
Cloudera Runtime 7.2.16

Indexing Data Using Morphlines
Date published: 2019-11-19
Date modified:

https://docs.cloudera.com/

https://docs.cloudera.com/


Legal Notice

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.



Cloudera Runtime | Contents | iii

Contents

Indexing data using Morphlines............................................................................. 4

Lily HBase near real time indexing using Morphlines......................................... 4
Adding the Lily HBase indexer service...............................................................................................................4
Starting the Lily HBase NRT indexer service.....................................................................................................5
Using the Lily HBase NRT indexer service........................................................................................................ 5

Enable replication on HBase column families.........................................................................................5
Create a Collection in Cloudera Search...................................................................................................5
Creating a Lily HBase Indexer Configuration File..................................................................................6
Creating a Morphline Configuration File.................................................................................................6
Understanding the extractHBaseCells Morphline Command.................................................................. 7
Registering a Lily HBase Indexer Configuration with the Lily HBase Indexer Service......................... 8
Verifying that Indexing Works................................................................................................................ 9
Using the indexer HTTP interface......................................................................................................... 10

Configuring Lily HBase Indexer Security......................................................................................................... 10
Configure Lily HBase Indexer to use TLS/SSL.................................................................................... 10
Configure Lily HBase Indexer Service to use Kerberos authentication................................................ 11

Batch indexing using Morphlines......................................................................... 11
Spark indexing using morphlines.......................................................................................................................12
MapReduce indexing.......................................................................................................................................... 18

MapReduceIndexerTool..........................................................................................................................18
Lily HBase batch indexing for Cloudera Search................................................................................... 27



Cloudera Runtime Indexing data using Morphlines

Indexing data using Morphlines

There are generally two approaches to indexing data using Cloudera Search:

1. Near real time (NRT) indexing
2. Batch indexing

Near real time indexing is generally used when new data needs to be returned in query results in time frames
measured in seconds, whereas batch indexing is useful for situations where large amounts of data is indexed at regular
intervals, or for indexing a new dataset for the first time.

Near real time indexing generally uses a framework such as Apache Kafka to continuously ingest and index data. The
Lily HBase Indexer can also be used for NRT indexing on Apache HBase tables.

Batch indexing usually relies on MapReduce/YARN jobs to periodically index large datasets. The Lily HBase
Indexer can also be used for batch indexing HBase tables.

Related Concepts
Lily HBase near real time indexing using Morphlines

Batch indexing using Morphlines

Lily HBase near real time indexing using Morphlines

You can use the Lily HBase Indexer for near real time (NRT) indexing updates to HBase tables.

The Lily HBase NRT Indexer service is a flexible, scalable, fault-tolerant, transactional, NRT system for processing
a continuous stream of HBase cell updates into live search indexes. Typically it takes seconds for data ingested into
HBase to appear in search results; this duration is tunable. The Lily HBase Indexer uses SolrCloud to index data
stored in HBase. As HBase applies inserts, updates, and deletes to HBase table cells, the indexer keeps Solr consistent
with the HBase table contents, using standard HBase replication. The indexer supports flexible custom application-
specific rules to extract, transform, and load HBase data into Solr. Solr search results can contain columnFamily:qua
lifier links back to the data stored in HBase. This way, applications can use the Search result set to directly access
matching raw HBase cells. Indexing and searching do not affect operational stability or write throughput of HBase
because the indexing and searching processes are separate and asynchronous to HBase.

To accommodate the HBase ingest load, you can run as many Lily HBase Indexer services on different hosts as
required. Because the indexing work is shared by all indexers, you can scale the service by adding more indexers.
The recommended number of indexer is 1 for each HBase RegionServer but in a High Availability environment five
worker nodes is the minimum for acceptable performance and reliability. You can co-locate Lily HBase Indexer
services with Solr servers on the same set of hosts. RegionServers can also be co-locate with Lily HBase Indexer on
the same host to improve performance.

Note:  Specific workloads and usage patterns might require additional fine-tuning beyond these general
recommendations.

The Lily HBase NRT Indexer service must be deployed in an environment with a running HBase cluster, a running
SolrCloud cluster (the Solr service in Cloudera Manager), and at least one ZooKeeper quorum.

Adding the Lily HBase indexer service
In Cloudera Manager, the Lily HBase Indexer service is called Key-Value Store Indexer, and the service role is called
Lily HBase Indexer.

4



Cloudera Runtime Lily HBase near real time indexing using Morphlines

Starting the Lily HBase NRT indexer service
Use Cloudera Manager to start the Lily HBase indexer service.

You can use Cloudera Manager to start the Lily HBase Indexer Service ( Key-Value Store Indexer service Actions
Start ).

Once the service is running, you can create and manage indexers.

Using the Lily HBase NRT indexer service

To index for column families of tables in an HBase cluster:

• Enable replication on HBase column families
• Create collections and configurations
• Register a Lily HBase Indexer configuration with the Lily HBase Indexer Service
• Verify that indexing is working

Enable replication on HBase column families
Apache HBase Replication allows you to copy data from one HBase cluster to a different and possibly distant HBase
cluster. This can be used for disaster recovery or when you want to run load intensive MapReduce jobs on your
HBase cluster.

Procedure

1. For every existing table, set the REPLICATION_SCOPE on every column family that you want to index:

hbase shell
hbase shell> disable 'sample_table'
hbase shell> alter 'sample_table', {NAME => 'columnfamily1', REPLICATION
_SCOPE => 1}
hbase shell> enable 'sample_table'

2. For every new table, set the REPLICATION_SCOPE on every column family that you want to index using a
command such as the following:

hbase shell
hbase shell> create 'test_table', {NAME => 'testcolumnfamily', REPLICATI
ON_SCOPE => 1}

Create a Collection in Cloudera Search

About this task

A collection in Search used for HBase indexing must have a Solr schema that accommodates the types of HBase
column families and qualifiers that are being indexed. To begin, consider adding the all-inclusive data field to a
default schema.

Procedure

Once you decide on a schema, create a collection using commands similar to the following:

solrctl instancedir --generate $HOME/hbase_collection_config
## Edit $HOME/hbase_collection_config/conf/managed-schema as needed ##
solrctl config --upload hbase_collection_config $HOME/hbase_collection_confi
g

5



Cloudera Runtime Lily HBase near real time indexing using Morphlines

solrctl collection --create hbase_collection -s <numShards> -c hbase_colle
ction_config

Creating a Lily HBase Indexer Configuration File

About this task

Configure individual Lily HBase Indexers using the hbase-indexer command-line utility. Typically, there is one Lily
HBase Indexer configuration file for each HBase table, but there can be as many Lily HBase Indexer configuration
files as there are tables, column families, and corresponding collections in Search. Each Lily HBase Indexer
configuration is defined in an XML file, such as morphline-hbase-mapper.xml.

An indexer configuration XML file must refer to the MorphlineResultToSolrMapper implementation and point
to the location of a Morphline configuration file, as shown in the following morphline-hbase-mapper.xml indexer
configuration file.

Procedure

• Set morphlineFile to the relative path morphlines.conf. Make sure the file is readable by the HBase system user
(hbase by default).

$ cat $HOME/morphline-hbase-mapper.xml

<?xml version="1.0"?>
<indexer table="sample_table"
mapper="com.ngdata.hbaseindexer.morphline.MorphlineResultToSolrMapper">
   <!-- The relative path on the local file system to the
   morphline configuration file. -->
   
   <param name="morphlineFile" value="morphlines.conf"/>

   <!-- The optional morphlineId identifies a morphline if there are multi
ple
   morphlines in morphlines.conf -->
   <!-- <param name="morphlineId" value="morphline1"/> -->
</indexer>

The Lily HBase Indexer configuration file also supports the standard attributes of any HBase Lily Indexer on the
top-level <indexer> element. It does not support the <field> element and <extract> elements.

Creating a Morphline Configuration File

About this task

After creating an indexer configuration XML file, you can configure morphline ETL transformation commands in
a morphlines.conf configuration file. The morphlines.conf configuration file can contain any number of morphline
commands. Typically, an extractHBaseCells command is the first command. The readAvroContainer or readAvro
morphline commands are often used to extract Avro data from the HBase byte array. This configuration file can be
shared among different applications that use morphlines.

Note:  To function properly, the morphline must not contain a loadSolr command. The Lily HBase Indexer
must load documents into Solr, instead of the morphline itself.

Procedure

You can edit the morphlines.conf file within Cloudera Manager ( Key-Value Store Indexer service Configuration
Category Morphlines Morphlines File ).

6



Cloudera Runtime Lily HBase near real time indexing using Morphlines

Understanding the extractHBaseCells Morphline Command

The extractHBaseCells morphline command extracts cells from an HBase result and transforms the values into a Solr
InputDocument. The command consists of an array of zero or more mapping specifications.

Each mapping has:

• The inputColumn parameter, which specifies the data from HBase for populating a field in Solr. It has the form
of a column family name and qualifier, separated by a colon. The qualifier portion can end in an asterisk, which
is interpreted as a wildcard. In this case, all matching column-family and qualifier expressions are used. The
following are examples of valid inputColumn values:

• mycolumnfamily:myqualifier
• mycolumnfamily:my*
• mycolumnfamily:*

• The outputField parameter specifies the morphline record field to which to add output values. The morphline
record field is also known as the Solr document field. Example: first_name.

• Dynamic output fields are enabled by the outputField parameter ending with a wildcard (*). For example:

inputColumn : "mycolumnfamily:*"
outputField : "belongs_to_*"

In this case, if you make these puts in HBase:

put 'table_name' , 'row1' , 'mycolumnfamily:1' , 'foo'
put 'table_name' , 'row1' , 'mycolumnfamily:9' , 'bar'

Then the fields of the Solr document are as follows:

belongs_to_1 : foo
belongs_to_9 : bar

• The type parameter defines the data type of the content in HBase. All input data is stored in HBase as byte arrays,
but all content in Solr is indexed as text, so a method for converting byte arrays to the actual data type is required.
The type parameter can be the name of a type that is supported by org.apache.hadoop.hbase.util.Bytes.to* (which
currently includes byte[], int, long, string, boolean, float, double, short, and bigdecimal). Use type byte[] to pass
the byte array through to the morphline without conversion.

• type:byte[] copies the byte array     unmodified into the record output field
• type:int converts with     org.apache.hadoop.hbase.util.Bytes.toInt
• type:long converts with     org.apache.hadoop.hbase.util.Bytes.toLong
• type:string converts with     org.apache.hadoop.hbase.util.Bytes.toString
• type:boolean converts with     org.apache.hadoop.hbase.util.Bytes.toBoolean
• type:float converts with     org.apache.hadoop.hbase.util.Bytes.toFloat
• type:double converts with     org.apache.hadoop.hbase.util.Bytes.toDouble
• type:short converts with     org.apache.hadoop.hbase.util.Bytes.toShort
• type:bigdecimal converts with     org.apache.hadoop.hbase.util.Bytes.toBigDecimal

Alternatively, the type parameter can be the name of a Java class that implements the com.ngdata.hbaseindexer.
parse.ByteArrayValueMapper interface.

HBase data formatting does not always match what is specified by org.apache.hadoop.hbase.util.Bytes.*. For
example, this can occur with data of type float or double. You can enable indexing of such HBase data by
converting the data. There are various ways to do so, including:

• Using Java morphline command to parse input data, converting it to the expected output. For example:

{
 imports : "import java.util.*;" code: """ // manipulate the contents of
 a record field

7



Cloudera Runtime Lily HBase near real time indexing using Morphlines

 String stringAmount = (String) record.getFirstValue("amount");
 Double dbl = Double.parseDouble(stringAmount); record.replaceValues("
amount",dbl);
 return child.process(record); // pass record to next command in chain
 """
}

• Creating table fields with binary format and then using types such as double or float in a morphline.conf. You
could create a table in HBase for storing doubles using commands similar to:

CREATE TABLE sample_lily_hbase ( id string, amount double, ts timestamp 
)
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES ('hbase.columns.mapping' = ':key,ti:amount#b,ti:
ts,')
TBLPROPERTIES ('hbase.table.name' = 'sample_lily'); 

• The source parameter determines which portion of an HBase KeyValue is used as indexing input. Valid choices
are value or qualifier. When value is specified, the HBase cell value is used as input for indexing. When qualifier
is specified, then the HBase column qualifier is used as input for indexing. The default is value.

