table.
Eventually tablets will become too big for an individual tablet server to hold.

Hash and range partitioning
The previous exampl es showed how the metrics table could be range partitioned on the time column, or hash
partitioned on the host and metric columns. These strategies have associated strength and weaknesses:

Table 1: Partitioning strategies

Strategy Writes [RE=T Tablet Growth

range(time)

- all writes go to latest partition

- time-bounded scans can be
pruned

- new tablets can be added for
future time periods

hash(host, metric)

- writes are spread evenly
among tablets

- scans on specific hosts and
metrics can be pruned

- tablets could grow too large

Hash partitioning is good at maximizing write throughput, while range partitioning avoids issues of unbounded
tablet growth. Both strategies can take advantage of partition pruning to optimize scansin different scenarios.
Using multilevel partitioning, it is possible to combine the two strategies in order to gain the benefits of both, while
minimizing the drawbacks of each.

10

Kudu schema design

RANGE (time)

2014-01-01 2015-01-01 2016-01-01 2017-01-01
H >
(" Tablet 1 Tablet 5 Tablet9)
values in 2014 | values in 2015 | values in 2016
_ l,LI:)L,M':ket: 0 }>bucket: 0 Abucket: 0 y
S| (Tablet2)| Tablet6 | Tablet10
% values in 2014 | values in 2015 | values in 2016
g‘ >bucket: 1 ¢t?.-u:;k&t: 1 Abucket: 1 y.
= Tablet 3 Tablet 7 Tablet 11
% values in 2014 | values in 2015 | values in 2016
% bucket: 2 bucket: 2 bucket: 2
> Tablet 4 <'> Tablet 8 Tablet 12
values in 2014 | valuesin 2015 | valuesin 2016
kbucket: 3 Abucket: 3 kaucket: 3 B

In the example above, range partitioning on the time column is combined with hash partitioning on the host and metr
ic columns. This strategy can be thought of as having two dimensions of partitioning: one for the hash level and one

for the range level. Writesinto thistable at the current time will be parallelized up to the number of hash buckets, in

this case 4. Reads can take advantage of time bound and specific host and metric predicates to prune partitions. New
range partitions can be added, which results in creating 4 additional tablets (asif a new column were added to the

diagram).

Kudu can support any number of hash partitioning levelsin the same table, aslong as the levels have no hashed
columns in common.

11

Kudu schema design

HASH (host)

HASH (metric)

Tablet 1

host bucket: 0
metric bucket: 0

Tablet 5

host bucket: 0
metric bucket: 1

Tablet 2

host bucket: 1
metric bucket: 0

.¢. Tablet 6

host bucket: 1
metric bucket: 1

Tablet 9

host bucket: 0
metric bucket: 2

Tablet 10

host bucket: 1
metric bucket: 2

y

> Tablet 3

host bucket: 2
metric bucket: 0

¢ Tablet 7

host bucket: 2
metric bucket: 1

>. Tablet 4
host bucket: 3

metric bucket: 0

.¢. Tablet 8

host bucket: 3
metric bucket: 1

Tablet 11

host bucket: 2
metric bucket: 2

y

Tablet 12

host bucket: 3
metric bucket: 2

y

_LM

In the example above, the table is hash partitioned on host into 4 buckets, and hash partitioned on metric into 3
buckets, resulting in 12 tablets. Although writes will tend to be spread among all tablets when using this strategy, it is
slightly more prone to hot-spotting than when hash partitioning over multiple independent columns, since all values
for an individual host or metric will always belong to a single tablet. Scans can take advantage of equality predicates
on the host and metric columns separately to prune partitions.

Multiple levels of hash partitioning can also be combined with range partitioning, which logically adds another
dimension of partitioning.

Thistopic lists the ways in which you can ater atable’s schema.

* Renamethetable

* Rename primary key columns

¢ Rename, add, or drop non-primary key columns
e Add and drop range partitions

Multiple alteration steps can be combined in a single transactional operation.

