
Cloudera Runtime 7.2.17

Iceberg support for Atlas
Date published: 2023-06-26
Date modified:

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

Iceberg support for Atlas (Technical Preview)... 4
How Atlas works with Iceberg.. 4

Using the Spark shell... 5

Using the Hive shell..15

Using the Impala shell..22

Cloudera Runtime Iceberg support for Atlas (Technical Preview)

Iceberg support for Atlas (Technical Preview)

Atlas integration with Iceberg helps you identify the Iceberg tables to scan data and provide lineage support. Learn
how Atlas works with Iceberg and what schema evolution, partition specification, partition evolution are with
examples.

How Atlas works with Iceberg
You can use Atlas to find, organize, and manage different aspects of data about your Iceberg tables and how they
relate to each other. This enables a range of data stewardship and regulatory compliance use cases.

The Atlas connectors distinguish between Hive and Iceberg tables. The Iceberg table is available in a “typedef”
format which implies that the underlying data can be retrieved by querying the Iceberg table. All attributes of the
Hive table are available in the Iceberg table and this equivalence is achieved by creating the Iceberg table as a sub-
type of the underlying Hive table. Optionally, the Iceberg table can also be queried by Hive or Impala engine. For
more information about Iceberg and related concepts, see Apache Iceberg features and Apache Iceberg in CDP.

Both Iceberg and Hive tables have equality in Atlas in terms of data tagging. Data evolution and transformation
are features unique to Iceberg tables. Iceberg adds tables to compute engines including Spark, Hive and Impala
using a high-performance table format that works just like a SQL table. Also, the lineage support for Iceberg table is
available. For example, when a Hive table is converted to Iceberg format, the lineage is displayed for the conversion
process in Atlas UI.

• Migration of Hive tables to Iceberg is achieved with the following:

• Using in-place migration by running a Hive query with the ALTER TABLE statement and setting the table
properties

• Executing CTAS command from Hive table to the Iceberg table.

• Schema evolution allows you to easily change a table's current schema to accommodate data that changes over
time. Schema evolution enables you to update the schema that is used to write new data while maintaining
backward compatibility with the schemas of your old data. Later the data can be read together assuming all of the
data has one schema.

• Iceberg tables supports the following schema evolution changes:

Add – add a new column to the table or to a nested struct

Drop– remove an existing column from the table or a nested struct

Rename– rename an existing column or field in a nested struct

Update– widen the type of a column, struct field, map key, map value, or list element

Reorder – change the order of columns or fields in a nested struct

• Partition specification allows you to initiate queries faster by grouping similar rows together when writing.

As an example, queries for log entries from a logs table usually include a time range, like the following query for
logs between 10 A.M. and 12 A.M.

SELECT level, message FROM logs

WHERE event_time BETWEEN '2018-12-01 10:00:00' AND '2018-12-0112:00:00'

Configuring the logs table to partition by the date of event_time groups log events into files with the same event date.
Iceberg keeps track of that date and uses it to skip files for other dates that do not have useful data.

• Partition evolution across Iceberg table partitioning can be updated in an existing table because queries do not
reference partition values directly.

4

https://docs.cloudera.com/cdw-runtime/cloud/iceberg-how-to/topics/iceberg-features.html
https://docs.cloudera.com/cdp-public-cloud/cloud/cdp-iceberg/topics/iceberg-in-cdp.html

Cloudera Runtime Using the Spark shell

When you evolve a partition specification, the old data written with an earlier specification remains unchanged. New
data is written using the new specification in a new layout. The metadata for each of the partition versions is stored
separately.

Due to this nature of partition evolution, when you start writing queries, you get split planning. This is where each
partition layout plans files separately using the filter it derives for that specific partition layout.

Using the Spark shell

Using Spark, you can create an Iceberg table followed by schema evolution, partition specification, and partition
evolution.

Before you begin
You must configure the Spark shell as such you have included the valid Spark runtime version.

Run the following command in your Spark shell to create a new Iceberg table

Procedure

1. spark.sql("CREATE TABLE spark_catalog.default.sample_1 (id bigint COMMENT
'unique id', data string) USING iceberg");

5

Cloudera Runtime Using the Spark shell

2. Navigate accordingly in the Atlas UI to view the changes.

The following images provide information about Iceberg table creation process.

6

Cloudera Runtime Using the Spark shell

Run the following command in your Spark shell to create a Schema Evolution in a new table. For example -
sample_2.

3. spark.sql("CREATE TABLE spark_catalog.default.sample_2 (id bigint COMMENT 'unique id', data string)
USING iceberg");

7

Cloudera Runtime Using the Spark shell

4. Navigate accordingly in the Atlas UI to view the changes.

The following image provide information about Iceberg schema evolution process.

Run the following command in your Spark shell to include a column:

5. spark.sql("ALTER TABLE spark_catalog.default.sample_2 ADD COLUMN (add_col_1 string)");

8

Cloudera Runtime Using the Spark shell

6. Navigate accordingly in the Atlas UI to view the changes.

The following images provide information about Iceberg schema creation process.

9

Cloudera Runtime Using the Spark shell

Run the following command in your Spark shell to include the second column:

7. spark.sql("ALTER TABLE spark_catalog.default.sample_2 ADD COLUMN (add_col_2 string)");

10

Cloudera Runtime Using the Spark shell

8. Navigate accordingly in the Atlas UI to view the changes.

The following image provide information about Iceberg schema creation process.