Registering a Lily HBase Indexer Configuration with the Lily HBase Indexer Service

About this task

When the content of the Lily HBase Indexer configuration XML file is satisfactory, register it with the Lily
HBase Indexer Service. Register the Lily HBase Indexer configuration file by uploading the Lily HBase Indexer
configuration XML file to ZooKeeper. For example:

Procedure

1. If your cluster has security enabled, create a Java Authentication and Authorization Service (JAAS) configuration
file named jaas.conf in your home directory with the following contents:

Client {
  com.sun.security.auth.module.Krb5LoginModule required
  useKeyTab=false
  useTicketCache=true
    principal="jdoe@EXAMPLE.COM";
};

Replace jdoe@EXAMPLE.COM with your user principal. Your user account must have WRITE permission to
create an indexer. For more information, see Configuring Lily HBase Indexer Security on page 10.

2. If your cluster has security enabled, authenticate with the user principal specified in your jaas.conf file:

kinit jdoe@EXAMPLE.COM

3. Run the following command to add the JAAS configuration to the system properties:

export HBASE_INDEXER_OPTS=-Djava.security.auth.login.config=jaas.conf

4. Run the following command to register your indexer configuration file with the indexer service:

hbase-indexer add-indexer \
--name myIndexer \
--indexer-conf $HOME/morphline-hbase-mapper.xml \
--connection-param solr.zk=zk01.example.com,zk02.example.com,zk03.examp
le.com/solr \
--connection-param solr.collection=hbase_collection \

8



Cloudera Runtime Lily HBase near real time indexing using Morphlines

--zookeeper zk01.example.com:2181,zk02.example.com:2181,zk03.example.com
:2181

5. Verify that the indexer was successfully created as follows:

hbase-indexer list-indexers -zookeeper zk01.example.com:2181,zk02.exampl
e.com:2181,zk03.example.com:2181
Number of indexes: 1

myIndexer
  + Lifecycle state: ACTIVE
  + Incremental indexing state: SUBSCRIBE_AND_CONSUME
  + Batch indexing state: INACTIVE
  + SEP subscription ID: Indexer_myIndexer
  + SEP subscription timestamp: 2013-06-12T11:23:35.635-07:00
  + Connection type: solr
  + Connection params:
    + solr.collection = hbase-collection1
    + solr.zk = localhost/solr
  + Indexer config:
      110 bytes, use -dump to see content
  + Batch index config:
      (none)
  + Default batch index config:
      (none)
  + Processes
    + 1 running processes
    + 0 failed processes

Use the update-indexer and delete-indexer command-line options of the hbase-indexer utility to manipulate
existing Lily HBase Indexers.

For more help, use the following commands:

hbase-indexer add-indexer --help
hbase-indexer list-indexers --help
hbase-indexer update-indexer --help
hbase-indexer delete-indexer --help

Morphline configuration files can be changed without re-creating the indexer itself, but you must restart the Lily
HBase Indexer service for the changes to take effect.

Verifying that Indexing Works

Procedure

1. Add rows to the indexed HBase table. For example:

hbase shell
hbase(main):001:0> put 'sample_table', 'row1', 'data', 'value'
hbase(main):002:0> put 'sample_table', 'row2', 'data', 'value2'

2. If the put operation succeeds, wait a few seconds, go to the SolrCloud UI query page, and query the data. Note the
updated rows in Solr.

9



Cloudera Runtime Lily HBase near real time indexing using Morphlines

3. To print diagnostic information, such as the content of records as they pass through the morphline commands,
enable the TRACE log level:

a) Go to  Key-Value Store Indexer service Configuration Category Advanced .
b) Find the Lily HBase Indexer Logging Advanced Configuration Snippet (Safety Valve) property or search for it

by typing its name in the Search box.
c) Add the following to the text box:

log4j.logger.org.kitesdk.morphline=TRACE
log4j.logger.com.ngdata=TRACE

d) Click Save Changes.
e) Restart the service ( Key-Value Store Indexer service Actions Restart ).

4. Examine the log files in /var/log/hbase-solr/lily-hbase-indexer-* for details.

Using the indexer HTTP interface
Lily HBase Indexer includes an HTTP interface for the list-indexers, create-indexer, update-indexer, and delete-index
er commands.

This interface can be secured with Kerberos for authentication and Apache Ranger for authorization. For information
on configuring security for the Lily HBase Indexer service, see Configuring Lily HBase Indexer Security on page
10.

By default, the hbase-indexer command line client does not use the HTTP interface. Use the HTTP interface to take
advantage of the features it provides, such as Kerberos authentication and Ranger integration. The hbase-indexer
command supports two additional parameters to the list-indexers, create-indexer, delete-indexer, and update-indexer
commands:

• --http: An HTTP URI for the HTTP interface. By default, this URI is of the form http://lily01.example.com:11
060/indexer/. If this parameter is specified, the Lily HBase Indexer uses the HTTP API. If this parameter is not
specified, the indexer communicates directly with ZooKeeper.

• --jaas: Specifies a Java Authentication and Authorization Service (JAAS) configuration file. This is only
necessary for Kerberos-enabled deployments.

Note:  Make sure that you use fully qualified domain names (FQDN) when specifying hostnames for both
the Lily HBase Indexer host and the ZooKeeper hosts. Using FQDNs helps ensure proper Kerberos realm
mapping.

For example:

hbase-indexer list-indexers --http http://lily01.example.com:11060/indexer/ 
\
--jaas $HOME/jaas.conf --zookeeper zk01.example.com:2181,zk02.example.com:
2181,zk03.example.com:2181

Related Concepts
Configuring Lily HBase Indexer Security

Configuring Lily HBase Indexer Security

The Lily HBase Indexer includes an HTTP interface for the list-indexers, create-indexer, update-indexer, and
delete-indexer commands. This interface can be secured with Kerberos for authentication and Apache Ranger for
authorization.

Configure Lily HBase Indexer to use TLS/SSL
Although Cloudera recommends using AutoTLS, you also have the option to set up TLS manually for the Lily HBase
Indexer.

10



Cloudera Runtime Batch indexing using Morphlines

About this task
To configure and enable Hadoop TLS/SSL for the Lily HBase Indexer (Key-Value Store Indexer) perform the
following steps.

Procedure

1. Open the Cloudera Manager Admin Console and go to the Key-Value Store Indexer.

2. Click the Configuration tab.

3. Select  Scope All .

4. Select  Category All .

5. In the Search field, type TLS/SSL to show the Solr TLS/SSL properties.

6. Edit the following TLS/SSL properties according to your cluster configuration.

Note:  These values must be the same for all hosts running the Key-Value Store Indexer role.

Table 1: Key-Value Store TLS/SSL Properties

Property Description

HBase Indexer TLS/SSL Certificate
Trust Store File

The location on disk of the truststore, in .jks format, used to confirm the authenticity of TLS/SSL
servers that HBase Indexer might connect to. This is used when HBase Indexer is the client in a
TLS/SSL connection. This truststore must contain the certificate(s) used to sign the service(s) being
connected to. If this parameter is not provided, the default list of well-known certificate authorities
is used instead.

HBase Indexer TLS/SSL Certificate
Trust Store Password (Optional)

The password for the HBase Indexer TLS/SSL Certificate Trust Store File. This password is not
required to access the truststore: this field can be left blank. This password provides optional
integrity checking of the file. The contents of truststores are certificates, and certificates are public
information.

7. Restart the service.

Configure Lily HBase Indexer Service to use Kerberos authentication
To enable Kerberos authentication for the Lily HBase Indexer service, perform the following steps.

Procedure

1. In the Cloudera Manager admin console, go to  Key-Value Store Indexer service Configuration Category Security
.

2. Select the kerberos option for HBase Indexer Secure Authentication.

3. Click Save Changes.

4. Go to  Administration Security Kerberos Credentials .

5. Click Generate Missing Credentials.

6. Restart the indexer service ( Key-Value Store Indexer service Actions Restart ).

Batch indexing using Morphlines

Batch indexing usually relies on MapReduce/YARN or Spark jobs to periodically index large datasets, or to index
new datasets for the first time. The Lily HBase indexer, also called HBaseMapReduceIndexerTool, can be used for
batch indexing HBase tables.

11



Cloudera Runtime Batch indexing using Morphlines

Spark indexing using morphlines
If you are using Apache Spark, you can batch index data using the CrunchIndexerTool.

CrunchIndexerTool is a Spark or MapReduce ETL batch job that pipes data from HDFS files into Apache Solr
through a morphline for extraction and transformation. The program is designed for flexible, scalable, fault-tolerant
batch ETL pipeline jobs. It is implemented as an Apache Crunch pipeline, allowing it to run on MapReduce or Spark
execution engines.

CrunchIndexerTool requires a working MapReduce or Spark cluster, such as one installed using Cloudera Manager.

Note:  This command requires a morphline file, which must include a SOLR_LOCATOR directive. The
snippet that includes the SOLR_LOCATOR might appear as follows:

SOLR_LOCATOR : {
  # Name of solr collection
  collection : collection_name

  # ZooKeeper ensemble
  zkHost :
 "zk01.example.com:2181,zk02.example.com:2181,zk03.example.com:2181/
solr"
}

morphlines : [
  {
    id : morphline1
    importCommands : ["org.kitesdk.**", "org.apache.solr.**"]
    commands : [
      { generateUUID { field : id } }

      { # Remove record fields that are unknown to Solr managed-schema.
        # Recall that Solr throws an exception on any attempt to load a
 document that
        # contains a field that isn't specified in managed-schema.
        sanitizeUnknownSolrFields {
          solrLocator : ${SOLR_LOCATOR} # Location from which to fetch
 Solr schema
        }
      }

      { logDebug { format : "output record: {}", args : ["@{}"] } }

      {
        loadSolr {
          solrLocator : ${SOLR_LOCATOR}
        }
      }
    ]
  }
]

You can see the usage syntax CrunchIndexerTool by running the job with the -help argument. Unlike other Search
indexing tools, the CrunchIndexerTool jar does not contain all dependencies. If you try to run the job without
addressing this, you get an error such as the following:

hadoop jar /opt/cloudera/parcels/CDH/lib/solr/contrib/crunch/search-crunch.j
ar org.apache.solr.crunch.CrunchIndexerTool -help
Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/crun
ch/types/PType
        at java.lang.Class.forName0(Native Method)
        at java.lang.Class.forName(Class.java:348)

12



Cloudera Runtime Batch indexing using Morphlines

        at org.apache.hadoop.util.RunJar.run(RunJar.java:214)
        at org.apache.hadoop.util.RunJar.main(RunJar.java:136)
Caused by: java.lang.ClassNotFoundException: org.apache.crunch.types.PType
        at java.net.URLClassLoader.findClass(URLClassLoader.java:381)
        at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
        at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
        ... 4 more

To see the command usage (or to run the job), you must first add the dependencies to the classpath:

export HADOOP_CLASSPATH="/opt/cloudera/parcels/CDH/lib/search/lib/search-cru
nch/*"
hadoop jar /opt/cloudera/parcels/CDH/lib/solr/contrib/crunch/search-crunc
h.jar org.apache.solr.crunch.CrunchIndexerTool -help

For reference, here is the command usage syntax:

Important:  The command usage help incorrectly notes the following:

NOTE: MapReduce does not require extra steps for   communicating with kerberos-enabled Solr

To run the MapReduce job on a Kerberos-enabled cluster, you must create and specify a jaas.conf file.

For example:

HADOOP_OPTS="-Djava.security.auth.login.config=/path/to/jaas.conf" \
hadoop jar /opt/cloudera/parcels/CDH/lib/solr/contrib/crunch/search-cru
nch.jar \
org.apache.solr.crunch.CrunchIndexerTool [...]

MapReduceUsage: export HADOOP_CLASSPATH=$myDependencyJarPaths; hadoop jar $m
yDriverJar
org.apache.solr.crunch.CrunchIndexerTool --libjars $myDependencyJarFiles 
[MapReduceGenericOptions]...
        [--input-file-list URI] [--input-file-format FQCN]
        [--input-file-projection-schema FILE]
        [--input-file-reader-schema FILE] --morphline-file FILE
        [--morphline-id STRING] [--pipeline-type STRING] [--xhelp]
        [--mappers INTEGER] [--parallel-morphline-inits INTEGER]
        [--dry-run] [--log4j FILE] [--chatty] [HDFS_URI [HDFS_URI ...]]