12

Kudu schema design

Kudu currently has some known limitations that may factor into schema design.

* Theprimary key cannot be changed after the table is created. Y ou must drop and recreste a table to select a new
primary key.
e The columns which make up the primary key must be listed first in the schema.

« The primary key of arow cannot be modified using the UPDATE functionality. To modify arow’s primary key,
the row must be deleted and re-inserted with the modified key. Such a modification is non-atomic.

e Columnswith DOUBLE, FLOAT, or BOOL types are not allowed as part of aprimary key definition.
Additionally, all columnsthat are part of a primary key definition must be NOT NULL.

« Auto-generated primary keys are not supported.

» Cellsmaking up acomposite primary key are limited to atotal of 16KB after internal composite-key encoding is
done by Kudu.

No individua cell may be larger than 64KB before encoding or compression. The cells making up a composite key
are limited to atotal of 16KB after the internal composite-key encoding done by Kudu. Inserting rows not conforming
to these limitations will result in errors being returned to the client.

« By default, Kudu tables can have a maximum of 300 columns. We recommend schema designs that use fewer
columns for best performance.

¢ CHAR, and complex types such asARRAY, MAP, and STRUCT are not supported.

« Type, nullability, and type attributes (i.e. precision and scale of DECIMAL, length of VARCHAR) of the existing
columns cannot be changed by altering the table.

» Dropping acolumn does not immediately reclaim space. Compaction must run first.
« Kudu does not allow the type of acolumn to be altered after the table is created.

» Tables must have an odd number of replicas, with a maximum of 7.

* Replication factor (set at table creation time) cannot be changed.

e Thereisno way to run compaction manually, but dropping atable will reclaim the space immediately.

¢ Kudu does not alow you to change how atable is partitioned after creation, with the exception of adding or
dropping range partitions.

» Partitions cannot be split or merged after table creation.

e Secondary indexes are not supported.
e Multi-row transactions are not supported.
» Relational features, such asforeign keys, are not supported.

* ldentifiers such as column and table names are restricted to be valid UTF-8 strings. Additionally, a maximum
length of 256 charactersis enforced.

If you are using Apache Impalato query Kudu tables, refer to the section on Impala integration limitations as
well.

« Deleted row disk space cannot be reclaimed. The disk space occupied by a deleted row isonly reclaimable via
compaction, and only when the deletion's age exceeds the "tablet history maximum age" which is controlled by
the --tablet_history_max_age sec flag. Currently, Kudu only schedules compactions in order to improve read/

13

Kudu transaction semantics

write performance. A tablet will never be compacted purely to reclaim disk space. As such, range partitioning
should be used when it is expected that large swaths of rows will be discarded. With range partitioning, individual
partitions may be dropped to discard data and reclaim disk space. See KUDU-1625 for more details.

Impalaintegration limitations

Here are some of the limitations that you must consider before partitionoing tables.

» Tables must be manually pre-split into tablets using simple or compound primary keys. Automatic splitting is not
yet possible. Kudu does not allow you to change how atableis partitioned after creation, with the exception of
adding or dropping range partitions.

« Datain existing tables cannot currently be automatically repartitioned. As aworkaround, create a new table with
the new partitioning and insert the contents of the old table.

« Tabletsthat lose amagjority of replicas (such as 1 left out of 3) require manual intervention to be repaired.

Thisisabrief introduction to Kudu' s transaction and consistency semantics. Kudu's core philosophy is to provide
transactions with simple, strong semantics, without sacrificing performance or the ability to tune to different
requirements. Kudu’s transactional semantics and architecture are inspired by state-of-the-art systems such as
Spanner and Calvin. For an in-depth technical exposition of what is mentioned here, see the Technical Report:
HybridTime - Accessible Global Consistency with High Clock Uncertainty.