Run the following command in your Spark shell to create a Partition Specification in a new table (sample_3):

9. spark.sql("CREATE TABLE spark_catalog.default.sample_3 (id bigint,data string,category string,ts timestamp)
USING iceberg PARTITIONED BY (bucket(16, id), days(ts), category)");

11

Cloudera Runtime Using the Spark shell

10. Navigate accordingly in the Atlas UI to view the changes.

The following images provide information about Iceberg partition specification process.

12

Cloudera Runtime Using the Spark shell

Run the following command in your Spark shell to create a Partition Evolution in a new table (sample_3):

11. spark.sql("ALTER TABLE spark_catalog.default.sample_3 ADD PARTITION FIELD years(ts)");

13

Cloudera Runtime Using the Spark shell

12. Navigate accordingly in the Atlas UI to view the changes.

The following images provide information about Iceberg partition evolution process.

14

Cloudera Runtime Using the Hive shell

Using the Hive shell

Using Hive, you can create an Iceberg table followed by using the CTAS command to alter or copy the existing Hive
table and its properties into the Iceberg table.

Before you begin
In this case, you create an external table and alter an existing Hive table to Iceberg table using the Hive engine.

Run the following command in your Hive shell to create an Iceberg table.

Procedure

1. create external table if not exists hive_ice_1 (CountryID int, CountryName string, Capital string, Population
string) STORED BY ICEBERG STORED AS PARQUET;

15

Cloudera Runtime Using the Hive shell

2. Navigate accordingly in the Atlas UI to view the changes.

The following images provide information about Iceberg table creation process.

16

Cloudera Runtime Using the Hive shell

Run the following commands in your Hive shell to copy the contents of one table (hive_ice_3) to another newly
created table (hive_ice_4).

3. create external table if not exists hive_ice_3 (CountryID int, CountryName string, Capital string, Population st
ring) STORED BY ICEBERG STORED AS PARQUET;

17

Cloudera Runtime Using the Hive shell

4. create external table if not exists hive_ice_4 STORED BY ICEBERG STORED AS PARQUET as select * f
rom hive_ice_3;

The following images provide information about copying contents from one table to another.

18

Cloudera Runtime Using the Hive shell

You can alter an existing Hive table to Iceberg table.

19

Cloudera Runtime Using the Hive shell

5. create external table if not exists hive_ice_5 (CountryID int, CountryName string, Capital string, Population st
ring)STORED AS PARQUET;

20

Cloudera Runtime Using the Hive shell

6. ALTER TABLE hive_ice_5 SET TBLPROPERTIES ('storage_handler'='org.apache.iceberg.mr.hive.HiveIce
bergStorageHandler');

The following images provide information about alter tables operations.

21

Cloudera Runtime Using the Impala shell

Using the Impala shell

Using Impala, you can create an Iceberg table followed by Schema evolution, partition specification, partition
evolution and CTAS operation.

Before you begin

Run the following command in your Impala shell to create a new Iceberg table

Procedure

1. CREATE TABLE ice_t (i INT) STORED AS ICEBERG;

22

Cloudera Runtime Using the Impala shell

2. Navigate accordingly in the Atlas UI to view the changes.

The following images provide information about Iceberg table creation process.

Run the following command in your Impala shell to create a scheme evolution:

23

Cloudera Runtime Using the Impala shell

3. CREATE TABLE ice_t_2 (i INT) STORED AS ICEBERG;

Run the following command in your Impala shell to add a column to the existing table (ice_t_2):

24

Cloudera Runtime Using the Impala shell

4. alter table ice_t_2 ADD COLUMNS (add_col_1 string);

25

Cloudera Runtime Using the Impala shell

26

Cloudera Runtime Using the Impala shell

Run the following command in your Impala shell to create a partition specification.

5. CREATE TABLE ice_part_spec (s string , b string) PARTITIONED BY SPEC (truncate(3, s)) STORED AS
ICEBERG ;

Run the following command in your Impala shell to create a partition evolution.

27

Cloudera Runtime Using the Impala shell

6. CREATE TABLE ice_p (i INT, d DATE, s STRING, t TIMESTAMP) PARTITIONED BY SPEC (BUCKET(5,
i), MONTH(d), TRUNCATE(3, s), HOUR(t))STORED AS ICEBERG;

Run the following command in your Impala shell to modify the partition specification

28

Cloudera Runtime Using the Impala shell

7. ALTER TABLE ice_p SET PARTITION SPEC (VOID(i), VOID(d), TRUNCATE(3, s), HOUR(t), i);

29

Cloudera Runtime Using the Impala shell

30

Cloudera Runtime Using the Impala shell

Run the following commands in your Impala shell to create the contents of one table (ice_t_3) to another table
(ice_t_4).

8. CREATE TABLE ice_t_3 (i INT) STORED AS ICEBERG;

31

Cloudera Runtime Using the Impala shell

9. CREATE TABLE ice_t_4 STORED AS ICEBERG as select * from ice_t_3;

32

Cloudera Runtime Using the Impala shell

33

Cloudera Runtime Using the Impala shell

The process is completed.

34

	Contents
	Iceberg support for Atlas (Technical Preview)
	How Atlas works with Iceberg

	Using the Spark shell
	Using the Hive shell
	Using the Impala shell