SparkUsage: spark-submit [SparkGenericOptions]... --master local|yarn --d
eploy-mode client|cluster
--jars $myDependencyJarFiles --class org.apache.solr.crunch.CrunchIndexerT
ool $myDriverJar
        [--input-file-list URI] [--input-file-format FQCN]
        [--input-file-projection-schema FILE]
        [--input-file-reader-schema FILE] --morphline-file FILE
        [--morphline-id STRING] [--pipeline-type STRING] [--xhelp]
        [--mappers INTEGER] [--parallel-morphline-inits INTEGER]
        [--dry-run] [--log4j FILE] [--chatty] [HDFS_URI [HDFS_URI ...]]

Spark or MapReduce ETL batch job  that  pipes data from (splittable or non-
splittable) HDFS files into Apache Solr,  and  along  the way runs the data
through a Morphline  for  extraction  and  transformation.  The  program is
designed for  flexible,  scalable  and  fault-tolerant  batch  ETL pipeline
jobs. It is implemented as an  Apache  Crunch  pipeline and as such can run
on either the Apache Hadoop MapReduce or Apache Spark execution engine.

The program proceeds in several consecutive phases, as follows:
1) Randomization phase: This (parallel)  phase  randomizes the list of HDFS
input files in order to spread ingestion  load more evenly among the mapper
tasks of the  subsequent  phase.  This  phase  is  only  executed  for non-

13



Cloudera Runtime Batch indexing using Morphlines

splittables files, and skipped otherwise.

2) Extraction phase: This  (parallel)  phase  emits  a  series of HDFS file
input streams (for non-splittable files) or  a series of input data records
(for splittable files).
3) Morphline  phase:  This  (parallel)  phase  receives  the  items  of the
previous phase, and  uses  a  Morphline  to  extract  the relevant content,
transform  it  and  load  zero  or   more  documents  into  Solr.  The  ETL
functionality is  flexible  and  customizable  using  chains  of  arbitrary
morphline commands that pipe  records  from  one  transformation command to
another. Commands to parse and  transform  a  set  of standard data formats
such as Avro, Parquet,  CSV,  Text,  HTML,  XML,  PDF,  MS-Office, etc. are
provided out of the box,  and  additional  custom  commands and parsers for
additional file or data formats can  be added as custom morphline commands.
Any kind of data format can be processed  and any kind output format can be
generated by any custom Morphline ETL  logic.  Also, this phase can be used
to send data  directly  to  a  live  SolrCloud  cluster  (via  the loadSolr
morphline command).

The program  is  implemented  as  a  Crunch  pipeline  and  as  such Crunch
optimizes the logical phases  mentioned  above  into  an efficient physical
execution plan that runs a single  mapper-only job, or as the corresponding
Spark equivalent.
Fault Tolerance: Task attempts  are  retried  on  failure  per the standard
MapReduce or Spark semantics. If the  whole  job fails you can retry simply
by rerunning the program again using the same arguments.

Comparison with MapReduceIndexerTool:

1) CrunchIndexerTool can also run on  the  Spark execution engine, not just
on MapReduce.
2)  CrunchIndexerTool  enables  interactive  low  latency  prototyping,  in
particular in Spark 'local' mode.
3) CrunchIndexerTool supports updates  (and  deletes) of existing documents
in Solr, not just inserts.
4) CrunchIndexerTool can exploit data  locality for splittable Hadoop files
(text, avro, avroParquet).
We recommend  MapReduceIndexerTool  for  large  scale  batch  ingestion use
cases where updates (or  deletes)  of  existing  documents  in Solr are not
required, and we recommend CrunchIndexerTool for all other use cases.

CrunchIndexerOptions:
  HDFS_URI               HDFS URI of  file  or  directory  tree  to ingest.
                         (default: [])
  --input-file-list URI, --input-list URI
                         Local URI or  HDFS  URI  of  a  UTF-8 encoded file
                         containing a list of HDFS  URIs to ingest, one URI
                         per line in the  file.  If  '-' is specified, URIs
                         are read  from  the  standard  input.  Multiple --
                         input-file-list arguments can be specified.
  --input-file-format FQCN
                         The Hadoop FileInputFormat  to  use for extracting
                         data from splittable HDFS  files.  Can  be a fully
                         qualified Java  class  name  or  one  of  ['text',
                         'avro', 'avroParquet']. If this  option is present
                         the extraction phase will  emit  a series of input
                         data records rather  than  a  series  of HDFS file
                         input streams.
  --input-file-projection-schema FILE
                         Relative or absolute path  to  an Avro schema file
                         on the local file  system.  This  will  be used as
                         the projection schema for Parquet input files.
  --input-file-reader-schema FILE
                         Relative or absolute path  to  an Avro schema file

14



Cloudera Runtime Batch indexing using Morphlines

                         on the local file  system.  This  will  be used as
                         the  reader  schema  for  Avro  or  Parquet  input
                         files.      Example:      src/test/resources/test-
                         documents/strings.avsc
  --morphline-file FILE  Relative or absolute path  to  a local config file
                         that contains one  or  more  morphlines.  The file
                         must be UTF-8  encoded.  It  will  be  uploaded to
                         each remote task. Example: /path/to/morphline.conf
  --morphline-id STRING  The identifier  of  the  morphline  that  shall be
                         executed  within   the   morphline   config   file
                         specified by --morphline-file. If the --morphline-
                         id option is  omitted  the  first  (i.e. top-most)
                         morphline  within  the   config   file   is  used.
                         Example: morphline1
  --pipeline-type STRING
                         The engine to use  for  executing  the job. Can be
                         'mapreduce' or 'spark'. (default: mapreduce)
  --xhelp, --help, -help
                         Show this help message and exit
  --mappers INTEGER      Tuning knob that indicates  the  maximum number of
                         MR mapper tasks to use.  -1  indicates use all map
                         slots available  on  the  cluster.  This parameter
                         only  applies   to   non-splittable   input  files
                         (default: -1)
  --parallel-morphline-inits INTEGER
                         Tuning knob that indicates  the  maximum number of
                         morphline instances  to  initialize  at  the  same
                         time. This kind of rate  limiting on rampup can be
                         useful  to  avoid  overload   conditions  such  as
                         ZooKeeper connection limits  or  DNS lookup limits
                         when using  many  parallel  mapper  tasks  because
                         each  such   task   contains   one   morphline.  1
                         indicates initialize  each  morphline  separately.
                         This feature  is  implemented  with  a distributed
                         semaphore. The default is to  use no rate limiting
                         (default: 2147483647)
  --dry-run              Run the pipeline  but  print  documents  to stdout
                         instead of loading  them  into  Solr.  This can be
                         used for quicker turnaround  during  early trial &
                         debug sessions. (default: false)
  --log4j FILE           Relative or absolute  path  to  a log4j.properties
                         config file on the  local  file  system. This file
                         will be uploaded  to  each  remote  task. Example:
                         /path/to/log4j.properties
  --chatty               Turn on verbose output. (default: false)

SparkGenericOptions:     To print all options run 'spark-submit --help'

MapReduceGenericOptions: Generic options supported are
  --conf <configuration file>
                         specify an application configuration file
  -D <property=value>    use value for given property
  --fs <local|namenode:port>
                         specify a namenode
  --jt <local|resourcemanager:port>
                         specify a ResourceManager
  --files <comma separated list of files>
                         specify comma separated files to  be copied to the
                         map reduce cluster
  --libjars <comma separated list of jars>
                         specify comma separated  jar  files  to include in
                         the classpath.
  --archives <comma separated list of archives>
                         specify comma separated archives  to be unarchived

15



Cloudera Runtime Batch indexing using Morphlines

                         on the compute machines.

The general command line syntax is
bin/hadoop command [genericOptions] [commandOptions]

Examples:

# Prepare - Copy input files into HDFS:
export myResourcesDir=src/test/resources # for build from git
export myResourcesDir=/opt/cloudera/parcels/CDH/share/doc/search-*/search-c
runch # for CDH with parcels
export myResourcesDir=/usr/share/doc/search-*/search-crunch # for CDH with 
packages
hadoop fs -copyFromLocal $myResourcesDir/test-documents/hello1.txt hdfs:/us
er/systest/input/

# Prepare variables for convenient reuse:
export myDriverJarDir=target # for build from git
export myDriverJarDir=/opt/cloudera/parcels/CDH/lib/solr/contrib/crunch #
 for CDH with parcels
export myDriverJarDir=/usr/lib/solr/contrib/crunch # for CDH with packages
export myDependencyJarDir=target/lib # for build from git
export myDependencyJarDir=/opt/cloudera/parcels/CDH/lib/search/lib/search-
crunch # for CDH with parcels
export myDependencyJarDir=/usr/lib/search/lib/search-crunch # for CDH with
 packages
export myDriverJar=$(find $myDriverJarDir -maxdepth 1 -name 'search-crunch-
*.jar' ! -name '*-job.jar' ! -name '*-sources.jar')
export myDependencyJarFiles=$(find $myDependencyJarDir -name '*.jar' | sort
 | tr '\n' ',' | head -c -1)
export myDependencyJarPaths=$(find $myDependencyJarDir -name '*.jar' | sort
 | tr '\n' ':' | head -c -1)
export myJVMOptions="-DmaxConnectionsPerHost=10000 -DmaxConnections=10000 -
Djava.io.tmpdir=/my/tmp/dir/" # connection settings for solrj, also custom 
tmp dir
# MapReduce on Yarn - Ingest text file line by line into Solr:
export HADOOP_CLIENT_OPTS="$myJVMOptions"; export HADOOP_CLASSPATH=$myDepend
encyJarPaths; hadoop \
  --config /etc/hadoop/conf.cloudera.YARN-1 \
  jar $myDriverJar org.apache.solr.crunch.CrunchIndexerTool \
  --libjars $myDependencyJarFiles \
  -D mapreduce.map.java.opts="-Xmx500m $myJVMOptions" \
  -D morphlineVariable.ZK_HOST=$(hostname):2181/solr \
  --files $myResourcesDir/test-documents/string.avsc \
  --morphline-file $myResourcesDir/test-morphlines/loadSolrLine.conf \
  --pipeline-type mapreduce \
  --chatty \
  --log4j $myResourcesDir/log4j.properties \
  /user/systest/input/hello1.txt

# Spark in Local Mode (for rapid prototyping) - Ingest into Solr:
spark-submit \
  --master local \
  --deploy-mode client \
  --jars $myDependencyJarFiles \
  --executor-memory 500M \
  --conf "spark.executor.extraJavaOptions=$myJVMOptions" \
  --driver-java-options "$myJVMOptions" \
  # --driver-library-path /opt/cloudera/parcels/CDH/lib/hadoop/lib/native # 
for Snappy on CDH with parcels\
  # --driver-library-path /usr/lib/hadoop/lib/native # for Snappy on CDH wit
h packages \
  --class org.apache.solr.crunch.CrunchIndexerTool \

16



Cloudera Runtime Batch indexing using Morphlines

  $myDriverJar \
  -D morphlineVariable.ZK_HOST=$(hostname):2181/solr \
  --morphline-file $myResourcesDir/test-morphlines/loadSolrLine.conf \
  --pipeline-type spark \
  --chatty \
  --log4j $myResourcesDir/log4j.properties \
  /user/systest/input/hello1.txt

# Spark on Yarn in Client Mode (for testing) - Ingest into Solr:
Same as above, except replace '--master local' with '--master yarn'
# View the yarn executor log files (there is no GUI yet):
yarn logs --applicationId $application_XYZ

# Spark on Yarn in Cluster Mode (for production) - Ingest into Solr:
spark-submit \
  --master yarn \
  --deploy-mode cluster \
  --jars $myDependencyJarFiles \
  --executor-memory 500M \
  --conf "spark.executor.extraJavaOptions=$myJVMOptions" \
  --driver-java-options "$myJVMOptions" \
  --class org.apache.solr.crunch.CrunchIndexerTool \
  --files $(ls $myResourcesDir/log4j.properties),$(ls $myResourcesDir/test-
morphlines/loadSolrLine.conf)\
  $myDriverJar \
  -D hadoop.tmp.dir=/tmp \
  -D morphlineVariable.ZK_HOST=$(hostname):2181/solr \
  --morphline-file loadSolrLine.conf \
  --pipeline-type spark \
  --chatty \
  --log4j log4j.properties \
  /user/systest/input/hello1.txt

# Spark on Yarn in Cluster Mode (for production) - Ingest into Secure (Ke
rberos-enabled) Solr:
# Spark requires two additional steps compared to non-secure solr:
# (NOTE: MapReduce does not require extra steps for communicating with kerb
eros-enabled Solr)
# 1) Create a delegation token file
#    a) kinit as the user who will make solr requests
#    b) request a delegation token from solr and save it to a file:
#       e.g. using curl:
#       "curl --negotiate -u: http://solr-host:port/solr/admin?op=GETDELEG
ATIONTOKEN > tokenFile.txt"
# 2) Pass the delegation token file to spark-submit:
#    a) add the delegation token file via --files
#    b) pass the file name via -D tokenFile
#       spark places this file in the cwd of the executor, so only list the
 file name, no path
spark-submit \
  --master yarn \
  --deploy-mode cluster \
  --jars $myDependencyJarFiles \
  --executor-memory 500M \
  --conf "spark.executor.extraJavaOptions=$myJVMOptions" \
  --driver-java-options "$myJVMOptions" \
  --class org.apache.solr.crunch.CrunchIndexerTool \
  --files $(ls $myResourcesDir/log4j.properties),$(ls $myResourcesDir/test-
morphlines/loadSolrLine.conf),tokenFile.txt\
  $myDriverJar \
  -D hadoop.tmp.dir=/tmp \
  -D morphlineVariable.ZK_HOST=$(hostname):2181/solr \
  -DtokenFile=tokenFile.txt \
  --morphline-file loadSolrLine.conf \

17



Cloudera Runtime Batch indexing using Morphlines

  --pipeline-type spark \
  --chatty \
  --log4j log4j.properties \
  /user/systest/input/hello1.txt

MapReduce indexing
Cloudera Search provides the ability to batch index documents using MapReduce jobs.