Kudu currently allows the following operations:

« Scansare read operations that can traverse multiple tablets and read information with different levels of
consistency or correctness guarantees. Scans can also perform time-travel reads. That is, you can set a scan
timestamp from the past and get back results that reflect the state of the storage engine at that point in time.

* Write operations are sets of rows to be inserted, updated, or deleted in the storage engine, in asingle tablet with
multiple replicas. Write operations do not have separate "read sets’, that is, they do not scan existing data before
performing the write. Each write is only concerned with the previous state of the rows that are about to change.
Writes are not "committed” explicitly by the user. Instead, they are committed automatically by the system, after
completion.

While Kudu is designed to eventually be fully ACID (Atomic, Consistent, Isolated, Durable), multi-tablet transactions
have not yet been implemented. As such, the following discussion focuses on single-tablet write operations, and only
briefly touches multi-tablet reads.

Spanner
Calvin
Technical Report: HybridTime - Accessible Globa Consistency with High Clock Uncertainty

Kudu employs Multiversion Concurrency Control (MVCC) and the Raft consensus algorithm. Each write operation in
Kudu must go through the following order of operations:

1. Thetablet'sleader acquires all locks for the rowsthat it will change.

2. Theleader assigns the write atimestamp before the write is submitted for replication. Thistimestamp will be the
write’'sTAG in MVCC.

3. After amajority of replicas have acknowledged the write, the rows are changed.

14

https://issues.apache.org/jira/browse/KUDU-1625
https://docs.cloudera.com/cdp-private-cloud-base/7.1.8/kudu-integration/topics/kudu-impala-integration-limitations.html
https://research.google.com/archive/spanner.html
https://dl.acm.org/citation.cfm?doid=2213836.2213838
https://users.ece.utexas.edu/~garg/pdslab/david/hybrid-time-tech-report-01.pdf

Kudu transaction semantics

4. After the changes are complete, they are made visible to concurrent writes and reads, atomically.

All replicas of atablet observe the same process. Therefore, if awrite operation is assigned timestamp n, and changes
row X, a second write operation at timestamp m > n is guaranteed to see the new value of x.

This strict ordering of lock acquisition and timestamp assignment is enforced to be consistent across all replicas of a
tablet through consensus. Therefore, write operations are ordered with regard to clock-assigned timestamps, relative
to other writes in the same tablet. In other words, writes have strict-serializable semantics.

In case of multi-row write operations, while they are Isolated and Durable in an ACID sense, they are not yet fully
Atomic. The failure of asingle write in a batch operation will not roll back the entire operation, but produce per-row
errors.

Kudu does not support transactions that span multiple tablets. However, consistent snapshot reads are possible (with
caveats, as explained below). Writes from a Kudu client are optionally buffered in memory until they are flushed and
sent to the tablet server. When aclient’ s session is flushed, the rows for each tablet are batched together, and sent to
the tablet server which hosts the leader replica of the tablet. Since there are no inter-tablet transactions, each of these
batches represents a single, independent write operation with its own timestamp. However, the client API provides the
option to impose some constraints on the assigned timestamps and on how writes to different tablets are observed by
clients.

Kudu was designed to be externally consistent, that is, preserving consistency when operations span multiple tablets
and even multiple data centers. In practice this means that if awrite operation changesitem x at tablet A, and a
following write operation changesitem y at tablet B, you might want to enforce that if the changetoy is observed,
the change to x must also be observed. There are many examples where this can be important. For example, if

Kudu is storing clickstreams for further analysis, and two clicks follow each other but are stored in different tablets,
subsequent clicks should be assigned subsequent timestamps so that the causal relationship between them is captured.