Running an example indexing job

For examples of running a MapReduce job to index documents, see Cloudera Search Tutorial

MapReduceIndexerTool
MapReduceIndexerTool (MRIT) is a MapReduce batch job driver that takes a morphline and creates a set of Solr
index shards from a set of input files and writes the indexes into HDFS in a flexible, scalable, and fault-tolerant
manner. MRIT also supports merging the output shards into a set of live customer-facing Solr servers, typically a
SolrCloud.

Important:  Merging output shards into live customer-facing Solr servers can only be completed if all
replicas are online.

The indexer creates an offline index on HDFS in the output directory specified by the --output-dir parameter. If the
--go-live parameter is specified, Solr merges the resulting offline index into the live running service. Thus, the Solr
service must have read access to the contents of the output directory to complete the go-live step. In an environment
with restrictive permissions, such as one with an HDFS umask of 077, the Solr user may not be able to read the
contents of the newly created directory. To address this issue, the indexer automatically applies the HDFS ACLs to
enable Solr to read the output directory contents. These ACLs are only applied if HDFS ACLs are enabled on the
HDFS NameNode.

The indexer only makes ACL updates to the output directory and its contents. If the output directory's parent
directories do not include the run permission, the Solr service is not be able to access the output directory. Solr must
have run permissions from standard permissions or ACLs on the parent directories of the output directory.

Important:  MRIT does not work if Cloudera Search is deployed with local file system.

Note:  Using --libjars parameter in dry-run mode does not work. Instead, specify the JAR files using the
HADOOP_CLASSPATH environmental variable.

Related Information
Extracting, transforming, and loading data with Cloudera Morphlines

Using morphlines to index Avro

Using morphlines with syslog

HDFS ACLs

MapReduceIndexerTool input splits

Different from some other indexing tools, the MapReduceIndexerTool does not operate on HDFS blocks as input
splits. This means that when indexing a smaller number of large files, fewer hosts may be involved. For example,
indexing two files that are each one GB results in two hosts acting as mappers. If these files were stored on a system
with a 128 MB block size, other mappers might divide the work on the two files among 16 mappers, corresponding to
the 16 HDFS blocks that store the two files.

This intentional design choice aligns with MapReduceIndexerTool supporting indexing non-splittable file formats
such as JSON, XML, jpg, or log4j.

18

https://docs.cloudera.com/runtime/7.2.16/search-tutorial/topics/search-tutorial.html
https://docs.cloudera.com/runtime/7.2.16/search-etl-morphlines/topics/search-etl-morphlines.html
https://docs.cloudera.com/runtime/7.2.16/search-etl-morphlines/topics/search-use-morphlines-avro.html
https://docs.cloudera.com/runtime/7.2.16/search-etl-morphlines/topics/search-use-morphlines-syslog.html
https://docs.cloudera.com/runtime/7.2.16/hdfs-acls/topics/hdfs-acls.html


Cloudera Runtime Batch indexing using Morphlines

In theory, this could result in inefficient use of resources when a single host indexes a large file while many other
hosts sit idle. In reality, this indexing strategy typically results in satisfactory performance in production environments
because in most cases the number of files is large enough that work is spread throughout the cluster.

While dividing tasks by input splits does not present problems in most cases, users may still want to divide indexing
tasks along HDFS splits. In that case, use the CrunchIndexerTool, which can work with Hadoop input splits using the
input-file-format option.

MapReduceIndexerTool metadata

The MapReduceIndexerTool generates metadata fields for each input file when indexing. These fields can be used in
morphline commands. These fields can also be stored in Solr, by adding definitions like the following to your Solr
managed-schema file. After the MapReduce indexing process completes, the fields are searchable through Solr.

<!-- file metadata -->
<field name="file_download_url" type="string" indexed="false" stored="tru
e" />
<field name="file_upload_url" type="string" indexed="false" stored="true" />
<field name="file_scheme" type="string" indexed="true" stored="true" />
<field name="file_host" type="string" indexed="true" stored="true" />
<field name="file_port" type="int" indexed="true" stored="true" />
<field name="file_path" type="string" indexed="true" stored="true" />
<field name="file_name" type="string" indexed="true" stored="true" />
<field name="file_length" type="tlong" indexed="true" stored="true" />
<field name="file_last_modified" type="tlong" indexed="true" stored="true" /
>
<field name="file_owner" type="string" indexed="true" stored="true" />
<field name="file_group" type="string" indexed="true" stored="true" />
<field name="file_permissions_user" type="string" indexed="true" stored="
true" />
<field name="file_permissions_group" type="string" indexed="true" stored="t
rue" />
<field name="file_permissions_other" type="string" indexed="true" stored="tr
ue" />
<field name="file_permissions_stickybit" type="boolean" indexed="true" st
ored="true" />

Example output:

"file_upload_url":"foo/test-documents/sample-statuses-20120906-141433.avro",
"file_download_url":"hdfs://host1.mycompany.com:8020/user/foo/ test-documen
ts/sample-statuses-20120906-141433.avro",
"file_scheme":"hdfs",
"file_host":"host1.mycompany.com",
"file_port":8020,
"file_name":"sample-statuses-20120906-141433.avro",
"file_path":"/user/foo/test-documents/sample-statuses-20120906-141433.avro",
"file_last_modified":1357193447106,
"file_length":1512,
"file_owner":"foo",
"file_group":"foo",
"file_permissions_user":"rw-",
"file_permissions_group":"r--",
"file_permissions_other":"r--",
"file_permissions_stickybit":false,

MapReduceIndexerTool usage syntax
Learn about the use of the MapReduceIndexer command line tool.

19



Cloudera Runtime Batch indexing using Morphlines

Important:  You must run the indexer tool with the following command-line argument:

-D 'mapreduce.job.user.classpath.first=true'

Running the tool without this argument triggers the following error:

ERROR [main] org.apache.hadoop.mapred.YarnChild: Error running child :
 java.lang.NoSuchMethodError:
com.codahale.metrics.MetricRegistry.meter(Ljava/lang/String;Lcom/cod
ahale/metrics/MetricRegistry$MetricSupplier;)Lcom/codahale/metrics/M
eter;

To view the usage syntax in a default parcel-based deployment, run:

hadoop jar /opt/cloudera/parcels/CDH/jars/search-mr-*-job.jar \
org.apache.solr.hadoop.MapReduceIndexerTool --help

usage: hadoop [GenericOptions]... jar search-mr-*-job.jar org.apache.solr.ha
doop.MapReduceIndexerTool
       [--help] --output-dir HDFS_URI [--input-list URI]
       --morphline-file FILE [--morphline-id STRING] [--solr-home-dir DIR]
       [--update-conflict-resolver FQCN] [--mappers INTEGER]
       [--reducers INTEGER] [--max-segments INTEGER]
       [--fair-scheduler-pool STRING] [--dry-run] [--log4j FILE]
       [--verbose] [--show-non-solr-cloud] [--zk-host STRING] [--go-live]
       [--collection STRING] [--go-live-min-replication-factor INTEGER]
       [--go-live-threads INTEGER] [HDFS_URI [HDFS_URI ...]]
MapReduce batch job driver that  takes  a  morphline  and  creates a set of
Solr index shards from a set  of  input  files  and writes the indexes into
HDFS, in a flexible, scalable  and  fault-tolerant manner. It also supports
merging the output shards into a set  of live customer facing Solr servers,
typically  a  SolrCloud.  The  program   proceeds  in  several  consecutive
MapReduce based phases, as follows:

1) Randomization phase: This (parallel) phase  randomizes the list of input
files in order to spread  indexing  load  more  evenly among the mappers of
the subsequent phase.
2) Mapper phase: This (parallel) phase  takes the input files, extracts the
relevant content, transforms it and  hands  SolrInputDocuments  to a set of
reducers. The ETL functionality is  flexible  and customizable using chains
of arbitrary morphline commands that  pipe  records from one transformation
command to another. Commands to parse and  transform a set of standard data
formats such as Avro, CSV,  Text,  HTML,  XML,  PDF,  Word, Excel, etc. are
provided out of the box,  and  additional  custom  commands and parsers for
additional file or data formats can be  added as morphline plugins. This is
done by implementing a simple Java  interface  that consumes a record (e.g.
a file in the form  of  an  InputStream  plus  some headers plus contextual
metadata) and generates as output zero  or  more  records. Any kind of data
format can be indexed and any  Solr  documents  for any kind of Solr schema
can be generated, and any custom ETL logic can be registered and executed.
Record fields, including  MIME  types,  can  also  explicitly  be passed by
force  from  the  CLI  to  the   morphline,  for  example:  hadoop  ...  -D
morphlineField._attachment_mimetype=text/csv

3)   Reducer   phase:   This   (parallel)    phase   loads   the   mapper's
SolrInputDocuments into  one  EmbeddedSolrServer  per  reducer.  Each  such
reducer and Solr server can be  seen  as  a (micro) shard. The Solr servers
store their data in HDFS.
4) Mapper-only  merge  phase:  This  (parallel)  phase  merges  the  set of
reducer shards into the number of  solr  shards expected by the user, using
a mapper-only job.  This  phase  is  omitted  if  the  number  of shards is
already equal to the number of shards expected by the user.