* CLIENT_PROPAGATED Consistency

Kudu's default external consistency mode is called CLIENT_PROPAGATED. This mode causes writes from
asingle client to be automatically externally consistent. In the clickstream scenario above, if the two clicks are
submitted by different client instances, the application must manually propagate timestamps from one client to the
other for the causal relationship to be captured. Timestamps between clients aand b can be propagated as follows:

Java Client

Call AsyncKuduClient#getL astPropagatedTimestamp() on client a, propagate the timestamp to
client b, and call AsyncKuduClient#setL astPropagatedTimestamp() on client b.

C++ Client

Call KuduClient::GetL atestObservedTimestamp() on client a, propagate the timestamp to client b,
and call KuduClient::SetL atestObservedTimestamp() on client b.

« COMMIT_WAIT Consistency

Kudu also has an experimental implementation of an external consistency model (used in Google' s Spanner),
called COMMIT_WAIT. COMMIT_WAIT works by tightly synchronizing the clocks on all machinesin the
cluster. Then, when awrite occurs, timestamps are assigned and the results of the write are not made visible

15

Kudu transaction semantics

until enough time has passed so that no other machine in the cluster could possibly assign alower timestamp to a
following write.

When using this mode, the latency of writesistightly tied to the accuracy of clocks on all the cluster hosts, and
using this mode with loose clock synchronization causes writes to either take a long time to complete, or even
time out.

The COMMIT_WAIT consistency mode may be selected as follows:
Java Client

Call KuduSession#setExternal ConsistencyM ode(External ConsistencyM ode. COMMIT_WAIT)
C++ Client

Call KuduSession:: SetExternal ConsistencyMode(COMMIT_WAIT)

War ning:

COMMIT_WAIT consistency is an experimental feature. It may return incorrect results, exhibit
performance issues, or negatively impact cluster stability. Its use in production environmentsis
discouraged.

Scans are read operations performed by clients that may span one or more rows across one or more tablets. When a
server receives a scan request, it takes a snapshot of the MV CC state and then proceeds in one of two ways depending
on the read mode selected by the user.

The mode may be selected as follows:
Java Client

Call KuduScannerBuilder#ReadMode(...)
C++ Client

Call KuduScanner::SetReadM ode()
The following modes are available in both clients:
READ_LATEST

Thisisthe default read mode. The server takes a snapshot of the MV CC state and proceeds with the
read immediately. Reads in this mode only yield 'Read Committed' isolation.

READ_AT_SNAPSHOT

In this read mode, scans are consistent and repeatable. A timestamp for the snapshot is selected
either by the server, or set explicitly by the user through KuduScanner::SetSnapshotMicros().
Explicitly setting the timestamp is recommended.

The server waits until this timestamp is'safe’; that is, until al write operations that have alower
timestamp have completed and are visible). This delay, coupled with an external consistency
method, will eventually allow Kudu to have full strict-serializable semantics for reads and writes.
However, thisis still awork in progress and some anomalies are still possible. Only scansin this
mode can be fault-tolerant.

READ_YOUR_WRITES

This read mode relies on the state of a Kudu client to issue subsequent scan reguests. When issuing
ascan request in this read mode, a Kudu client provides the latest timestamp it observed so far. The
server selects atimestamp higher than the timestamp provided by the client, that is also guaranteed
to have all prior write operations committed and applied to the data. That translates into read-your-
writes and read-your-reads behavior which is useful in scenarios where subsequent scan requests

16

Kudu transaction semantics

should contain the data the client has seen so far while reading and writing during its current
session. To summarize, this read mode

» ensures read-your-writes and read-your-reads session guarantees

* minimizesthe latency caused by waiting for outstanding write operations at the server side to
complete

» does not guarantee linearizability

Selecting between read modes requires balancing the trade-offs and making a choice that fits your workload. For
instance, a reporting application that needs to scan the entire database might need to perform careful accounting
operations, so that scan may need to be fault-tolerant, but probably doesn’t require a to-the-microsecond up-to-date
view of the database. In that case, you might choose READ AT _SNAPSHOT and select atimestamp that is afew
seconds in the past when the scan starts. On the other hand, a machine learning workload that is not ingesting the
whole data set and is already statistical in nature might not require the scan to be repeatable, so you might choose
READ_LATEST instead for better scan performance.

Note:
B Kudu also provides replica selection API for you to choose at which replica the scan should be performed:
Java Client

Call KuduScannerBuilder#replicaSelection(...)
C++ Client
Call KuduScanner::SetSelection(...)

This APl isameansto control locality and, in some cases, latency. The replica selection API has no effect on
the consistency guarantees, which will hold no matter which replicais selected.

Known issues and limitations

There are several gaps and corner cases that currently prevent Kudu from being strictly-serializable in certain
situations.

Support for COMMIT_WAIT is experimental and requires careful tuning of the time-synchronization protocol, such
as NTP (Network Time Protocol). Its use in production environments is discouraged.

Recommendation

If external consistency is arequirement and you decide to use COMMIT_WAIT, the time-synchronization protocol
needs to be tuned carefully. Each transaction will wait 2x the maximum clock error at the time of execution, which is
usualy in the 100 msec. to 1 sec. range with the default settings, maybe more. Thus, transactions would take at least
200 msec. to 2 sec. to complete when using the default settings and may even time out.

* A local server should be used as atime server. We have performed experiments using the default NTP time source
available in a Google Compute Engine data center and were able to obtain a reasonable tight max error bound,
usually varying between 12-17 milliseconds.

« Thefollowing parameters should be adjusted in /etc/ntp.conf to tighten the maximum error:

e server my_server.orgiburst minpoll 1 maxpoll 8
 tinker dispersion 500
o tinkeralan0

17

Scaling Kudu

On aleader change, READ_AT_SNAPSHOT scans at a snapshot whose timestamp is beyond the last write, may
yield non-repeatable reads (see KUDU-1188).

Recommendation

If repeatabl e snapshot reads are a requirement, use READ_AT_SNAPSHOT with atimestamp that is slightly in the
past (between 2-5 seconds, ideally). Thiswill circumvent the anomaly described above. Even when the anomaly has
been addressed, back-dating the timestamp will aways make scans faster, since they are unlikely to block.

Impala scans are currently performed as READ_LATEST and have no consistency guarantees.

In AUTO_BACKGROUND_FLUSH mode, or when using "async" flushing mechanisms, writes applied to a

single client session may get reordered due to the concurrency of flushing the data to the server. Thisis particularly
noticeable if asingle row is quickly updated with different valuesin succession. This phenomenon affects all client
API implementations. Workarounds are described in the respective APl documentation for FlushMode or AsyncKud
uSession. See KUDU-1767.

This section describes in detail how Kudu scales with respect to various system resources, including memory, file
descriptors, and threads. See Scaling recommendations and limitations for the maximum recommended parameters of
aKudu cluster. They can be used to estimate roughly the number of servers required for a given quantity of data.

Attention: The recommendations and conclusions here are only approximations. Appropriate numbers
depend on use case. Thereis no substitute for measurement and monitoring of resources used during a
representative workload.

Scaling recommendations and limitations

Here are some of the terms used in thistopic.

« hotreplica: A tablet replicathat is continuously receiving writes. For example, in atime series use case, tablet
replicas for the most recent range partition on atime column would be continuously receiving the latest data, and
would be hot replicas.

« coldreplica: A tablet replicathat is not hot, i.e. areplicathat is not frequently receiving writes, for example,
once every few minutes. A cold replicamay be read from. For example, in atime series use case, tablet replicas
for previous range partitions on a time column would not receive writes at al, or only occasionally receive late
updates or additions, but may be constantly read.

« dataondisk: Thetotal amount of data stored on atablet server across all disks, post-replication, post-compression,
and post-encoding.