20



Cloudera Runtime Batch indexing using Morphlines

5) Go-live phase: This optional  (parallel)  phase merges the output shards
of the previous phase into  a  set  of  live  customer facing Solr servers,
typically a SolrCloud. If this  phase  is  omitted you can explicitly point
each Solr server to one of the HDFS output shard directories.
Fault Tolerance: Mapper and reducer  task  attempts  are retried on failure
per the standard MapReduce semantics. On program startup all data in the --
output-dir is deleted  if  that  output  directory  already  exists. If the
whole job fails you can retry  simply  by rerunning the program again using
the same arguments.

positional arguments:
  HDFS_URI               HDFS URI  of  file  or  directory  tree  to index.
                         (default: [])

optional arguments:
  --help, -help, -h      Show this help message and exit
  --input-list URI       Local URI or  HDFS  URI  of  a  UTF-8 encoded file
                         containing a list of HDFS  URIs  to index, one URI
                         per line in the  file.  If  '-' is specified, URIs
                         are read  from  the  standard  input.  Multiple --
                         input-list arguments can be specified.
  --morphline-id STRING  The identifier  of  the  morphline  that  shall be
                         executed  within   the   morphline   config   file
                         specified by --morphline-file. If the --morphline-
                         id option is  ommitted  the  first (i.e. top-most)
                         morphline  within  the   config   file   is  used.
                         Example: morphline1
  --solr-home-dir DIR    Optional relative or absolute path  to a local dir
                         containing  Solr  conf/  dir   and  in  particular
                         conf/solrconfig.xml and optionally  also lib/ dir.
                         This directory will be  uploaded  to each MR task.
                         Example: src/test/resources/solr/minimr
  --update-conflict-resolver FQCN
                         Fully qualified class name  of  a  Java class that
                         implements the  UpdateConflictResolver  interface.
                         This  enables  deduplication  and  ordering  of  a
                         series of document  updates  for  the  same unique
                         document key. For example,  a  MapReduce batch job
                         might index multiple files  in  the same job where
                         some of the files contain  old and new versions of
                         the very  same  document,  using  the  same unique
                         document key.
                         Typically,  implementations   of   this  interface
                         forbid collisions  by  throwing  an  exception, or
                         ignore all but the  most  recent document version,
                         or, in the general  case,  order colliding updates
                         ascending  from  least   recent   to  most  recent
                         (partial) update. The caller of this interface (i.
                         e.  the  Hadoop  Reducer)   will  then  apply  the
                         updates to  Solr  in  the  order  returned  by the
                         orderUpdates() method.
                         The                                        default
                         RetainMostRecentUpdateConflictResolver
                         implementation ignores  all  but  the  most recent
                         document version, based on  a configurable numeric
                         Solr    field,    which     defaults     to    the
                         file_last_modified timestamp (default: org.apache.
                         solr.hadoop.dedup.
                         RetainMostRecentUpdateConflictResolver)
  --mappers INTEGER      Tuning knob that indicates  the  maximum number of
                         MR mapper tasks to use.  -1  indicates use all map
                         slots available on the cluster. (default: -1)
  --reducers INTEGER     Tuning knob that indicates  the number of reducers

21



Cloudera Runtime Batch indexing using Morphlines

                         to index into.  0  is  reserved  for a mapper-only
                         feature that may  ship  in  a  future  release. -1
                         indicates use all  reduce  slots  available on the
                         cluster. -2 indicates use  one  reducer per output
                         shard,  which   disables   the   mtree   merge  MR
                         algorithm. The mtree  merge  MR algorithm improves
                         scalability by spreading  load  (in particular CPU
                         load) among a  number  of  parallel  reducers that
                         can be much larger than  the number of solr shards
                         expected by  the  user.  It  can  be  seen  as  an
                         extension of concurrent  lucene  merges and tiered
                         lucene  merges   to   the   clustered   case.  The
                         subsequent mapper-only phase merges  the output of
                         said large number  of  reducers  to  the number of
                         shards expected by  the  user,  again by utilizing
                         more  available   parallelism   on   the  cluster.
                         (default: -1)
  --max-segments INTEGER
                         Tuning knob that indicates  the  maximum number of
                         segments to be contained  on  output  in the index
                         of each reducer shard.  After  a reducer has built
                         its output index  it  applies  a  merge  policy to
                         merge segments  until  there  are  <=  maxSegments
                         lucene  segments  left  in   this  index.  Merging
                         segments involves reading  and  rewriting all data
                         in all these  segment  files, potentially multiple
                         times,  which  is  very  I/O  intensive  and  time
                         consuming. However, an  index  with fewer segments
                         can later be merged  faster,  and  it can later be
                         queried  faster  once  deployed  to  a  live  Solr
                         serving shard. Set  maxSegments  to  1 to optimize
                         the index for low query  latency. Set  maxSegments 
                         to 0 or -1 to skip the entire optimize phase. In a 
                         nutshell,   a   small   maxSegments  value  trades
  
                         indexing  latency  for subsequently improved query
                         latency. This can be  a reasonable  trade-off  for
                         batch  indexing systems. (default: 1)
  --dry-run              Run in local mode  and  print  documents to stdout
                         instead of loading them  into  Solr. This executes
                         the  morphline  in  the  client  process  (without
                         submitting a job  to  MR)  for  quicker turnaround
                         during early  trial  &  debug  sessions. (default:
                         false)
  --log4j FILE           Relative or absolute  path  to  a log4j.properties
                         config file on the  local  file  system. This file
                         will  be  uploaded  to   each  MR  task.  Example:
                         /path/to/log4j.properties
  --verbose, -v          Turn on verbose output. (default: false)
  --show-non-solr-cloud  Also show options for  Non-SolrCloud  mode as part
                         of --help. (default: false)

Required arguments:
  --output-dir HDFS_URI  HDFS directory to  write  Solr  indexes to. Inside
                         there one  output  directory  per  shard  will  be
                         generated.    Example:     hdfs://c2202.mycompany.
                         com/user/$USER/test
  --morphline-file FILE  Relative or absolute path  to  a local config file
                         that contains one  or  more  morphlines.  The file
                         must     be      UTF-8      encoded.      Example:
                         /path/to/morphline.conf
Cluster arguments:
  Arguments that provide information about your Solr cluster.

22



Cloudera Runtime Batch indexing using Morphlines

  --zk-host STRING       The address of a ZooKeeper  ensemble being used by
                         a SolrCloud cluster. This  ZooKeeper ensemble will
                         be examined  to  determine  the  number  of output
                         shards to create  as  well  as  the  Solr  URLs to
                         merge the output shards into  when using the --go-
                         live option. Requires that  you  also  pass the --
                         collection to merge the shards into.

                         The   --zk-host   option   implements   the   same
                         partitioning semantics as  the  standard SolrCloud
                         Near-Real-Time (NRT)  API.  This  enables  to  mix
                         batch  updates  from   MapReduce   ingestion  with
                         updates from standard  Solr  NRT  ingestion on the
                         same SolrCloud  cluster,  using  identical  unique
                         document keys.

                         Format is: a  list  of  comma  separated host:port
                         pairs,  each  corresponding   to   a   zk  server.
                         Example: '127.0.0.1:2181,127.0.0.1:2182,127.0.0.1:
                         2183' If the optional  chroot  suffix  is used the
                         example  would  look  like:  '127.0.0.1:2181/solr,
                         127.0.0.1:2182/solr,127.0.0.1:2183/solr'     where
                         the client would  be  rooted  at  '/solr'  and all
                         paths would  be  relative  to  this  root  -  i.e.
                         getting/setting/etc... '/foo/bar' would  result in
                         operations being run on  '/solr/foo/bar' (from the
                         server perspective).

                         If --solr-home-dir  is  not  specified,  the  Solr
                         home  directory   for   the   collection   may  be
                         downloaded from this ZooKeeper ensemble.
Go live arguments:
  Arguments for  merging  the  shards  that  are  built  into  a  live Solr
  cluster. Also see the Cluster arguments.

  --go-live              Allows you to  optionally  merge  the  final index
                         shards into a  live  Solr  cluster  after they are
                         built. You can pass the  ZooKeeper address with --
                         zk-host and the relevant  cluster information will
                         be auto detected.  (default: false)
  --collection STRING    The SolrCloud  collection  to  merge  shards  into
                         when  using  --go-live   and  --zk-host.  Example:
                         collection1
  --go-live-min-replication-factor INTEGER
                         The  minimum  number  of   SolrCloud  replicas  to
                         successfully merge  any  final  index  shard into.
                         The go-live  job  phase  attempts  to  merge final
                         index shards into all  SolrCloud replicas. Some of
                         these merge operations  may  fail,  for example if
                         some  SolrCloud  servers  are  down.  This  option
                         enables indexing  jobs  to  succeed  even  if some
                         such   merge   operations    fail   on   SolrCloud
                         followers. Successful  merge  operations  into all
                         leaders  are  always  required  for  job  success,
                         regardless  of   the   value   of   --go-live-min-
                         replication-factor.    -1     indicates    require
                         successful merge operations  into  all replicas. 1
                         indicates  require  successful   merge  operations
                         only into leader replicas. (default: -1)
  --go-live-threads INTEGER
                         Tuning knob that indicates  the  maximum number of
                         live merges  to  run  in  parallel  at  one  time.
                         (default: 1000)
Generic options supported are:

23



Cloudera Runtime Batch indexing using Morphlines

  --conf <configuration file>
                         specify an application configuration file
  -D <property=value>    define a value for a given property
-fs <file:///|hdfs://namenode:port> specify default filesystem URL to use,
 overrides 'fs.defaultFS' property from configurations.
  --jt <local|resourcemanager:port>
                         specify a ResourceManager
  --files <file1,...>    specify a  comma-separated  list  of  files  to be
                         copied to the map reduce cluster
  --libjars <jar1,...>   specify a comma-separated list of  jar files to be
                         included in the classpath
  --archives <archive1,...>
                         specify a comma-separated list  of  archives to be
                         unarchived on the compute machines
The general command line syntax is:
command [genericOptions] [commandOptions]

Examples:

# (Re)index an Avro based Twitter tweet file:
sudo -u hdfs hadoop \
  --config /etc/hadoop/conf.cloudera.mapreduce1 \
  jar target/search-mr-*-job.jar org.apache.solr.hadoop.MapReduceIndexerTool
 \
  -D 'mapred.child.java.opts=-Xmx500m' \
  --log4j src/test/resources/log4j.properties \
  --morphline-file ../search-core/src/test/resources/test-morphlines/tutori
alReadAvroContainer.conf \
  --solr-home-dir src/test/resources/solr/minimr \
  --output-dir hdfs://c2202.mycompany.com/user/$USER/test \
  --shards 1 \
  hdfs:///user/$USER/test-documents/sample-statuses-20120906-141433.avro

# (Re)index all files that match all of the following conditions:
# 1) File is contained in dir tree hdfs:///user/$USER/solrloadtest/twitter/
tweets
# 2) file name matches the glob pattern 'sample-statuses*.gz'
# 3) file was last modified less than 100000 minutes ago
# 4) file size is between 1 MB and 1 GB
# Also include extra library jar file containing JSON tweet Java parser:
hadoop fs \
  -find hdfs:///user/$USER/solrloadtest/twitter/tweets \
  -type f \
  -name 'sample-statuses*.gz' \
  -mmin -1000000 \
  -size -100000000c \
  -size +1000000c \
| sudo -u hdfs hadoop \
  --config /etc/hadoop/conf.cloudera.mapreduce1 \
  jar target/search-mr-*-job.jar org.apache.solr.hadoop.MapReduceIndexerT
ool \
  --libjars /path/to/kite-morphlines-twitter-0.10.0.jar \
  -D 'mapred.child.java.opts=-Xmx500m' \
  --log4j src/test/resources/log4j.properties \
  --morphline-file ../search-core/src/test/resources/test-morphlines/tutori
alReadJsonTestTweets.conf \
  --solr-home-dir src/test/resources/solr/minimr \
  --output-dir hdfs://c2202.mycompany.com/user/$USER/test \
  --shards 100 \
  --input-list -

# Go live by merging resulting index shards into a live Solr cluster
# (explicitly specify Solr URLs - for a SolrCloud cluster see next example):
sudo -u hdfs hadoop \

24



Cloudera Runtime Batch indexing using Morphlines

  --config /etc/hadoop/conf.cloudera.mapreduce1 \
  jar target/search-mr-*-job.jar org.apache.solr.hadoop.MapReduceIndexerTool
 \
  -D 'mapred.child.java.opts=-Xmx500m' \
  --log4j src/test/resources/log4j.properties \
  --morphline-file ../search-core/src/test/resources/test-morphlines/tutoria
lReadAvroContainer.conf \
  --solr-home-dir src/test/resources/solr/minimr \
  --output-dir hdfs://c2202.mycompany.com/user/$USER/test \
  --shard-url http://solr001.mycompany.com:8983/solr/collection1 \
  --shard-url http://solr002.mycompany.com:8983/solr/collection1 \
  --go-live \
  hdfs:///user/foo/indir

# Go live by merging resulting index shards into a live SolrCloud cluster
# (discover shards and Solr URLs through ZooKeeper):
sudo -u hdfs hadoop \
  --config /etc/hadoop/conf.cloudera.mapreduce1 \
  jar target/search-mr-*-job.jar org.apache.solr.hadoop.MapReduceIndexerTool
 \
  -D 'mapred.child.java.opts=-Xmx500m' \
  --log4j src/test/resources/log4j.properties \
  --morphline-file ../search-core/src/test/resources/test-morphlines/tutor
ialReadAvroContainer.conf \
  --output-dir hdfs://c2202.mycompany.com/user/$USER/test \
  --zk-host zk01.mycompany.com:2181/solr \
  --collection collection1 \
  --go-live \
  hdfs:///user/foo/indir

# MapReduce on Yarn - Pass custom JVM arguments (including a custom tmp dire
ctory)
HADOOP_CLIENT_OPTS='-DmaxConnectionsPerHost=10000 -DmaxConnections=10000 -
Djava.io.tmpdir=/my/tmp/dir/'; \
sudo -u hdfs hadoop \
  --config /etc/hadoop/conf.cloudera.mapreduce1 \
  jar target/search-mr-*-job.jar org.apache.solr.hadoop.MapReduceIndexerTool
 \
  -D 'mapreduce.map.java.opts=-DmaxConnectionsPerHost=10000 -DmaxConnection
s=10000' \
  -D 'mapreduce.reduce.java.opts=-DmaxConnectionsPerHost=10000 -DmaxConne
ctions=10000' \
  --log4j src/test/resources/log4j.properties \
  --morphline-file ../search-core/src/test/resources/test-morphlines/tutoria
lReadAvroContainer.conf \
  --solr-home-dir src/test/resources/solr/minimr \
  --output-dir hdfs://c2202.mycompany.com/user/$USER/test \
  --shards 1 \
  hdfs:///user/$USER/test-documents/sample-statuses-20120906-141433.avro

Indexing data with MapReduceIndexerTool in Solr backup format
MapReduceIndexerTool (MRIT) is capable of batch indexing a dataset and provide the output in the format of Solr
backups, using morphlines. This backup can then be ingested into Solr using a backup opration.