The sections below help you perform sample cal culations using the following parameters:

e 200 hot replicas per tablet server

» 1600 cold replicas per tablet server

« 8TB of dataon disk per tablet server (about 4.5GB/replica)
» 512MB block cache

e 40 cores per server

« limit of 32000 file descriptors per server

18

https://issues.apache.org/jira/browse/KUDU-1188
https://issues.apache.org/jira/browse/KUDU-1767

Scaling Kudu

» aread workload with 1 frequently-scanned table with 40 columns

This workload resembles atime series use case, where the hot replicas correspond to the most recent range partition
ontime.

Memory

The flag --memory_limit_hard_bytes determines the maximum amount of memory that a Kudu tablet server may use.
The amount of memory used by a tablet server scales with data size, write workload, and read concurrency.

The following table provides numbers that can be used to compute arough estimate of memory usage:

Table 2: Tablet server memory usage

Type Multiplier Description

Memory required per TB of data on disk 1.5GB per 1TB data on disk Amount of memory per unit of data on disk
required for basic operation of the tablet
server.

Hot Replicas MemRowSets and minimum 128MB per hot replica Minimum amount of datato flush per

DeltaMemStores MemRowSet flush. For most use cases,

updates should be rare compared to inserts, so
the DeltaM emStores should be very small.

Scans 256K B per column per core for read-heavy Amount of memory used by scanners, and
tables which will be constantly needed for tables
which are constantly read.
Block Cache Fixed by --block_cache_capacity_mb(default | Amount of memory reserved for use by the
512MB) block cache.

Using this information for the example load gives the following breakdown of memory usage:

Table 3: Example tablet server memory usage

Type Amount

8TB data on disk 8TB * 1.5GB / 1TB = 12GB

200 hot replicas 200 * 128MB = 25.6GB

1 40-column, frequently-scanned table 40 * 40 * 256KB = 409.6MB

Block Cache --block_cache _capacity_mb=512 = 512MB
Expected memory usage 38.5GB

Recommended hard limit 52GB

Using this as arough estimate of Kudu's memory usage, select amemory limit so that the expected memory usage of
Kudu is around 50-75% of the hard limit.

Verifying if a memory limit is sufficient

After configuring an appropriate memory limit with --memory_limit_hard_bytes, run aworkload and monitor the
Kudu tablet server process's RAM usage. The memory usage should stay around 50-75% of the hard limit, with
occasional spikes above 75% but below 100%. If the tablet server runs above 75% consistently, the memory limit
should be increased.

Additionaly, it's also useful to monitor the logs for memory rejections, which look like:
Service unavail abl e: Soft nmenory limt exceeded (at 96.35% of capacity)

And watch the memory rejections metrics:

Scaling Kudu

leader_memory_pressure_rejections
« follower_memory_pressure rejections
e transaction_memory_pressure rejections

Occasiona rejections due to memory pressure are fine and act as backpressure to clients. Clients will transparently
retry operations. However, no operations should time out.

File descriptors

Processes are allotted a maximum number of open file descriptors (also referred to as fds). If atablet server attempts
to open too many fds, it will typically crash with a message saying something like "too many open files'.

The following table summarizes the sources of file descriptor usage in a Kudu tablet server process:

Table 4: Tablet server file descriptor usage

File cache Fixed by --block_manager_max_open_files Maximum allowed open fds reserved for use
(default 40% of process maximum) by the file cache.
Hot replicas 2 per WAL segment, 1 per WAL index Number of fds used by hot replicas. See below
for more explanation.
Cold replicas 3 per cold replica Number of fds used per cold replica: 2 for
the single WAL segment and 1 for the single
WAL index.

Every replica has at least one WAL segment and at least one WAL index, and should have the same number of
segments and indices; however, the number of segments and indices can be greater for areplicaif one of its peer
replicasisfalling behind. WAL segment and index fds are closed as WALSs are garbage collected.