About this task

The MapReduceIndexerTool (MRIT) backup format feature addresses the dilemma of ingesting indexes produced by
MRIT jobs into Solr:

• Near-real-time (NRT) ingestion using the --go-live option is resource-intensive and involves merging indexes.
• Batch indexing requires shutting down the Solr server.

25



Cloudera Runtime Batch indexing using Morphlines

MRIT backup format takes the best of both worlds: by creating the index in the Solr backup format, it can be ingested
into Solr as a restore operation, using the solrctl command line utility. This method is significantly less resource
intensive on the part of Solr compared to NRT with --go-live. Restoring the backup results in a new collection which
can be queried directly or put behind an alias.

Procedure

1. To perform a batch indexing job on MRIT with the output in Solr backup format, run the following command:

hadoop jar /opt/cloudera/parcels/CDH/lib/solr/contrib/mr/
search-mr-*-job.jar  org.apache.solr.hadoop.MapReduceIndexe
rTool --morphline-file [***MORPHLINE_FILE***]  --output-dir
 "[***ABSOLUTE/PATH/TO/OUTPUT/DIRECTORY***]" --use-backup-format
 --backup-name [***USER_SPECIFIED_NAME_FOR_THE_BACKUP***] --zk-ho
st [***HOSTNAME***]:2181/solr --collection [***COLLECTION_NAME***]
 "[***ABSOLUTE/PATH/TO/INPUT/FILE***]" 

Replace [***MORPHLINE_FILE***], [***ABSOLUTE/PATH/TO/OUTPUT/DIRECTORY***],
[***USER_SPECIFIED_NAME_FOR_THE_BACKUP***], [***HOSTNAME***],
[***COLLECTION_NAME***], and [***ABSOLUTE/PATH/TO/INPUT/FILE***] with values applicable in
your environment.

For example:

To parse the contents of hdfs://ns1:8020/tmp/inputfile using the morphline file morphlines.conf and write the
resulting index to       hdfs://ns1:8020/tmp/output/results/backupName:

hadoop jar /opt/cloudera/parcels/CDH/lib/solr/contrib/mr/search-mr-*-job
.jar  org.apache.solr.hadoop.MapReduceIndexerTool --morphline-file morph
lines.conf  --output-dir "hdfs://ns1:8020/tmp/output" --use-backup-forma
t --backup-name backupName --zk-host zk-server:2181/solr --collection co
llection "hdfs://ns1:8020/tmp/inputfile" 

2. To create a new collection with the contents of the backup:

solrctl collection --restore [***USER_DEFINED_COLLECTION_NAME***] -
b [***NAME_OF_THE_INDEX_IN_BACKUP_FORMAT***] -l [***ABSOLUTE/PATH/TO/
RESTORE/TARGET/DIRECTORY***] -i [***REQUEST_ID***]

Make sure that you use a unique <REQUESTID> each time you run this command.

Note:

Statuses of historic job runs are stored in ZooKeeper and can be retrieved using the solrctl collection --req
uest-status          [***REQUEST_ID***] command. The number of async call responses stored in a cluster
is limited to 10,000.

Status information can be removed from ZooKeeper using the DELETESTATUS API call.

Replace [***USER_DEFINED_COLLECTION_NAME***],
[***NAME_OF_THE_INDEX_IN_BACKUP_FORMAT***], [***ABSOLUTE/PATH/TO/RESTORE/TARGET/
DIRECTORY***] with values applicable in your environment.

For example:

To create the collection finalcollectionName from the backup backupName to the directory hdfs://ns1:8020/tmp/
output/results with the request ID 1234:

solrctl collection --restore finalcollectionName -b backupName -l hdfs://
ns1:8020/tmp/output/results -i 1234

26

https://lucene.apache.org/solr/guide/collections-api.html#deletestatus


Cloudera Runtime Batch indexing using Morphlines

3. To monitor the status of the restore step, run the following command:

solrctl collection --request-status [***REQUEST_ID***]

Replace [***REQUEST_ID***] with the ID of the task you want to monitor.

For example:

solrctl collection --request-status 1234

Related Information
Collection aliasing

Asynchronous calls

Lily HBase batch indexing for Cloudera Search
You can batch index HBase tables using the Lily HBase batch indexer MapReduce job
(HBaseMapReduceIndexerTool). This batch indexing does not require HBase replication or the Lily HBase Indexer
Service. Subsequently you do not need to register a Lily HBase Indexer configuration with the Lily HBase Indexer
Service.

The indexer supports flexible, custom, application-specific rules to extract, transform, and load HBase data into Solr.
Solr search results can contain columnFamily:qualifier links back to the data stored in HBase. This way, applications
can use the search result set to directly access matching raw HBase cells.

The following procedures demonstrate creating a small HBase table and using the HBaseMapReduceIndexerTool to
index the table into a collection:

Important:  Do not use the Lily HBase Batch Indexer during a rolling upgrade. The indexer requires all
replicas be hosted on the same HBase version. If an indexing job is running during a rolling upgrade, different
nodes may be running pre- and post-upgrade versions of HBase.

Populating an HBase Table

Procedure

After configuring and starting your system, create an HBase table and add rows to it. For example:

hbase shell
hbase(main):002:0> create 'sample_table', {NAME => 'data'}
hbase(main):002:0> put 'sample_table', 'row1', 'data', 'value'
hbase(main):001:0> put 'sample_table', 'row2', 'data', 'value2'

Create a Collection in Cloudera Search

About this task

A collection in Search used for HBase indexing must have a Solr schema that accommodates the types of HBase
column families and qualifiers that are being indexed. To begin, consider adding the all-inclusive data field to a
default schema.

Procedure

Once you decide on a schema, create a collection using commands similar to the following:

solrctl instancedir --generate $HOME/hbase_collection_config
## Edit $HOME/hbase_collection_config/conf/managed-schema as needed ##
solrctl config --upload hbase_collection_config $HOME/hbase_collection_confi
g

27

https://lucene.apache.org/solr/guide/collection-aliasing.html
https://lucene.apache.org/solr/guide/collections-api.html#asynchronous-calls


Cloudera Runtime Batch indexing using Morphlines

solrctl collection --create hbase_collection -s <numShards> -c hbase_colle
ction_config

Creating a Lily HBase Indexer Configuration File

About this task

Configure individual Lily HBase Indexers using the hbase-indexer command-line utility. Typically, there is one Lily
HBase Indexer configuration file for each HBase table, but there can be as many Lily HBase Indexer configuration
files as there are tables, column families, and corresponding collections in Search. Each Lily HBase Indexer
configuration is defined in an XML file, such as morphline-hbase-mapper.xml.

An indexer configuration XML file must refer to the MorphlineResultToSolrMapper implementation and point
to the location of a Morphline configuration file, as shown in the following morphline-hbase-mapper.xml indexer
configuration file.

Procedure

• Set morphlineFile to the relative path morphlines.conf. Make sure the file is readable by the HBase system user
(hbase by default).

$ cat $HOME/morphline-hbase-mapper.xml

<?xml version="1.0"?>
<indexer table="sample_table"
mapper="com.ngdata.hbaseindexer.morphline.MorphlineResultToSolrMapper">
   <!-- The relative path on the local file system to the
   morphline configuration file. -->
   
   <param name="morphlineFile" value="morphlines.conf"/>

   <!-- The optional morphlineId identifies a morphline if there are multi
ple
   morphlines in morphlines.conf -->
   <!-- <param name="morphlineId" value="morphline1"/> -->
</indexer>

The Lily HBase Indexer configuration file also supports the standard attributes of any HBase Lily Indexer on the
top-level <indexer> element. It does not support the <field> element and <extract> elements.

Creating a Morphline Configuration File

About this task

After creating an indexer configuration XML file, you can configure morphline ETL transformation commands in
a morphlines.conf configuration file. The morphlines.conf configuration file can contain any number of morphline
commands. Typically, an extractHBaseCells command is the first command. The readAvroContainer or readAvro
morphline commands are often used to extract Avro data from the HBase byte array. This configuration file can be
shared among different applications that use morphlines.

Note:  To function properly, the morphline must not contain a loadSolr command. The Lily HBase Indexer
must load documents into Solr, instead of the morphline itself.

Procedure

You can edit the morphlines.conf file within Cloudera Manager ( Key-Value Store Indexer service Configuration
Category Morphlines Morphlines File ).

Understanding the extractHBaseCells Morphline Command

28



Cloudera Runtime Batch indexing using Morphlines

The extractHBaseCells morphline command extracts cells from an HBase result and transforms the values into a Solr
InputDocument. The command consists of an array of zero or more mapping specifications.

Each mapping has:

• The inputColumn parameter, which specifies the data from HBase for populating a field in Solr. It has the form
of a column family name and qualifier, separated by a colon. The qualifier portion can end in an asterisk, which
is interpreted as a wildcard. In this case, all matching column-family and qualifier expressions are used. The
following are examples of valid inputColumn values:

• mycolumnfamily:myqualifier
• mycolumnfamily:my*
• mycolumnfamily:*

• The outputField parameter specifies the morphline record field to which to add output values. The morphline
record field is also known as the Solr document field. Example: first_name.

• Dynamic output fields are enabled by the outputField parameter ending with a wildcard (*). For example:

inputColumn : "mycolumnfamily:*"
outputField : "belongs_to_*"

In this case, if you make these puts in HBase:

put 'table_name' , 'row1' , 'mycolumnfamily:1' , 'foo'
put 'table_name' , 'row1' , 'mycolumnfamily:9' , 'bar'

Then the fields of the Solr document are as follows:

belongs_to_1 : foo
belongs_to_9 : bar

• The type parameter defines the data type of the content in HBase. All input data is stored in HBase as byte arrays,
but all content in Solr is indexed as text, so a method for converting byte arrays to the actual data type is required.
The type parameter can be the name of a type that is supported by org.apache.hadoop.hbase.util.Bytes.to* (which
currently includes byte[], int, long, string, boolean, float, double, short, and bigdecimal). Use type byte[] to pass
the byte array through to the morphline without conversion.

• type:byte[] copies the byte array     unmodified into the record output field
• type:int converts with     org.apache.hadoop.hbase.util.Bytes.toInt
• type:long converts with     org.apache.hadoop.hbase.util.Bytes.toLong
• type:string converts with     org.apache.hadoop.hbase.util.Bytes.toString
• type:boolean converts with     org.apache.hadoop.hbase.util.Bytes.toBoolean
• type:float converts with     org.apache.hadoop.hbase.util.Bytes.toFloat
• type:double converts with     org.apache.hadoop.hbase.util.Bytes.toDouble
• type:short converts with     org.apache.hadoop.hbase.util.Bytes.toShort
• type:bigdecimal converts with     org.apache.hadoop.hbase.util.Bytes.toBigDecimal

Alternatively, the type parameter can be the name of a Java class that implements the com.ngdata.hbaseindexer.
parse.ByteArrayValueMapper interface.

HBase data formatting does not always match what is specified by org.apache.hadoop.hbase.util.Bytes.*. For
example, this can occur with data of type float or double. You can enable indexing of such HBase data by
converting the data. There are various ways to do so, including:

• Using Java morphline command to parse input data, converting it to the expected output. For example:

{
 imports : "import java.util.*;" code: """ // manipulate the contents of
 a record field
 String stringAmount = (String) record.getFirstValue("amount");

29



Cloudera Runtime Batch indexing using Morphlines

 Double dbl = Double.parseDouble(stringAmount); record.replaceValues("
amount",dbl);
 return child.process(record); // pass record to next command in chain
 """
}

• Creating table fields with binary format and then using types such as double or float in a morphline.conf. You
could create a table in HBase for storing doubles using commands similar to:

CREATE TABLE sample_lily_hbase ( id string, amount double, ts timestamp 
)
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES ('hbase.columns.mapping' = ':key,ti:amount#b,ti:
ts,')
TBLPROPERTIES ('hbase.table.name' = 'sample_lily'); 

• The source parameter determines which portion of an HBase KeyValue is used as indexing input. Valid choices
are value or qualifier. When value is specified, the HBase cell value is used as input for indexing. When qualifier
is specified, then the HBase column qualifier is used as input for indexing. The default is value.

Running the HBaseMapReduceIndexerTool
HBaseMapReduceIndexerTool is a MapReduce batch job driver that takes input data from an HBase table, creates
Solr index shards, and writes the indexes to HDFS in a flexible, scalable, and fault-tolerant manner. It also supports
merging the output shards into a set of live customer-facing Solr servers in SolrCloud.

About this task

Important:  Merging output shards into live customer-facing Solr servers can only be completed if all
replicas are online.

Before you begin

Important:  You must run the indexer tool with the following command-line argument:

-D 'mapreduce.job.user.classpath.first=true'

Running the tool without this argument triggers the following error:

ERROR [main] org.apache.hadoop.mapred.YarnChild: Error running child :
 java.lang.NoSuchMethodError:
com.codahale.metrics.MetricRegistry.meter(Ljava/lang/String;Lcom/cod
ahale/metrics/MetricRegistry$MetricSupplier;)Lcom/codahale/metrics/M
eter;

Procedure

• Run the command as follows:

hadoop --config /etc/hadoop/conf \
jar /opt/cloudera/parcels/CDH/lib/hbase-solr/tools/hbase-indexer-mr-*-job
.jar \
--conf /etc/hbase/conf/hbase-site.xml -D 'mapreduce.job.user.classpath.fi
rst=true' \
-Dmapreduce.map.java.opts="-Xmx512m" -Dmapreduce.reduce.java.opts="-Xmx5
12m" \
--hbase-indexer-file $HOME/morphline-hbase-mapper.xml \
--zk-host 127.0.0.1/solr --collection hbase-collection1 \

30



Cloudera Runtime Batch indexing using Morphlines

--go-live --log4j src/test/resources/log4j.properties

Note:  For development purposes, use the --dry-run option to run in local mode and print documents to
stdout, instead of loading them to Solr. Using this option causes the morphline to run in the client process
without submitting a job to MapReduce. Running in the client process provides quicker results during
early trial and debug sessions.

To print diagnostic information, such as the content of records as they pass through morphline commands,
enable TRACE log level diagnostics by adding the following to your log4j.properties file:

log4j.logger.org.kitesdk.morphline=TRACE
log4j.logger.com.ngdata=TRACE

The log4j.properties file can be passed using the --log4j command-line option.

To invoke the command-line help, use:

hadoop jar /opt/cloudera/parcels/CDH/jars/hbase-indexer-mr-*-job.jar --h
elp

Related reference
HBaseMapReduceIndexerTool command line reference

HBaseMapReduceIndexerTool command line reference
Command line syntax, examples and list of parameters.

The general command line syntax is:

command [genericOptions] [commandOptions]

usage:

hadoop [GenericOptions]... jar hbase-indexer-mr-*-job.jar
       [--hbase-indexer-zk STRING] [--hbase-indexer-name STRING]
       [--hbase-indexer-file FILE]
       [--hbase-indexer-component-factory STRING]
       [--hbase-table-name STRING] [--hbase-start-row BINARYSTRING]
       [--hbase-end-row BINARYSTRING] [--hbase-start-time STRING]
       [--hbase-end-time STRING] [--hbase-timestamp-format STRING]
       [--zk-host STRING] [--go-live] [--collection STRING]
       [--go-live-min-replication-factor INTEGER]
       [--go-live-threads INTEGER] [--help] [--output-dir HDFS_URI]
       [--overwrite-output-dir] [--morphline-file FILE]
       [--morphline-id STRING] [--solr-home-dir DIR]
       [--update-conflict-resolver FQCN] [--reducers INTEGER]
       [--max-segments INTEGER] [--fair-scheduler-pool STRING] [--dry-run]
       [--log4j FILE] [--verbose] [--clear-index] [--show-non-solr-cloud]

Examples:

(Re)index a table in GoLive mode based on a local indexer config file:

hadoop --config /etc/hadoop/conf \
  jar hbase-indexer-mr-*-job.jar \
  --conf /etc/hbase/conf/hbase-site.xml \
  -D 'mapreduce.job.user.classpath.first=true' \
  -Dmapreduce.map.java.opts="-Xmx512m" \
  -Dmapreduce.reduce.java.opts="-Xmx512m" \
  --hbase-indexer-file indexer.xml \
  --zk-host 127.0.0.1/solr \
  --collection collection1 \

31



Cloudera Runtime Batch indexing using Morphlines

  --go-live \
  --log4j src/test/resources/log4j.properties

(Re)index a table in GoLive mode using a local morphline-based indexer config file. Also include extra library jar file
containing JSON tweet Java parser:

hadoop --config /etc/hadoop/conf \
  jar hbase-indexer-mr-*-job.jar \
  --conf /etc/hbase/conf/hbase-site.xml \
  --libjars /path/to/kite-morphlines-twitter-0.10.0.jar \
  -D 'mapreduce.job.user.classpath.first=true' \
  -Dmapreduce.map.java.opts="-Xmx512m" \
  -Dmapreduce.reduce.java.opts="-Xmx512m" \
  --hbase-indexer-file src/test/resources/morphline_indexer_without_zk.xml \
  --zk-host 127.0.0.1/solr \
  --collection collection1 \
  --go-live \
  --morphline-file src/test/resources/morphlines.conf \
  --output-dir hdfs://c2202.mycompany.com/user/$USER/test \
  --overwrite-output-dir \
  --log4j src/test/resources/log4j.properties

(Re)index a table in GoLive mode:

hadoop --config /etc/hadoop/conf \
  jar hbase-indexer-mr-*-job.jar \
  --conf /etc/hbase/conf/hbase-site.xml \
  -D 'mapreduce.job.user.classpath.first=true' \
  -Dmapreduce.map.java.opts="-Xmx512m" \
  -Dmapreduce.reduce.java.opts="-Xmx512m" \
  --hbase-indexer-file indexer.xml \
  --zk-host 127.0.0.1/solr \
  --collection collection1 \
  --go-live \
  --log4j src/test/resources/log4j.properties

(Re)index a table with direct writes to SolrCloud:

hadoop --config /etc/hadoop/conf \
  jar hbase-indexer-mr-*-job.jar \
  --conf /etc/hbase/conf/hbase-site.xml \
  -D 'mapreduce.job.user.classpath.first=true' \
  -Dmapreduce.map.java.opts="-Xmx512m" \
  -Dmapreduce.reduce.java.opts="-Xmx512m" \
  --hbase-indexer-file indexer.xml \
  --zk-host 127.0.0.1/solr \
  --collection collection1 \
  --reducers 0 \
  --log4j src/test/resources/log4j.properties

(Re)index a table based on a indexer config stored in ZK:

hadoop --config /etc/hadoop/conf \
  jar hbase-indexer-mr-*-job.jar \
  --conf /etc/hbase/conf/hbase-site.xml \
  -D 'mapreduce.job.user.classpath.first=true' \
  -Dmapreduce.map.java.opts="-Xmx512m" \
  -Dmapreduce.reduce.java.opts="-Xmx512m" \
  --hbase-indexer-zk zk01 \
  --hbase-indexer-name docindexer \
  --go-live \

32



Cloudera Runtime Batch indexing using Morphlines

  --log4j src/test/resources/log4j.properties

MapReduce on Yarn - Pass custom JVM arguments:

HADOOP_CLIENT_OPTS='-DmaxConnectionsPerHost=10000 -DmaxConnections=10000'; \
hadoop --config /etc/hadoop/conf \
  jar hbase-indexer-mr-*-job.jar \
  --conf /etc/hbase/conf/hbase-site.xml \
  -D 'mapreduce.map.java.opts=-DmaxConnectionsPerHost=10000 -DmaxConnection
s=10000' \
  -D 'mapreduce.reduce.java.opts=-DmaxConnectionsPerHost=10000 -DmaxConne
ctions=10000' \
  --hbase-indexer-zk zk01 \
  --hbase-indexer-name docindexer \
  --go-live \
  --log4j src/test/resources/log4j.properties

HBase Indexer Parameters

Parameters for specifying the HBase indexer definition and/or where it should be loaded from.

Table 2: HBase Indexer parameters

Parameter Type Description Example

--hbase-indexer-zk STRING The address of the ZooKeeper
ensemble from which to fetch the
indexer definition named --hbase-
indexer-name. Format is: a list of
comma separated host:port pairs,
each corresponding to a zk server.

'127.0.0.1:2181,127.0.0.1:2182,1
27.0.0.1:2183'

--hbase-indexer-name STRING The name of the indexer
configuration to fetch from the
ZooKeeper ensemble specified
with --hbase-indexer-zk.

myIndexer

--hbase-indexer-file FILE Relative or absolute path to
a local HBase indexer XML
configuration file. If supplied, this
overrides --hbase-indexer-zk and
--hbase-indexer-name.

/path/to/morphline-hbase-mapper.
xml

--hbase-indexer-component-fa
ctory

STRING Classname of the hbase indexer
component factory.

HBase Scan Parameters

Parameters for specifying what data is included while reading from HBase.

Table 3: HBase scan parameters

Parameter Type Description Example

--hbase-table-name STRING Optional name of the HBase
table containing the records to be
indexed. If supplied, this overrides
the value from the --hbase-inde
xer-* options.

myTable

33



Cloudera Runtime Batch indexing using Morphlines

Parameter Type Description Example

--hbase-start-row BINARYSTRING Binary string representation of
start row from which to start
indexing (inclusive). The format
of the supplied row key should
use two-digit hex values prefixed
by \x for non-ascii characters (e.g.
'row\x00'). The semantics of this
argument are the same as those
for the HBase Scan#setStartRow
method. The default is to include
the first row of the table.

AAAA

--hbase-end-row BINARYSTRING Binary string representation of
end row prefix at which to stop
indexing (exclusive). See the
description of  --hbase-start-row
for more information. The default
is to include the last row of the
table.

CCCC

--hbase-start-time STRING Earliest timestamp (inclusive) in
time range of HBase cells to be
included for indexing. The default
is to include all cells.

0

--hbase-end-time STRING Latest timestamp (exclusive) of
HBase cells to be included for
indexing. The default is to include
all cells.

123456789

--hbase-timestamp-format STRING Timestamp format to be used to
interpret --hbase- start-time and
--hbase-end-time. This is a java
.text.SimpleDateFormat compliant
format. If this parameter is
omitted then the timestamps
are interpreted as number of
milliseconds since the standard
epoch (Unix time).

yyyy-MM-dd'T'HH:mm:ss.SSSZ

Solr Cluster Arguments

Arguments that provide information about your Solr cluster.

34



Cloudera Runtime Batch indexing using Morphlines

Table 4: Solr cluster arguments

Argument Type Description Example

--zk-host STRING The address of a ZooKeeper
ensemble being used by
a SolrCloud cluster. This
ZooKeeper ensemble will be
examined to determine the
number of output shards to create
as well as the Solr URLs to merge
the output shards into when using
the --go-live option. Requires that
you also pass the --collection to
merge the shards into.

The format is a list of comma
separated host:port pairs, each
corresponding to a zk server.

The --zk-host option implements
the same partitioning semantics
as the standard SolrCloud Near-
Real-Time (NRT) API. This
enables to mix batch updates
from MapReduce ingestion with
updates from standard Solr NRT
ingestion on the same SolrCloud
cluster, using identical unique
document keys.

If --solr-home-dir is not specified,
the Solr home directory for the
collection will be downloaded
from this ZooKeeper ensemble.

'127.0.0.1:2181,127.0.0.1:2182,1
27.0.0.1:2183'

If the optional chroot suffix is
used the example would look like:

'127.0.0.1:2181/solr127.0.0.1:21
82/solr127.0.0.1:2183/solr'

where the client would be rooted
at '/solr' and all paths would be
relative to this root - i.e.: getting/
setting/etc... '/foo/bar' would
result in operations being run on
'/solr/foo/bar' (from the server
perspective).