Using this information for the example load gives the following breakdown of file descriptor usage, under the
assumption that some replicas are lagging and using 10 WAL segments:

Table 5: Example tablet server file descriptor usage

Type Amount

file cache 40% * 32000 fds = 12800 fds
1600 cold replicas 1600 cold replicas* 3 fds/ cold replica= 4800 fds
200 hot replicas (2 / segment * 10 segments/hot replica* 200 hot replicas) + (1 / index

* 10indices/ hot replica* 200 hot replicas) = 6000 fds

Total 23600 fds

So for this example, the tablet server process has about 32000 - 23600 = 8400 fds to spare.

Thereistypically no downside to configuring a higher file descriptor limit if approaching the currently configured
limit.

Threads

Processes are allotted a maximum number of threads by the operating system, and this limit is typically difficult or
impossible to change. Therefore, this section is more informational than advisory.

If aKudu tablet server’sthread count exceeds the OS limit, it will crash, usually with amessage in the logs like

"pthread_create failed: Resource temporarily unavailable'. If the system thread count limit is exceeded, other
processes on the same node may also crash.

20

Scaling Kudu

Threads and thread pools are used all over Kudu for various purposes, but the number of threads found in nearly all
of these does not scale with load or data/tablet size; instead, the number of threadsis either ahard coded constant, a
constant defined by a configuration parameter, or based on a static dimension (such as the number of CPU cores).

The only exception to thisisthe WAL append thread, one of which exists for every "hot" replica

Note that all replicas may be considered hot at startup, so tablet servers thread usage will generally peak when started
and settle down thereafter.

Here are some of the recommended vales that you should consider while deciding the size of the tablet servers,
masters, and other storage resources to get optimum performance.

Kudu can seamlessly run across awide array of environments and workloads with minimal expertise and
configuration at the following scale:

¢ Recommended maximum number of mastersis 3.

* Recommended maximum number of tablet serversis 100.

« Recommended maximum amount of stored data, post-replication and post-compression, per tablet server is8 TiB.

« Recommended number of tablets per tablet server is 1000 (post-replication) with 2000 being the maximum
number of tablets allowed per tablet server.

« Maximum number of tablets per table for each tablet server is 60, post-replication (assuming the default
replication factor of 3), at table-creation time.

* Recommended maximum amount of data per tablet is 50 GiB. Going beyond this can cause issues such a reduced
performance, compaction issues, and slow tablet startup times.

The recommended target size for tabletsis under 10 GiB.

Staying within these limits will provide the most predictable and straightforward Kudu experience. However,
experienced users who run on modern hardware, use the latest versions of Kudu, test and tune Kudu for their use case,
and work closely with the community, can achieve much higher scales comfortably. Following are some anecdotal
values that have been seen in real world production clusters:

¢ Number of master servers: 3

e Morethan 300 tablet servers

e 10+ TiB of stored data per tablet server, post-replication and post-compression
* Morethan 4000 tablets per tablet server, post-replication

» 50 GiB of stored data per tablet. Going beyond this can cause issues such a reduced performance, compaction
issues, and slower tablet startup time.

21

	Contents
	Kudu schema design
	The perfect schema
	Column design
	Decimal type
	Varchar type
	Column encoding
	Column compression

	Primary key design
	Primary key index
	Considerations for backfill inserts

	Partitioning
	Range partitioning
	Adding and Removing Range Partitions

	Hash partitioning
	Multilevel partitioning
	Partition pruning
	Partitioning examples
	Range partitioning
	Hash partitioning
	Hash and range partitioning
	Hash and hash partitioning

	Schema alterations
	Schema design limitations
	Partitioning limitations

	Kudu transaction semantics
	Single tablet write operations
	Writing to multiple tablets
	Read operations (scans)
	Known issues and limitations
	Writes
	Reads (scans)

	Scaling Kudu
	Terms
	Example workload
	Memory
	Verifying if a memory limit is sufficient

	File descriptors
	Threads
	Scaling recommendations and limitations