--solr-client-socket-timeout INTEGER Solr socket timeout in
milliseconds

This optional argument overwrites
the default 10 minute socket
timeout in HBase indexer for the
direct writing mode (when the
value of the --reducers optional
argument is set to 0 and mappers
directly send the data to the live
Solr).

Default value: 600000

Go Live Arguments

Arguments for merging the shards that are built into a live Solr cluster. Also see the Cluster arguments.

Table 5: Go live arguments

Argument Type Description Example

--go-live Allows you to optionally merge
the final index shards into a live
Solr cluster after they are built.
You can pass the ZooKeeper
address with --zk-host and the
relevant cluster information will
be auto detected.

(default: false)

--collection STRING The SolrCloud collection to merge
shards into when using --go-live
and --zk-host.

collection1

35



Cloudera Runtime Batch indexing using Morphlines

Argument Type Description Example

--go-live-min-replication-factor INTEGER The minimum number of
SolrCloud replicas to successfully
merge any final index shard
into. The go-live job phase
attempts to merge final index
shards into all SolrCloud replicas.
Some of these merge operations
may fail, for example if some
SolrCloud servers are down. This
option enables indexing jobs to
succeed even if some such merge
operations fail on SolrCloud
followers. Successful merge
operations into all leaders are
always required for job success,
regardless of the value of --go
-live-min- replication-factor.
-1 indicates require successful
merge operations into all replicas.
1 indicates require successful
merge operations only into leader
replicas.

(default: -1)

--go-live-threads INTEGER Tuning knob that indicates the
maximum number of live merges
to run in parallel at one time.

(default: 1000)

Table 6: Optional arguments

Argument Type Description Example

--help

-help

-h

Show the help message and exit

--output-dir HDFS_URI HDFS directory to write Solr
indexes to. Inside there one
output directory per shard will be
generated.

hdfs://c2202.mycompany. com/
user/$USER/test

--overwrite-output-dir Overwrite the directory specified
by --output-dir if it already exists.
Using this parameter will result
in the output directory being
recursively deleted at job startup.

(default: false)

--morphline-file FILE Relative or absolute path to a local
config file that contains one or
more morphlines. The file must
be UTF-8 encoded. The file will
be uploaded to each MR task.
If supplied, this overrides the
value from the --hbase-indexer-*
options.

/path/to/morphlines.conf

36



Cloudera Runtime Batch indexing using Morphlines

Argument Type Description Example

--morphline-id STRING The identifier of the morphline
that shall be executed within
the morphline config file, e.g.
specified by --morphline-file.
If the --morphline- id option is
ommitted the first (i.e. top-most)
morphline within the config file
is used. If supplied, this overrides
the value from the --hbase-inde
xer-* options.

morphline1

--solr-home-dir DIR Optional relative or absolute path
to a local dir containing Solr
conf/ dir and in particular conf
/solrconfig.xml and optionally
also lib/ dir. This directory will be
uploaded to each MR task.

src/test/resources/solr/minimr

--update-conflict-resolver FQCN Fully qualified class name of a
Java class that implements the
UpdateConflictResolver interface.

This enables deduplication and
ordering of a series of document
updates for the same unique
document key. For example, a
MapReduce batch job might index
multiple files in the same job
where some of the files contain
old and new versions of the very
same document, using the same
unique document key.

Typically, implementations of
this interface forbid collisions by
throwing an exception, or ignore
all but the most recent document
version, or, in the general case,
order colliding updates ascending
from least recent to most recent
(partial) update. The caller of
this interface (i. e. the Hadoop
Reducer) will then apply the
updates to Solr in the order
returned by the orderUpdates()
method.

The default RetainMostRe
centUpdateConflictResolver
implementation ignores all but the
most recent document version,
based on a configurable numeric
Solr field, which defaults to the
file_last_modified timestamp.

(default: org.apache. solr.hadoop.
dedup.      RetainMostRecentU
pdateConflictResolver)

37



Cloudera Runtime Batch indexing using Morphlines

Argument Type Description Example

--reducers INTEGER Tuning knob that indicates the
number of reducers to index into.

• 0 indicates that no reducers
should be used, and
documents should be sent
directly from the mapper
tasks to live Solr servers.

• -1 indicates use all reduce
slots available on the cluster.

• -2 indicates use one reducer
per output shard, which
disables the mtree merge MR
algorithm.

The mtree merge MR algorithm
improves scalability by spreading
load (in particular CPU load)
among a number of parallel
reducers that can be much larger
than the number of solr shards
expected by the user. It can be
seen as an extension of concurrent
lucene merges and tiered lucene
merges to the clustered case. The
subsequent mapper-only phase
merges the output of said large
number of reducers to the number
of shards expected by the user,
again by utilizing more available
parallelism on the cluster.

(default: -1)

--max-segments INTEGER Tuning knob that indicates the
maximum number of segments
to be contained on output in the
index of each reducer shard.

After a reducer has built its output
index it applies a merge policy to
merge segments until there are <=
maxSegments lucene segments
left in this index. Merging
segments involves reading and
rewriting all data in all these
segment files, potentially multiple
times, which is very I/O intensive
and time consuming. However,
an index with fewer segments
can later be merged faster, and it
can later be queried faster once
deployed to a live Solr serving
shard.

Set maxSegments to 1 to optimize
the index for low query latency.

In a nutshell, a small maxSegme
nts value trades indexing latency
for subsequently improved query
latency. This can be a reasonable
trade-off for batch indexing
systems.

(default: 1)

38



Cloudera Runtime Batch indexing using Morphlines

Argument Type Description Example

--dry-run Run in local mode and print
documents to stdout instead
of loading them into Solr.
This executes the morphline
in the client process (without
submitting a job to MR) for
quicker turnaround during early
trial and debug sessions.

(default: false)

--log4j FILE Relative or absolute path to a
log4j.properties config file on the
local file system. This file will be
uploaded to each MR task.

/path/to/log4j.properties

--verbose

-v

Turn on verbose output.

(default: false)

--clear-index Will attempt to delete all entries in
a solr index before starting batch
build. This is not transactional so
if the build fails the index will be
empty.

(default: false)

--show-non-solr-cloud Also show options for Non-
SolrCloud mode as part of --help.

(default: false)

Supported Generic Options

The following generic options are supported:

Table 7: Supported generic options

Option Description

--conf <configuration file> Specify an application configuration file.

-D <property=value> Define a value for a given property.

-fs <file:///|hdfs://namenode:port> Specify default filesystem URL to use, overrides the fs.defaultFS
property from configurations.

--jt <local|resourcemanager:port> Specify a ResourceManager.

--files <file1,...> Specify a comma-separated list of files to be copied to the map reduce
cluster.

--libjars <jar1,...> Specify a comma-separated list of jar files to be included in the
classpath.

--archives <archive1,...> Specify a comma-separated list of archives to be unarchived on the
compute machines.

Related Information
Java SimpeDateFormat

Using --go-live with SSL or Kerberos
Establish trust between the indexer client and Solr server(s).

39

https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html


Cloudera Runtime Batch indexing using Morphlines

About this task

The go-live phase of the indexer jobs sends a MERGEINDEXES request from the indexer client (the node from
which the MR job was submitted) to the live Solr servers. If the Solr server has SSL enabled, you need to ensure that
the indexer client trusts the certificate presented by the Solr server(s), otherwise you get an SSLPeerUnverifiedExc
eption.

Procedure

1. Specify the location of the trust store by setting the following HADOOP_OPTS variable before launching the
indexer job:

HADOOP_OPTS="-Djavax.net.ssl.trustStore=/etc/cdep-ssl-conf/CA_STANDARD/t
ruststore.jks "

2. If the Solr servers have Kerberos authentication enabled, you need to ensure that the indexer client can
authenticate via Kerberos to the Solr servers. For this, you need to create a Java Authentication and Authorization
Service configuration (JAAS) file locally on the node where the indexing job is launched:

• If you are authenticating using kinit to obtain credentials, you can configure the client to use your credential
cache by creating a jaas.conf file with the following contents:

Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=false
 useTicketCache=true
 principal="<USER>@EXAMPLE.COM";
 };

Replace <USER> with your username, and EXAMPLE.COM with your Kerberos realm.
• If you want the client application to authenticate using a keytab, modify jaas-client.conf as follows:

Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab="/PATH/TO/USER.KEYTAB"
 storeKey=true
 useTicketCache=false
 principal="<USER>@EXAMPLE.COM";
};

Replace /PATH/TO/USER.KEYTAB with the keytab file you want to use and <USER>@EXAMPLE.COM
with the principal in the keytab. If you are using a service principal that includes the hostname, make sure that
it is included in the jaas.conf file (for example, solr/solr01.example.com@EXAMPLE.COM).

3. If you are using a ticket cache, you need to do a kinit to acquire a ticket for the configured principal before
launching the indexer.

4. Specify the authentication configuration in the HADOOP_OPTS environment variable:

HADOOP_OPTS="-Djava.security.auth.login.config=jaas.conf -Djavax.net.ssl
.trustStore=/etc/cdep-ssl-conf/CA_STANDARD/truststore.jks" \
hadoop --config /etc/hadoop/conf \
jar /opt/cloudera/parcels/CDH/lib/hbase-solr/tools/hbase-indexer-mr-*-jo
b.jar \
--conf /etc/hbase/conf/hbase-site.xml -Dmapreduce.map.java.opts="-Xmx512m"
 -Dmapreduce.reduce.java.opts="-Xmx512m" \
--hbase-indexer-file /home/systest/hbasetest/morphline-hbase-mapper.xml \
--zk-host 127.0.0.1/solr \
--collection hbase-collection1 \

40



Cloudera Runtime Batch indexing using Morphlines

--go-live --log4j src/test/resources/log4j.properties

Note:

Communication to Solr servers is only occurring in the go-live phase, not from the MapReduce jobs.
Therefore it is enough to place the jaas.conf and the SSL trust store on the node from which the indexer
client is started as it will be the one that communicates to Solr.

Understanding --go-live and HDFS ACLs

When run with a reduce phase, as opposed to as a mapper-only job, the indexer creates an offline index on HDFS in
the output directory specified by the --output-dir parameter. If the --go-live parameter is specified, Solr merges the
resulting offline index into the live running service. Thus, the Solr service must have read access to the contents of
the output directory in order to complete the --go-live step. If --overwrite-output-dir is specified, the indexer deletes
and recreates any existing output directory; in an environment with restrictive permissions, such as one with an HDFS
umask of 077, the Solr user may not be able to read the contents of the newly created directory. To address this issue,
the indexer automatically applies the HDFS ACLs to enable Solr to read the output directory contents. These ACLs
are only applied if HDFS ACLs are enabled on the HDFS NameNode.

The indexer only makes ACL updates to the output directory and its contents. If the output directory's parent
directories do not include the execute permission, the Solr service cannot access the output directory. Solr must have
execute permissions from standard permissions or ACLs on the parent directories of the output directory.

41


	Contents
	Indexing data using Morphlines
	Lily HBase near real time indexing using Morphlines
	Adding the Lily HBase indexer service
	Starting the Lily HBase NRT indexer service
	Using the Lily HBase NRT indexer service
	Enable replication on HBase column families
	Create a Collection in Cloudera Search
	Creating a Lily HBase Indexer Configuration File
	Creating a Morphline Configuration File
	Understanding the extr​actH​Base​Cells Morphline Command
	Registering a Lily HBase Indexer Configuration with the Lily HBase Indexer Service
	Verifying that Indexing Works
	Using the indexer HTTP interface

	Configuring Lily HBase Indexer Security
	Configure Lily HBase Indexer to use TLS/SSL
	Configure Lily HBase Indexer Service to use Kerberos authentication


	Batch indexing using Morphlines
	Spark indexing using morphlines
	MapReduce indexing
	MapReduceIndexerTool
	MapReduceIndexerTool input splits
	MapReduceIndexerTool metadata
	MapReduceIndexerTool usage syntax
	Indexing data with MapReduceIndexerTool in Solr backup format

	Lily HBase batch indexing for Cloudera Search
	Populating an HBase Table
	Create a Collection in Cloudera Search
	Creating a Lily HBase Indexer Configuration File
	Creating a Morphline Configuration File
	Understanding the extr​actH​Base​Cells Morphline Command
	Running the HBaseMapReduceIndexerTool
	HBaseMapReduceIndexerTool command line reference
	Using --go-live with SSL or Kerberos
	Understanding --go​-live and HDFS ACLs




